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Abstract 

All along, many scientists, one after another, in order to clarify the functions of the 

human brain to make a lot of effort. From the appearance of neural networks to the 

study of brain waves, the exploration of the brain has not stopped. With the develop-

ment of science and technology, more and more new technologies are being used on 

the research of brain. Research in this area has attracted more and more attention. In 

order to understand the process of brain, the principle of the complex neural systems, 

many researchers will shift attention to the neurons, the basic building blocks of the 

nervous system. Breast cancer is a preponderant disease in the world, and it is one of 

the most major death causes of women. In order to predict the cancer in women, re-

cent years, artificial intelligent (AI) has been widely used in the scopes. This thesis 

deals with the application of a novel a neuron model based on dendritic mechanism 

for classifying breast cancer on Wisconsin breast cancer database (WBCD). As its 

name suggests, the dendrites mechanism is the main computation of the neuron model. 

The model neuron is composed of a set of independent branches and a soma. Instead 

of being weighted simply, the inputs of the neuron model are processed nonlinearly 

rather than being weighted simply to realize excitatory synapse, inhibitory synapse, 

constant-1 synapse or constant-0 synapse. The signal of each branch is weighted and 

performed due to the input. The Soma receives the signals transmitted from the 

branches to produce the output. The performance of the neuron model based on den-

dritic mechanism is compared with the classic back propagation neural networks 

(BPNNs). Simulation results indicate that the neuron model based on dendritic mech-

anism holding superior capability at the accuracy, convergence speed, stability and 

AUC. In addition, it is worth of note, through learning, an arbitrarily dendrite of neu-

rons with different initial synapses can develop an internal structure which depends on 

the location of synapses in the branch, and the type of synapse. Furthermore, in this 

simulation, the developed structure may suggest some inspirations to the detection of 

breast cancer. In addition, owing to non-decrease on classification accuracy after 



３ 
 

eliminating the useless branches of the neuron model, the computation load can be 

released. In this thesis, the trading data from January 2004 to October 2014 in the 

Shanghai stock market is selected to verify the overreaction on Shanghai stock market. 

And, the overreaction from 2007 is found to turn to weaken with the time going by 

and the influence of the overreaction turn to disappear from 2011. Moreover, the neu-

ron model based on dendritic mechanism, for the first time, is also proposed to fit and 

predict the changes about abnormal returns of ill-performed and well-performed 

stocks in test period. The result shows that the neuron model possesses high computa-

tional ability and successes to predict the tendency of overreaction. 

key words: Neuron Model with Dendritic Nonlinearity（NMDN）, Wisconsin breast 

cancer database (WBCD), back propagation neural networks(BPNNs), dendrites 

mechanisms, overreaction, stock market 
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What is life? What is the mean of “Man Alive”? How brain thinks? Countless ques-

tions emerge in the human mind. The Chinese view of man also arrived at the idea 

that man is the “Lord of the Creation” unlike other species, because the brain of hu-

man is extremely complex, since it is the crystallization of evolution by millions of 

years. In the past 600 million years, the organisms have evaluated into a large number 

of neurons linked to each other by the formation of the neural network to solve the 

problems that how the human brains handle a variety of complex information in a 

complex and changing environment. Especially, highly developed human cognitive 

capacity results that human become “Lord of the Creation” to dominate the world. 

Recent years, all the countries have invested a lot of resources for specialized research. 

For example, the United States has sponsored the plan of “ten years of the brains”; 

European has determined the “two decades of brain research program”, Japan has also 

named the 21st century as the “brain science century”. The brain science research 

booms worldwide. Scientists have proposed the three goals, “Understanding the brain, 

protecting the brain and create brain”. It is believed that the brain science research 

will help human beings to understand themselves, protect themselves, prevent from 

brain diseases and treat them, and even advance the development of the brain and 

other aspects of the potential to make a significant contribution. Facing the 21st cen-

tury science, “Understanding the brain, recognize their own” is the biggest challenge. 
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1.1 Brain 

Brain, with the aim of perceiving outside environment by advanced information pro-

cessing ability of itself, can abstract the characteristics from the information of outside 

and judge the result which is generated by the abstraction through being accepted and 

inputted the sound, lights, etc. from outside. So, it’s very important for the application 

of the engineering and the comprehension of the brain that the research of information 

processing in brain. However, it’s very difficult to realize all the functions of the brain 

by the artificial neural network. As a result, most functions of the brain are unknown 

to us [1]. 

