富山大学におけるトリチウム取扱い技術の研究・開発

渡辺国昭

富山大学 水素同位体科学研究センター

〒 930-8555 富山市五福 3190

R&D in Tritium Handling Technology for 25 Years at Toyama University

Kuniaki Watanabe

Hydrogen Isotope Research Center,

University of Toyama, Gofuku 3190, Toyama 930-8555, Japan (Received December 28, 2005; accepted March 30, 2006)

ABSTRACT

Use of gaseous tritium at Toyama University was started in 1956 to investigate reaction kinetics and mechanisms of heterogeneous catalysis. Owing to this experience and achievements, the Tritium Research Center was established in 1980 for study on fundamental phenomena concerning safe and efficient handling techniques of tritium required for the development of thermonuclear fusion reactors. Since then research and development of tritium handling technology has been carried out, although the center has undergone reorganization twice in the past 25 years and has been renamed the Hydrogen Isotope Research Center. The research topics have been basically hydrogen isotope - material interactions, which concerns with technical aspects such as tritium trapping - detrapping by first wall materials, permeation through structural materials, detritiation of contaminated materials, recovery - storage - supply by metals and alloys, hydrogen isotope separation, measuring techniques and so on. This review article provides a brief summary of selected topics of fundamental studies and the development of tritium handling techniques carried out at Toyama University over a period of 25 years since 1980.

1. はじめに

わが国にトリチウムが初めて輸入されたのは 1956 年 11 月で,その量は 0.5 Ci で,トリチウ ム水として英国 AERE より富山大学に送られてきたものである.当時,富山大学においては,理 学部の竹内豊三郎教授により不均一触媒作用の研究が活発に行われていたが,水素のトレーサー として使われていた重水素の測定が困難であったため,トリチウムを使い放射能を検出すること により,簡便に水素の挙動を追跡しようとする野心的な試みであった.しかし,そのころのわが 国には,エネルギーの低いトリチウムのβ線を検出する技術は確立されておらず,トリチウムβ 線の検出技術の開発から始めなけれならなかったが,トリチウムの利用は固体触媒上における水 素挙動に関する研究に大きな成果をもたらした. その後、わが国は戦後復興も進み、目覚しい経済成長を遂げたが、1970年代のオイルショック により、わが国のエネルギー資源確保体制が如何に不完全であったかが露呈された.この問題に 対処するために様々な解決策が提案されたが、新しいエネルギー源の開発研究に大きな関心が寄 せられ、中でも「地上に太陽」をのキャッチフレーズの下に核融合炉の開発研究に大きな期待が寄 せられた.この事態に対応して、文部省は1975年には「核融合特別研究」を、また1980年には 「エネルギー特別研究」の大型プロジェクト(科学研究費補助金)を策定した.

核融合プラズマに関する研究では、わが国はその当時から世界をリードする存在であったが、核 融合炉の燃料となるトリチウム(三重水素、水素の放射性同位体)の取扱いに関しては、極く限 られた施設及び経験しかなく、大学においてはトリチウム専用の施設は皆無であり、大きな問題 となった.

その時分,わが国大学において気体状のトリチウムの取扱い経験を有していたのは,富山大学 理学部の竹内教授率いる研究グループのみであった.この実績が評価され,昭和55年(1980年) 4月に核融合炉燃料としてのトリチウムの取扱い技術の研究・開発の専用施設として,「トリチウ ム科学センター」が富山大学・学内共同教育研究施設として10年の時限立法の下に設置された.

施設建屋は昭和 56 年 (1981 年) 3 月に竣工し,安全施設の細心な性能試験の後,研究の第一歩 としてトリチウム計測技術の開発に着手した.設立当初の定員は教授1,助教授1であったが,昭 和 56(1981)年度には助手1,技官1の定員が増加された.トリチウム科学センターは 1990 年 3 月,当初の研究目標を達成し廃止されるが,この間のトリチウム安全取扱い実績が評価され,ト リチウムの使用許可量が,当初の1日最大使用量 5 Ci,年間最大使用量 50 Ci から 36 Ci/day 及 び 5,000 Ci/year に増加された.

平成2年度(1990年6月)には「水素同位体機能研究センター(時限10年)」が設立され(その際客員教授1の定員が追加),トリチウム研究で培った成果の水素エネルギー利用技術への応用及び大量トリチウムの安全取扱い技術の開発に関する研究が新たに展開された.この様な研究活動が評価され,平成7年度(1995年4月)には,教授1,助教授1の定員が新たに加えられた. また,平成8年度(1996年3月)には,これまでのトリチウム研究の成果を集大成した「100 Ciトリチウム取扱いシステム」が完成した.水素同位体機能研究センターは時限到来以前の平成10(1998)年度には当初目標を達成し,平成11年3月に廃止された.

しかし、この間に核融合炉開発研究は長足の進歩を遂げ、実験炉の建設が指呼の間に迫ったこ と及び地球温暖化防止のための水素エネルギー社会の実現に向けた研究開発に世界的に大きな期 待が寄せられたことなどの状況に鑑み、水素エネルギーと核融合の双方の観点から、大量の水素 同位体を安全且つ効率的に利用するための技術の確立を目指した「水素同位体科学研究センター」 が平成 11 (1999) 年 4 月に設置され、その際教授1、助教授1、客員教授1及び外国人研究員1 の定員が新たに加えられ、総員で教授3、助教授3、助手1、技官1、客員教授2及び外国人研 究員1の陣容となった.加えて、非常勤研究員1名及び研究支援推進員1名も配分された.

本稿ではトリチウム科学センター設立以降の三代のセンターにまたがる 25 年間の富山大学に おけるトリチウム研究の展開について総括したい.

2. 研究の経過

トリチウム科学センター設立時の最初の仕事は建屋及びトリチウム安全設備の設計であったが、 それと並行してトリチウム実験装置の安全性に係わる装置部品及び材料のトリチウム汚染防 止,トリチウム貯蔵・回収材の探索,トリチ ウム計測器の評価などに着手した.これらの 課題は,多少の紆余曲折を経ながらも順調に 進捗し,新たな領域へも展開した.Fig.1 は その様子を示したもので,下向きに時系列を, 横方向には広がりをイメージして,研究課題 を配列したものである.当初の目標は5 Ciの トリチウムを安全に使い得る実験技術の開発 に置かれていたが,技術の向上と共に,より 大量且つ高濃度のトリチウムを取り扱い得る 技術,更には国際熱核融合実験炉(ITER)へ の展開を視野に入れた技術の開発及びその基 礎となる現象の解明に重点が移行していった.

トリチウム取扱い研究の流れ

Fig. 1. Topics of R&D at Hydrogen Isotope Research Center, Toyama Univ.

それらの研究課題は 1) トリチウムの安全取り扱い上の要素技術,2) 計測技術,及び両者の基礎としての3) トリチウムー材料相互作用,の三つの領域にまとめる事が出来る.よって,以下には各々の研究課題をこれらの三つの分野に仕分けして,研究開発の経緯を概観したい.

3. 装置及び要素技術開発

3.1. トリチウム汚染防止と除染技術

3.1.1. 電離箱の汚染防止

トリチウム科学センター設立後の最初の課 題はセンターに設置された設備の安全性の確 認で、中でも安全設備[1]及びトリチウムモニ ターの信頼性の評価であった[2].後者の性能 評価試験の結果によれば、市販のトリチウムモ ニターは環境レベルの極低濃度のトリチウム の測定にはさしたる障害も起きないが、その千 倍以上の濃度域では所謂メモリー効果が著し くなり、所定の性能が得られなくなる.Fig.2 は電離箱チャンバーが無酸素銅の市販モニター を空気及び乾燥空気雰囲気下で元素状トリチ ウムに接触させ、その後其々の雰囲気ガスで チャンバーをパージした時のモニターの計測 値の時間変化を示したものである[3].図に見 られるようにパージ初期においては予測され

Fig. 2. Reduction of tritium concentration in a commercial ionization chamber made of Cu with gas purge after tritium charge

る指数関数的減少を示すが、その後は減少速度が著しく遅くなりある定常値に漸近する.その定常 値はパージする気体によって異なる.この現象はトリチウムが何らかの触媒作用により $T_2 + H_2O$ \Rightarrow HT + HTO, HT + H₂O \Rightarrow H₂ + HTO の様に水に変換され、このトリチウム水が無酸素銅の表 面に吸着し残留することを示唆している.元素状トリチウム導入によるこの種のチャンバー汚染は Fig.3 に見られるように,その内壁を金コー ティングすることによりほぼ完全に防止でき ることを見出した [3].しかし,もともと水蒸 気状であるトリチウムによる汚染は金コーティ ングのみでは防止できず,パージガスに水蒸 気を積極的に加えて,所謂水蒸気スワンピン グを行う事により初めて効果的に除去できる ことを見出した.トリチウム水蒸気による表 面汚染とその除染は,電離箱の様なトリチウ ム計測器のみならず,トリチウムを取り扱う 全ての装置において重要な課題であるが,そ の除染法として水蒸気スワンピング或いは加 熱脱離法以外にはこれぞと言う有効な方法は 未だに見出されていない.

