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Abstract

Microscopic observations reveal that stannite formed at an earlier stage than
stannoidite on the scale of polished sections, and this suggests that sulfur fugacity,
f(S,), increased or that temperature decreased (or both) with the evolution of Sn
mineralization. Concerning the f(S,) versus temperature range for the stannite-type
deposits, at a given temperature, f(S;) increased from skarn deposits through Sn-W
vein deposits to polymetallic vein deposits. Fe*"/Zn ratios of coexisting stannoidite,
sphalerite and tennantite-tetrahedrite from W-bearing polymetallic vein deposits
were higher than those from W-free polymetallic vein deposits. This could imply
that the W-bearing deposits formed under lower f(S,) or higher temperature
conditions (or both) than the W-free deposits. The log f(S,) vs. temperature field of
roquesite-bearing Sn ores from the Omodani and Akenobe deposits was
superimposed to be approximately 10 atm. at 310 °C to 10™ atm. at 285 °C, in the
same manner as that of the stannoidite-bearing ores.

Keywords : stannite, stannoidite, roquesite, skarn deposits, polymetallic vein
deposits, Sn-W vein deposits, epithermal deposits, stannite-type, stannoidite-type,
temperature, sulfur fugacity.

1. Introduction

Economic geology has a wide spectrum; targets for thorough investigation include not only
ore deposits themselves but also all of the ore-forming processes, such as sources and channel ways
of ore fluids, their reactions with host rocks, sources of the dissolved constituents, transportation by
the fluids, and precipitation from fluids. Comprehensive genetic models for ore deposits can be
obtained based on overall detailed geologic, alteration, fluid inclusion, stable isotope, and
experimental studies. One example might be observing, describing and considering aggregates of
ore minerals as the present status of our understanding of ores and ore deposits in terms of
physicochemical environment of formation such as temperature, pressure, oxygen fugacity and
sulfur fugacity, salinity, and on complexing.

Mineral resources have recently gained further their economic significance with their
increasing consumption in our technologies. Rare metals such as Sn and In are linked to the growth
of the computer, semiconductor and other industries; for example, In is now one of indispensable
for the electrodes of liquid crystal displays even though its price has risen dramatically because of
its insufficient availability.

This paper describes the environment of formation of and a genetic concept for Sn
sulfide-bearing ore deposits in Japan. Since In mineralization has a high affinity for such Sn
mineralization, it is also characterized.

* Department of Earth Sciences, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.

E-mail: mshimizu@sci.u-toyama.ac.jp
** Faculty of Education and Human Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan.

E-mail: tkenro@yamanashi.ac.jp



24 )
Far Eastern Studies Vol.7

2. Distribution of Sn Sulfide-Bearing Deposits in Japan

Tin sulfide-bearing deposits in Japan are generally grouped into skarn and vein deposits. The
skarn deposits mean ore deposits genetically related to skarnization (mechanism for forming silicate
minerals such as calcium-bearing amphibole, pyroxene, and garnet). The vein deposits mean ore
deposits filling of faults or other fractures in host rocks in tabular or sheet-like form, and they are
subdivided into three here: polymetallic, Sn-W, and epithermal.

The distribution of the Sn sulfide-bearing deposits in a so-called “mature”island arc system
(Japan) is shown in Fig. 1. From the viewpoint of metallogenic epoch, these deposits are mainly
divided into two groups: (1) Upper Cretaceous-Paleogene in age for backarc-side deposits about
300-400 km away from the axis of the present trench, and (2) Neogene in age for forarc-side
deposits 200-300 km away from the trench axis.
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Figure 1 Map of Japan showing the distribution of Sn sulfide-bearing deposits studied.
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Because stannite and stannoidite are rather common Sn sulfide minerals in the ore deposits
associated with Sn mineralization, we propose that these deposits can be divided into two
types—stannite type and stannoidite type—independent from the grouping of the metallogenic
epoch. The stannite type, which means deposits where stannite occurs, consists of seven skarn
deposits (Hoei, Nakatatsu, Obira, Kano, Kuga, Tsumo, and Kamioka), two polymetallic vein
deposits (Akenobe and Ikuno), three Sn-W vein deposits (Ohtani, Kaneuchi, and Takatori) and an
epithermal vein deposits (Yatani). The stannoidite type, which here means deposits where
stannoidite occurs, is composed of eight polymetallic vein deposits (Tada, Ohmidani, Omodani,
Akenobe, Fukoku, Setoda, Ikuno, and Konjo). Both stannite and stannoidite are observed, such as
at Akenobe and Ikuno, but these two minerals are not recognized as forming simultaneously under

