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Preface 

 

Recently, an increasing effort has been devoted to find ways to utilize biomass as 

feedstocks for the efficient production of value-added organic chemicals and fuels 

because of its abundance, renewability and worldwide distribution. Unlike petroleum 

feedstocks, biomass-derived platform molecules possess a high oxygen content that give 

them low volatility, high solubility in water, high reactivity and low thermal stability, as 

well as properties that favor the processing of these resources by catalytic 

aqueous-phase technologies at moderate temperatures. Lignocellulosic biomass 

encompassing municipal and animal wastes, forestry residues, and others is a special 

interesting resource on account of being the most abundant, inedible, and inexpensive 

biomass. 

 

In this doctoral dissertation, biomass derived 5-hydroxymethylfurfural (HMF), 

cellulose and bio synthesis gas have emerged as important platform chemicals for the 

next-generation plastic and basic chemicals for the production of sustainable fuels and 

chemicals. 

 

Furan derivatives such as 5-hydroxymethyl-2-furaldehyde (HMF) obtained from 

renewable biomass resource, has the potential to serve as substitutes for the 

petroleum-based building blocks that are currently used in the production of polymers 

and fine chemicals. In Section 1 (Chapter 1), reduced graphene oxide (RGO) is one of 
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the most promising catalyst supports since its faintly acidic sites together with large 

amount of functional groups on its surface.  In this section, we prove that, for the first 

time, Pt loaded RGO (Pt/RGO) is an efficient, robust and durable catalyst oxidizing 

5-hydroxymethylfufural (HMF) directly to 2,5-furandicarboxylic acid (FDCA) under 

mild conditions. The selectivity of FDCA reaches up to 84% along with 100% HMF 

conversion in the presence of excess base. We deduce that the total reaction on Pt/RGO 

catalyst includes several consecutive steps, in which 

5-hydroxymethyl-2-furancarboxylic acid (HMFCA) acts as an intermediate.  The 

finding in this report is a significant advance not only for RGO-based catalysts 

development, but also for FDCA scalable production, because the total reaction is 

performed smoothly without using previously reported harsh reaction conditions. 

 

Furthermore, Cellulose, a polysaccharide mainly composed of glucose via β-1-4 

glycosidic linkage, exists widely in biomass resources. The utilization of cellulose is 

achieved usually through two steps: being selectively hydrolyzed into glucose and 

further converted into fuels and chemicals. The sugar alcohols, especially sorbitol, are 

used not only as sweetener in diet foods, but also as an important basic chemical for the 

production of sustainable fuels and chemicals. In Section 2 (chapter 2-5), Pt 

nanocatalysts loaded on reduced graphene oxide (Pt/RGO) are prepared via a 

convenient microwave-assisted reduction approach with ethylene glycol as reductant. 

The conversion of cellulose or cellobiose into sorbitol is used as application reaction to 

investigate their catalytic performance. Various metal nanocatalysts loaded on RGO are 

compared. Pt/RGO exhibits the highest catalytic activity with 91.5% of sorbitol yield 
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from cellobiose. The catalytic performances are compared with Pt nanocatalysts 

supported on different carbon materials or on silica support. The result shows that RGO 

is the best catalyst support, and the yield of sorbitol is as high as 91.5% from cellobiose 

and 58.9% from cellulose, respectively. The improvement of catalytic activity is 

attributed to the appropriate Pt particle size and hydrogen spillover effect of Pt/RGO 

catalyst. Interestingly, the size and dispersion of supported Pt particle are easily 

regulated by convenient adjustment of the microwave heating temperature. The catalytic 

performance is found firstly increased and then decreased with increasing particle size. 

The optimum Pt particle size is 3.6 nm. These findings may offer useful guidelines to 

design novel catalysts with beneficial catalytic performance for biomass conversion. 

 

Conversion of synthesis gas (a mixture of CO and H2), derived from biomass, is a hot 

field in hydrocarbon production. Fischer-Tropsch synthesis is a set of catalytic 

processes that can be used to produce fuels and chemicals from synthesis gas. 

Combining a acidic zeolite with common FTS catalyst can produce isoparaffins for 

gasoline-ranged component. Tuning hydrocarbons distribution in Fischer-Tropsch 

synthesis is greatly challenging in Section 3 (chapter 6) by employing three different 

pathways to deposit trace Palladium on Co/H-ZSM5 catalyst, tunable isoparaffin and 

olefin selectivity is successfully achieved. The impregnated Pd shows a poor promotion 

of Co dispersion and reducibility, producing a slight enhancement of FTS activity and 

isoparaffin selectivity. Pd sputtering induces a re-dispersion of impregnated 

Co/H-ZSM5 particles and Pd is deposited with an intimate distance to Co species and 

with a weak interaction combining zeolite, due to which complete hydrogenation of 

olefins is achieved. But the surface enriched Pd on pre-sputtered Co catalyst was can 
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form Pd-Co nano-alloys, suppressing the chain growth activity by excessive 

hydrogenation process. 
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Chapter 1   Pt Nanoparticles Loaded on Reduced 

Graphene Oxide as an Effective Catalyst for the Direct 

Oxidation of 5-Hydroxymethylfurfural (HMF) to 

Produce 2,5-Furandicarboxylic Acid (FDCA) under 

Mild Conditions 

 

 

  



9 

 

1.1   Abstract:  

Reduced graphene oxide (RGO) is one of the most promising catalyst supports since 

its faintly acidic sites together with large amount of functional groups on its surface.  

In this report, we prove that, for the first time, Pt loaded RGO (Pt/RGO) is an efficient, 

robust and durable catalyst oxidizing 5-hydroxymethylfufural (HMF) directly to 

2,5-furandicarboxylic acid (FDCA) under mild conditions. The selectivity of FDCA 

reaches up to 84% along with 100% HMF conversion in the presence of excess base. 

We deduce that the total reaction on Pt/RGO catalyst includes several consecutive steps, 

in which 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) acts as an intermediate.  

The finding in this report is a significant advance not only for RGO-based catalysts 

development, but also for FDCA scalable production, because the total reaction is 

performed smoothly without using previously reported harsh reaction conditions. 

 

Keywords: HMF, FDCA, reduced graphene oxide, mild conditions, Pt nanoparticles 
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1.2   Introduction 

Nowadays, 5-hydroxymethylfurfural (HMF), a biomass-derived intermediate, is 

readily available from a variety of renewable biomass resources such as fructose, 

glucose,1 polysaccharides,2 and cellulose.3 2,5-furandicarboxylic acid (FDCA) has been 

considered as a potential biorenewable monomer to replace terephthalic acid in the 

production of polyethylene terephthalate (PET).4 Moreover, FDCA has also been 

identified as one of several important building blocks for the production of 

biomass-derived value-added chemicals.5 Generally, the oxidation of HMF to FDCA 

can be catalyzed by various stoichiometric oxidants, such as KMnO4,
6 or homogeneous 

metal salts (Co, Mn), those are currently used for terephthalic acid production under 

high pressure (70 bar air).7 Different reaction systems using Pt-, Pd- or Ru-based 

heterogeneous catalysts have been reported for the selective oxidation of HMF to 

FDCA,8,9 but these methods require high pressure or high temperature, and have lower 

catalyst stability and selectivity. 

Recently, several reports have been presented using supported Pt catalysts for 

aqueous HMF oxidation to improve FDCA yields.10-17 Using the supported Pt as 

catalysts, as reported by Davis et al.,13 the addition of homogeneous base (1-20 eqiv. 

NaOH) and high oxygen pressure (3-20 bar) are required. Strasser et al. shows that the 

feedstock of HMF degrades rapidly at 353K in alkaline water.15 In addition, Gupta et al. 

also reports a base-free oxidation in water over gold catalysts supported on hydrotalcites, 

yielding FDCA with almost 100% yield at 368K.14 Although the Pt- and Au-based 

catalysts seem to be promising, the catalyst design and reaction conditions, especially 

reaction temperature and pressure must be further optimized.  
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Carbon material, such as activated carbon, had been reported as catalyst support in 

HMF oxidation reaction.10,11,13,15-17 However, to our knowledge, graphene oxide, a novel 

carbon material, has not been reported as catalyst or support material in this reaction 

until now. Compared with other carbon materials, graphene oxide has attracted 

tremendous attentions in recent years due to its relatively stable physical properties and 

unique two-dimensional planar structure.18 In addition, graphene oxide is slightly acidic 

since large amount of functional groups on its surface.19,20 These functional groups on 

the surface of graphene oxide can be also utilized as anchoring sites fixing metallic 

nanoparticles, increasing the dispersion of the supported nanocatalysts and tuning their 

catalytic performance. Moreover, the graphene sheet has spillover effect under H2 or O2 

reaction atmospheres especially when noble metal exists as supported catalyst.21 These 

special performances may be beneficial for the oxidation of HMF when the Pt loaded 

reduced graphene oxide (Pt/RGO) is used as catalyst. 

In this work, the Pt loaded graphene oxide (Pt/RGO) catalyst was prepared by 

ethylene glycol reduction method22 and used in the HMF oxidation reaction to produce 

FDCA. Other metallic nanoparticles, like Pd, Ru, Rh and Pt, loaded on the reduced 

graphene oxide were also prepared and their catalytic performances were compared 

together. As the best catalyst for FDCA production, the Pt/RGO catalyst was 

investigated in detail. The possible reaction route on the Pt/RGO for HMF oxidation to 

form FDCA is presented in Figure 1. 
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1.3   Experimental Section 

Hummer’s method was used to prepare Graphite Oxide (GO).23 10.0 g graphite 

powder and 5.0g NaNO3 were mixed in a flask, and cooled in ice bath. 230 ml of 

concentrated H2SO4 solution was added into the above mixture. After stirring for 10 

min, KMnO4 was gradually added, and the mixture was kept stirring in an ice bath for 

another 15 min. The mixture was then kept at 308K and stirred for 50 min until a thick 

paste was obtained. 460 ml of water was added into the above mixture, and the reaction 

temperature was gradually increased to 371K. The mixture was kept at 371K and stirred 

for another 30min. Finally, 1000 ml of deionized water and 3.0 ml of 30% H2O2 were 

slowly added to the mixture and stirred for 5 min. The obtained yellow dispersion was 

washed by deionized water for several times to remove residual salt, and the solid (GO) 

was then dried under vacuum for 3 days. 

H2PtCl6 (aq.) (Pt wt% =4.578%, 0.56 ml) and graphite oxide (1.0 g) were dispersed in 

120ml of ethylene glycol (EG) (aq, EG v% = 83.3%) with the assistance of ultrasonic. 

After being treated ultrasonically for 2 h, the mixture was put into an oil bath and kept 

at 408K for 15 h. The catalyst was obtained through a redox reaction, and the solid 

product was then collected by filtration and washed with deionized water and ethanol in 

sequence, before drying. The final metal loading amount was 5.0 wt%, and the obtained 

catalyst was defined as Pt/RGO. Other metals loaded RGO catalysts Pd/RGO, Rh/RGO 

and Ru/RGO were also prepared by same method using Pd(NO3)2, Rh(NO3)3, Ru(NO3)3 

as metal sources. Furthermore, pure RGO, as a reference catalyst, was also prepared by 

this method, but without any metals addition. In order to prove the combined function 

of active metal Pt and support RGO, another general catalyst support, active carbon 

(AC), had also been selected to prepare a reference catalyst Pt/AC.  
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The Pt/RGO catalyst morphologies were characterized with high-resolution 

transmission election microscope (TEM, JEOL JEM-2100 UHR) operated at 200 kV. 