Research also found that the weighs of an adult brain is about 3.3 pounds, the vol-

ume is 1.5 liters, and there is one hundred billion nerve cells, as well as more than 

1014 synapses in it [2]. The structure and functions of brain in vivo are the most com-

plex organization, can accept external signals resulting in the feeling, the formation of 

consciousness, logical thinking and can issue a directive to produce behavior head-

quarters, which is in charge of the daily human language, thought, feeling, emotion, 

movement and other senior activities. The human brain is extremely delicate and a 

perfect information processing system. Because of the structure and functions of the 

human brain are extremely complex, it will be possible to reveal its mysteries by re-

searching and integrating molecular, cellular, systems and behavior. 
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1.2 Neural network and Neurons 

An ANN is an information processing system that roughly replicates the behavior of a 

human brain by emulating the operations and connectivity of biological neurons [3]. 

Most of the artificial neural network can change the internal structure on the basis of 

outside information. Modern neural network is a nonlinear statistical data modeling 

tool used to model complex relationships between inputs and outputs, or to explore 

the data model. ANNs possess a variety of alternative features such as massive paral-

lelism, distributed representation and computation, generalization ability, adaptability 

and inherent contextual information processing [4-11]. In the fields of clinical medi-

cine and biomedical engineering, ANNs have been used to solve complex and chaotic 

problems without the need of mathematical models and a precise understanding of the 

mechanisms involved [12-18].  

However, the backbone of many artificial neuronal networks is the starting from the 

original work of McCullough & Pitts (1943) to the present day. The node of neural 

network, also called neuron, is the tradition neuron model, McCulloch-Pitts Model, 

which is widely used in the traditional neural networks to solve many complicated 

problems by incorporation into the multilayer networks and whose structure is too 

simple to solve the Exclusive OR problem alone. Hence, McCulloch-Pitts Model is 

unable to reflect the real importance of neurons in the nervous system.  

Recently, more detailed characteristics appear in the detailed analysis of the nerve 

cells. A certain ions exist in the receptor of dendrites, and when the ions enter the re-

ceptors whose potential changes. The responses of receptors determine are based en-

tirely on the synapses which are excitation or inhibition. Furthermore, it has also been 

shown that inhibition of nonlinear interactions is located among synapses [19, 20]. 

In 2013, Spencer L. Smith et al. succeeded in making incredibly challenging elec-

trical and optical recordings directly from the tiny dendrites of neurons in the intact 

brain while the brain was processing visual information by examining neurons in are-

as of the mouse brain which are responsible for processing visual input from the eyes. 
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The experiment result shows that the local information processing is realized in den-

drites [21]. The result challenges the widely held view that the computation is 

achieved only by large numbers of neurons working together, and also demonstrates 

that the basic components of the brain possess an exceptionally powerful computation. 

In other words, dendrites act as small-scale computing devices for detecting and am-

plifying specific types of input. This new property of dendrites adds an important new 

explanation to the computation in the brain.  

In 2000, Tang et al. proposed a neuron model based on dendritic mechanisms [22]. 

In this model, in order to reflect the physiological morphology and the functions of 

nerve cells, the logical AND (owing to the soft-minimum function) are used to realize 

the switch function and the logical OR (owing to the Soft-maximum function) are 

used to deal with when there are two or more inputs and there are switch in parallel. 

Furthermore, a logical NOT (owing to the sigmoid function) is also required when a 

signal is transmitted in the dendrites. Thus, a nonlinear interaction belonging to the 

dendrites can be expressed by logic operation AND, OR and NOT. Moreover, the 

neuron model can heighten and fix the practical dendrites and synapses, filter out the 

worthless ones by training to form a mature dendrites shape and preserve the worth 

synapse [23]. However, owing to the logic operation, there is a key limitation of this 

neuron model is that it can only solve the problem of the binary value smoothly. In 

order to generalize the computation of neuron model into a continuum of values be-

tween 1 and 0, Tang et al. have proposed to use the multiplication and addition to re-

place the logical AND and OR, respectively.  
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1.3 Outline of this thesis 

In this thesis, a neuron model based on dendritic mechanisms, for the first time, is 

proposed for solving two real world problems, classifying the breast cancer lesions as 

benign or malignant on the WBCD database and predicting the trends of overreaction 

in Shanghai stock market.  