the microscope. Such deposits are therefore classified into both stannite and stannoidite types.

3. Formation Temperature and Sulfur Fugacity of Stannite-Type Deposits

3-1. Iron and Zinc Partitioning between Coexisting Stannite and Sphalerite

Iron and zinc partitioning between coexisting stannite and sphalerite can be represented by the

exchange reaction:

Cu,FeSnS, (in stannite) + ZnS (in sphalerite)

< CupZnSnS, (in stannite) + FeS (in sphalerite) @)

The partitioning coefficient (Kd) for the above reaction is represented by

Kd= X(CUQF CSHS4)/X(CUQZHSHS4)Stannjte (2)
X(FCS)/X(ZHS)sphalerite

In which X denotes the mole fraction of a given component in stannite or sphalerite.
Based on experimental studies, Nekrasov ef al. (1979) and Nakamura and Shima (1982)

reported a temperature dependency of iron and zinc partitioning between stannite and sphalerite.
log Kd=1.274x 10> x T"' — 1.174 (Nekrasov et al., 1979) 3)

log Kd=2.8x 10° x T" — 3.5 (Nakamura and Shima, 1982) 4)

Both geothermometers are in agreement being close to 380 °C (Fig. 2); however, at the lower and
higher temperatures the difference between the temperatures estimated from the equations (3) and

(4) is larger.
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Figure 2. Comparison between the stannite-sphalerite geothermometer after Nekrasov et al. (1979) and that after
Nakamura and Shima (1982). See equations (1) and (2) in the text. Cross bars indicate experimental
uncertainties.

The chemical compositions of coexisting stannite and sphalerite were determined using an
electron-microprobe analyzer (EPMA). Stannite and sphalerite are usually compositionally
homogenous. Before the electron-microprobe analyses, the polished sections were carefully
examined under the microscope. Some of them were abandoned after this check, because
subsolidus phenomena and disequilibrium textures like stannite-chalcopyrite myrmekitic

intergrowth were observed.

3-2. Comparison of Stannite-Sphalerite Temperatures with Filling Temperatures of
Fluid Inclusions and Sulfur Isotope Temperatures

Figure 3 and Table 1 present a comparison between the stannite-sphalerite temperatures and
filling temperatures of fluid inclusions or sulfur isotope temperatures. Data on the filling
temperatures were obtained for the fluid inclusions in the quartz which precipitated at the same
stage as that of the stannite-sphalerite pair. The sulfur isotope temperatures for the Nakatatsu
deposit was analyzed for the galena-sphalerite pair which precipitated at the same stage as the

stannite-sphalerite pair.



Tin Sulfide-Bearing Deposits in Japan

S
400
I Int
- 0B I
| .
..g B, 1
o KG llfu
£ 300 THNY [}
-qC_, __I‘_"'TM YAK
-— |
o i
ks e
8
o 200 //
5
£ o 2
s ;
~

c
Rel
Y 100
=]
£
=
=
= Nekrasov et al. (1979)

0]

0 100 200 300 °C

400
300

200

100 /

27

BN CE

=
—

Nakamura & Shima (1982)

0
100

stannite - sphalerite geothermometry

200 300°C

Figure 3. Comparison between the stannite-sphalerite geothermometer and filling temperatures of fluid inclusions or
sulfur isotope temperatures.
Abbreviations, NT: Nakatatsu (Fukui Pref.), OB: Obira (Oita Pref.), KN: Kano (Miyazaki Pref.), KG: Kuga
(Yamaguchi Pref.), TM: Tsumo (Shimane Pref.), KM: Kamioka (Gifu Pref.), OT: Ohtani (Kyoto Pref.), KU:
Kaneuchi (Kyoto Pref.), AK: Akenobe (Hyogo Pref.), TT: Takatori (Ibaragi Pref.), YT: Yatani (Yamagata Pref.).