The catalyst crystal structure was confirmed by X-ray Diffraction (XRD) with a Rigaku 

D/max-2250 V diffractometer employing Cu Kα radiation (λ = 1.54 A; scanning rate: 

0.02°/s). X-ray photoelectron spectroscopy (XPS) was conducted using ESCALAB 

250Xi spectrometer equipped with a pre-reduction chamber. The position of the C1s 

peak (284.5 eV) was used to correct the XPS binding energies for all catalysts to erase 

possible charging effect. 

HMF oxidation reaction was carried out in a three-neck-flask attached with a glass 

reflux condenser under oxygen flow (see Figure 2). In each experiment, the reactor was 

filled with 1.0 mmol of HMF and 5.0 mmol of NaOH in 10 ml of water. 0.1 g M/RGO 

(M=Pd, Rh, Ru or Pt) was added into the reactor and oxygen was introduced at a flow 

rate of 50 ml/min with stirring under atmosphere pressure. After reaction, the catalyst 

was filtered off before the high performance liquid chromatography (HPLC) 

measurement (Animex HPX-87H column from Bio-Rad Laboratories Co. Ltd, 0.5 

ml/min flow rate, 10 nM H2SO4 solvent, 323K). The products were analyzed using a 

refractive index (RI) detector. 

1.4    Result and discussion  

The crystal structure of the best catalyst Pt/RGO was confirmed by XRD. We used 

XRD to confirm whether the crystal structure of the spent Pt/RGO was identical to that 

before reaction. In Figure 3, the strong diffraction peak for two samples can be assigned 

to RGO. The diffraction peaks at 2θ= 39.6°, 42.6° and 67.5° can be ascribed to the 

characteristic peak of Pt (111), (200), and (220) crystalline planes of Pt respectively, 

which possesses fcc structure. The diffraction peak of Pt (111) was used to estimate the 



14 

 

Pt particle size by Scherrer equation. The calculated average particle size of Pt on RGO 

sheet is 3.28 nm before the reaction, and 3.60 nm after the reaction, indicating the 

selected reaction conditions has no obvious effect on Pt nanoparticles size. 

The morphologies of the Pt/RGO catalyst were also characterized by TEM. As shown 

by Figure 4(a,b), highly dispersed Pt nanoparticles with a uniform size of 3.28 nm 

loaded on RGO surface were obtained by heating H2PtCl6 and GO in the ethylene 

glycol aqueous solution. In Figure 4(c,d), the Pt nanoparticle size of Pt/RGO increased 

slightly to 3.60 nm after reaction for 24h. These TEM images confirmed that the highly 

dispersed Pt nanoparticles with uniform size had been successfully synthesized and well 

located on the RGO sheets through ethylene glycol reduction method. 

X-ray photoelectron spectra (XPS) using ESCALAB 250Xi spectrometer equipped 

with a pre-reduction chamber was used to investigate the surface composition of 

Pt/RGO catalyst. As shown in Figure 5(a), Pt 4f spectra of Pt/RGO exhibited the 

expected doublets of Pt 4f 7/2 and Pt 4f 5/2, with Pt0, Pt2+ and Pt4+ states. It is 

interesting to note that a respectable percentage of Pt remained still in its metallic state 

(Pt0) in Pt/RGO after being used for even 3 times, which can be found in Figure 5(b). In 

addition, two different types of Pt cations could be assigned, suggesting that the oxygen 

linkages existed between Pt nanoparticles and RGO surface, and the oxide layers 

formed on the Pt nanoparticles surface.  

Besides C-C sp2 (284.2eV) and C-C sp3 (285.7eV), C-O (286.4eV) and C=O 

(288.9eV) are also observed by XPS, proving that a lot of functional groups formed on 

Pt/RGO catalyst surface. 
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Using wavelength dispersive X-ray flourescence spectrometer, it is clarified that 

oxygen content decreased slightly after reaction, 53.2wt% to 52.1wt% for GO while 

20.8wt% to 19.8wt% for 5% Pt/RGO, due to the co-existing NaOH base.  This 

changing trend is in accordance to the reported findings 24-26, where high-concentration 

NaOH solution treatment lowered the oxygen content in GO. 

Different kinds of metallic nanoparticle such as Pd, Rh, Ru, Pt loaded on RGO were 

also prepared and evaluated. All the catalysts were prepared by the same EG reduction 

method. As listed in Table 1, Pd/RGO and Pt/RGO catalysts demonstrated almost 100% 

conversion of HMF. Pt/RGO and Pd/RGO yielded FDCA, whereas Ru/RGO and 

Rh/RGO gave HMFCA as main product, along with some decomposition by-products 

such as levulinic acid and 2,5-bishydroxymethylfuran (BHMF). Pt/RGO catalyst 

resulted in the highest yield of FDCA about 41%. The order of FDCA yield is as 

follows: Pt/RGO>Pd/RGO. In addition, Pt supported on activated carbon (Pt/AC), as a 

reference catalyst, was prepared and tested under the same reaction condition. Pt/AC 

provided a poor HMF conversion together with lower FDCA selectivity than Pt/RGO.  

The BET surface area of Pt/AC was 950 m2g-1 and that of Pt/RGO was 327 m2g-1.  

Although the surface area of Pt/RGO catalyst was lower, its higher activity indicated 

that its Pt dispersion and its tuned Pt reduction degree, along with the electronic state 

provided by the special two-dimensional planar structure from RGO, determined highly 

efficient redox reaction happening on its surface.  It is referred that very fine Pt 

particles on the activated carbon with large surface area are readily oxidized but 

difficult to be reduced, lowering the redox reaction efficiency. 
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As shown in Table 2, Pt/RGO and Pd/RGO catalysts were compared in a shorter time 

experiment, 30min.  Both conversion and FDCA selectivity of Pt/RGO were higher 

than those of Pd/RGO. 

Time course of product formation for HMF oxidation over Pt/RGO was shown in 

Figure 6. According to the reaction process, about 71% of HMF was converted in first 2 

h, and it was completely converted in another 5 h. 5-hydroxymethyl-2-furancarboxylic 

acid (HMFCA) was obtained as a critical intermediate at the initial step of the reaction 

without any by-products. This tendency was in good agreement with previous study 

using Pt/C under different reaction conditions.15 In the initial step of reaction, HMF was 

selectively converted into HMFCA, suggesting that CHO group reacted faster than 

CH2OH group. The yield of FDCA increased with time by oxidizing both aldehyde and 

alcohol groups, and 84% yield of FDCA was obtained at reaction time of 24 h. To date, 

5-formyl-2-furancarboxylic acid (FFCA), another oxidation product, has been observed 

by Gupta el et.14 However, in our experiments, we could not find FFCA in product. We 

deduce that it was rapidly converted into FDCA through a possible reaction route as in 

Figure 7. 

In order to study the stability of Pt/RGO catalyst, it was reused for 3 times, without 

obvious deactivation as in Figure 8. The catalyst was simply reused again after washing 

with water at room temperature followed by vacuum drying. HMF was completely 

converted for all cases, and the FDCA yield was generally stable but accompanied by 

slight decrease. 
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1.5    Conclusions 

In summary, Pt/RGO catalyst was prepared by ethylene glycol reduction method. The 

Pt/RGO catalyst exhibited high activity and selectivity for the oxidation of 

5-hydroxymethylfufural (HMF) to produce 2,5-furandicarboxylic acid (FDCA) in water 

solution at room temperature. 84% yield of FDCA was achieved by using this Pt/RGO 

as catalyst. HMFCA was observed as an only intermediate during reaction process. The 

Pt/RGO catalyst could be reused at least for three times without obvious deactivation.  
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Tables and Figures 

 

Table 1. HMF oxidation in water using M/RGO as catalyst under mild conditions. 

Entry Catalyst 
HMF 

Conv. (%) 

FDCA 

Selec. (%) 

Yield (%) 

HMFCA FDCA By products 

1 GO 17.2 0 15.3 0 2.0 

2 RGO 79.8 0 50.7 0 29.1 

3 5% Pd/RGO 100 30.5 69.5 30.5 0 

4 5% Ru/RGO 47.2 0 28.5 0 18.7 

5 5% Rh/RGO 35.4 0 24.2 0 11.1 

6 5% Pt/RGO 100 40.6 59.4 40.6 0 

7 5% Pt/AC 62.6 38.2 38.7 23.9 0 

Reaction conditions: HMF (1 mmol), H2O (10 ml), catalyst (0.1 g), NaOH (5 mmol), 

under O2 flow (50 ml min-1), 298 K, 6h. The metals loading amount for every metals 

supported catalyst was 5 wt%. 

 

Table 2.  Product distribution of HMF oxidation in short reaction time. 

Catalyst 
HMF 

Conv. (%) 

FDCA 

Selec. (%) 

Yield (%) 

HMFCA FDCA Byproducts 

5% Pt/RGO  19.2 23.2 14.7 4.5 0 

5% Pd/RGO 13.8 15.4 11.6 2.1 0 

Reaction conditions: HMF (1 mmol), H2O (10 ml), catalyst (0.1 g), NaOH (5 mmol), 

under O2 flow (50 ml min-1), 298 K, 30min. The metals loading amount for every metals 

supported catalyst was 5 wt%. 
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Figure 1. 2,5-Furandicarboxylic acid (FDCA) synthesis from oxidation of 

5-hydroxymethylfurfural (HMF) catalyzed by Pt/RGO. 
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Figure 2. Reaction apparatus of HMF oxidation. 
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Figure 3. XRD patterns of Pt/RGO (before and after reaction). 
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Figure 4. TEM images of Pt/RGO before reaction (a), (b) and after reaction (c), (d). The 

(e) and (f) give the Pt particles size distribution of two samples. 
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Figure 5. XPS spectra of Pt/RGO before (a) and after reaction (b). 
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Figure 6. Time course of product distribution for HMF oxidation over Pt/RGO catalyst 

in water using atmospheric pressure of oxygen at 298 K. Reaction conditions: HMF (1 

mmol), H2O (10 ml), 5 wt% Pt/RGO (0.1 g), NaOH (5 mmol), under O2 flow (50 ml 

min-1), 298 K. HMF conversion (●), HMFCA yield (■), and FDCA yield (▼). 
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Figure 7. A proposed reaction route. 
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Figure 8. Recycling of Pt/RGO catalyst. Reaction conditions: HMF (1 mmol), H2O (10 

ml), 5 wt% Pt/RGO (0.1 g), NaOH (5 mmol), under O2 flow (50 ml min-1), 298 K, 24h. 
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Section II   Highly Selective Conversion of Cellulose 

or Cellobiose to Sorbitol 

 