3.1.2. 装置材料の汚染防止

トリチウム計測機器の汚染も厄介な問題で あるが、トリチウム実験装置の汚染は作業者 の安全確保のみならず実験効率の向上の点か らも重大関心事である.この観点から、トリチ ウム取り扱い装置の配管によく使われるステ ンレス鋼、その構成成分である鉄、ニッケル及 び透過抑制用として有望視されているアルミ ニウム等の金属材料,装置内装用ヒーターとし て用いられる SiC,ターボ分子ポンプ等の部品 として用いられている高分子材料などのトリ チウム汚染の度合いを比較検討した[4]. その ために比例計数管と手製の小型 2π カウンター を取り付けた特別の装置を開発した. Fig.4 は その測定結果の一例で,幾つかの材料でのトリ チウム汚染を比較したものである[4].なほ図 中で FRP は fiber reinforced plasitics, A2219

Fig. 3. Reduction of tritium concentration in an ionization chamber made of Au-coated Cu after tritium charge

Fig. 4. Comparison of the extent of tritium contamination among materials used for tritium handling systems

はアルミニウム合金, SS304 はスレンレス鋼, ASS は SS304 表面を電気化学的に処理(陽極酸化) したもの, BSS は SS304 を BN で被覆したもので, h-BN は六方 BN の basal plane 面である. また, 図中の RD, HD 及び SR は室温で除去され得るトリチウム, 昇温により除去されるもの及 び 2π カウンターで計測された表面トリチウムを表す. これらの材料のトリチウム汚染のし易さの 順位は SR については, おおむね polymer > Ni Cr, Fe, A2219, SS304, SiC > ASS, BSS, h-BN で, HD では polymer > polished-Ni > Cr, Fe, A2219 > SS304, SiC > ASS, BSS, h-BN で, 金 属では Ni が最も汚染され易い. ステンレス鋼はそれに比べると約一桁汚染度が小さいが, それで もトリチウム取り扱い装置に使用された場合には,後に述べるように大きな問題になる. 従って 何らかの汚染防止対策が必要であるが,図に見られる様に表面を陽極酸化処理 (ASS) 或いは BN- 被覆 (BSS) することにより汚染度を約十分の一程度に抑えることが出来る事が明らかとなった.

Fig. 5. BIXS spectrum from SS316 after loading tritum (32 %-T) at 523 K and 1.2 kPa

Fig. 6. Tritium depth profiles for SS316 before and after vacuum heating at 473 K for 10 minutes

3.1.3. ステンレス鋼の汚染と除染

ステンレス鋼は核融合実験装置本体の構造 材のみならずトリチウム処理設備の基本的構 成材料である. そのため様々な条件下でトリチ ウムに曝される.従って、トリチウムへの暴露 条件と汚染度との関係を詳細に知ると共にそ の除染技術を確立しておく必要がある.この観 点より当センターでは、JET (英国) との共同 研究の下に様々な条件下におけるステンレス 鋼のトリチウム汚染度を新たに開発した BIXS (β-ray Induced X-ray Spectrometry) 測定装 置により系統的に調べてきた. Fig.5 は先に 述べた固体中トリチウム計測用の BIXS 装置 により観測されたステンレス鋼中に捕獲され たトリチウムによる誘起 X 線スペクトルで、 (a) は無処理の市販ステンレス鋼 (SS304) を 532 K で 1.2 kPa (32 %-T) の元素状トリチウ ムに曝した後, (b) はこの試料を 473 K で 10 分間の加熱により除染した後に観測されたも のである.スペクトルには雰囲気ガスとして 用いた Ar, ステンレス鋼成分の Fe, Cr, Ni 等 の特性 X 線ピーク及び幅広な制動 X 線が現 れているが、いずれの強度も加熱処理により 減少している. Fig.6 はこれらのスペクトル を解析して得られたトリチウムの深さ方向分 布である.吸収直後では事前に予想された様 にトリチウムは試料内部にまでほぼ均一に分 布しているが、きわめて濃度の高い領域が表 面近傍に存在することが見出された. これを 473 K で 10 分間加熱すると表面に近い部分か らトリチウムが逐次減少するが、表面層には

依然として高濃度域が残される現象が見出された [5]. この領域は空気暴露により生成した酸化物 或いは炭素化合物等である可能性が高いが,均一なものではないと考えられる. 従って,この様 なトリチウム分布を有するステンレス鋼を除染するには,表面近傍に捕獲されたもの及びバルク 内に拡散したものとを区別して考える必要がある. この問題に関しては,小試料片に対しては有 効な方法を見出しているが,システムの除線と言う観点からはまだ未解決で,現在も鋭意研究中 である.

3.2. トリチウム回収・貯蔵・供給材の開発3.2.1. トリチウム回収材の探索

トリチウム実験装置は一種の真空装置であ るが、実験装置及び施設からのトリチウムの 排出は法律によって厳しく規制されているた め、スパッターイオンポンプの様な閉じ込め型 の真空ポンプが望ましいが、その補助ポンプ として油回転ポンプやターボ分子ポンプの様 な排出型の真空ポンプも必要になる.従って, 装置からの排出ガス中のトリチウムを予め取 り除き、回収しておかなければならない.回 収法としては、真空系外でトリチウムを酸化 しトリチウム水として保管する方法が一般的 であったが、トリチウム水の保管は長期的に は厄介な問題を提起することになるので、当 センターでは主要回収材としてのバルクゲッ ター材の適用性を検討した.適用性評価の要 件として注目した重要項目は1)トリチウム吸 収速度,2)トリチウム平衡圧,3) 耐発火性で ある.これらの特性に鑑み、第一候補としてバ ルクゲッターポンプ材として使われていた Zr-系合金に注目した.なほ吸収速度に関しては, トリチウムを使用すると装置内で極少量では あるが、トリチウム水蒸気及びトリチウム化炭 化水素(メタン等)が生成するので、これらの ガスに対する特性評価も重要である. Fig.7 は 評価結果の一例で,所謂 Zr-V-Fe ゲッターで 得られた水素同位体及び水素同位体置換水蒸 気の吸収速度定数の温度依存性を示したもの

Fig. 7. Temperature dependence of absorption rate constants for Q_2 and Q_2O (Q = H, D T)

Fig. 8. Methane decomposition-absorption curve by Zr_4Ni

である [6]. 水素同位体ガスの吸収はきわめて早く,通常の方法では測定できないため,特殊な方法で求めたものである.水蒸気の吸収速度はそれに比べると一桁〜二桁ほど遅いが,室温においてもトリチウム回収速度は十分に速い.炭化水素類に関しては,最も反応性の低いメタンの吸収速度より評価した [7]. Fig.8 はその結果の一例で,一連の Zr-Ni 合金(金属間化合物)の中で最も速いメタン吸収速度を示した Zr₄Ni によるメタンガスの吸収曲線を示したものである.メタンは最も高い活性を示した Zr₄Ni によっても室温では殆ど吸収されないが,図の様に 350 C 以上に加熱すれば数分で 99% 以上を回収できる事が明らかと成った.なほメタン吸収は回収・貯蔵・供給材の性能評価と性能改善に重要な検討課題であるので,詳細な検討結果を後に詳しく述べる.

3.2.2. 貯蔵・供給材の探索

100 Ci に満たないトリチウムを取り扱う小規模実験施設では、ガラス容器に封入されたトリチ ウムガスを購入する.ガラス容器は存外丈夫であるが、破損の恐れは免れ得ない.また、大規模施 設で用いられているスレンレス鋼容器と言えども、トリチウムを気体状で貯蔵するのはフランジ部 分からのリークや透過の問題もあり得策でない.このため大規模施設ではトリチウム化ウランとして

Fig. 9. Plots of observed heat of hydride formation for various metallic compounds against the heat estimated from an empirical formula

Fig. 10. Temperature dependence of equilibriumpressure over some feasible materials for tritium handling systems

固体状で貯蔵する方法が採られているが,一 般の施設ではウランが核規制物質であること 及びトリチウム化ウランには発火性がある為 ウランに代わり得る貯蔵材の開発が不可欠で ある.当センターでは上に述べた回収材の探 索過程で,Zr-系合金は発火性が殆ど無いこと を見出しので,この合金系について系統的な 検討を加えた.