Table 1.

Comparison between the stannite-sphalerite geothermometer and filling temperatures of fluid inclusions or
sulfur isotope temperatures.

Sample Loc Temp. (1) Temp. (2) I I Temp. (3) Ref.

Hoei 350°-320°  320°-250° 0.30 -0.34 3.29- 541 o

Nakatatsu 340°-320°  300°-260° 035 -038 438 - 582 360°+ 25°  Shimizu & liyama (1982)*
Obira 330° -300°  270°-230° 0.25 -0.29 431- 567 365°-336°  Nishio et al. (1953)

Kano 330°-260°  270°-170° 023 -0.26 3.88-118 305°-270°  Enjoji & Nedachi (1983)
Kuga 310°-260°  230°-160° 025 -0.26 598-152 300°+ 50°  Takenouchi (1983)

Tsumo 310°-260°  230°-170° 0.14 -0.25 311-126 297°-273°  Enjoji & Shoji (1981)
Kamioka 310°-250°  240°-150° 022 -023 471 -15.1 284° - 145°  unpublished mine data
Ohtani 330°-310°  280°-250° 0.22 -0.24 3.35- 4.02 375°-225°  Kim etal (1972)

Kaneuchi 330°-300°  270°-220° 0.20 -0.23 3.32- 510 337°-286°  Kimetal. (1972)

Akenobe 320°-300°  250°-220° 0.10 -0.13 2.39- 248 310° -285°  Shiozawa (1983)

Takatori 290° -280°  200°-190° 0.17 532- 625 320° -225°  Takenouchi & Imai (1971)
Tkuno 270° -260°  180°-170°  0.039-0.041 206 - 2.54

Yatani 170° — 140° 40° - 20°  0.023-0.044 375 240° -220°  unpublished Shikazono data
Daehwa 300° -280°  220°-200°  0.061-0.067 166 - 2.11

East 270° -260°  170° 0.081-0.082 401 - 434

Cornwall 270° -260°  180°-170°  0.10 4.53- 5.20

Kuga 300° - 250° Nakamura (1983)

Ohtani 340° - 240° Nakamura (1983)
Suzuyama 300° - 250° Urashima & Nedachi (1983)

Temp. (1): temperature based on Nakamura and Shima’s geothermometer (°C)
Temp. (2): temperature based on Nekrasov et al.’s geothermometer (°C)

I

1I: (X cuFesns, /X cu,znsns,) i stannite

Temp. (3): temperature based on fluid inclusion or isotope * studies (°C)
] (X Fes/Xzas) in sphalerite
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Figure 3 reveals that Nakamura and Shima’s geothermometer would be rather consistent with the
temperatures estimated based on the fluid inclusion or sulfur isotope studies. It is also notable that
almost all stannite-sphalerite temperatures are within £30 ‘C of average filling temperatures and
sulfur isotope temperatures.

3-3. Formation Temperature and Sulfur Fugacity of Stannite-Type Deposits

The temperatures estimated based on equation (4) range from about 350 to 250 °C for both
skarn and vein deposits except for the Yatani epithermal Au-Ag vein deposit (Table 1).