Chapter 2   Introduction 
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Production of fuels or chemicals from the renewable biomass resources instead of 

fossil resources has attracted great attention in recent years.27 Cellulose, a 

polysaccharide mainly composed of glucose via β-1-4 glycosidic linkage, exists widely 

in biomass resources.28 The conversion of cellulose into fuels or industrial chemicals 

can avoid potential conflicts with the food supply, which has been regarded as a key 

issue on sustainable energy production.29 The utilization of cellulose is achieved usually 

through two steps: being selectively hydrolyzed into glucose and further converted into 

fuels and chemicals.30 Recently, the directly catalytic conversions of cellulose to sugar 

alcohol, ethylene glycol (EG) and gluconic acid have been reported.31-33 The sugar 

alcohols, especially sorbitol, are used not only as sweetener in diet foods, but also as an 

important basic chemical for the production of sustainable fuels and chemicals.34 Many 

catalysts, e.g. Pt/Al2O3, Ru/carbon nanotubes, Ru/activated carbon, NixP, 

Pt/Na(H)-ZSM-5 have been used to convert cellulose or cellobiose into sorbitol 

directly.31, 35-38 Nevertheless, few solid catalysts can obtain sorbitol with high yield 

when microcrystalline cellulose is used as feedstock except under harsh reaction 

conditions.35-37 

In the conversion of cellulose to sorbitol, the catalyst used can accelerate hydrolysis 

or/and hydrogenation reactions (Scheme 1). Carbon material is a good choice as the 

catalyst support due to its excellent stability under hydrothermal conditions and large 

surface area for dispersed active components.39 Carbon materials including activated 

carbon, mesoporous carbon and carbon nanotubes were reported as supports in cellulose 

conversion reaction.31, 36, 39 However, to our best knowledge, graphene oxide, a novel 

carbon material, has not been reported as catalyst or as support material in cellulose 

conversion. Compared with other carbon materials, graphene oxide, one-atom thick 
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planar sheet of hexagonally arrayed sp2 carbon atoms, has attracted tremendous 

attentions in recent years due to its relatively stable physical properties and its unique 

two-dimensional planar structure.40 In addition, graphene oxide is slightly acidic due to 

large amount of surface functional groups. 41, 42 Carbon catalyst based on graphene 

oxide for facilitating oxidation and hydration reactions was reported. 43 In addition, 

these abundant functional groups on the surfaces of graphene oxide also can be utilized 

as anchoring sites for the loaded metal nanoparticles, which can increase the dispersion 

of the supported nanocatalysts and tune their catalytic performance. Furthermore, the 

graphene sheet has spillover effect under reaction atmospheres (such as H2 and O2) 

especially when noble metal exists as supported catalyst.43 These unique performances 

may be beneficial for the cellulose conversion when graphene oxide or its derivative is 

used as catalyst support. 

The preparation method of catalysts directly influences their catalytic performance 

due to intrinsic relationship between catalyst structure and their reactivity. The 

nanoparticles loaded on graphene oxide have been reportedly prepared by physical 

methods such as electrostatic attraction, photoreduction, electrophoretic or 

electrochemical deposition methods.44-46 There were also prepared by chemical methods 

including hydrothermal/solvothermal method, ethylene glycol reduction, solid-state 

reaction method etc.47-49 Normally, these methods are complicated and time-consuming. 

A rapid and convenient method to prepare metal nanoparticles supported on graphene 

oxide catalysts is expected. 

 

In this section, the catalyst prepared by microwave assisted reduction method was 

used in the conversion of cellulose or cellobiose. Cellobiose, a glucose dimer connected 
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by a glycosidic bond, representing the simplest model molecule of cellulose, 50 was used 

in some experiments to investigate catalytic performance or reaction mechanism of 

catalyst. Here, the catalytic performances of carbon materials (activated carbon (AC), 

graphite oxide (GO), reduced graphene oxide (RGO), carbon nanotubes (CNTs) and 

graphene (G)) were firstly studied. Then, various metal nanoparticles loaded on RGO 

were prepared and their catalytic performances were compared. Furthermore, the 

influence of supports on catalytic performance was researched.  As the best catalyst, 

Pt/RGO catalyst was investigated in detail. Finally, the reaction mechanism was 

explored. 
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Schemes 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Schematic representation for catalytic conversion of cellulose or cellobiose 

into sorbitol and mannitol. 
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Chapter 3   Catalytic performance of Carbon 

Materials and different metal nanocatalysts supported 

on RGO 
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3.1 Experimental 

 

The carbon materials such as GO (preparation by modified Hummers method from 

expanded graphite),51 AC (after acid treatment), SiO2 (ID, after calcinated at 773K), G 

(prepared by thermal exfoliation of graphite oxide), 52 and CNTs (after acid treatment) 53 

were chosen as catalysts to catalyze cellobiose to sugar alcohols.  

Activated carbon (AC, Kanto Chemical Co.): AC with 20–40 meshes was refluxed 

with 35 % HNO3 at 363 K for 6h, followed by washing with deionized water until pH = 

7, and then dried over 12 h at 333 K. 

Carbon nanotubes (CNTs, inner diameter: 4-10 nm; length, 0.5-2μm; Chengdu 

Organic Chemistry Co., Ltd.): the raw CNTs were refluxed with 65 % HNO3 at 393 K 

for 14 h, followed by washing with deionized water until pH = 7, and then dried over 12 

h at 333 K. 

Graphite oxide (GO): 10.0 g graphite powder and 5.0 g NaNO3 were mixed in a flask, 

and then cooled in ice bath. 230 mL concentrated (98 wt %) H2SO4 solution was then 

added to the mixture. After 10 min of stirring, KMnO4 was added gradually and kept 

stirring in ice bath for another 15 min. The mixture was then kept at 308 K and stirred 

for 50 min until a thick paste formed. 460 mL deionized water was then added, and the 

reaction temperature was increased gradually. The mixture was kept at 371 K and 

stirred for 30 min. Finally, 1000 mL deionized water and 3 mL 30 % aq. H2O2 were 

slowly added to the mixture and stirred for 5 min. The obtained yellow dispersion was 

repeatedly washed with deionized water to remove remaining salt, and the obtained GO 

was then dried under vacuum at 323 K for 3 days. 
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Graphene (G): The obtained GO was placed inside a tubular furnace. The furnace was 

then heated to 523 K in Ar. High-purity H2 gas was put in at that temperature, and G 

was obtained after 1-5min. 

Reduced graphene oxide (RGO): RGO was prepared by the same method as Pt/RGO. 

The only difference was that Pt salt was not used in the preparation of RGO. 

EG reduction with the assistance of microwave was applied to load metallic 

nanoparticles on RGO or on other support materials. Metal salt solution, such as 

H2PtCl6, RuCl3, H2PdCl6, Ni(NO3)2 or Cu(NO3)2 solution, was chosen as metal source 

to prepare the metallic nanoparticles. For example, in a typical synthesis of Pt/RGO 

catalyst, the GO and H2PtCl6 were dispersed in EG solution with the assistance of 

ultrasonic. After being ultrasonically treated for 30 min, the mixture was then put into 

an automated focused microwave system and treated at 393-453 K for 30 min. The 

catalysts were obtained through a redox reaction heated by microwave. The reduction 

reaction could be observed by a color change from yellow GO in the mixture of EG and 

aqueous solution, to dark black after 30 min of microwave heating. The solid products 

were then collected by filtration and washed with deionized water as well as ethanol 

being dried. The metal loading in all catalysts was 5 wt%.  
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3.2  Results and discussion  

3.2.1   Catalytic performance of carbon materials 

XRD in Figure 1 can track the interlayer variations and the crystalline properties of 

graphite, GO, G and RGO. Graphite shows a very sharp diffraction peak at 2θ= 26.26°, 

corresponding to the interlayer spacing of 0.34 nm. The diffraction peak (2θ) around 

11.6° belongs to the reflection of GO, and the interlayer spacing (0.80 nm) is much 

larger than that of pristine graphite owing to the introduction of oxygen-containing 

functional groups such as hydroxyl, epoxy, and carboxyl groups on the surface of 

graphite sheet. 54 After reduction with the mixture of EG  and water, the intensity of 

typical diffraction peak (11.6°) of GO decreases and the position of the peak shifts to a 

higher angle, which is ascribed to the partial reduction of GO and the exfoliation of the 

layered GO nanosheets. The G prepared with thermal exfoliation of GO do not show 

any sharp peaks, demonstrating disorder and exfoliation. However, a broad and weak 

peak at 25.3° appears to show some amount of reclustering.55 

Figure 2 shows the reaction results of cellobiose conversion over various carbon 

materials. Without catalyst, cellobiose can be hydrolyzed with 89.2 % of total 

conversion and 32.7% of glucose selectivity. The hydrolysis process in the conversion 

of cellobiose to glucose can be carried out even in the absence of catalyst, which may be 

due to H3O
+ formed by water auto-protolysis with the temperature increase. These 

observations are in agreement with a recent investigation of cellulose hydrothermal 

degradation.56 The high conversion of cellobiose may be due to its simple molecular 

structure with a glucose dimer connected by a glycosidic bond. When carbon materials 

are employed as catalysts in the conversion of cellobiose, the conversion values are 

similar, but the product distribution is depended on different carbon catalysts. In Figure 
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2 and Table1, the by-products include 5-HMF, low molecular polyols, etc. For AC and 

G catalysts, the primary by-product is 5-HMF, which is consistent with a previous study 

in which the chemistry for the decomposition pathways of cellulose and glucose in 

water indicates that glucose undergoes isomerization to form fructose, which can then 

undergo dehydration to form HMF.57 For CNTs, GO and RGO catalysts, the yield of 

HMF is decreased while the yields of hexitol and low molecular polyols including 

xylitol, erythritol, glycerol, and ethylene glycol are increased. For GO or RGO catalyst, 

the increased sorbitol yield may be due to the oxygen-containing functionalities 

(alcohols, epoxides, and carboxylates), their unique structure and the defect on graphene 

sheets.58 The GO/RGO catalysts for acid catalysis or hydrogenation were also reported 

on epoxides ring opening by GO and nitrobenzene hydrogenation with the help of RGO, 

respectively.59,60  

 

3.2.2   Catalytic performance of different metal nanocatalysts supported 

on RGO  

The typical hydrogenation catalysts such as Ni, Cu, Pd, Rh, Ru and Pt loaded on 

RGO were prepared to improve the cellobiose conversion and the yield of sorbitol. All 

the catalysts were prepared by the same EG reduction method with the assistance of 

microwave (see Scheme 1). The advantage of microwave heating over other 

conventional heating methods is uniform and rapid, which dramatically reduces 

processing time, increases product yield, and enhances product purity and properties.61 

Furthermore, the employment of microwave as heat source has been demonstrated to 

provide unique effects such as “superheating” of solvents above their boiling point and 

the selective heating of strongly microwave-absorbing materials, which can increase the 

metal loading efficiency.62 As shown in Figure 3, all the catalysts demonstrate almost 
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100 % conversion of cellobiose. The different product distributions are influenced by 

the synergistic effect between the loaded metal and RGO.  

 

3.3 Conclusion  

The catalytic performance of RGO is similar to that of GO, which indicates that the 

catalytic activity is not influenced by the GO reduction process. However, the yield of 

sorbitol on GO or RGO is also lower. Ni, Cu, Pd, Rh, Ru and Pt loaded on RGO were 

prepared to improve the cellobiose conversion and the yield of sorbitol. The order of 

sorbitol yield is as follows: Pt/ RGO >Ru/ RGO >Rh/ RGO >Ni/ RGO >Pd/ RGO >Cu/ 

RGO. The highest sorbitol yield together with no glucose producing is obtained for 

Pt/RGO, which indicates that Pt is the most suitable catalyst with the highest sorbitol 

yield approximately 91.5 %. 
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Tables and figures 

 

Table 1. Catalytic conversions of cellobiose into sorbitol with carbon materials as 

catalyst.  