ここで目標とする主要な特性は1)室温での 平衡圧は管理区域内での許容空気中トリチウ ム濃度よりも低いこと、2) 500 C で一気圧程 度の平衡圧を有すること、3) 容易に必要充分 な吸収・放出速度が得られること,及び4)空気 に触れても発火しないこと等である.1)及び 2)の要件を満たすには水素同位体の吸収熱が 26 kcal/mol 程度であることを要する. 3) 項 は材料表面の活性化の難易度であり、4)項は 繰り返し使用時での耐微粉化特性の問題であ る. Fig.9 は要件1に関して,所定の吸収熱 を有する金属間化合物を探索するため指針を 探索した結果で、縦軸は実測の吸収熱、横軸 は合金の電気陰性度から求めた推定値である [8]. 図の様に両者に直線関係が見出された. こ の関係を利用して、結晶構造はもとより組成 の異なる種々の化合物の水素吸収熱を、周知 の電気陰性度から簡単に推測することが可能 となった. Fig.10 はこの指針を利用して適度 の吸収熱を持つ Zr-Ni 合金を探索した結果で, 図中の ZrNi 及び Zr₉Ni₁₁ の吸収熱はほぼ 25 kcal/mol で目標の 26 kcal/mol に極めて近い [9]. これらの材料では平衡圧が1気圧となる

温度は約 500 C でウランに比べると約 100 C 程高いが,室温での平衡圧はウランよりも数桁小さい. 且つ繰り返し使用しても超微粉化の程度は極めて少なく,従って空気暴露時の発火性もない. 即ちウランに比べるとより安全性が高いと言える.

3.2.3. 回収・貯蔵・供給筒の開発

上の結果に基づき,約100Ciのトリチウムを取り扱うるコンパクトで取り扱いやすく且つ安全 性に優れた回収・貯蔵・供給用容器を開発した (Fig.11)[10].容器本体はステンレス鋼製で,二重 構造になっている.内側のステンレス鋼管が回収・貯蔵・供給材を収納する本体容器で,外套は 本体の容器壁を透過するトリチウムの外部への漏洩を防止するためのものである.本体外套部の 上部はコンフラットフランジに溶接されており,外 套下部は同規格のフランジで封じられている.また, 本体容器外壁と外套内壁はAuでコーティングされ ており,トリチウムの漏洩と貯蔵容器の汚染を最小 限に抑えれる工夫が施されている.なほ本体容器に は回収・貯蔵・供給材として200メッシュ,1.5gの ZrgNi₁₁が装荷されている.性能試験の結果によれ ば,この回収・貯蔵・供給容器はこの種のものとして はきわめて低い温度得(300 C)で活性化し使用可能 となるが,400 Cでの活性化によりほぼ100%に近 い性能が得られている.またトリチウムの漏洩も認 められない.これらの結果は後に述べる100 Ci実 rimental

Fig. 11. Cross-sectional view of a newly developed tritium container

験設備のトリチウム回収・貯蔵・供給材の選択及び回収・貯蔵・供給容器の設計に生かされている.

3.3. 水素同位体分離技術の開発

水素同位体の分離はトリチウムの製造段階 ではもとより,核融合炉における燃料ガスの 調整,排ガス中からのトリチウムの回収と再 利用のみならず,小規模のトリチウム実験施 設においても最重要の課題の一つである.こ れまでに様々な水素同位体の分離法が開発さ れてが,当センターでは一回の実験に100 Ci 程度のトリチウムを使うことを念頭に分離法 を検討した.従来,気体混合物中からのトリチ ウムの回収には深冷分離法,深冷壁熱拡散法 或いはガスクロマトグラフ法が優れていると されているが,前2者は装置が複雑或いは操 作が煩雑であり,安全性及び操作性をことに

Fig. 12. Isotope effect on hydrogen absorption by Pd [11]

優先させなければならない大学内の施設用としては、必ずしも適当でない.また、液体窒素温度の低温を要する一般的なガスクロ法も、その原理及び操作自体は前二者に比べて簡単であるが、グローブボックス内で操作するとなると煩雑な作業を要する.この様な観点から、当センターでは 室温で操作可能なガスクロマトグラフシステムの開発を試みた.

Fig.12 はその際に注目した Pd による水素同位体の吸収データで、343 K における三種の水素 同位体の吸収等温泉を比較したものである [11]. 図の様に Pd による水素吸収では室温付近でも 大きな同位体効果が見られ、プラトー域における平衡圧比は $P_{H_2}/P_{D=2} \approx 4$, $P_{H_2}/P_{T_2} \approx 6$ にも達 する. この点に注目し Glückauf[12] らは一種のガスクロマトグラフ法による水素同位体分離を開 発した. しかし Pd による水素同位体の吸収熱は約 10 kcal/mol(Q₂, Q=H,D, or T) で、室温付 近では吸収された水素同位体は安定でありすぎるため、それらを気相に放出させるための置換ガ スを必要とし、当センターで目標とする簡単な操作と言う条件と合致しない.

水素親和性の金属の水素吸収熱或いは水素化熱は上に述べたように疎水素性の金属と合金化させることにより小さくなる. この観点より,まず Pd と全率固溶しかつ酸素等の被毒を受けがたい

Fig. 13. Chromatograms for H_2 - D_2 (1 : 1) mixture by Pd-8%Pt/Cu operated at 303 K

Pt を選択し、Pd-Pt 合金とすることによるカラム 材を検討した. **Fig.13** は別途の検討により見出 された一群の有望なカラム材の内から Pd-8%Pt 合金を選び、充填材として 1.5 g の 200 メッシュ の合金粉末と 94.6 g の Cu 粉末 (100 - 200 メッ シュ)の混合物を使用し、長さ4 m、内径3 mm の カラムを 303 K で作動させた時の 50%H₂-50%D₂ 混合ガスの分離結果である [13]. なほ Cu 粉末は 管内の充填率及び熱伝導を上げるための分離作用 には無関係な充填材である. 図の様に初期に D₂ の大部分が、続いて H₂ の大部分が流出したが、 両者の間に少量の HD の生成が認められ

た. このクロマトグラムでは投入した重水素の約 94% が純度 98% の D₂ として回収されている. なお,この実験においては H₂-D₂ 混合ガスの搬送気体として Ar を用いているが,何の置換ガス も必要とせず,且つ室温付近で作動する.よってここに開発した方法を室温作動自己展開型ガク スマトグラフ法と命名したが,その利点は極めて単純な装置で,試料ガスをアルゴンガス気流中 に投入するだけと言う極めて簡単な操作で水素同位体を分離できることである.また,操作温度, 圧力,試料ガス量に応じて一群のカラム材を適宜使い分け得ることも大きな利点である.

3.4. 乾式表面被覆装置の開発

トリチウム取扱いのための要素技術の開発 に際しては、それに関連する材料自体の特質 は変えず、表面特性のみを改良しなければな らない場合が多々ある.このため種々の表面 改質法が開発されているが、従来は粉体表面 の改質は電着法、無電解めっき法、含浸法等 の湿式で行うのが一般的であった.しかしこ れらの方法では様々な薬品を用いるので、生 成する修飾膜中に必要とする元素以外の薬品 の残渣が混入し、表面修飾の効果が阻害され る場合が多い.この点に鑑み当センターでは 液体を用いない乾式の表面改質法を検討した.

Fig.14 は新たに開発された乾式表面改質装

Fig. 14. Newly developed barrel sputtering system for surface-coating of powder

置で [14], バレルスパッターリング装置と命名されている. この装置ではターゲットとなる粉体 は八角のシリンダー内面に置かれる. このシリンダーはスパッターの進行と共に回転するので, 粉体試料もそれに伴って回転し, それにより粉体粒子の全面が均一にスパッターコーティングさ れる. Fig.15 はこの装置の使用例で, 平均粒径が 5 ~ 50 mm のポリメタクリル酸メチル微粒 子を約 60 nm の厚さの Pt で被覆したものである(右). 左の被覆前の状態に比べると, 被覆 後では粒子が金属光沢をしているの様が見て取れる. また, 粒径の大小にかかわらず全面が均 ーに被覆されていることに著しい特長がある. もとより Pt 以外の第三体は存在しない. 本装置

渡辺国昭

は元々は当センターで展開中の水 素エネルギー研究の中で,電極触 媒改質用に開発したものであるが, トリチウムの回収・貯蔵・供給材 或いは同位体分離用カラム材の表 面改質等の取扱い研究 [14, 15] の みならず,電子材料,顔料,化粧 品,その他の粉体が関与するあら ゆる分野での応用に大きな期待が 寄せられている [16].