The chemical compositions of the coexisting stannite and sphalerite are plotted on log
(Xres/Xzns )sphaterite VS. 108 (XcusFesns/Xcu,znsnS, )stannite diagrams (Figs. 4 and 5). Iso- log sulfur fugacity
(f(S,)) lines are based on Nakamura and Shima’s equation and thermochemical data on the Fe-Zn-S
system by Scott and Barnes (1971). The line representing 20.8 mol.% FeS in sphalerite, which
corresponds to the composition of sphalerite in equilibrium with pyrite and pyrrhotite at 1 bar as
determined by Boorman (1967), is also given on the diagram. It is evident in Figs. 4 and 5 that the
FeS content of sphalerite coexisting with pyrite is generally lower than that of sphalerite coexisting

with pyrrhotite or both pyrite and pyrrhotite.

LA - 250°C

Fe5=20.8 mole /s
associated with Po

log XCusFeSnS, in stannite
XCu,ZnSns,
o

B2 Po & Py
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-1 .
- S | 0
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Figure 4. Diagram of log (Xres/Xzns)sphaterite VS- 10€ (X CusFesn$y/ X Cu,ZnSnSy)stannite Showing that sphalerite and
stannite are associated with pyrrhotite (Po) and/or pyrite (Py). Temperature lines are based on data by Nakamura and
Shima (1982). Solid curves show log f(S,) based on data by Scott and Barnes (1971) in the pyrrhotite field. Abbreviations
are the same as Fig. 3 and He: Hoei (Oita Pref.), C: Cornwall (Penn., U.S.A.), East (Cornwall, U.K.).
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Figure 5. Diagram of log (Xres/Xzn8)sphalerite VS- 10g (XcCusFesns,/Xcu,ZnsnS,)stannite Showing each deposit is skarn or vein.

00%
A
oot

00

o)
02

0%

Temperature , °C

11 * -
. 250 300 350°C

Figure 6.. Temperature vs. log f(S,) diagram. Skarn deposits (solid squares) are considered to be formed under lower
f(S,) condition than vein deposits (open squares).
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Iso-FeS content lines for sphalerite in equilibrium with pyrite or pyrrhotite were drawn on the log
f(S,) vs. temperature diagram (Fig. 6) using thermochemical data reported by Scott and Barnes
(1971) and Barton and Skinner (1979). The relation between the iron contents of stannite in
equilibrium with sphalerite and pyrite or with sphalerite and pyrrhotite was derived based on
thermochemical data reported by Scott and Barnes (1971), Barton and Skinner (1979) and
Nakamura and Shima (1982) (Fig. 6).

Consequently, concerning the f(S,) vs. temperature range for the stannite-type deposits, at a
given temperature, f(S,) increases from the skarn deposits through Sn-W vein deposits to

polymetallic vein deposits.

4. Formation Temperature and Sulfur Fugacity of Stannoidite-bearing Sn Ores

4-1. Textures and Mineral Assemblages of Stannoidite-Bearing Sn Ores

Two characteristic textures of stannoidite-bearing ores are generally observed under the
microscope. Where relic cassiterite remains, such as observed in the ores from the Konjo and Ashio
deposits, stannoidite usually includes stannite, and stannite in turn includes aggregates of cassiterite
grains (Fig. 7). This texture suggests the following sequence of precipitation of these Sn minerals:

cassiterite (early) — stannite — stannoidite (late).

0 100 pm

Figure 7. Photomicrograph of stannoidite-stannite-cassiterite-bearing sample from the Konjo ore deposit (Okayama
Pref.). Abbreviations, Sd: stannoidite, St: stannite, Cp: chalcopyrite, Cas: cassiterite (SnO,).
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On the other hand, where mawsonite occurs at the margin of some stannoidite grains, such as
observed in the samples from the Tada, Ohmidani, Omodani and Fukoku deposits, mawsonite

shows a replacement or reaction texture (Fig. 8). In this case, stannite is invariably absent. This
texture suggests the following sequence of precipitation: stannoidite — mawsonite.
The sequence of precipitation of Sn minerals inferred from the two characteristic textures

might be: cassiterite — stannite — stannoidite — mawsonite.