 

Table 1. Catalytic conversions of cellobiose into sorbitol with carbon materials as 
catalyst. 

Catalysts Cellobiose 
conv/% 

Yield of products/% 

Glucose Mannitol Sorbitol HMF C2-C5 
polyolsa Othersb 

Blank 89.2 32.6 0.8 1.0 24.3 N.d. 30.5 

AC 95.5 27.4 3.1 2.7 10.5 2.3 49.5 

CNTs 92.4 3.6 3.8 16.6 3.5 5.3 59.6 

G 92.2 18.2 0.6 0.9 20.6 2.1 49.8 

GO 97.4 3.0 3.9 16.5 1.2 14.5 58.3 

RGO 94.7 2.2 3.9 18.5 2.3 12.7 55.1 

aC2-C5 polyols: xylitol, erythritol, glycerol, ethylene glycol, bThe others are the 
by-products which cannot be identified by HPLC analysis. (Reaction conditions: Catalysts 
weight =0.050 g; Cellobiose weight =0.171 g; Reaction time= 3 h; Temperature=463 K; 
Pressure=5 MPa; H2 as reaction gas.) 
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Figure 1. XRD patterns of graphite, graphite oxide (GO), reduced graphene oxide 

(RGO) and graphene (G) 
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Figure 2. Catalytic conversions of cellobiose into sorbitol with carbon materials as 

catalyst. (Reaction conditions: Catalysts weight =0.050 g; Cellobiose weight =0.171 g; 

Reaction time= 3 h; Temperature=463 K; Pressure=5 MPa; H2 as reaction gas.) 
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Figure 3. Catalytic performance of different metal catalyst (10 wt% Ni, 10 wt% Cu, 5 

wt% Rh, 5 wt% Ru, 5 wt% Pd, 5 wt% Pt) supported on RGO catalyst for cellobiose 

conversion to sorbitol. (Reaction conditions: Catalyst weight =0.050 g; Cellobiose 

weight =0.171 g; Reaction time= 3 h; Temperature=463 K; Pressure=5 MPa; H2 as 

reaction gas.) 
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Scheme 1. Preparation schematic of M/RGO nanocatalysts with the assistance of 

microwave. 
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Chapter 4   Pt Nanocatalysts on Different Supports 

and Pt Particle Size Effect 
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4.1 Experimental 

EG reduction with the assistance of microwave was applied to load metallic 

nanoparticles on RGO or on other support materials. Metal salt solution, such as 

H2PtCl6, RuCl3, H2PdCl6, Ni(NO3)2 or Cu(NO3)2 solution, was chosen as metal source 

to prepare the metallic nanoparticles. For example, in a typical synthesis of Pt/RGO 

catalyst, the GO and H2PtCl6 were dispersed in EG solution with the assistance of 

ultrasonic. After being ultrasonically treated for 30 min, the mixture was then put into 

an automated focused microwave system and treated at 393-453 K for 30 min. The 

catalysts were obtained through a redox reaction heated by microwave. The reduction 

reaction could be observed by a color change from yellow GO in the mixture of EG and 

aqueous solution, to dark black after 30 min of microwave heating. The solid products 

were then collected by filtration and washed with deionized water as well as ethanol 

being dried. The metal loading in all catalysts was 5 wt%. The obtained catalyst was 

defined as M/RGO. RGO was prepared by the same method as above, but without the 

addition of metal salt. Pure Pt nanoparticles were prepared from the same EG reduction 

method without the existence of supports. 

 

4.2 Results and discussion  

4.2.1 Catalytic performance of Pt nanocatalysts on different supports 

In order to clarify the functions of different supports on the conversion of cellobiose 

to sorbitol, Pt, the best active metal as above-mentioned, is also loaded on other 

supports.  We used TGA to determine the Pt loading amounts on various carbon 

catalysts but there were no significant change, which means that the catalytic activity of 

Pt loaded on different carbon supports is comparable. As shown in Figure 1, the 

cellobiose conversion is as high as 100 %. The yield to sorbitol is just 41.9 % when Pt 
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nanoparticles is used as catalyst. Compared with Pt nanoparticles prepared by the same 

method, the yield of sorbitol is improved from 41.9 % to 91.5 % when RGO is used as 

Pt support. It is noted that not all support materials could improve the catalytic 

performance. From Figure 1, it is clear that with the same amount of Pt loaded, the 

catalytic activities have the following sequence: Pt/ RGO >Pt/ CNT >Pt nanoparticles> 

Pt/ AC >Pt/ SiO2 >Pt/ G.  

 

The XRD patterns of Pt nanoparticles loaded on different supports are displayed in 

Figure 2. The strong diffraction peaks at 2θ = 39.6°, 46.2° and 67.5° can be assigned to 

the characteristic (111), (200) and (220) crystalline planes of Pt. The average crystallite 

sizes were calculated by the Scherrer equation at 39.6°, which is showed in Table 1. 

Moreover, the morphology of Pt nanoparticles and Pt nanoparticles loaded on different 

supports was investigated by TEM. As in Figure 3, the dispersion and particle sizes of 

Pt are depended on supports. The particle size distribution in Figure 3 and Table 1 

shows that the average size of Pt nanoparticles is about 3.5 nm for Pt nanoparticles, 3.6 

nm for Pt/AC, 3.1 nm for Pt/CNTs, 1.2 nm for Pt/G, 3.6 nm for Pt/RGO and 3.1 nm for 

Pt/SiO2. The Pt exposed surface area and dispersion were determined by chemisorption 

of CO. As in Table 1, the Pt exposed surface area and dispersion of catalyst also depend 

on supports. The Pt exposed surface area and dispersion are in the following sequence: 

Pt/RGO >Pt/SiO2 >Pt/AC >Pt/CNTs >Pt/G. The catalyst with larger Pt exposed surface 

area and high dispersion usually has higher conversion in hydrogenation reaction.63,64 

Normally, the metallic catalyst with small metal particle size possesses high dispersion 

and high catalytic activity. Why the Pt dispersion of Pt/G and the catalytic activity of 

Pt/G are so low?  The low catalytic activity of Pt/G catalyst may be due to the high 

oxidation states of metal catalyst on G support. As shown in Figure 4, Pt 4f spectra of 
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Pt/G show that the main valences of Pt are Pt2+ and Pt4+. However, the Pt0 is the active 

site in the cellobiose conversion reaction. The oxidation state of Pt can be attributed to 

the re-oxidation of oxygen in air. The high oxidation state may be also the reason that 

the Pt dispersion on Pt/G catalyst is so low. Compared with Pt/AC, the Pt/CNTs catalyst 

with similar Pt dispersion has better catalytic performance, which may be due to the 

following reasons: Firstly, most pores in AC are micropores, which is too small for 

cellobiose to enter.63, 65 Secondly, CNTs with lots of surface functional groups formed 

by acid pretreatment have high sorbitol yield and low glucose yield, indicating that the 

CNTs have higher catalytic activity than AC in this reaction. With high Pt dispersion, 

Pt/SiO2 has the lowest catalytic performance and this may be due to the same reason as 

Pt/AC. Therefore, the high catalytic activity is attributed to the synergistic effects of 

supports and the supported Pt nanoparticles. As in Figure 1, Pt loaded on RGO shows 

the highest catalytic performance, which indicates that RGO is the best support for the 

conversion of cellobiose to sorbitol. 

 

4.2.2 The effect of Pt particle size on the catalytic performance 

To disclose the effect of Pt particle size on the catalytic activity, Pt/RGO catalysts 

with different Pt particle sizes were prepared through the same reduction method. In this 

microwave assistant method, Pt particle size can be controlled with different 

temperature treatments. The XRD patterns of GO and Pt/RGO after different heat 

treatments are shown in Figure 5. It can be seen that the typical diffraction peak (002) of 

GO at 11.6° shifts to higher angle after the loading of Pt nanoparticles on RGO when 

the treatment temperature above 403 K, which indicates that the GO is converted to 

RGO. The strong diffraction peaks at 2θ = 39.6°, 46.2° and 67.5° can be assigned to the 
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characteristic (111), (200) and (220) crystalline planes of Pt, respectively, which 

possesses face-centered-cubic (fcc) structure. The diffraction peak of Pt (111) is used to 

estimate the Pt particle size by the Scherrer equation. The calculated average particle 

sizes of Pt on GO sheets are 2.0 nm for Pt/RGO-403 K, 2.7 nm for Pt/RGO-413 K, 3.6 

nm for Pt/RGO-433 K and 4.3 nm for Pt/RGO-453 K, respectively.  

Figure 6 shows the TEM images and Pt particle size distributions of Pt/RGO-T. All 

TEM images demonstrate that graphene nanosheets are uniformly decorated by 

distributed Pt nanoparticles with few aggregations, indicating a strong interaction 

between graphene support and Pt particles. The mean size of Pt nanoparticles is very 

consistent with the value estimated by Scherrer equation from Figure 5.  

As in Figure 7, the yield of sorbitol increases with the mean size of Pt up to 3.6 nm 

and then decreases with further increasing Pt particle size. The highest catalytic 

performance is obtained by Pt/RGO-433 catalyst with 91.5 % of sorbitol yield. The 

similar trend is also observed when the cellobiose is replaced by cellulose. The highest 

yield of hexitol is 69 % (58.9 % of sorbitol and 10.1 % of mannitol). The results show 

that the Pt particle size is one of the critical factors affecting on the cellulose conversion. 

In addition, the catalytic activity may also be affected by the RGO supports processed at 

different microwave temperatures.  

 

4.3  Conclusion  

Pt loaded on RGO shows the highest catalytic performance, which indicates that 

RGO is the best support for the conversion of cellobiose to sorbitol. Pt particle size is 

one of the critical factors affecting on the cellulose conversion. 
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Tables and Figures 

 

Table 1. The physicochemical properties of different catalysts. 

 

 

Catalyst 
Exposed Pt 

surface area [a] 
[m2/g] 

Pt Dispersion 
[a] [%] 

Particle size by  
TEM [b]  [nm] 

Crystallite sizes by 
XRD [c]  [nm] 

Pt/SiO2 65.2 26.4 3.1 2.9 

Pt/AC 33.9 13.7 3.6 7.7 

Pt/CNTs 31.6 12.8 3.1 4.0 

Pt/G 8.7 3.5 1.2 -[d] 

Pt/RGO 79.2 32.3 3.6 3.6 

[a] The surface area was determined by CO chemisorption.  [b] The average size of nanoparticles was 
evaluated from counting and averaging TEM images. [c] The average crystallite sizes were calculated by 
the Scherrer equation at 39.6°. [d] The diffraction peak was too low to estimate. 
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Figure 1. Catalytic performance of Pt loaded on different supports for cellobiose 

conversion to sorbitol. (Reaction conditions: Catalyst weight =0.050 g (Pt nanoparticles, 

0.0025g); Cellobiose weight =0.171 g; Reaction time= 3 h; Temperature=463 K; 

Pressure=5 MPa; H2 as reaction gas.) 
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Figure 2. XRD patterns of Pt loaded on different supports (AC, SiO2, CNTs, G, RGO). 
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Figure 3. TEM images of (a) Pt nanoparticles and Pt nanoparticles loaded on (b) AC, 

(c) CNTs, (d) G, (e) RGO and (f) SiO2. 
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Figure 4. The XPS spectra of the Pt/G catalyst (Pt 4f region of Pt/G). 
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Figure 5. XRD patterns of GO and Pt/RGO-T (T=403 K, 413 K, 433 K, 453 K). 
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Figure 6. TEM images and particle size distribution of Pt/RGO-T (T=403 K (a), 413 K 

(b), 433 K (c) and 453 K (d)).  
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Figure 7. Conversions of cellobiose and cellulose into sorbitol and mannitol by 

Pt/RGO-T catalysts with different particle size (T=403 K, 413 K, 433K and 453 K). 