In chapter1, the functions, features and the relationship of brain, neural networks 

and neurons are introduced. In chapter 2, two types of neuron model are described in 

detail. They are McCulloch-Pitts Model and Koch-Poggio-Torre model. In chapter 3, 

a very detailed description of the new neuron model which is called Neuron Model 

with Dendritic Mechanism and can be also called Neuron Model with Dendritic Non-

linearity (NMDN) is carried out. In chapter 4, NMDN is used for the detection of 

breast cancer and compared to traditional back-propogation neural networks (BPNNs) 

for the first time. In chapter 5, NMDN is also for the first time to be proposed to pre-

dict the change trends of the overreaction on Shanghai stock market on the basis of 

the trading data from January 2004 to October 2014. In chapter 6, it is the conclusion 

of the results of two applications on classification and prediction to prove that a single 

neuron has a very superior computing power. 
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The brain is a large-scale information processing system that consists of 1011 neurons 

with perhaps 1015 interconnections between them [24]. Moreover, there are no new 

neurons being formed after one-year old human, but neurons will be lost at a rate of 

roughly 200,000 per day (a net loss of 2 to 5% by age 50). The brain weight is 

achieved maximally at about age 21. A neuron can connect with more than 1,000 oth-

er neurons. Aside from neurons, the other important brain cells are the glia, which are 

more numerous than neurons (a human brain may contain a trillion glial cells). The 

portion of brain cells which are glia are 25% in the fruit fly, 65% in the mouse, 90% 

in the human, and 97% in the elephant. The four types of brain glia cells are: 

(1) astrocytes, (2) oligodendrocytes, (3) microglia, and (4) ependymal cells [24, 25]. 

Furthermore, although the shape and size of neurons are different, the structure of the 

neurons is unique, which consists of three portions, cell body, dendrite and axon. The 

incoming signal from other neurons or sensors received by the dendrite is computed at 

the synapse and transmitted to the cell boy. When the input into the cell body exceeds 

the holding threshold, the neuron will fire, and the signal be transmitted to other neu-

rons through axon. 
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2.1 Neuron 

A neuron, also known as nerve cell, is the functioning unit of the nervous system, 

which includes the brain, spinal cord, which together comprise the central nervous 

system (CNS), and the ganglia of the peripheral nervous system (PNS); specialized to 

receive, integrate, and transmit information (Fig.2-1) [24]. 

A typical neuron possesses a cell body (soma), dendrites, and an axon (Fig.2-2). 

Dendrites arise from the cell body, often extending for hundreds of micrometres and 

branching multiple times, giving rise to a complex “dendritic tree”. “An axon is a 

special cellular extension arising from the cell body at a site called the axon hill-

ock and travels for a distance, as far as 1 meter in humans or even more in other spe-

cies [26].” The cell body of a neuron frequently generates multiple dendrites, but nev-

er to more than one axon, although the axon may branch hundreds of times before 

terminating. At the majority of synapses, signals are sent from the axon of one neuron 

to a dendrite of another.  

Neuron is also a kind of electrically excitable cell processing and transmitting in-

formation through electrical and chemical signals (Fig.2-3). The signals among neu-

rons occur through synapses, specialized connections with other cells. “Specialized 

types of neurons include: sensory neurons which respond to touch, sound, light and all 

other stimuli affecting the cells of the sensory organs that then send signals to the spi-

nal cord and brain, motor neurons that receive signals from the brain and spinal cord 

to cause muscle contractions and affect glandular outputs, and interneurons which 

connect neurons to other neurons within the same region of the brain, or spinal cord in 

neural networks [26].” 