Figure 8. Photomicrograph of stannoidite-mawsonite-bornite-bearing sample from the Tada ore deposit (Hyogo Pref.).
Abbreviations, Mw: mawsonite, Bn: bornite, Cp: chalcopyrite, Gn: galena, Ag: Ag minerals, gang.: gangue
minerals.

The common opaque minerals that coexist with stannoidite are chalcopyrite, bornite, sphalerite,
tennantite-tetrahedrite-series minerals and roquesite: these seem to have formed nearly
contemporaneously, and this assemblage generally does not include stannite. It is also noteworthy
that stannoidite does not coexist with pyrite except in the Sn ores from the Ashio deposit which

contain stannite together with stannoidite. But stannite coexists with pyrite.
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4-2. Formation Temperature and Sulfur Fugacity of Stannoidite-type Deposits

Many analytical data obtained with an EPMA reveal that most of the stannoidite, sphalerite
and tennantite-tetrahedrite grains are compositionally homogeneous. Ranges of atomic Fe*'/Zn
ratios of coexisting stannoidite, sphalerite and tennantite-tetrahedrite from Japanese Sn-bearing vein
deposits are summarized in Table 2. The atomic Fe*/Zn ratio of stannoidite was calculated from
the total Fe/Zn ratio obtained by the electron-microprobe analysis and is based on the relationship:

(Fe™/Zn)gamoiaite = 1/3 {(total Fe/Zn) - 2} (5)

A continuous solid solution is inferred to exist between CusFe* Fe’ ,Sn,S 1, (ideal stannoidite)
and CugZnFe*",Sn,S;, (“zinc-stannoidite”), and the F e**/Zn ratio of stannoidite is positively
correlated to that of sphalerite and that of tennantite-tetrahedrite. No experimental data for
temperature dependency of iron and zinc partitioning among these minerals have yet been obtained,

but they could be of use as geothermometers in the future.

Table 2. Atomic Fe*"/Zn*" ratio of coexisting stannoidite (Sd), sphalerite (Sp) and tennnite-tetrahedrite-series
minerals (Tenn).

Ore Dep. 5d (avg: no. analysis) Sp (avg: no. analysis) Tenn (avg: no. analysis)
Tada 0.0L - 0.14 (0.08: 9) 0.002 - 0.007 (0.004: 8) 4 absent

Ohmidani 0.09 - 0.14 (0.12: 7) absent - 0.09 - 0.19 (0.14: 5)
Omodani 0.11 - 0.32 (0.22: 9) 0.004 - 0.011 (0.007: 8) E 0.22 - 0.24 (0.23: 2)
Akenobe* 0.38 = 0.43 (0.41: 2) 0.005 - 0.008 (0.00;5: 3) E 0.12 - 0.23 (0.18: 5)
Fukoku 0.11 - 0.72 (0.46: 9) 0.015 (0.015: 1) & 0.94 - 1.61 (1.14: 4)
Ashio 0.58 - 1.19 (0.87: 3) 0.036 - 0.041 (0.039: 2) 0.34 - 3.97 (1.25: 4)
Satoda 1.06 - 1.43 (1.21: 9) absent absent

Ikuno 1.31 - 1.41 (1.38: @) absent 1.13 - 3.02 (1.90:11)
Konjo 2.01 - 2.10 (2.05: &) absent 1.52 - 4.38 (2.77: 7)

* Shiozawa (1984)
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Table 3. Fe/Zn ratio of sphalerite from Sn-bearing vein deposits in Japan.

Sphalerite + stannoidite
Ore Dep. Fe/Zn
- Tada 0.002 - 0.007
Omodani 0.004 - 0.011
Akenobe 0.005 - 0.008
Fukoku 0.015
Sphalerite + stannoidite + stannite
Ashio 0.036 - 0.041
Sphalerite + stannite (Shimizu & Shikazono 1985)
Yatani 0.023 - 0.044
Ikuno 0.039 - 0.041
Akenobe 0.10 - 0.13
Takatori 0.17
Kaneuchi 0.20 - 0.23

Ohtani 0.22 - 0.24

The Fe/Zn ratio of sphalerite coexisting with stannite or stannoidite is listed in Table 3. Note
that the iron content of sphalerite coexisting with stannoidite is very low, compared with that of
sphalerite with stannite.