(Reaction conditions: Catalyst weight =0.050 g; Cellulose or cellobiose weight =0.171 

g; Reaction time=24 h for cellulose and 3 h for cellobiose; Temperature=463 K; 

Pressure=5 MPa; H2 as reaction gas.) 
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Chapter 5   Pt/RGO Catalyst and Reaction 

Mechanism of Cellulose Conversion 
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5.1 Experimental 

5.1.1   Characterization of catalysts 

The morphologies of the samples were characterized with high resolution 

transmission electron microscope (TEM, JEOL JEM-2100 UHR) operated at 200 kV. 

The crystal structure of the materials was confirmed by X-ray Diffraction (XRD) with a 

Rigaku D/max-2550 V diffractometer employing Cu Kα radiation (λ = 1.54 Å; scanning 

rate: 0.02 °/s). X-ray photoelectron spectroscopy (XPS) was conducted using 

ESCALAB 250Xi spectrometer equipped with a pre-reduction chamber. The position of 

the C1s peak (284.5 eV) was used to correct the XPS binding energies for all catalysts 

for possible charging effects. Thermal analysis was carried out on a DTG-60 

(Shimadzu) in air flow. The loading amount of Pt was checked through inductive 

coupled plasma emission spectrometer (Shimadzu ICPE-9000). The metal dispersion 

and metal surface area was determined by CO chemisorptions with a pulse 

chemisorption mode (BELCAT, BEL Japan, Inc.). Samples were treated in He flow by 

increasing the temperature to 423 K at 5 K min-1 and holding at 423 K for 1 h. Samples 

were then heated to 673 K at 10 K min-1 and reduced in 10% H2/Ar at 673 K for 1 h. 

Chemisorbed hydrogen was removed by treatment in He flow at 493 K for 1 h. Samples 

were then exposed to pulses of 5% CO/He. CO concentration was measured using a 

thermal conductivity detector. Dispersions, defined as the fraction of Pt atoms exposed 

at surfaces, were determined by assuming one CO standing on one surface Pt atom. 

5.1.2   Catalytic reaction 

The conversion of cellobiose or cellulose was performed with a batch-type 

high-pressure autoclave reactor. Typically, 0.050 g catalyst and 0.171 g cellulose (after 

ball milling for 4 days) or cellobiose were loaded into the reactor pre-charged with 20 

mL H2O. The reactor H2 pressure was maintained at 5 MPa at room temperature, and 
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then the reaction was conducted at 463 K for 3 h. After reaction, the solid phase was 

separated by centrifugation, and the liquid products were analyzed with HPLC (Waters 

Assoc, USA). Cellulose conversion was determined as reported by the weight difference 

of dried cellulose before and after the reaction. The cellobiose conversion was 

calculated through the HPLC results before and after the reaction. The product 

selectivity was calculated based on the carbon basis. The product yield was calculated 

as follows: yield (%)=(weight of product)/(weight of cellulose or cellobiose charged in 

reactor). 

 

5.2 Results and discussion  

5.2.1    Characterization of Pt/RGO catalyst 

The preparation, the physicochemical properties, and the catalytic performances of 

Pt/RGO catalyst with the highest catalytic activity were systematically investigated. The 

morphology of RGO and as-prepared Pt/RGO were characterized with TEM. As in 

Figure 1, the surface of RGO is smooth and free from any contaminated particulate, 

which indicates that few layered graphene oxides are formed, although the TEM image 

cannot estimate the layer numbers of the graphene oxide nanosheets exactly. As in 

Figure 1(b), highly monodispersed Pt nanoparticles with a uniform size of 3.6 nm 

decorated on RGO surface are obtained by simple and rapid microwave heating of 

H2PtCl6 and GO in the mixture of EG and water. The most significant feature here is 

that the Pt nanoparticles with a uniform size (3.6 nm) are well monodispersed on the 

surface of graphene oxide (as shown in Figures 1(b) and 1(c)). Figure 1(d) is a 

high-resolution TEM image of Pt/RGO. The measured inter-planar spacing of the 

particle lattice is 0.23 nm, which corresponds to the (111) crystal plane of Pt 

nanoparticles given in X-ray diffraction (XRD) data (Figure 5 in Chapter 4). These 
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TEM images confirm that the highly monodispersed Pt nanoparticles with uniform size 

can be successfully synthesized and well located on RGO sheets by the microwave 

assistant reduction method. Compared with previous researches, Pt nanoparticles on 

graphene oxide sheets seem to be highly monodispersed with smaller uniform size. 

Furthermore, the Pt/RGO catalyst prepared by microwave assisted reduction method is 

demonstrated in fluffy state and its surface area is 180.2 m2/g. The surface area is 

relatively low compared to the surface area of the single graphene sheet, indicating a 

certain degree of restacking of the graphene sheets. 

X-ray photoelectron spectra (XPS) was used to investigate the surface composition 

of RGO and Pt/RGO catalysts. As shown in Figure 2, the C1s core level for RGO still 

shows a high degree of oxidation, which consists of three main components assigned to 

the C-C (sp3 carbon, 285.8 eV), C-C (sp2 carbon, 284.5 eV), C-O (hydroxyl, 286.6 eV) 

and C=O (carbonyl, 288.4 eV) groups. The large amount of residual functional groups 

including C-O in RGO indicate that GO was only partly reduced by EG solution. After 

the introduction of H2PtCl6, it is clearly showed that the peak associated with C-C bond 

(284.5 eV) becomes predominant while the additional peak of C-O (286.6 eV) 

tremendously decreases, suggesting most oxygen-containing functional groups have 

been removed. These findings indicate that the addition of H2PtCl6 plays an important 

role in the formation of RGO. Figure 2(c) shows the O1s XPS spectra of RGO and 

Pt/RGO nanocomposites. The decrease of oxygen-containing functional groups can also 

be seen from the decreasing peaks of C-O and C=O. Pt 4f spectra of Pt/RGO show the 

expected doublets for Pt 4f7/2 and Pt 4f5/2, with Pt0, Pt2+, and Pt4+ oxidation states 

(Figure 2d). It is interesting to note that a respectable percentage of Pt remains in its 

native state (Pt0) in Pt/RGO. In addition, two different types of Pt2+ can be assigned, 
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which suggests that the oxygen linkages exist between the Pt nanoparticles and the 

RGO surface, and the oxide layers formed on the Pt surface. The small Pt nanoparticles 

are formed by anchoring Pt ion on the graphene oxide surface and by subsequent 

reduction to the fine particles without obvious agglomeration. 

 

5.2.2    Catalytic performances of Pt/RGO catalyst 

The effect of the reaction temperature on the catalytic performance of Pt/RGO 

catalyst is given in Figure 3. It can be seen that the conversion of cellobiose increases 

from 75.2 % to 100 % with the temperature increasing from 423 K to 463 K. The 

sorbitol yield increases simultaneously and reaches the maximum at 463 K, then 

decreases with the further increasing temperature to 483 K. It is considered that high 

temperature causes cellobiose to be partially carbonized easily and that the produced 

sorbitol can be converted further to other undesirable by-products. Consequently, the 

optimum reaction temperature is 463 K. 

When the milled cellulose was used as the raw material, the experimental conditions 

such as the reaction temperature, the reaction pressure, the reaction time and the Pt 

concentration were investigated. As shown in Figure 4a, the yield of sorbitol is very low 

at 423 K. Compared with Figure 3, the low temperature might be not helpful to the 

hydrolysis of cellulose. The yield of sorbitol and the conversion of cellulose increase 

with the increasing temperature. However, the sorbitol yield is relatively low when the 

reaction temperature is 483 K, which might due to the partial decomposition or 

dehydration of products and the generation of some by-products, such as low molecular 

polyols, sorbitan, isosorbide, CO and CH4. The influence of reaction pressure is shown 

in Figure 4b, from which it can be seen that the conversion of cellulose increases with 
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increasing pressure. Furthermore, the pressure also has influences on the yield of 

sorbitol. Higher pressure is helpful to increase the sorbitol yield. The reaction time is 

also found to be important in this reaction as in Figure 4c. The conversion of cellulose 

(36.3%) and sorbitol yield are very low when the reaction time for 1 h. However, the 

conversion of cellobiose is as high as (100 %) when the reaction time is 3 h (Figure 3). 

The cellobiose is easy to be hydrolyzed compared with cellulose, indicating that the 

hydrolysis of cellulose is the rate determining step. The effect of Pt loading amount in 

Pt/RGO catalyst is also studied. The yield of sorbitol can be effectively increase from 

24.9 % with 1 wt% of Pt loading to 58.9 % under 5 wt % of Pt loading. 

In order to study the stability of Pt/RGO catalyst, the catalyst after 24 h reaction was 

characterized with TEM. As shown in Figure 5, the average size of Pt nanoparticles on 

the used Pt/RGO catalyst is similar to that of the fresh one. Particle aggregation is not 

observed in the TEM image, suggesting that the catalyst is very stable and can be reused. 

In Figure 6, the reusability also can be proved by the similar sorbitol selectivity with the 

used Pt/RGO as catalyst and fresh cellulose as reactant. The slight decrease of cellulose 

conversion after several runs might be due to the loss of catalysts during the transfer 

process.  

 

5.2.3    Reaction mechanism of cellulose conversion 

The enhanced catalytic performance of Pt/RGO catalyst for the conversion of 

cellulose to sorbitol may be due to the following reasons: The increase in utilization 

efficiencies of platinum nanocatalysts on RGO supports can be attributed to the 

enlarged surface area and the well-dispersion of the RGO supports and catalyst. The 

optimum size of Pt particles and the exposed crystal plane are beneficial for the 
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hydrogenation of reactants. Pt on RGO promotes the protonations of water and 

hydrogen molecules, which spill over to create in situ acid sites, and to catalyze 

hydrolysis of cellulose or cellobiose (Scheme 1), and the intermediate glucose or other 

oligosaccharides can be selectively hydrogenated to sorbitol on the highly active Pt 

nanoparticles. Therefore, the roles of the RGO in the conversion of sugars to sorbitol 

were acting as a support to highly disperse Pt by anchoring effect, keeping surface acid 

by H2 spillover effect from Pt, catalyzing hydration reaction by its acidic sites, 

suppressing formation of by-products. 