“All neurons are electrically excitable, maintaining voltage gradients across their 

membranes by means of metabolically driven ion pumps, which combine with ion 

channels embedded in the membrane to generate intracellular-versus-extracellular 

concentration differences of ions such as sodium, potassium, chloride, and calcium 

[26].”The potential changes in the cross-membrane can change the function of volt-
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age-dependent ion channels. If the potential changes by a large enough amount, an 

action potential is generated. The action potential travels rapidly through the cell's 

axon, and can activate synaptic connections with other cells on its arrival. 

In addition, the cell division does not appear among neurons. In most cases, mere 

some special types of stem cells can turn into neurons. However, a type of glial cell, is 

called astrocytes, has also been observed to turn into neurons by virtue of the stem 

cell. In humans, the neurogenesis almost ceases during adulthood, however, in two 

brain areas, the hippocampus and olfactory bulb, there is strong evidence for genera-

tion of substantial numbers of new neurons [27]. 

  Moreover, during the past few years, there has been an explosion of interest in den-

drites, driven by the progressed powerful new imaging and recording techniques. 

There is more and more evidence disclosing that dendrites substantially enhance the 

neuron’s computational power by introducing nonlinear interactions between synapses 

and subcompartments of the cell [28]. In other words, “additional linear and nonlinear 

mechanisms in the dendritic tree are likely to serve as computational building blocks, 

which combined together playing a key role in the overall computation performed by 

the neuron. [29]” 
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2.2 McCulloch-Pitts Model 

An artificial neuron is a mathematical function conceived as a model of biological 

neurons. Artificial neurons are the constitutive units in an artificial neural network.  

In 1943, McCulloch and Pitts first proposed a simple neuron model (Fig. 2-4), also 

called McCulloch-Pitts Model, where the dendrites and synapses are independents and 

there are no effects on them of each other, besides their functions are as mere weight 

and transmission, and the cell body is treated as the main calculation unit. The 

McCulloch-Pitts Model receives one or more inputs (representing dendrites) and sums 

them to produce an output (representing a neuron’s axon). The sums of each node are 

weighted, and the sum is passed via a nonlinear function known as an activation func-

tion or transfer function [30]. The transfer functions usually have a sigmoid shape 

(Fig. 2-5). In addition, the standard transfer functions is given by 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
1

1 + 𝑒𝑒∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖−𝜃𝜃                           (1) 

where 𝑤𝑤𝑖𝑖  and 𝜃𝜃 are the weights and threshold respectively, and 𝑥𝑥𝑖𝑖 is the input. 

Moreover, Minsky and Papert have shown that some rather elementary computa-

tions could not be done by one-layer of McCulloch-Pitts cells [31]. Since the compu-

tation of dendrites is not considered into this model, the morphology of neurons is the 

same. 
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2. 3 The Koch-Poggio-Torre model 

As mentioned before, the dendrites play a key role in the overall computation of 

neurons. Synaptic inhibition may veto an excitatory signal which depends on the loca-

tion and the strength which is from the inhibitory conductance, hence the passive in-

tegration of incoming signals the branching pattern and morphology of the dendritic 

tree are very important (i.e. no local response or dendritic spike occurs) [29]. Koch, 

Poggio and Torre studied the interpretation of dendritic architecture which is about the 

processing function of cells and analyzed the interaction of excitatory synaptic input 

with steady-state shunting inhibitory input in α, β, γ and δ retinal ganglion cells 

through the cable theory [20]. They have found that nonlinear synaptic interactions 

are maximal for γ and β cells and relatively weaker for α and β cells, besides, the re-

sults instruct δ-like cells strongly as the morphological substratum for directional se-

lectivity in the retina. They also have shown that the logic operations can be connect-

ed with the less formal notions of computation used by physiologists to design a mod-

el of a retinal ganglion neuron owing a directional selectivity to moving visual inputs. 

In Fig. 2-6, it shows δ-cell dendrite with excitatory inputs (●) and inhibitory inputs 

of the shunting type (▄), and its highly branched pattern in terms of logical operations. 