Based on coexisting stannoidite, sphalerite, chalcopyrite and bornite, the following chemical

reaction can be used to estimate f(S,) of the formation of the mineral assemblage.
SCUFCSQ = CUSFCS4 + 4(FCS)SP + Sz (6)
in which (FeS)y, denotes the FeS component in sphalerite. The equilibrium constant for reaction (6)
is expressed as
K= aSppes ° f(Sz) (7)
The free energy of the reaction (6) is expressed as
AG,= -RTInK= -RTIn {a%s * f(Sy)} ®)
Therefore, f(S,) in logarithmic units is represented as
Log f(S,) = - AG,/4.575T — log a™pes 9)

The free energy of reaction (6), AG,, as a function of temperature can be derived from the

thermochemical data for the chalcopyrite-bornite-pyrite-S, (gas) equilibrium (Schneeberg, 1973)
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and FeS-pyrite-S, (gas) equilibrium (Barton and Skinner, 1979). The activity coefficient of FeS in
sphalerite is assumed to be 2.4, from the experimental data reported by Barton and Toulmin (1966).

-~ Xees= 0001
~ Stannoidite field
5t & (Shimizu & Shikazono 1987) - 0005
o) 001
2
I
10} Roquesite field
(Shimizu & Shikazono 1985)
sp 8P
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Temperature
20 : :
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Figure 9. Temperature vs. log a(S,) diagram for roquesite-bearing ores. Curves A and B correspond to a(S,) vs.
temperature relationships for the assemblage of stannoidite-chalcopyrite-bornite-mawsonite-S, (gas) for a(Fe)
=1 and a(Fe) = 0.1. Here, a(Fe) is defined as the activity of the CugFe* ) Fe?*Sn,S s component in the
stannoidite solid solution. Abbreviation, Mw: mawsonite, Sd: stannoidite, Bn: bornite, Cp: chalcopyrite.

The relationship between temperature and FeS content of sphalerite in equilibrium with bornite and
chalcopyrite was obtained on the basis of this equation (9). Isopleths for the FeS content of
sphalerite in equilibrium with chalcopyrite and bornite were drawn on a log f(S,) vs. temperature
diagram (Fig. 9). As summarized in Fig. 9 and Table 3, sphalerite coexisting with stannoidite
contains a mole fraction of a stannoidite-bearing assemblage and can not be estimated precisely, but
fluid inclusion studies of the Sn-bearing vein deposits in Japan considered here (e.g., Imai, 1973)
suggest that a stannoidite-bearing assemblage formed in the temperature range from 300 to 200 “C.
Accepting this temperature range, we estimated the probable f(S,) region for the stannoidite-bearing

assemblage (Fig. 9).

Lee et al. (1975) conducted an experimental study on the equilibrium for the assemblage of
stannoidite-chalcopyrite-bornite-mawsonite-S, (gas) in the temperature range from 430 to 300 “C.
Curves A and B in Fig. 9 correspond to the f(S,) vs. temperature relationship for this equilibrium
assemblage for ag. = 1 and ag. = 0.1, respectively, in which ag. is defined as the activity of the
CugFe*Fe’*,Sn,S;, component in stannoidite solid-solution.