 

5.3    Conclusion  

Pt/RGO catalyst is prepared by microwave assistant EG reduction method, which 

presents high activity and selectivity for the conversion of cellobiose or cellulose to 

sorbitol. The structure and the catalytic performance of Pt/RGO catalyst are 

systematically investigated. The high catalytic activity is attributed to the synergistic 

effects of supports and the supported Pt nanoparticles. The results show that the 

graphene oxide sheets act as an excellent support and stabilizer for the very finely 

dispersed Pt nanoparticles, which can avoid nanoparticle aggregation. The sorbitol yield 

is as high as 91.5 % or 58.9 % when cellobiose or cellulose employed as the reactant, 

respectively. The optimum particle size of Pt is 3.6 nm and the optimum reaction 

temperature is 463 K. The improvement of catalytic activity is attributed to the 

hydrogen spillover effects of Pt/RGO catalyst. 
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Figures and Schemes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. TEM images of (a) RGO, (b, c) Pt/RGO, and (d) high-resolution transmission 

electron microscopy (HR-TEM) image of Pt/RGO. 
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Figure 2. Typical XPS spectra of RGO and Pt/RGO: (a) survey spectra and C1s of 

RGO, (b) survey spectra and C1s of Pt/RGO, (c) O1s region XPS spectra, and (d) Pt4f 

region XPS spectra. 
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Figure 3. Influence of the reaction temperature on the conversion of cellobiose to 

sorbitol. (Reaction conditions: Catalyst weight =0.050 g; Cellobiose weight =0.171 g; 

Reaction time= 3 h; Temperature=423-483 K; Pressure=5 MPa; H2 as reaction gas.) 
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Figure 4. Influences of (a) reaction temperature, (b) reaction pressure, (c) reaction time 

and (d) Pt loading amount on the conversion of cellulose to sorbitol. (Reaction 

conditions: Catalyst weight =0.050 g; Cellulose weight =0.171 g; H2 as reaction gas; 

Temperature=463K, (a, 423-483 K); Pressure=3MPa (b, 1-5 MPa); Reaction time=24 h 

(c, 1-24h); Pt loading amount=5% (d, 1%-5%).) 
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Figure 5. TEM image of the used Pt/RGO catalyst in the conversion of cellulose to 

sorbitol. (Reaction conditions: catalysts weight =0.050g; Cellulose weight =0.171 g, 

Reaction time= 24 h; Temperature=463 K; Pressure=5 MPa; H2 as reaction gas.) 
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Figure 6. Reuse experiments of Pt/RGO catalyst for cellulose conversion. (Reaction 

conditions: catalysts weight =0.050 g; Cellulose weight =0.171 g, Reaction time= 24 h; 

Temperature=463 K; Pressure=5 MPa; H2 as reaction gas.) 
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Scheme 1. Schematic of the conversion mechanism for cellulose to sorbitol catalyzed 

by Pt/RGO. 
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Section III   Conversion of Syngas to Isoparaffins 

 

Chapter 6    Combining Wet Impregnation and Dry 

Sputtering to Prepare Highly- Active CoPd/H-ZSM5 

Ternary Catalysts Applied for Tandem Catalytic 

Synthesis of Isoparaffins 
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6.1   Abstract 

Tuning hydrocarbons distribution in Fischer-Tropsch synthesis is greatly challenging. 

By employing three different pathways to deposit trace Palladium on Co/H-ZSM5 

catalyst, tunable isoparaffin and olefin selectivity was successfully achieved. The 

impregnated Pd showed a poor promotion of Co dispersion and reducibility, producing a 

slight enhancement of FTS activity and isoparaffin selectivity. The unique mechanical 

stir during Pd sputtering induced a re-dispersion of impregnated Co/H-ZSM5 particles 

and Pd was deposited with an intimate distance to Co species and with a weak 

interaction combining zeolite, due to which complete hydrogenation of olefins was 

achieved. The surface enriched Pd on pre-sputtered Co catalyst was inclined to form 

Pd-Co nano-alloys, suppressing the chain growth activity by excessive hydrogenation 

process. 

Keywords: Fischer-Tropsch synthesis; sputter; palladium; isoparaffin; olefin. 
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6.2  Introduction 

For a multifunctional catalyst containing three components (A+B+C) or more, 

optimizing the spatial arrangement and interactions between different active sites is 

greatly crucial to achieve a high catalytic performance and selectivity of expected 

products. Based upon a typical Fischer-Tropsch synthesis (FTS),66-69 it is one of the 

most efficient processes to produce synthetic gasoline-ranged hydrocarbons from CO 

and H2 by combining a FTS metal (Co/Fe/Ru, component A) and an acidic zeolite 

(component B) as a bi-component catalyst. The efficient isoparaffin synthesis from FTS 

has moved into the spotlight since the rapidly increasing energy demand worldwide 

turns the sustainable energy production into one of the greatest challenges.70 

A general strategy to assemble such bi-component catalyst is realized by a physical 

mixture method of two different components or a wet impregnation of component A 

into component B.71, 72 However, the contact between two components on the physical 

mixture process is usually far from each other. Deposited FTS active sites over 

conventional impregnated catalysts are randomly distributed on surface and strongly 

interacted with the acidic zeolite, showing a difficult reduction of active metals. In 

addition, for the acidic catalysis process on zeolite supported FTS catalysts, 

isomerization and hydrocracking of normal paraffins are primary reactions, in which 

formation of many olefin products is unavoidable besides saturated paraffins. Therefore, 

an additional hydrogenation promoter as component C is necessary to be introduced for 

producing more saturated chain and branch hydrocarbons. Introduction of trace noble 

metals, such as Ru, Re, Pt and Pd, is regarded as an effective way to realize such 

purpose accompanied by a possible promotion of metal dispersion, reduction degree and 

catalytic performance.73-76 For the consecutive reactions above, there is no doubt that 
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great challenges still remain in fabrication of these types of active sites, including a FTS 

metal, acidic sites and a noble metal promoter, into one efficient catalyst system with an 

optimized spatial arrangement and suitable interactions. 

Recently, the newly developed physical-sputtering method provided a novel route to 

deposit various metal nanoparticles onto powder supports.77-79 The unique mechanical 

vibrating and rotation during sputtering produced well-dispersed metal sites, intimately 

contacting acidic sites on zeolite support. The interaction between two components is 

clearly weakened as compared to conventional impregnated catalyst. 

In present work, we design three metal deposition pathways to prepare zeolite 

supported Pd-Co catalysts for effective production of isoparaffins from CO and H2. 

Cobalt, a FTS site, and palladium, a noble metal promoter were deposited on H-ZSM5 

support by a single chemical impregnation route, a single physical sputtering method or 

a hybrid process of the two above, respectively. By adjusting the metal introduction 

pathways, different catalytic performance and tunable distribution of isoparaffins and 

olefins were obtained. Correlations between FTS results of catalysts and their unique 

physicochemical properties were investigated in detail. 

 

6.3. Experimental Section 

6.3.1 Catalyst preparation of three Pd-promoted Co/H-ZSM5 catalysts 

The CoPd-ii catalyst was prepared by a conventional co-impregnation process of the 

commercial H-ZSM5 support (Süd-Chemie Catalysts Japan Inc., SiO2/Al2O3=100, 

molar ratio). Prior to the impregnation experiment, H-ZSM5 powders were pretreated at 

180C for 2 h in air followed by cooling down to room temperature. Briefly, analytical 

grade Co(NO3)2·6H2O powders (Kanto Chemical Co. Inc., Japan) and Pd(NO3)2 

solution (Pd content: 50 g·L-1
, Tanaka Noble Metal Co., Japan) were dissolved in 
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distilled water (10 mL) to form a hybrid solution, followed by impregnation of the 

aqueous solution onto the pretreated H-ZSM5 powders (3.0 g). After an ultrasonic 

mixing for 30 min, the precursor mixture was aged in humid air for 12 h. Then, it was 

dried at 80 C under vacuum, and calcined at 400C for 2 h in air. The weight loading 

was 6.0 % and 0.5 % for Co and Pd, respectively. 

For the CoPd-is one (“is” means Co impregnation followed by Pd sputtering), 

impregnated Co on H-ZSM5 support was first prepared by incipient wetness 

impregnation method. The obtained Co/H-ZSM5 catalyst served as a Pd sputtering 

support. The sputtering apparatus was described in Scheme 1. A metallic palladium 

plate (99.9%, 50×100 mm2, Toshima Ltd.) was used as a sputtering target. Briefly, 3.0 g 

of the Co/H-ZSM5 powders and a rectangle stainless steel as stirrer were loaded into the 

cavity barrel. Afterwards, the vacuum chamber was evacuated to 9.910-4 Pa, followed 

by introducing a pure argon flow (purity: 99.995%) with a flow rate of 13 mL·min-1 into 

the chamber until the pressure reached 2.0 Pa. The input power was controlled to 45 W. 

A swinging motion of ±75o at a speed of 4.2 rpm was provided for the rolling barrel 

during the sputtering process, achieving a uniform deposition of metal atoms on support. 

After 15 min sputtering, around 0.5 wt% of Pd was deposited. Finally, a 1% O2 flow 

(balanced with N2) was gradually introduced into the cavity barrel to reach room 

pressure. 

For the CoPd-ss one, Co was first deposited on the H-ZSM5 support by the sputtering 

method with a metallic Co target. The input power and sputtering time were controlled 

to 350 W and 2.5 h, respectively. Afterwards, Pd was introduced on the as-sputtered 

Co/H-ZSM5 with the same sputtering conditions as for the CoPd-is catalyst. The weight 

loading amount of Co and Pd were controlled to 6.0% and 0.5% for all above three 
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Pd-containing catalysts. 

For comparison, two reference Co/H-ZSM5 (Co: 6.0 wt%) bifunctional catalysts 

without palladium were prepared by the impregnated (Co-i) and sputtered (Co-s) 

method, respectively. Another reference Pd/H-ZSM5 catalyst (Pd: 0.5 wt%) without 

cobalt (Pd-i) was prepared by the impregnation method as well. 

 

6.3.2 Catalyst characterization 

FEI Tecnai F20 high-resolution transmission electron microscope (HRTEM) with an 

accelerating voltage of 200 kV was used for the metal distribution morphology, and 

Digital Micrograph software was employed to acquire fast Fourier transforms (FFT) 

images. 

A JEOL energy-diffusive X-ray spectroscopy (EDX) was used for element analysis. 

X-ray diffraction (XRD) analysis was performed on a Rigaku RINT 2400 

diffractmeter with Cu Kɑ radiation operated at 40 kV and 20 mA. 

A BELCAT-B-TT apparatus (Bel Japan Inc.) was employed to perform the H2 

temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed 

desorption (NH3-TPD) experiment at a heating rate of 10C·min-1. 

The metal dispersion was determined by a H2 chemical adsorption experiment 

performed with Autosorb-1 vacuum apparatus. Samples of about 50 mg were placed in 

a quartz cell. Prior to the measurement, the samples were degassed at 300 oC and at 3.0 

Pa for 1 h. The impregnated catalyst was reduced in flowing H2 at 400 oC for 10 h, and 

evacuated at 400 oC for 1 h to desorb H2, followed by cooling to 100 oC. The chemical 

adsorption was conducted at 100 oC and the equilibration time was 30 min. Co 

dispersion was calculated assuming that an H/Co adsorption stoichiometry was equal to 
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1. 