Fig. 15. Example of surface-coating for polymer particles by Pt

3.4. 100Ci トリチウム実験装置

トリチウムを安全且つ効率的に使用するた めには、トリチウムの挙動を詳細に知る必要 がある.そのためにはトリチウムの β線によ る放射線効果はもとより同位体効果について も定量的に把握しておかなければならない.更 には同位体効果一放射線効果の協力現象の探 索も重要となろう.その第一歩として同位体効 果の定量的記述が不可欠であるが、その基礎 となるトリチウムのデータは多くの場合軽水 素及び重水素とは極めて異なる条件下で得ら

Fig. 16. Block diagram of component subsystems of the 100 Ci handling system

れたものであり,直接的な比較は困難であった.この点に鑑み,当センターでは三種の水素同位体 を同等の条件で使用し,トリチウムの同位体効果を紛れなく定量的に測定することを目標として, 一回に 100 Ci 程度のトリチウムを取り扱うことの出来る 100 Ci トリチウム実験装置を設計・製 作した [17]. Fig.16 に示した様に,本装置は実験室系,貯蔵・供給系,精製・分離・回収系及び排 ガス処理系の四つの部分より構成されている.貯蔵・供給系には当センターで開発した Zr₉Ni₁₁, 精製・分離・回収系の精製及び回収材には Zr₉Ni₁₁ 或いは Ti 系合金が用いられている.ちなみに 其々の容器も当センターの開発になるものを基本に製作されたものである.排ガス処理系には通 常の酸化筒も備えられているが,新たに開発した乾式のトリチウム回収筒も併設されおり,効果 をあげている.また分離のためには,当初低温ガスクロマトグラフが用いられていたが,現在は 自己展開室温作動型ガスクロマトグラフに変更中であり,改造後には操作性及び安全性が大幅に 向上するものと期待されている.なほ,上の図には明示されていないが,システムの各所に高濃 度トリチウム測定用に開発した小型電離箱及びβ線誘起X線計測器が設置されており,システム 内のトリチウムの動き,インベントリー分布等々の把握・制御などに威力を発揮している.なほ これらの計測器については以下に詳述する.

4. 高濃度トリチウム計測技術の開発

4.1. 気体状トリチウムの計測

トリチウム科学センター発足時点において,利用可能なトリチウム計測器は液体シンチレイション カウンター,比例係数菅,電離箱或いは2πカウンター等で,もっぱら環境レベルの低濃度トリチウム

Fig. 17. Cross-sectional veiw of a small ionization chamber and it's calibration curve against tritium concentration

Fig. 18. Block diagram of the BIXS system for measuring gaseous tritium

Fig. 19. Calibration of the BIXS system to gaseous tritium

を計測するためのものであった. 高濃度トリチウ ムの計測器は独自に開発する必要があった. その ため当センターでは世に先駆けて, 質量分析計及 び電離真空計のトリチウムに対する感度係数を決 定すると共に, 二次電子増倍管による直接係数法, 小型電離箱, β線誘起 X線計測器等の高濃度域 におけるトリチウムの測定方法及び計測器を独自 に開発した.

Fig.17 は容積約 1.7 cm³ の手製の小型電離箱 の感度校正曲線であるが,電離箱出力は 2×10⁻⁶ ~ 2×10⁻¹ Ci/cm³ の五桁の範囲でトリチウム濃 度に正比例している.なほこの図には示していな いが,直線性からは下側に逸れはするものの 10⁰ までの校正曲線が得られている [18].即ち一つの 電離箱で 1 μ Ci/cm³ から約6桁に及ぶ濃度範囲 のトリチウムを計測することが出来るようになっ た.ちなみに,この図に示されている最低濃度 (2×10⁻⁶ Ci/cm³) は市販電離箱の最高検出濃度 の約 10⁵ 倍である.

上の小型電離箱は極めて簡単な構造で,故障し 難く保守も簡単であると言う利点があるが,プ ローブがトリチウムガスに対して剥き出しになっ ているため,1 Ci/cm³ 程度の高濃度トリチウム ガスを測定した後には,やはりメモリー効果が顕 れる.また,トリチウム取り扱い装置等の複雑な 配管に取り付けると,その構造上気流の滞留点と なるため,流速に追従しない場合もある.

この種の問題は配管の外側から測定することに より解決できるものと考えられる. **Figs.18** 及び **19** はこの観点から新たに開発した β 線誘起 X線 検出器の概念図と校正曲線である [19]. この検出 器の校正曲線は図に見られる通り,約5×10⁻⁷ ~ 2×10^{-3} Ci/cm³ の範囲で得られている(この場 合,1 Pa \approx 5 ×10⁻⁶ Ci/cm³). ちなみに破線 で示した直線性からのズレは試料気体内での β 線 の減衰によるものである. ところで,本法の特長 は図の様に測定系は試料気体収容部の外部に置か れた検出器より構成されている点にある. この場 合,飛程の短いトリチウム β 線は容器壁に阻ま れ検出できないが,Au で被覆した Be 板で作製 された収容部窓で発生した制動X線及び特性 X線はこの窓材を通過するため検知すること が出来る.この方法によれば,試料気体受容 部は気体の流通経路そのものである為,流通 気体の滞留点とならない.また,主体となる 収容部窓はAuで被覆されているため,トリ チウム吸着の影響を小さくすることが出来る. 両者の効果があいまって,メモリー効果を低 減される共に気流中のトリチウム濃度変化に 対しても迅速な応答が可能となっている.

この原理による計測器は気体のみならず,固 体中に捕獲されたトリチウム或いは液体中の トリチウムの計測にも応用できる.

Fig. 21. Typical X-ray spectrum observed for tritium-implanted graphite samples

Fig. 20. Photographic view of a newly developed BIXS apparutus for measuring tritium captured by solid materials

Fig. 22. Calibration curve of BIXS for tritium implanted in graphite

Fig.20 は固体中トリチウムの計測のために開発した装置で,Fig.21 はこの装置により熱分解 黒鉛中にイオン照射されたトリチウムによる誘起 X 線のスペクトルである.このスペクトルは雰 囲気ガスとして用いた Ar の特性 X 線と黒鉛からの制動 X 線より構成されている [20]. Fig.22 は黒鉛中にインプラントされたトリチウム量と観測された X 強度との関係を示したもので,両者 の間には図の様な良い直線関係が得られており,この関係を用いて,トリチウムの捕獲量を定量的 に測定することが可能である.また,スペクトルの形状を解析することにより深さ方向分布を求 めることも出来る.この方法は黒鉛以外の材料にも適用されており,例えばステンレス鋼中に溶解 させたトリチウムの場合には,幅広な制動 X 線と共にステンレス鋼の成分である Fe, Ni, Cr 及び 測定の際の雰囲気ガスとして用いた Ar の特性 X 線が現れる.このスペクトルの積分強度から材 料中に捕獲されているトリチウムの全量が,スペクトルの強度と形状から深さ方向分布が,Ar-X の強度から表面近傍に存在するトリチウム量を求めることが出来る.更に,材料構成成分の特性 X 線強度からその部分の材料組成を知ることも可能である.

5. トリチウム-材料相互作用

5.1. ゲッター材による水素同位体の吸蔵・放出

トリチウムの回収・貯蔵・供給材の開発に当たっては様々な観点からの性能評価が不可欠であ るが,先に述べた吸蔵トリチウムの安定性の他に 1) 吸収及び脱離速度, 2) 活性化の難易度, 3) 繰り返し使用に対する耐久性, 4) 微粉化特性,及び 5) それらの特性に与える合金化の影響等に ついて知ることが重要である.ここでは紙面の関係上 2), 3) 及び 5) についてのみ言及する.

Fig. 23. Change in activation temperature with alloy composition

5.1.1. 活性化処理

ゲッター材或いはより一般には水素吸蔵合 金は何らかの方法で活性化しないと水素を容 易には吸収しない.これらの材料は水素以外 の気体に対しても高い活性を有するため,一 度大気に曝されると表面が酸素或いは炭素に よって覆われ,本来の活性を失ってしまうため である.活性化の方法としては,水素の吸収-脱離サイクル及び真空加熱が一般的であるが, 前者は材料の微粉化も同時に進行させてしま うので,トリチウムトリチウム取り扱い用材 料には適さない.よって当センターではもっぱ ら真空加熱法を検討した.**Fig.23** は候補材と して選んだ Zr-系合金の真空加熱による活性

化の難易度を評価した結果で [21],縦軸は活性化に要した温度 (I 印),横軸は材料の種類である. なほ、図中には真空加熱に伴う表面状態の変化も同時に示してあるが、 T_i は表面に金属状態の Zr が顕れはじめる温度、 T_c は金属状態への転移が完結する温度を示している.図の様に活性化温度 は合金化する金属の種類に依存するが、その変化の様子は T_c の変化パターンとほぼ一致する.即 ち、活性化は表面に清浄な金属表面が露出することに起因する.ちなみに、当初表面を覆っていた

Fig. 24. Comparison of observed metane absorption curves and those simulated using evaluated rate constants

酸素,炭素等の不純物は 300 C までの加熱で 一部水,一酸化炭素及び炭化水素化合物とし て気相に放出されるが,大部分は 300C 以上の 温度で材料内部に拡散・溶解する.即ち,其々 の材料における酸素及び炭素の拡散係数の大 小が活性化の難易度を決める主たる要因であ ることが知られた.