The uncertainty in f(S;) for this assemblage at constant temperature, as deduced from the
experimental studies by Lee er al. (1975), increases with decreasing temperature. At 300 °C the
uncertainty may be +0.5 log f(S;). Therefore, the f(S,) estimated from this assemblage for a
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temperature below 300 “C (in which range experimental studies have not been performed) might be
large, probably more than +0.5 log f(S,;). Unfortunately, we can not estimate f(S,) and the
temperature from the assemblage because a relevant experimental studies have not been carried out
at temperatures below 300 “C, and no information about the thermochemical mixing-properties of
the stannoidite solid-solution is available. But note that theoretically it would be possible to
estimate both f(S,) and the temperature based on the stannoidite-mawsonite-bornite-chalcopyrite-
sphalerite assemblage if reliable experimental data on the assemblage and analytical data on

sphalerite and stannoidite of the assemblage were available.
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Figure 10. Fe’"/Zn*" of sphalerite (left) and of tennnite-tetrahedrite-series minerals (right) as a function of Fe**/Zn**
of stannoidite (atomic proportions.)

As shown in Fig. 10 and Table 2, the Fe*"/Zn ratio of coexisting stannoidite, sphalerite and
tennantite-tetrahedrite from the Tada, Omodani and Ohmidani deposits are low, compared with
those from other deposits such as the Ashio, Akenobe and Ikuno deposits. The former three are
characterized by Zn-dominant polymetallic (Zn-Cu-Ag-Au) mineralization and W was not
recovered, whereas the latter three are characterized by Cu-dominant polymetallic
(Cu-Zn-Pb-Sn-W-Ag-Au-Bi) mineralization and W was recovered.

The Fe/Zn ratios of coexisting stannoidite, sphalerite and tennantite-tetrahedrite from
W-bearing polymetallic vein deposits are higher than those from W-free polymetallic vein deposits.
This could imply that the W-bearing deposits formed under lower f(S,) or higher temperature
conditions (or both) than the W-free deposits.
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4-3. Environment of formation of stannite- and stannoidite-type vein deposits

The estimated f(S,) vs. temperature ranges for formation of stannite- and stannoidite-bearing
assemblages from the vein deposits are shown in Fig. 9, based on the thermochemical data on the
mineral assemblage, FeS contents of sphalerite and fluid inclusion data. As mentioned above,
microscopic observations reveal that stannite formed at an earlier stage than stannoidite on the scale

of polished sections, and this suggests that f(S,) increased or that temperature decreased (or both)

with the evolution of Sn mineralization.

5. Application to Roquesite-Bearing Sn Ores

After the first report of the occurrence of roquesite (CulnS,, In analogue of chalcopyrite) in
Japan by Kato and Shinohara (1968), Shimizu and Kato (1991) documented new occurrences of
roquesite in Sn ores of four Japanese polymetallic vein deposits which show nearly the same
mineral assemblages. The information on possible f(S,) and the temperature of the formation of

In-bearing Sn mineralization can be estimated.

Table 4. Mineral assemblage in specimens studied and range of (atomic) Fe*'/Zn.

Ore Deposit sp Tn-Td Bn Re sd cp Others
Omndsni ++ - ++ ++ + + + Lo,Ap,Mw,Gn,Ag
Fe‘*/zn 0.005 0.28-0.37 0.07-0.32
max. wt.% In (*) 0.83 (16) 0.07 (19) 0.02 (62) (8) 0.09 (10) 0.09 (13)
Akcng e ++ ++ + + *+ + Mw,Gn
Fe® /In 0.003-0.005 0.03-0.12 0.05-0.38
max. wt.% In (*) 0.48 (9) 0.05 (19) 0.03 (9) (10) ©0.11 (11) 0.08 (&)
Fukosg ++ + + ++ + Mw, Md
Fe“ ' /in 0.004-0.015 0.88-1.25 0.45-0.72
max. wt.% In (*) 0.08 (20) 0.98 (12) (6) 0.30 (14)  0.21 (33)
Ikung» + T + ++ + Ap,Gn
Fe +J’Zn 0.016-0.036 1.65-2.00 0.97-1.49
max. wt.% In (*) 1.61 (7) 0.09 (10) (1) 0.13 (23) 0.31 (35)

Abbreviations: Ag native silver, Ap arsenopyrite, Bn bornite, Cp chalcopyrite, Gn galena, Lo 16llingite,
Md matildite, Mw mawsonite, Rg rogquesite, sd stannoidite, Sp sphalerite, Tn-Td tennantite-
tetrahedrite ++ common, + less common.