To determine the reduction degree of the prepared catalyst, the O2 titration 

experiment was carried out at 400 oC using the catalyst analyzer BELCAT-B-TT with 

the assumption that the metallic Co atoms were oxidized totally to Co3O4. 

 

6.3.3 Evaluation of FTS performance 

Prior to FTS reactions, all the catalysts were in situ reduced in the reactor at 400oC 

for 10 h with a pure H2 flow. Details of the FTS steps were described elsewhere.78, 90 

Briefly, the FTS reaction was performed with a continuous flowing fixed-bed reactor 

from syngas (CO: 33.7 v%, Ar: 3.04 v%, balance with H2). An ice trap of n-octane as 

solvent was equipped to capture the heavy hydrocarbons in the effluent. Reaction 

conditions were 260 C, 1.0 MPa, and Wcatalyst/F = 10 g·h·mol-1. Gas products (C1-C5) 

were analyzed by two on-line gas chromatographs, one of which employed an active 

charcoal column equipped with a thermal conductivity detector (Shimadzu, GC-8A). 

Another used a capillary column (J&W Scientific GS-Alumina) and a FID detector 

(Shimadzu, GC-14B) to analyze light hydrocarbons. Liquid products from the ice trap 

were analyzed by an offline gas chromatograph using a FID detector (Shimadzu, 

GC-2014). 

 

6.4   Results and Discussion 

6.4.1 Metal dispersion 

HRTEM images and particle size distributions (PSD) of prepared catalysts are 

provided in Figure 1. The Co species loaded by a conventional impregnated method 

(Co-i) show irregular and heterogeneous large particles with an average particle size of 

19.3 nm, as counted in Figure 1a2. For the CoPd-ii catalyst prepared by co-impregnated 
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way, a similar metallic particle distribution ranging from 11 to 24 nm was observed. The 

corresponding fast Fourier transforms (FFT) image indicated that both of Co and Pd 

species existed in oxide state. In contrast, the impregnated Co/H-ZSM5 catalyst 

followed by a Pd-sputtering process exhibited a clear promotion of particle dispersion 

(Figure 1c) accompanied by a narrow particle distribution of 4-9 nm. The result 

revealed a “stir” role of the sputtering method, in which a continuous hexagonal rotation 

and mechanical vibration powered by the apparatus were able to mix the deposited 

metals and powders support adequately. Simultaneously, a small stirrer in the rolling 

barrel further provided additional power to break impregnated Co/H-ZSM5 bulks into a 

mass of small uniform particles. Therefore, a re-dispersion of Co/H-ZSM5 large 

particles was observed assisted by the rolling, vibration and stirrer during the sputtering 

process. In addition, the FFT image of Figure 1c1 demonstrated typical Co3O4 (400), 

(311) and (111) lattice planes with the absence of Pd oxide species, illustrating a high 

dispersion of sputtered Pd on Co/H-ZSM5 support or the formation of tiny Pd 

nanoparticles. 

The uniform dispersion of small Co and Co-Pd particles on the sputtering-only 

catalysts is reflected by Figure 1d and 1e. It was observed that particle distributions on 

the sputtered CoPd-ss and Co-s catalysts were close. Both of the average particle sizes 

on these catalysts were about 3.9 nm, much smaller than that of CoPd-ii or CoPd-is, due 

to which no metallic lattice planes were found except the zeolite support in Figure 1d1. 

This result was further confirmed by the XRD spectra (ESI, Figure S1). But two kinds 

of sputtered Co and Pd nanoparticles were active and facile to form alloys with different 

ratios owing to the active metallic property,81 and the interaction between two metallic 

atoms was enhanced compared to the other two Pd-containing catalysts CoPd-ii and 
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CoPd-is. Furthermore, the surface enrichment of sputtering led to the Pd coverage on 

top of active cobalt species. These reasons could produce a possible decrease of the C-C 

chain growth activity on cobalt sites as compared to monometallic Co/H-ZSM5 catalyst. 

 

6.4.2  XPS analysis 

To investigate the metallic state and interaction between Co and Pd, XPS 

measurements were performed and shown in Figure 2. All the catalysts were in situ 

pre-reduced with a H2 flow of 5% under 400C for 5 h in the pretreatment chamber 

before XPS determinations. Due to its metallic property as reported in literatures,79 the 

sputtered CoPd-ss catalyst was pre-calcined in air for comparison with other 

impregnated catalysts before the in situ reduction XPS. For the Co 2p spectra, the peaks 

at around 781.5 and 777.9 eV were generally attributed to the Co(II) and metallic Co(0) 

species, respectively.82,84 All the Pd-promoted catalysts were composed of Co(0) and 

Co(II), however, the ratio of two phases was different. As shown in Table 1, the 

sputtered CoPd-ss showed the highest metallic Co content, higher than other two 

impregnated ones, indicating a more facile reduction behavior on sputtered Co-based 

catalyst. All the Pd introduced Co/H-ZSM5 showed an increased Co(0)/Co(II) ratio as 

compared to the unpromoted Co-i one, which was attributed to the enhanced reduction 

ability due to the hydrogen spillover effect from palladium onto cobalt species. 

For the Pd 3d spectra, the doublet binding energy (BE) peak at 334-335 and 339-340 

eV was ascribed to the metallic Pd(0) species.84,85 The three Pd-promoted ternary 

catalysts showed different binding energy value of metallic Pd, which followed the 

order of CoPd-ii > CoPd-ss > CoPd-is. It was notable that the lowest BE peak of Pd at 

334.1 eV occurred on the CoPd-is one with a hybrid introduction pathway of cobalt and 
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palladium, corresponding to the weakest physical force between Pd and Co/H-ZSM5. 

The co-impregnated catalyst showed the highest one, which was ascribed to the strong 

intermetallic force of Pd-Co and the strong interaction between metals and H-ZSM5 

support. The BE value of metallic Pd on the CoPd-ss one was between the two above, 

indicating that the intensity of interaction was between strong metal-support interaction 

and weak physical force as well. Therefore, we attributed such BE peaks to an alloying 

Pd species, which were easily bonded with the active sputtered Co by a Pd-Co alloying 

force.85 Accordingly, the different palladium binding energy accounted for different 

interactions of three ternary catalysts. 

The comparison of Co/Pd ratio from EDX and XPS on different catalysts is shown in 

Table 1. The latter reflects the surface element composition due to the detection depth in 

nano-scale. The Co/Pd ratio value from XPS on CoPd-ss catalyst is 11.1, close to the 

theoretical value of EDX result. It is known that the physical sputtering is a surface 

enrichment process of deposited metals. All of the deposited metals were uniformly 

dispersed on the surface of H-ZSM5. For the CoPd-is catalyst, the lowest Co/Pd ratio 

among three catalysts was attributed to the surface Pd-sputtering process, in which Pd 

atoms were greatly enriched on the Co/H-ZSM5 support. The various Co/Pd ratios from 

XPS indicated the different nature of three Pd introduction pathways. 

 

6.4.3 H2-TPR analysis 

H2-TPR curves of different prepared catalysts are presented in Figure 3. For the 

impregnated Co-i catalyst, a two-stage H2 consumption at 295 and 385C was assigned 

to a typical reduction of Co3O4 to CoO (Co3O4+H2→3CoO+H2O) and that of CoO to 

the metallic cobalt (CoO+H2→Co0+H2O).21 The tailing H2 consumption signal towards 
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a higher temperature (more than 700C) indicates a strong interaction of metallic Co 

and zeolite support, and this portion of Co species are difficult to reduce. For three 

Pd-containing catalysts, the co-impregnated catalyst revealed three H2 consumption 

peaks at 126, 290 and 770C, respectively. The lowest one was supposed to be due to 

the reduction of cobalt around noble metals,75 while the highest one was assigned to the 

strong interaction between metallic species and H-ZSM5. Clearly, Pd introduction by 

the common impregnated way was not able to efficiently promote the reduction of those 

cobalt oxides which was difficult to be reduced at common temperature (below 400C). 

For the two sputtered Pd-containing catalysts, it is important to point out that the 

absence of H2 consumption at higher than 700C and a clear decrease reduction 

temperature from 770 to 650C are indicative of a weakness of the interaction between 

metals and zeolite. A reason is that highly-dispersed Pd atoms transferred hydrogen 

atoms to cobalt oxide species, promoting the hydrogen dissociation process on surface 

of cobalt clusters nearby. Here, the role of impregnated and sputtered palladium was 

different. The former helped to decrease the reduction temperature of cobalt oxides 

adhered to palladium, and the latter was able to reduce those cobalt species strongly 

bonded with zeolite. In addition, a small negative peak at about 100C was observed on 

the CoPd-is catalyst, demonstrating the reduction of palladium oxide and COPdHx 

decomposition.87 This peak was also observed on the reference Pd-only catalyst, but not 

found on the CoPd-ss one, because of the possible Pd-Co alloy formation on the latter. 

The result was in accordance with XPS analysis. 

The reducibility promotion was further confirmed by the Co reduction degree 

determined by a O2 titration method (Table 2). In contrast to the unpromoted Co-i, a 

more obvious promotion of reduction degree and metal dispersion was observed on the 
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CoPd-is catalyst than on the CoPd-ii, which was also comparable to that of the sputtered 

monometallic or bimetallic catalysts. Besides, the dispersion result from chemisorption 

was in well accordance with HRTEM analysis, further confirming the optimized spatial 

arrangement of Co nano-clusters. The addition of palladium on the sputtered cobalt 

catalyst slightly decreased the metal dispersion, resulting from the Pd-Co alloy 

formation or surface cover of the subsequent Pd sputtering layer. 

 

6.4.4 Acidic sites distribution 

For the consecutive reaction from syngas to isoparaffins, distribution of acidic sites 

on zeolite is also important to fabricate a highly-selective ternary catalyst. NH3-TPD 

curves of different prepared catalysts were illustrated in Figure 4. The ammonia 

desorption at a low temperature of 120-230C was associated with the weakly bonded 

NH3 molecules, and the higher one at about 250-500C was related to the strong 

Brønsted acidic sites.88 It is worth mentioning that the strong acidic sites on three 

impregnated Co catalysts (Co-i, CoPd-ii and CoPd-is) were extended toward a higher 

temperature as compared to raw H-ZSM5. No obvious alternation was observed after Pd 

addition, due to its low loading amount. The estimated total NH3 uptake (listed in Table 

2) indicated that the Pd introduction by the sputtering method could reserve more acidic 

sites and its acidic distribution is closer to that of the raw zeolite than that by 

conventional impregnated way. The possible reason for this result is the different 

interaction between deposited metals and zeolite.78 The strong interaction between 

impregnated metals and zeolite promoted the formation of Al-O-M structure (M = Co or 

Pd), and thus more acidic sites from Al species were covered. But the weakly physical 

force in the sputtered one could expose more Al sites on the support, which was 
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responsible for acidic sites. This was in favour of more isomerization hydrocarbons 

produced in FTS experiment. 

 

6.5 FTS performance: tuning isoparaffin and olefin selectivity by different 

Pd introduction ways 

FTS performance of different prepared catalysts and product distribution are 

presented in Table 3 and Figure 5. Clearly, both of the impregnated and sputtered Pd on 

impregnated Co/H-ZSM5 are able to promote the CO conversion. The Pd sputtered on 

Co/H-ZSM5 catalyst exhibited the most obvious promotion effect on the FTS activity, 

which was ascribed to evolution of metal distribution achieved by the re-dispersion of 

metal particles during sputtering. Whereas for the CoPd-ss catalyst, the CO conversion 

clear decreased due to the surface coverage of Pd atoms on top of Co species and the 

Pd-Co nanoalloys formation. 