Because any inhibitory cannot reject only more distal excitations and influence other 

inputs more proximal to the soma, the activity would be reasonably of the type. The 

logical relations can be given by 
(𝑒𝑒1AND NOT 𝑖𝑖1)OR(𝑒𝑒2AND NOT 𝑖𝑖2)OR 
{[(𝑒𝑒3AND NOT 𝑖𝑖3)OR(𝑒𝑒4AND NOT 𝑖𝑖4) 

OR(𝑒𝑒5AND NOT 𝑖𝑖5)OR(𝑒𝑒6AND NOT 𝑖𝑖6)] AND NOT 𝑖𝑖7} 

Moreover, Koch et al. have considered the main problem is the addressing of the 

correct synapses to the correct synapses to the correct dendrite. And recent research 

has identified hundreds of neurons, each of which holds a unique shape of dendritic 

tree. A slight morphological difference would result in great functional variation. 

Type-specific dendrite morphology has important functional implications in deter-

mining which signals a neuron receives and how these signals are integrated [32]. 

http://www.iciba.com/sympathize
http://www.iciba.com/influence
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However, there is no clear definition that the dendritic computation can itself provide 

a constraint for targeting of synaptic inputs at the appropriate locations [29, 33, 34]. 

And, in the early stages, redundant synapses and dendrites are found in the nervous 

system, and the unnecessary ones are soon filtered out and the necessary ones are 

strengthened and fixed, then form the ripened neural network function [35]. The 

morphologies of dendrites in these neurons remain unclear and there is no effective 

method to discover them. Manual analysis of neuronal morphology is time-consuming, 

labor-intensive, and subject to human error and bias [36]. 

Figure caption 
Fig. 2-1 The location of neuron [37]. 
Fig. 2-2 The Structure of the Neuron [38]. 
Fig. 2-3 The transmission of signals among neurons [39]. 
Fig. 2-4 McCulloch-Pitts Model 
Fig. 2-5 Sigmoid shape. 
Fig. 2-6 Example of δ-cell dendrite with its highly branched pattern in terms of logi-
cal operations form 

 

 

 
Fig. 2-1 The location of neuron [37]. 
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Fig. 2-2 The Structure of the Neuron [38]. 

 

 

 

Fig. 2-3 The transmission of signals among neurons [39]. 
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Fig. 2-4 McCulloch-Pitts Model. 

 

 

 
Fig. 2-5 Sigmoid shape. 
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Fig. 2-6 Example of δ-cell dendrite with its highly branched pattern in term in 

terms of logical operations. 
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In 2000, Tang et al. proposed a neuron model based on dendritic mechanisms from the 

conventional Koch-Poggio-Torre model [22]. This model realizes the interaction 

among synapses and the dendrites and the elimination and generation of synapses to 

form a ripened dendrites structure holding a special function. In this model, in order to 

reflect the physiological morphology and the functions of nerve cells, the logical AND 

(owing to the soft-minimum function) is used to realize the switch function and the 

logical OR (owing to the Soft-maximum function) is used to deal with when there are 

two or more inputs and there are switch in parallel. Furthermore, a logical NOT (ow-

ing to the sigmoid function of synapse) is also required when a signal is transmitted in 

the dendrites. Thus, a nonlinear interaction belonging to the dendrites can be ex-

pressed by logic operation AND, OR and NOT [22]. In order not to lose generality, a 

assumption is used that there are nonlinear interactions among all inputs, thus all in-

puts will connected to all branches initially, and the ripened number of the dendritic 

branches, the location and the type of synapses on the dendritic branches are all un-

known and will be synthesized through learning. This neuron model is successfully 

trained to learn the directionally selective problem and the depth rotation problem 

[40-45]. However, owing to the logic operation, there is a key limitation of this neu-

ron model which it can only solve the problem of the binary value smoothly. In order 

to generalize the computation of neuron model into a continuum of values between 1 

and 0, Tang et al. have developed a neuron model with denritic nonlinearity (NMDN) 

to use the simple multiplication and summation to replace the logical AND and OR 

function in the neuron model based on dendritic mechanisms, respectively [23]. Not 

only does the NMDN keep all the function of the original, but also promotes the con-

vergence rate and accuracy. 
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3.1 Model 

As shown in Fig. 3-1, NMDN possesses dendritic structure, interaction among 

synapses and is generalized as following: 

1. The arbitrary decision can be used to initialize dendrites. 

2. There is an interaction among all synapses on the same branch 

3. The nonlinear interaction produced in a dendrite can be expressed by a logical 

network. 