5.1.2. メタン分解反応

上に述べたように Zr-系合金での水素吸収速 度は極めて速く、トリチウム取り扱い装置で の元素状の水素同位体ガスの回収に関しては 問題は殆ど無い.しかし、トリチウムを長期間 保存する場合には、放射線効果により容器内 に水蒸気や炭化水素類が生成、蓄積するので これらの不純物ガスをも効果的に除去できな ければならない.水蒸気の吸収は上に示したように水素同位体に比べるとかなり遅いが,さしたる問題とはならない.一方,炭化水素,とりわけメタンは反応性に乏しく,トリチウム化メタンが生成すると装置或いは施設の安全運転性能の低下につながりかねない.よってメタンの分解吸収吸収過程を詳細に調べた.

先に示したように、メタンの吸収曲線は水 素で見られたような単純な一次反応式には従 わず、反応機構はより複雑であることを示し ている. **Fig.24** は $CH_4 \rightarrow CH_3(a) + H(a)$, $CH_3(a) \rightarrow CH_2 + H(a)$, $CH_2(a) \rightarrow CH(a) +$ H(a)の様な逐次反応を仮定し、反応曲線を解 析した結果(実線)を実測データ(点)と比較 したものであるが、いずれの合金でも両者は よく一致し、上の機構により複雑な形をして いる吸収曲線を説明できることを示している [22]. ちなみに、これらの材料については何れ の素反応が律速段階であるかは指定できない

Fig. 25. Change in the rate constant of methane decomposition-absorption with the composition of Zr-Ni alloys

が、最初の反応、CH₄ → CH₃(*a*) + H(*a*)、の速度がメタン吸収活性を決めている主要な因子であ ることが判明した. **Fig.25** は Zr-Ni 合金のメタン吸収活性を比較したものである. 活性は Zr と Ni を合金化させることにより一度増大するが、それより Zr の分率が多くなると低下する傾向が 認められた. この傾向が現れた原因は明らかではないが、これらの試料におけるメタン吸収の活 性化エネルギーは殆ど同じで、頻度因子のみが上の序列で変化している. 従ってメタン分解には Zr が活性点になっている可能性が高いが、その詳細は今後の研究課題である.

5.1.3. 合金の不均化

トリチウムシステムに一度装荷した回収・貯 蔵・供給材は出来るだけ長期にわたり使用し 得ること、即ち回収 ~ 供給の操作を何回でも 繰り返えし得る必要がある.その際、問題と なるのは気相中に含まれる含酸素及び含炭素 化合物(水蒸気、炭酸ガス、炭化水素類)によ る表面の被毒と材料自身の不均化である.不 純物による被毒は対象とする水素ガスの精製 及び材料表面の Pd-被覆等により効果的に抑 制することが出来るが、不均化は合金或いは 金属間化合物が水素を吸収することにより必

Fig. 26. Changes in P_{600} and P_{RT} for ZrCo-H with heat cycles

然的に起きる現象であり避けることは出来ない. 但しその難易度は材料により大きく異なる. 当 センターではトリチウム取り扱い用として注目した Zr-系合金における不均化反応を詳細に検討 し,その機構を明らかにした. Fig.26 及び 27 は ZrCo 及び ZrNi の不均化進行状況を比較し たもので,一定量の水素をこれらの材料に吸収させた後,873 K での加熱と室温への冷却を繰り 返した時の其々の温度にける平衡圧の変化を示している.加熱-冷却に伴う圧力変化 (P₈₇₃-P_{RT}) に相当する分の水素がこれらの材料により可逆的に吸収・放出されている. 不均化が生じない場

Fig. 27. Changes in P_{600} and P_{RT} with heat cycles of ZrNi-H system

合には P_{873} 及び P_{RT} は一定,従ってその差分 P_{873} - P_{RT} にも変化は生じないはずである.とこ ろが ZrCo では吸収・放出の繰り返しにより、 P_{873} はサイクルごとに低下、 P_{RT} は増加し、当初約 40 Pa あった差分が 20 サイクル後には数 Pa に減 少してしまう.これはサイクル当初起きていた 2 ZrCo + 3 H₂ \rightleftharpoons 2 ZrCoH₃ の反応に 2 ZrCo + H₂ \rightarrow ZrH₂ + ZrCo₂ が併発し、最終的には ZrCo が ZrH₂ と ZrCo₂ に分解し(この現象を不均化 と言う)可逆的な水素の吸収・放出特性を喪失し てしまうためである.他方、ZrNi では 50 サイク

ルあたりまでは P₈₇₃ 及び P_{RT} は殆ど変化せず,従って可逆的に吸蔵・放出できる水素の量 (P₈₇₃-P_{RT}) も一定に保たれている.即ち,ZrCo は容易に不均化して当初の能力を喪失するのに対し, ZrNi は不均化に対してより安定で,より多くの回数の吸収・放出操作を行うことが出来る.しか し Fig.27の挿入図に示したように僅かではあるが P_{RT} が増加する傾向を示している.これは本 来の可逆的反応 2 ZrNi + 3 H₂ ightarrow 2 ZrNiH₃ に 3 ZrNi + 2 H₂ \rightarrow 2 ZrH₂ + ZrNi₃ の不均化反応 が併発しているためである [23].別に行った検証によれば ZrNi も 500 回程のサイクルによりほ ぼ完全に不均化し可逆的な水素の吸収能力を失うことが分かっている.

この種の材料での不均化には大きな同位体効果が認められ,進行速度は H > D > T の順で 遅くなる.例えば、ZrCo-H₂(Fig.26)では不均化の完結までにほぼ 20 回のサイクルを要したが、 ZrCo-D₂ 系では約 30 回のサイクルを要する.同様の同位体効果が ZrNi についても認められてい る.ちなみに、条件が異なるので直接的な比較は出来ないが、大規模施設での実績によれば ZrCo は D₂ により不均化するが、T₂ では顕著な不均化は生じない.

不均化の難易度を決定している要因を探るため、他の Zr-系合金の不均化過程を詳細に検討した.その結果、水素誘起不均化は核生成-結晶成長機構で進行することが明らかとなった.その際、水素吸収に伴う母結晶の歪(或いは水素吸収に伴う応力発生)と結晶の微細化の大小が不均化の難易度を決定していることが明らかになった.しかし、現状では特定の合金材料の不均化を効果的に抑制する手段は見出されておらず長期間の使用(多数回のサイクル)に耐え得る材料の開発には更なる研究を要する.但し当面の応用に合っては、不均化した ZrCo でも ZrNi でも、本稿に示したものよりも更に高温に加熱し ZrH₂を脱水素化すると元の ZrCo 或いは ZrNi に戻るので、重大な支障とはなっていない.

5.2. Pd-系合金による水素吸収の同位体効果

Pd-系合金での水素同位体吸収における同位体効果は上に述べた室温作動自己展開型ガスクロマトグラフの基本であるが、その他にも吸収水素の安定性及び吸収・脱離速度は操作温度の選択に際し重要な用件である。本節ではこの様な観点から同位体効果、水素吸収熱及び吸収速度に及ぼす合金化の影響を詳細に調べた結果について述べる.

5.2.1. 熱力学的特性

吸収された水素の安定性,即ち水素吸収熱は Pd を合金化することにより変化し,それに応じて熱力学的同位体効果の大きさも変わり得る.当センターでは合金化による水素化熱及び同位体効果の変化を合金化させる元素の種類及び量を変えて系統的に調べ,最適のカラム材を開発す

るための指針を探索した. 合金化させる元素としては Pd に対する固溶性及び電子構造を勘案して, 周期律表中で Pd に隣接するものを選んだ. **Fig.28** は得られた結果を纏めたもので, 縦軸は

水素化熱 (-ΔH), 横軸は其々の合金の組成で ある. 図の様に, 合金化することにより水素化 熱は変化する. ここにあげた殆どの合金では 組成の増加と共に水素化熱は減少するが, Pd-Ag では例外的に増加する [24]. これらの水素 化熱を純物質のフェルミエネルギーの算術平 均として求めた合金のフェルミエネルギーに 対してプロットすると一つの直線上にのるこ とが見出された. 重水素については別の直線 関係がえられる. 同様の関係はトリチウムに ついても成立するものと考えられる. 即ち, 合 金のフェルミエネルギーを知るのみで極めて 簡単に水素同位体の吸収熱を推定できる.