For the product distribution, the co-impregnated CoPd-ii slightly enhanced the 

isoparaffin selectivity and lowered the olefin selectivity, owing to the hydrogenation on 

Pd promoter. In contrast, the olefin to n-paraffin ratio on the CoPd-is catalyst was 

clearly decreased to 0.07 from 0.81 on the unpromoted Co-i, demonstrating that the 

sputtered Pd on Co/H-ZSM5 almost converted all unsaturated hydrocarbons to saturated 

branced and normal paraffins. The hydrogenation role was promoted more effectively 

on the sputtered Pd catalyst rather than on the impregnated one. More reserved acidic 

sites on the CoPd-ss and Co-s catalyst were responsible for the highest iso- to n-paraffin 

ratio. However, the enhanced CH4 and C2-4 selectivity as well as decreased C5-11 and 

C12+ selectivity were found on the CoPd-ss catalyst as compared to the unpromoted 

Co-s one, suggesting a suppression of the chain growing FTS reaction and excessive 

conduction of the hydrogenation process on the Pd-covered Co species. The result was 
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probably ascribed to surface coverage of Pd atoms and enhanced interaction between 

Pd-Co nanoalloys. The arrangement of Pd and Co clusters on CoPd-ss is different from 

that on the CoPd-is, where the cobalt clusters of CoPd-is were dispersed both on surface 

and in bulk of the acidic zeolite. The contact between surface enriched Pd and 

re-dispersed Co was suitable in the consecutive chain growth reaction and 

hydrogenation process, as in CoPd-is. 

The unsaturated alkenes produced from FTS reaction and hydrocracking can arrive at 

the well-dispersed palladium sites as a hydrogenation center nearby, achieving a 

highly-effective tandem reaction including a FTS reaction, isomerization, hydrocracking 

and hydrogenation process in one well-designed ternary catalyst (Scheme 2). The yield 

of isoparaffin on the CoPd-is catalyst reached the highest value of 30.1% among all the 

five catalysts in consideration of both activity and selectivity. Therefore, in this study, 

the hybrid introduction of sputtered Pd and impregnated Co on H-ZSM5 is the best way 

to produce isoparaffins efficiently from syngas. 

 

6.6   Conclusions 

Zeolite supported Pd and Co clusters were successfully deposited by three combined 

methods, including the impregnation-only, sputtering-only and novel hybrid process. 

For the impregnation-only CoPd-ii catalyst, large particles of Co/Pd were randomly 

distributed and a slight promotion of Co dispersion and reduction degree were observed, 

resulting in mere promotion of activity and saturated iso- or n-paraffin selectivity in the 

FTS reaction; For the sputtering-only CoPd-ss, surface enriched Pd covered and 

occupied partial surface of sputtered Co sites, combining Co nanoparticles with an alloy 

force. The chain growth reactions were suppressed by the hydrogenation role on Pd sites. 
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For the hybrid CoPd-is achieved by Co impregnation and Pd sputtering on H-ZSM5, the 

re-dispersion of impregnated Co during Pd sputtering contributed to a striking 

promotion of dispersion, producing suitable contact between Co and Pd. The 

hydrogenation role was optimized and the highest yield of isoparaffin was realized on 

such hybrid ternary catalyst by suppressing olefin production. The novel hybrid route of 

bimetallic introduction extended the application of sputtering method and provided an 

efficient strategy in utilizing trace noble metals for promoting production of 

gasoline-ranged hydrocarbons. 
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Schemes and Figures 

 

 

 

 

 

Scheme. 1 Schematic representation of the sputtering apparatus. 
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Scheme. 2 Schematic representation of the catalysis process on the ternary 

Pd-Co/H-ZSM5 catalyst. 
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Table. 1 The ratio of Co/Pd and Co(0)/Co(II) on different Pd-promoted catalysts 

Catalyst 
Co/Pd (weight ratio)  Co(0)/Co(II) 

from XPS EDX XPS 

Co-i — — 0.27 

CoPd-ii 12.0 8.9    0.40 

CoPd-is 12.0 5.4 0.41 

CoPd-ss 12.0 11.1 1.12 
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Table. 2 Properties of the prepared catalysts 

 

Catalyst DCo
a
 % RCo

b % 
NH3 uptakec 

/mmol·g-1 

d (Co0)d  

/nm 

d (TEM)  

/nm 

Co-i 5.3 45.3 2.10 18.1 19.5 

CoPd-ii 8.8 51.1 1.80 10.9 16.7 

CoPd-is 15.4 66.9 1.90 6.2 6.3 

CoPd-ss 14.1 75.2 2.20 6.8 3.9 

Co-s 17.2 70.1 2.20 5.6 3.8 
a Dispersion of Co: calculated from H2 chemisorption results. 
b Reducibility of Co: calculated from H2-O2 titration by BELCAT equipment. 
c Measured by NH3-TPD curves. 
d d (Co0): Co0 particle size calculated from d= 96/DCo%. 
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Table. 3 FTS performance of different prepared catalysts 

Catalyst CO Conv. a % 
Selectivity (C-mol %) 

Ciso/Cn
b Cole/Cn

c Yiso %
d 

CH4 C2-4 C5-11 C12+ 

Co-i 53.4 22.9 18.0 55.1 4.0 0.93 0.81 11.1 

CoPd-ii 64.1 25.0 20.2 52.0 2.8 1.39 0.34 18.6 

CoPd-is 80.1 20.6 22.1 55.1 2.2 1.51 0.07 30.1 

CoPd-ss 46.7 22.7 27.9 46.5 2.9 1.60 0.02 16.9 

Co-s 63.0 15.6 10.4 66.3 7.7 2.14 0.63 27.3 
a Obtained by the stable status. Reaction conditions: 260C, 1.0 MPa, and 

Wcatalyst/F = 10 g·h·mol-1. 
b Ciso/Cn is the molar ratio of all isoparaffins to all normal paraffins with 

n>3. 
c Cole/Cn is the molar ratio of olefin to all normal paraffins with n>1. 
d Yiso stands for the yield of isoparaffin (Yiso=conversion  isoparaffin 

selectivity). 
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Figure. 1 HRTEM images: a) Co-i; b) CoPd-ii; c) CoPd-is; d) CoPd-ss; e) Co-s, b1-d1) 

the fast Fourier transforms (FFT) images of selected area on b-d, a2-d2) particle size 

distributions (PSD) obtained from TEM a-d. 
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Figure. 2 XPS spectra of Co 2p and Pd 3d level of various Co/Pd catalysts 
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Figure. 3 H2-TPR curves of different prepared catalysts. 
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Figure. 4 NH3-TPD curves of different prepared catalysts. 
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Figure. 5 FTS Product distributions of prepared catalysts. 
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Chapter 7         Conclusion 
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In this doctoral dissertation, Biomass derived 5-hydroxymethylfurfural (HMF), 

cellulose, cellubiose and bio synthesis gas have been emerged as important platform 

chemicals for the production of fine chemicals and sustainable fuels. 

 

Furan derivatives, such as 5-hydroxymethyl-2-furaldehyde (HMF) derived from 

renewable biomass resource, has the potential to be served as substitutes for the 

petroleum-based building blocks which are currently used in the production of polymers 

and fine chemicals. In Section 1 (Chapter 1), reduced graphene oxide (RGO) is one of 

the most promising catalyst supports since its faintly acidic sites together with large 

amount of functional groups on its surface.  In this section, it has been proved that, and 

for the first time, Pt loaded RGO (Pt/RGO) is an efficient, robust and durable catalyst 

oxidizing 5-hydroxymethylfufural (HMF) to 2,5-furandicarboxylic acid (FDCA) 

directly under mild conditions. The selectivity of FDCA is up to 84% along with 100% 

HMF conversion in the presence of excess base. We deduce that the total reaction on 

Pt/RGO catalyst includes several consecutive steps, in which 

5-hydroxymethyl-2-furancarboxylic acid (HMFCA) acts as an intermediate.  The 

finding in this section is a significant advance not only for RGO-based catalysts 

development, but also for FDCA scalable production, because the total reaction is 

performed smoothly without using previously reported harsh reaction conditions. 

 

Furthermore, Cellulose, which is a polysaccharide mainly composed of glucose via 

β-1-4 glycosidic linkage, exists widely in biomass resources. The utilization of cellulose 

is usually achieved through two steps: being hydrolyzed selectively into glucose and 
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further converted into chemicals and fuels. The sugar alcohols, especially sorbitol, are 

not only used as sweetener in diet foods, but also as an important basic chemical for the 

production of sustainable chemicals and fuels. In Section 2 (chapter 2-5), Pt 

nanocatalysts loaded on reduced graphene oxide (Pt/RGO) are prepared using a 

convenient microwave-assisted reduction approach with ethylene glycol as reductant. 

The conversion of cellulose or cellobiose into sorbitol is used as application reaction to 

investigate their catalytic performance. Various metal nanocatalysts loaded on RGO are 

compared. Pt/RGO exhibits the highest catalytic activity with 91.5% of sorbitol yield 

from cellobiose. The catalytic performances are compared with Pt nanocatalysts 

supported on different carbon materials or on silica support. The result shows that RGO 

is the best catalyst support, and the yield of sorbitol is as high as 91.5% from cellobiose 

and 58.9% from cellulose, respectively. The improvement of catalytic activity is 

attributed to the appropriate Pt particle size and hydrogen spillover effect of Pt/RGO 

catalyst. Interestingly, the size and dispersion of supported Pt particle are easily 

regulated by convenient adjustment of the microwave heating temperature. The catalytic 

performance is found increased firstly and then decreased with the particle size 

increased. The optimum Pt particle size is 3.6 nm. These results may offer useful 

guidelines to design novel catalysts with beneficial catalytic performance for biomass 

conversion. 

 

Conversion of synthesis gas (a mixture of CO and H2), which is derived from 

biomass, is a hot field in hydrocarbon production. Fischer-Tropsch synthesis is a set of 

catalytic processes that can be used to produce chemicals and fuels from synthesis gas. 

Combining a acidic zeolite with common FTS catalyst can produce isoparaffins for 
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gasoline-ranged component. Tuning hydrocarbons distribution in Fischer-Tropsch 

synthesis is greatly challenging in Section 3 (chapter 6) by employing three different 

pathways to deposit trace Palladium on Co/H-ZSM5 catalyst, tunable isoparaffin and 

olefin selectivity is achieved successfully. The impregnated Pd shows a poor promotion 

of Co dispersion and reducibility, producing a slight enhancement of FTS activity and 

isoparaffin selectivity. Pd sputtering induces a re-dispersion of impregnated 

Co/H-ZSM5 particles and Pd is deposited with an intimate distance to Co species and 

with a weak interaction combining zeolite, due to which complete hydrogenation of 

olefins is achieved. But the surface enriched Pd on pre-sputtered Co catalyst was can 

form Pd-Co nano-alloys, suppressing the chain growth activity by excessive 

hydrogenation process. 
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