4. The ripened number of the dendritic branches, the location and the type of 

synapses on the dendritic branches will be synthesized through learning. 

  In Fig. 3-1, dendritic branches receive signals at the synapses (▲) and perform a 

simple multiplication on their own signals respectively. At the junction of branches, 

the outputs of the branches are summed up and conducted to the cell body (soma). 

When the input of the soma exceeds the threshold, the cell fires to send signal down to 

the other neurons through axon. 

Synaptic Function: The synaptic Function is described by sigmoid function. And 

the output of the synapse whose address is from i-th (i=1, 2,…, n) input to j-th (j=1, 

2,…, m) branch is given by 

𝑌𝑌𝑖𝑖𝑖𝑖 =
1

1 + 𝑒𝑒−𝑘𝑘(𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖−𝜃𝜃𝑖𝑖𝑖𝑖)                                                      (2) 

where 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖 are the connection parameters, and k is a positive constant. If k be-

comes larger, the sigmoid function will turned to be similar with step function. 

Due to the values of 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖, four kinds of synaptic connections can be defined 

as following (Fig.3-2):  

1. 0-constant connection (○0E

A) (either 0 < 𝑤𝑤𝑖𝑖𝑖𝑖 < 𝜃𝜃𝑖𝑖𝑖𝑖 or 𝑤𝑤𝑖𝑖𝑖𝑖 < 0 < 𝜃𝜃𝑖𝑖𝑖𝑖): No mat-

ters how the input changes from 0 to 1, the output is always 0. 
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2. 1-constant connection (①) (either 𝜃𝜃𝑖𝑖𝑖𝑖 < 0 < 𝑤𝑤𝑖𝑖𝑖𝑖 or  𝜃𝜃𝑖𝑖𝑖𝑖 < 𝑤𝑤𝑖𝑖𝑖𝑖 < 0): No matter 

how the input changes from 0 to 1, the output is always 1. 

3. Excitatory synapse (●) (0 < 𝜃𝜃𝑖𝑖𝑖𝑖 < 𝑤𝑤𝑖𝑖𝑖𝑖): No matter how the input changes from 

0 to 1, the output equals the input. 

4. Inhibitory synapse (▄) (𝑤𝑤𝑖𝑖𝑖𝑖 < 𝜃𝜃𝑖𝑖𝑖𝑖 < 0): No matter how the input changes from 

0 to 1, the output reverses the input. 

The excitatory and inhibitory synapses are real connection states in neurons. How-

ever, not all inhibitory synapses and excitatory synapses will exist necessarily in the 

same branch of an actual dendrite. Therefore, an input is assumed to be initially con-

nected to all branches, but some inputs may not be connected to some branches in 

truth. For 1-constant connection, it has no influence on the output of multiplication. 

For 0-constant connection, since the output of the branch is always 0, there is no in-

fluence on the summation. In other words, it is equivalent that there is no branch ex-

isting. As the values of 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖 change, the synaptic connections will emerge 

the appropriate changes. 

Multiplication Function: Multiplication Function, as is implied by the name, per-

forms a simple multiplication on various synaptic connections of the branch. The 

output of j-th branch is given by 

𝑍𝑍𝑖𝑖 = � 𝑌𝑌𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                                                                (3) 

Summation Function: As mentioned above, the summation on signals sent from 

the branches is approximated by the following 

𝑉𝑉 = � 𝑧𝑧𝑖𝑖

𝑚𝑚

𝑖𝑖=1

                                                                   (4) 

Soma: The function of soma can be described as sigmoid operation by following 

𝑂𝑂 =
1

1 + 𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘𝑚𝑚𝑘𝑘(𝑉𝑉−𝛾𝛾)                                                            (5) 
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where the 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is taken as a positive constant, and the γ is taken as a threshold of 

0.5. 
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3.2 Learning 

Because the functions of NMDN are all differential, thus, the error back-propagation 

learning rule, supervised learning procedure, is used to the learning procedure. During 

the learning, the own output vector being produced by the input vector is compared 

with the target vector. The learning is aimed to reduce the difference of output vector 

and target vector by modifying 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖. Finally, the synapses will converge to their 

own one of four synaptic connections. 