Fig.29 は Pd-Pt 合金で得られた熱力学的同 位体効果を平衡圧比 P_{D_2}/P_{H_2} で表したもので あるが [25], \sqrt{M} 側より推定した P_{T_2}/P_{H_2} 及び P_{T_2}/P_{D_2} も示してある.他の系についてもおおむ ね同様な結果が得られている.同位体効果は低温 ほど大きくなり分離能の向上には有利であるが, 一般には温度が低いほど反応速度は遅くなるので, 最善の分離能を得るためには最適の材料で最適の 操作温度を設定する必要がある.

5.2.2. 動力学的特性

固体表面の被毒は Pd の様な被毒を受けがたい 金属の場合でも,水素の吸収速度に大きな影響を 与える.また,合金化によっても吸収速度が変化 することもあり得え,そのためカラムの同位体分 離能を阻害する可能性もある.よって熱力学的特 性のみならず,動力学的特性も詳細に調べる必

Fig. 28. Change in heat of hydrogen absorption with the composition of Pd-AE alloys (AE = Co,Ni,Cu,Rh,Ag,Pt,Au)

Fig. 29. Change in equilibrium pressure ratios among hydrogen isotopes for Pd-Pt alloys

要がある. そのため, Pd-Pt 合金を評価対象として動力学的測定を行った. Fig.30[26] 及び Fig.31[27] は表面清浄化の影響を比べたもので,前者は不十分,後者は可能な限りの高真空化で活性化した Pd-4at%Pt 試料で 300 K 付近の温度での軽水素の吸収曲線で,縦軸は水素吸収量,横軸は経過時 間である. 表面清浄化が不十分な場合には水素吸収が完結するまでに数百秒以上の時間を要する が,清浄化が充分であれば数十秒程度を要するのみである. 別に行った H₂-D₂ 混合ガスの分離実 験によれば,清浄化が不十分な場合には水素と重水は殆ど分離できないのに対し,充分な清浄化 を行った場合には期待通りの良好な分離が得られおり,動力学的特性がカラムの分離性能を左右 する重要な要因であることを示している.

Fig. 30. Time-course of protium uptake under different initial pressure at 312 K by Pd-4%Pt and corresponding computer simulation

Fig. 32. Temperature dependence of hydrogen diffusion constant for Pd, Pd-4%Pt and Pd-8%Pt

Fig. 31. Time-course of protium uptake by well-cleaned Pd-4%Pt at 294.5 K

上に示した類の吸収曲線は,吸収反応が 表面での水素分子の解離吸着,吸着水素原 子の会合脱離及び内部への拡散・溶解の三つ のステップで進行するとして解析でき,吸 収と脱離の速度定数(kabs,kdes)及び拡散 定数(D)を求めることが出来る.その結果 によれば,清浄表面でのkabsの活性化エネ ルギーは H₂及び D₂とも殆ど零で,吸着 反応は極めて迅速に進行する.また拡散も 速やかで合金粒子内の水素分布は 10 秒以 内でほぼ均一になる事が知られた.Fig.32 はこれらの合金で得られた軽水素の拡散定 数を比較したもので,Pd での拡散係数は

既報の値とほぼ一致している.これに比較して、Pd-4%Pt 及び Pd-8%Pt での値はより小さく、Pt 含有量の増加と共に活性化エネルギー及び頻度因子は小さくなる傾向が認められる.この傾向 はクラスターモデルを用いた *ab-initio* 計算で得られた傾向と一致している.ちなみに、拡散定数 における同位体効果は D_H/D_D \approx 1.2 \sim 0.9 であり、測定精度を勘案すると \sqrt{M} 則に従っている ものと考えられる.なほ、水素の吸着速度定数は上の三種の合金でほぼ等しく、その活性化エネ ルギーは殆ど零で、吸着は速やかに進行する.同位体効果に関しては $k_H/k_D \approx$ 1.3 で、この同位 体効果比も \sqrt{M} 則からの予測値におおむね一致している.

5.3. 水素透過

各種材料の水素透過性はトリチウムの格納と言う観点からは厄介な問題で、透過挙動及び透過防止に関しては多くの研究があり、当センターでも多くの努力を注いできた.他方、水素透過性が極めて高いある種の金属は水素精製用の透過膜材材料として用いられているが、トリチウム回収用の透過窓材としても注目されている.当センターでは V 族金属の水素超透過性に注目し、核融合炉排ガス中のトリチウム及び重水素を選択的に回収するための超透過窓に関する研究をロシア・ボンシェブルイェビッチ大学及び核融合科学研究所と共同で進めてきた.

超透過性は上流側透過膜表面が酸素等の不 純物で汚染されている場合に促進されるるが, その汚染度を任意に制御する事は従来は困難 であった.当センターでは材料中に不純物源 を予め固溶させておき,適度の熱処理で表面 偏析させることにより,表面汚染度を制御し 得る方法を見出した.Fig.33 はその一例で, Nb 中に固溶させた酸素の濃度と水素の捕獲確 率との関係を示したものである [28].573 から 1413 K の何れの温度でも捕獲確率は酸素濃度 の増加と共に一定の関係を保ち減少している. 即ちこの効果度は酸素濃度と処理温度により 制御可能である.また注目すべきは捕獲確率

Fig. 33. Temperature dependence of surface recombination rate constant of deuterium at various bulk oxygen concentration

が酸素汚染の無い場合と比較して、酸素濃度によるが、 $1/100 \sim 1/1 \times 10^4$ も小さい事である.この結果は上流側が酸素汚染された Nb 透過窓材に入射された水素同位体は、清浄表面に比べて著しく再放出されにくいこと、即ち超透過性が目覚しく増大することを意味している.

5.4. 第一壁材料

5.4.1. 熱分解黒鉛によるトリチウム捕獲

炭素系材料,とりわけ熱分解黒鉛はプラズマ の制動放射の低減のための救世主として 1980 年代には大きな期待を寄せられていた.しか しその実用に際しては,大きなスパッタリン グイールドとトリチウムインベントリーに懸 念があった.当センターでは後者の問題を定 量的に把握するために,イオン照射した三種 の水素同位体の捕獲状態と再放出挙動を系統 的に調べた.**Fig.34** は 5 keV でイオン照射 した重水素の昇温脱離スペクトルである [29]. 従来は脱離は単一の機構であると言われてい たが,観測スペクトルには図の様に三つの脱

Fig. 34. Change in desorption spectrum of implanted deuterium with repeating inplantation-desorption cycle

離成分が見出され,且つピーク強度比は照射を繰り返すごとに変化することが見出された.これ は照射損傷により,その捕獲状態が変化することを示している.変化の詳細は表面科学的分光法 により明らかにされているが,ここでは割愛する.

上で見出された三つのピークは個別に解析できて、其々の脱離機構及び速度定数が求められた. Fig.35 はその一例で、一番低温側のピークの解析結果で [30]、脱離は捕獲水素原子の会合による二 次反応であること、及び脱離の活性化エネルギーは軽水素、重水素及び三重水素とも 44 kcal/mol とほぼ同じであるが、頻度因子は $\nu_{\rm H} > \nu_{\rm D} > \nu_{\rm T}$ の順で小さくなっていることを示している. 5.4.2. ホウ素膜によるトリチウム捕獲

様々な観点からの基礎的研究に支えられた炭素系材料の大型プラズマ実験装置への適用はプラ

Fig. 35. Comparison of pseudo surface recombination factor, $k_{s}K^{2}$ evaluated from thermal desorption analysis

Fig. 36. X-ray spectrum observed for B/SS316 implanted with tritium

Fig. 37. Change in tritium inventory with isochronal heating of B/SS316 and boron samples

ズマ閉じ込め及び周辺プラズマ挙動の解明に 大きな寄与を成したが、トリチウムの使用を 想起するとその大きなトリチウムインベント リーが難題として立ちはだかって来た. それを 避けるために近年ではホウ素材料が注目され ている. 当センターでは核融合科学研究所・計 画共同研究の下に核融合科学研究所, 東京大学 及び静岡大学との共同研究により,ホウ素材料 におけるトリチウム挙動の研究に携わってき た. Fig.36 は固体中トリチウム検出用 BIXS 装置でみられたステンレス鋼上に成長させた ホウ素膜中にイオン照射したトリチウムによ る β線誘起 X 線スペクトルの一例である [31]. 図には雰囲気ガスとして用いた Ar, 及びホウ 素膜の基盤のスレンレス鋼の成分 (Fe, Ni, Cr, Mo)の特性 X 線並びに幅広な制動 X 線スペ クトルが検出されている. Fig.37 はこの種の スペクトルの解析から得られたホウ素膜中の トリチウムインベントリーの温度変化を纏め たものである.純物質のホウ素に比べると本 研究で調製したホウ素膜のインベントリーが 高く出ているが、これは調製時に混入した酸 素或いは炭素不純物によるものと考えられて いる [31]. なほこの種のスペクトル及び昇温脱 離スペクトルの解析から、ホウ素からのトリ チウムの脱離速度定数の決定やステンレス鋼 基盤ヘトリチウムの侵入等に関して興味ある 知見も得られており、実用化に向けての基盤 構築が進んでいるが、それらの詳細は紙面の 制約もあるため割愛する.