*) number of analysis ) . _ _

+*) gphalerite poorest in Cu; there are many tiny chalcopyrite inclusions in sphalerite.

Mineral assemblages of the specimen studies and ranges of atomic Fe®’/Zn ratios are
summarized in Table 4. There is a wide range of Fe**-for-Zn substitution in coexisting stannoidite,
sphalerite and tennantite-tetrahedrite. The comparison of estimated temperatures of formation of
roquesite-bearing ores from the geological standpoint enables the four deposits in Table 4 to be
grouped into two pairs: Ikuno-Fukoku and Akenobe-Omodani; the estimated temperature of the
formation of the former is higher than that of the latter.

The In contents of sphalerite, tennantite-tetrahedite, stannoidite and chalcopyrite from the
Ikuno and Fukoku deposits generally tend to be higher than those from the Omodani and Akenobe
deposits (Table 4). The high In contents of these minerals probably arise from the high temperature

of the formation, provided that the In concentrations in all the deposits was approximately equal.
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Filling temperatures of fluid inclusions in the coexisting quartz from the Omodani and Akenobe

deposits give a temperature ranging from 310 to 285 “C (Fig. 11).

A 10 n=32 Omodani Dep.

250 300 350°C

@

Frequency
o
o
5 o
I
w
w

Akenobe Dep.

10
5 Roquesite-bearing
200 250 300 350°C

Temperature

Figure 11. Histograms of filling temperatures of fluid inclusions in quartz associated with roquesite from the
Omodani ore deposit (A) and Chiemon No. 4 vein, Akenobe ore deposit (B).

In Fig. 9, the log (S,) vs. temperature field of the roquesite-bearing Sn ores from the Omodani
and Akenobe deposits is superimposed to be approximately 10° atm. at 310 °C to 10® atm. at
285 “C, in the same manner as that of the stannoidite-bearing ores.

The isotopic composition of sulfur in the Akenobe and lkuno deposits were reported by
Yamamoto (1974), Sasaki and Ishihara (1980) and Ishihara et al. (1981), but those of
roquesite-bearing ores were not reported. It is noteworthy that a preliminary S isotope study on the
roquesite-bearing ores indicates a very narrow range of § **S values from -0.9 to +0.3 %o (Table 5).
This could indicate a magmatic origin and suggest either that the physicochemical environment of
the deposits did not change during the In mineralization or that the metal/sulfur ratios in the ore
fluids responsible for the In mineralization were too small to change the isotopic compositions in

the fluids significantly.
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Table 5. Sulfur isotopic compositions of roquesite-bearing bulk ores.

Ore Deposit 8345 (per mil)
Omodani -0.8 "
Akenobe -0.9 (average, n=32)
Fukoku -0.5

Ikuno +0.3

*) Shiozawa's unpublished data

6. Summary

(1) Microscopic observations reveal that stannite formed at an earlier stage than stannoidite on the
scale of polished sections, and this suggests that f(S,) increased or that temperature decreased (or
both) with the evolution of Sn mineralization.

(2) Concerning the f(S,) vs. temperature range for the stannite-type deposits, at a given temperature,
f(S,) increased from the skarn deposits through Sn-W vein deposits to polymetallic vein deposits.
(3) Fe/Zn ratios of coexisting stannoidite, sphalerite and tennantite-tetrahedrite from W-bearing
polymetallic vein deposits were higher than those from W-free polymetallic vein deposits. This
could imply that the W-bearing deposits formed under lower f(S,) or higher temperature conditions
(or both) than the W-free deposits.

(4) The log f(S,) vs. temperature field of the roquesite-bearing Sn ores from the Omodani and
Akenobe deposits was superimposed to be approximately 10 atm. at 310 °C to 10™ atm. at 285 °C,

in the same manner as that of the stannoidite-bearing ores.
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