The error between the target vector and the output vector can be expressed by fol-

lowing 

𝐸𝐸 = 1
2

(𝑇𝑇 − 𝑂𝑂)2                                                           (6)                     

where the T is taken as the target, and the O is taken as the output.  

In NMDN, modifications are made only to the connection parameters 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖  

of the connection function during learning. During the learning procedure, these pa-

rameters are corrected to decrease the error. If the gradient descent learning method is 

used to decreasing the value of E, the connection parameters should be corrected as 

shown in the following formulas: 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂) = −𝜂𝜂
𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
                                                 (7) 

∆𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂) = −𝜂𝜂
𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
                                                  (8) 

where η called the learning constant is a positive constant. In this thesis, the η is 0.01. 

𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂)                                 (9) 

𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂 + 1) = 𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂) + ∆𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂)                                (10) 

where 𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂 + 1) and 𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂 + 1) are the following values of 𝑤𝑤𝑖𝑖𝑖𝑖  and 𝜃𝜃𝑖𝑖𝑖𝑖  after 

modified, and 𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂) and 𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂) are their current value. Thus, the partial differen-

tials of E with respect to 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖 can be computed respectively as: 
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𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑂𝑂

∙
𝜕𝜕𝑂𝑂
𝜕𝜕𝑉𝑉

∙
𝜕𝜕𝑉𝑉
𝜕𝜕𝑧𝑧𝑖𝑖

∙
𝜕𝜕𝑧𝑧𝑖𝑖

𝜕𝜕𝑌𝑌𝑖𝑖𝑖𝑖
∙

𝜕𝜕𝑌𝑌𝑖𝑖𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
                                    (11) 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝑂𝑂

∙
𝜕𝜕𝑂𝑂
𝜕𝜕𝑉𝑉

∙
𝜕𝜕𝑉𝑉
𝜕𝜕𝑧𝑧𝑖𝑖

∙
𝜕𝜕𝑧𝑧𝑖𝑖

𝜕𝜕𝑌𝑌𝑖𝑖𝑖𝑖
∙

𝜕𝜕𝑌𝑌𝑖𝑖𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
                                      (12) 

In addition, the momentum and variable learning rate are also introduced into 

NMDN. The method of momentum optimization involves adding a term to the 

weight and threshold adjustment. The term is proportional to the amount of the pre-

vious weight and threshold changes. The momentum optimization can be represented 

as: 

∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂) = −𝜂𝜂
𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
+ α∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑂𝑂 − 1)                                                (13) 

∆𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂) = −𝜂𝜂
𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
+ α∆𝜃𝜃𝑖𝑖𝑖𝑖(𝑂𝑂 − 1)                                                 (14) 

where α is a positive constant. In this thesis, it is 0.1. If the weights and threshold 

are to be changed in the same direction as in the previous step, the rate of changes is 

increased. Alternatively, if the change in the current step is not in the same direction 

as that in the previous step, the rate of change is decreased. 

  In order to accelerate the convergence rate, the method of variable learning rate op-

timization is introduced. In the gradient ascent algorithm presented above, the steps 

taken in the direction of the gradient are constant. The variable learning rate can be 

generalized as: 

 If the mean error over the entire training set has decreased, the learning rate need 

to be increased by multiplying a constant (In this thesis, it is 1.1.).  

 If the mean error has increased more than some threshold (In this thesis, it is 1%), 

the learning rate need to be decreased by multiplying a constant (In this thesis, the 

value is 0.9). 

 If the error is increased less than the threshold, the learning rate remains un-

changed.  
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Figure caption 
Fig. 3-1  Neuron Model with Dendritic Nonlinearity 
Fig. 3-2  Synaptic connections on different 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖. 
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Fig. 3-2  Synaptic connections on different 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖. 
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In the world, breast cancer is ascendant disease, and a lot of women died because of it. 