5.4.3. 低放射化材料 - Ti-V-Cr 合金

低放射化材料として注目されたいる Ti-V-Cr 合金については,水素同位体の吸収,捕獲, 再放出等の現象がトリチウム透過,インベン トリー及び除去特性等が重大関心事である.当 センターではこれらの現象と密接な関係を有 する水素分子の捕獲確率について,合金化及 び表面清浄度の影響を検討した. Fig.38 はそ の結果の一例で [32],軽水素の捕獲係数に対す る V-4%Ti 合金の表面組成と清浄度の影響を

渡辺国昭

Fig. 38. Temperature dependence of absorption coefficient of H_2 for V-4%Ti alloy

調べたものである. 図中 MPS, TiS28 及び TiS50 とは, それぞれ研磨面, 873 K 熱処理 面 (TiS28) 及び 1273 K 熱処理面 (TiS50) で, TiS28 では Ti の表面濃度が 28%, TiS50 では 50% になっていることを示している. 図の様 に熱処理試料での捕獲係数は研磨面に比較し て数桁小さく, 且つ活性化エネルギーも大き くなっている. これは表面に Ti が偏析したた めであるが, この表面偏析 Ti は酸化物状態で 存在することが明らかとなっている. 他方研 磨面では表面に Ti は殆ど存在せず, V は金属 状態に保たれている. 即ち熱処理による捕獲

係数の減少は表面酸化によるものであるが、この現象はトリチウムの透過防止対策として有用で あることを示唆している.

5.4.4. 室温近辺でのトリチウムの拡散係数の決定

固体中の水素同位体の拡散係数は,温度が比較的高く拡散が速い場合には,透過法や吸収・放出 法等の一般的な方法により求められるが,温度が低く拡散が遅い場合には困難である.この様な 場合には Gorsky 効果の利用や NMR 等により求められるが,測定は必ずしも容易ではない.ト リチウムの場合には予めトリチウムを吸収させておいた試料のエッチングと放射能計測を併用す

Fig. 39. Change in the depth profile of tritium at room temperature for tritium-ion implanted W (as-received) plate

ることにより,随時深さ方向分布を求めることが 出来るので,その分布の経時変化から拡散系定 数を見積もることができる.但し,この方法では エッチングの度毎に一つの試料を消費するので, 同一の環境下でトリチウム吸収させた幾つもの試 料を用意しなければならない.他方,当センター の開発になる BIXS 法によればスペクトルの解 析からトリチウムの深さ方向分布を求められる. 本法ではエッチング法とは異なり,試料に何の処 理も施さず,そのままの状態でスペクトルを測定 できるので,一つの試料でのトリチウム分布の経 時変化を追跡できると言うおきな利点がある.

この特長を生かして,これまで試みられたことの無い W 中でのトリチウムの室温における拡散 係数を測定した. **Fig.39** は W 試料片 (10 × 10

× 0.02 mm³) に 0.8% のトリチウムを重水素をイオン照射し,その後室温で保管し,所定の時間 毎に取り出して BIXS スペクトルを測定し,深さ方向分布の変化を求めたものである [33]. 図中 の実線等が BIXS スペクトルの解析で求められた深さ方向分布であるが,時間と共にトリチウム が試料内部へと拡散してゆく様子が見られる. 図中の点は半無限固体における拡散式によるもの で,この場合拡散係数として 2.4 × 10⁻¹⁹ m²/s の値を用いると,図の様に実測結果と極めてよく

一致する. Fig.40 はこの結果を従来の軽水素 のデータと比較したものであるが,従来のデー タより約 10 桁も小さな値が求められている. ちなみに BIXS 法で求められた室温における トリチウムの拡散係数は Ryabchikov による 高温域での軽水素のデータ [34] からの外挿線 近傍に位置する.

水素同位体の拡散係数は金属に限らず様々 な物質に対して、多くの研究者によるデータ が報告されているが、一つの物質に限っても 大きなデータのばらつきが見られる。その一 因は多くの場合表面効果であるが、他の大き な要因は測定温度範囲が狭いことである。

BIXS method それに対し、本法ではトリチウムの深さ方向 分布を直接測定するので、表面効果を免れることが出来る.加えて、試料をある一定温度に保持 する期間は任意に設定できるので、その温度での拡散係数が極めて小さくても問題とはならない. 即ち、測定温度範囲を任意に設定することが可能となり、広い温度範囲での拡散係数の測定が可 能となる.従って本法を他の系に適用することにより、これまで不確かであった拡散係数データ を大幅に改訂できる可能性がある.

6. おわりに

「トリチウム科学センター」が設立された 1980 年以来,「水素同位体科学研究センター」に再 編されて5年目の昨年までの活動を,技術開発及びその基礎となる現象に関する研究の視点から まとめてみた.技術開発については主として当センターの開発になるユニークなもの或いは発展 性の大きなものを取り上げ,基礎的研究に関してはそれらに特に関係の深いもののみを取り上げ た.従って本稿ではまったく触れていない研究課題もある.それ故まとめとしては不十分になら ざるを得なっかたが,それらについては別に纏めた記事があるのでそちらをご参照いただきたい [35~43].またより詳細については個々の研究論文をご覧いただければ幸甚です.なほ 2004 年度 までの報告は5冊の研究報告集にまとめられていますが [44~48],水素エネルギーに関する研究 のまとめは別の機会ゆづりたい.

振り返ってみれば、最初は手製のガラス製装置で始めたトリチウムガスの取り扱い研究も、金 属製で超高真空仕様のより大型の装置で行えるようになり、また実験技術も格段に向上している が、未解決の問題や手付かずに残されている課題も多々ある.また、研究室レベルの知見・技術と ITER の様な大型施設との橋渡しはまだまだか細く頑丈なものとはいえず、課題設定やデータ収集 等に問題があるのが現状である.今後の一層密で双方向的な情報、人材、資源等の交換による改 善に期待するところは大きい.また近年長足の発展を遂げている水素エネルギー関係の研究及び 研究者との交流も、両分野における研究を大いに促進し、両者あいまって循環可能で環境に優し い水素同位体をエネルギー源とする「水素エネルギー社会」の実現に寄与するものと期待される.

謝辞

学内共同教育研究機関として設立された当センターでは、当初より共同研究の輪を積極的に推 し進めることが出来ました.また、学外からも多くのご支援を得ることが出来ました.ここにま とめた研究の大部分は、個々について記述はしておりませんが、学内及び学外からの共同研究の 下に執り行われたものです.これまでに当センターの活動にご協力いただいた共同研究者各位並 びに学部及び大学院学生諸氏に深甚なる謝意を表します.また、当センターの発展に深い関心を 寄せられた関係各位に心より御礼申し上げます.

References

- [1] 松山政夫, 三宅均, 芦田完, 渡辺国昭, 竹内豊三郎, トリチウム取扱い装置の設計、製作、および、その性能試験. トリチウム科学センター研究報告, 1 (1981) 15-24.
- [2] 松山政夫,三宅均,渡辺国昭,加藤一真,前川寛,佐藤博夫,トリチウムによる電離箱の汚染 ー電離箱材料とトリチウムの化学形-.トリチウム科学センター研究報告,4(1984)13-22.
- [3] M. Matsuyama, K. Ichimura, K. Ashida, K. Watanabe, and H. Satoh, Contamination of ionization chamber due to tritium exposure. *Fusion Technol.*, 8 (1985) 2461-2466.
- [4] H.Miyake, Matsuyama, K.Ashida, K. Watanabe, and D.F.Cowgill, Tritium ad/absorption for some vacuum component materials having non-cleaned surfaces. Ann. Rept. Hydrogen Isot. Centr., 10/11 (1991) 43-57.
- [5] Y.Torikai, A.N.Perevezentsev, M.Matsuyama, and K.Watanabe, Effect of water vapor on tritium decontamination of stainless steel 316. *Fusion Sci. Technol.*, 41 (2002) 736-740.
- [6] H.Ichimura, M.Matsuyama, K.Watanabe, and T.Takeuchi, Recovery and storage of tritium by Zr-V-Fe getters. *Fusion Technol.*, 8 (1985) 2407–2412.
- [7] K.Watanabe, W.M.Shu, E.Motohashi, and M.Matsuyama, Decomposition of methane on Zr-Ni alloys. Fusion Engn. Design, ol. 39-40 (1998) 1055 1060.
- [8] K.Watanabe, M.Matsuyama, K.Ashida, and H.Miyake, Alloying effect on a property of hydrogen gettering materials; an empirical formula to estimate heat of hydride formation for metals and alloys. J. Vac. Sci. Technol., A7 (1989) 2725 2729.
- [9] K.Watanabe, K.Tanaka, M.Matsuyama, and K.Hasegawa, Zr-Ni alloys as candidate getter materials for tritium processing. *Fusion Engn. Design*, 18 (1991) 27 32.
- [10] M.Matsuyama, K.Watanabe, and S.Morozumi, Feasibility tests of tritium container packed with Zr₉Ni₁₁ alloy. Ann. Rept. Hydrogen Isot. Centr., 10/11 (1991) 59 - 68.
- [11] R. Lässer, Tritium and Hellium-3 in Metals. Springer-Verlag, 1989.
- [12] E. Glückauf and G. P. Kitt, Gas chromatographic separation of hydrogen isotopes. Proc. Symp. Isotope Separation, Amsterdam 1957, pp. 210 – 226, 1958.
- [13] S.Ueda, Y.Nanjou, T.Itoh, K.Tatenuma, M.Matsuyama, and K.Watanabe, Development of advanced column material for hydrogen isotope separation at room temperature. *Fusion Sci. and Technol.*, 41 (2002) 1146 - 1150.
- [14] M. Hara, Y. Hatano, T. Abe, K. Watanabe, T. Naitoh, S. Ikeno, and Y. Honda, Hydrogen absorption by Pd-coated ZrNi prepared by using barrel-sputtering system. J. Nucl. Mater., 320 (2003) 265-271.

R&D in Tritium Handling Technology for 25 Years at Toyama University

- [15] 島寛之, 上田哲士, 赤丸悟士, 原正憲, 阿部孝之, 松山政夫, 渡辺国昭, 水素同位体分離カラム充 填材用のPd被覆を施したMo粉末の試作.水素同位体科学研究センター研究報告, 23 (2003) 9-15.
- [16] T. Abe, S. Akamaru, and K. Watanabe, Surface modification of Al₂O₃ ceramic grains using a new RF sputtering system developed for powdery materials. J. Alloys and Compounds, 377 (2004) 194-201.
- [17] 渡辺国昭,松山政夫, 芦田完, 舒衛民, 原正憲, 田中るみ, 鈴木達志, 森雄一郎, 佐藤康士, 山口 昇, 林茂 男, 100Ciトリチウム実験装置の開発. 水素同位体機能研究センター研究報告, 17 (197) 27 - 42.
- [18] 松山政夫, 中谷秀夫, 山崎登志成, 渡辺国昭, 小容積電離箱による高濃度トリチウムの in situ 測定. トリチウム科学センター研究報告, 9 (1989) 83 – 95.
- [19] M. Matsuyama, K. Watanabe, and T. Yamazaki, Improvement of bremsstrahlung counting method for measurements of gaseous tritium. *Fusion Technol.*, 28 (1995) 1497–1502.
- [20] M. Matsuyama, T. Murai, and K. Watanabe, Quantitative measurement of surface tritium by beta-ray-induced X-ray spectrometry (BIXS). *Fusion Sci. Technol.*, 41 (2002) 505-509.
- [21] K. Watanabe and K. Ichimura, Activation processes of Zr-alloy getters observed with XPS-SIMS-TDS. Fusion Reactor Blanket and Fuel Cycle Technology, (Proc. Intern. Symp. Oct. 27-29, 1986, Tokai, Japan), pp. 229–232, 1986.
- [22] 渡辺国昭, Zr 系ゲッターによる水素の吸着・吸収, 真空, 42 (1999) 1055-1063.
- [23] K. Watanabe, M. Hara, M. Matsuyama, I. Kanesaka, and T. Kabutomori, Stability of ZrCo and ZrNi to heat cycles in hydrogen atmosphere. *Fusion Technol.*, 28 (1995) 1437-1442.
- [24] 未発表.
- [25] 安松拓洋, 松山政夫, 渡辺国昭, Pd Pt 及び Pd-Ni 合金中における水素同位体の熱力学特性. 水素同位体機能研究センター研究報告, 18 (1998) 81 94.
- [26] Y. Jin, M. Hara, J.L. Wan, M. Matsuyama, and K. Watanabe, Isotope effects on hy, drogen absorption by Pd-4at%Pt alloy. J. Alloys and Compounds, 340 (2002) 207-213.
- [27] 未発表.
- [28] R. Hayakawa, A. Busnyuk, Y. Hatano, A. Livshits, and K. Watanabe, Relation between recombination rate constract of deuterium at niobium surface and oxygen concentration in bulk. *Physica Scripta*, T103 (2003) 113 – 116.
- [29] K. Ashida, K. Ichimura, M. Matsuyama, and K. Watanabe, Thermal desorption of hydrogen, deuterium and tritium from pyrolytic graphite. J. Nucl. Mater., 128/129 (1989) 792 - 797.
- [30] K. Ashida and K. Watanabe, Analysis of thermal desorption spectra of hydrogen isotopes trapped in pyrolytic graphite. トリチウム科学センター研究報告, 5 (1985) 41-52.
- [31] S. Nakagawa, M. Matsuyama, H. Kodama, Y. Oya, K. Okuno, A. Sagara, N. Noda, and K. Watanabe, Behavior of tritium release from thin boron films deposited on SS316. J. Nucl. Mater., 329-333 (2004) 904 - 908.
- [32] R. Hayakawa, Y. Hatano, A. Pisarev, and K. Watanabe, Barrier effect against hydrogen ingress by Ti segregating to surface of V-Ti alloy. *Physica Scripta*, T108 (2004) 38 41.

渡辺国昭

- [33] M. Matsuyama, T. Murai, K. YOshida, K. Watanabe, H. Iwakiri, and N. Yoshida, Studies on retension of tritium implanted into tungsten by β -ray-induced X-ray spectrometry. J. Nucl. Mater., 307-311 (2002) 729-734.
- [34] L. N. Ryabchikov, Ukr. Fiz. Zh., 9 (1964) 293.
- [35] 渡辺国昭,市村憲司,松山政夫,トリチウムによる二次電子増倍管及び質量分析計の機能障害 とその回復.トリチウム科学センター研究報告,5 (1985) 1 – 13.
- [36] 渡辺国昭, 市村憲司, トリチウム貯蔵材としての zr-v-fe ゲッター. 固体物理, 20 (1985) 871 - 875.
- [37] 渡辺国昭, トリチウム取り扱い用真空装置. 真空, 29 (1986) 461 478.
- [38] 市村憲司, 渡辺国昭, ゲッターによるトリチウムプロセシング. トリチウム科学センター研究 報告, 6 (1986) 1 - 24.
- [39] 芦田完,渡辺国昭,核融合炉第一壁としての黒鉛.トリチウム科学センター研究報告,7 (1987) 1-26.
- [40] 松山政夫, 渡辺国昭, 富山大学におけるトリチウム取扱技術の研究開発と今後の課題. トリチ ウム科学センター研究報告, 9 (1989) 1 – 21.
- [41] 松山政夫, 渡辺国昭, トリチウム安全取扱い技術の最近の進歩. 水素同位体機能センター研究 報告, 12 (1992) 1 – 22.
- [42] 松山政夫, 渡辺国昭, トリチウム計測技術. プラズマ・核融合学会誌, 70 (1994) 36 44.
- [43] 松山政夫, 水素同位体科学研究センターにおける最近のトリチウム研究. J. Plasma Fusion Res., 78 (2002) 1301 – 1307.
- [44] トリチウム科学センター研究報告集 (1981 1985).
- [45] トリチウム科学センター研究報告集 (1986 1990).
- [46] 水素同位体機能研究センター研究報告集 (I)(1991 1995).
- [47] 水素同位体機能研究センター研究報告集 (II)(1996 1999).
- [48] 水素同位体科学研究センター研究報告集 (I)(2000 2004).