At the same time, the women often have a relapse in a high rate [46]. For the reason, 

the exactly procedure allows doctors to distinguish benign breast tumors from malig-

nant ones, and this is very important to find a right diagnosis ways, but it has high 

costs of money and society about the forecast of constant breast cancer. Therefore, 

this problem attracts a lot of researchers working in the Artificial Intelligent (AI) top-

ic. 
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4.1 Related work on Breast Cancer 

 When ANNs are used in medical diagnosis, they are not affected by factors such as 

human fatigue, emotional states and habituation. They are capable of rapid identifica-

tion, analyses of conditions and diagnosis in real time. For the breast cancer, the re-

searchers have used a lots of AI devices, especially the Artificial Neural Network 

(ANN). There have been researches on medical diagnosis of breast cancer with 

WBCD using Artificial Neural Networks (ANNs) in literature in recent years. 

Local linear wavelet neural networks (LLWNN) have been introduced as a very ef-

fective scheme for statistical pattern recognition problem and non-linear complex pre-

dictions. MR Senapati et al. have proposed to use recursive least square and firefly 

algorithm to optimize the training of the LLWNN, the result shows optimization very 

robust, effective and gives better correct classification [47-49]. In 2012, Chris Ninness 

et al. have proposed to use Self-Organizing Map (SOM) neural network to apply to 

diversified nonlinear data distributions in the areas of behavioral and physiological 

research. The result implicates that the future investigations of the SOM within the 

behavioral/physiological [50]. In 2011, Marco Vannucci and Valentina Colla describes 

a novel binary classification method named LASCUS. The method is proposed to 

train the datasets by SOM and uses the fuzzy inference system to calculate the thresh-

old to determine the data belonging to which cluster. The result of the thesis suggests 

a good correctly detects in 3 out of 5 tests [51]. Fuzzy and Neural Approaches pre-

sents a detailed examination of the fundamentals of fuzzy systems and neural net-

works and then joins them synergistically, combining the feature extraction and mod-

eling capabilities of the neural network with the representation capabilities of fuzzy 

systems [3].  In 2013, Manjeevan Seera and Chee Peng Lim have proposed a hybrid 

intelligent system that consists of the Fuzzy Min-Max neural network to exploit the 

advantages of the constituent models, the classification and regression tree to explain 

predicted outputs and the Random forest to achieve high classification performances. 

They aim to exploit the advantages of the constituent models and at the same time al-
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leviate their limitations. In the experimental, not only can the system produces good 

results but elucidates its knowledge base with a decision tree [52]. Fuzzy Neural 

Networks (FNN) comprises an integration of the merits of neural and fuzzy ap-

proaches, enabling one to build more intelligent decision-making systems. But in-

creasing the number of inputs causes exponential growth in the number of parameters 

in Fuzzy Neural Networks (FNN) and computational complexity increases according-

ly. So hierarchical fuzzy neural network (HFNN) and Fuzzy Gaussian Potential Neu-

ral Network (FGPNN) were proposed for breast cancer detection problem by 

Somayeh Naghibi et al. in 2011 [53]. And Cheng-Jian Lin and Chi-Feng Wu proposed 

to use functional neural fuzzy network (FNFN) consisting of Functional link neural 

networks (FLNNs) and Neural fuzzy networks (NFNs) to deal with the classification 

[54, 55]. Radial basis function neural network, as an aspect of neural networks, 

(RBFNN) uses radial basis function as active function. M. R. Senapati et al. proposed 

a RBFNN for breast cancer detection by extending the application of a variation of 

particle swarm optimization called K-particle swarm optimization (KPSO) and the 

technique provides more accurate result and better classification [56]. Recently, to 

mimic biological neural networks further, one type of artificial neural network which 

comprises spiking neurons and use action potential (spike) as a computing interface is 

called a spiking neural network (SNN) and has drawn increasingly more attention 

from the researchers. Hung-Yi Hsieh proposed a probabilistic spiking neural network 

(PSNN) with unimodal weight distribution, possessing long- and short-term plasticity. 

In the experiment, the PSNN is proved to be hardware friendly, the convergence speed 

fast [57]. Cornelius Glackin et al. presented a supervised training algorithm that im-

plements fuzzy reasoning on a SNN. The experiment provides a rationale for the as-

sembly of biological components such as excitatory and inhibitory neurons, facilitat-

ing and depressing synapses, and RFs. In particular, the major contribution is how 

RFs may be configured in terms of excitation and inhibition to implement the con-

junctive AND of the antecedent part of a fuzzy rule [58]. Because search space in arti-

ficial neural networks (ANNs) is high dimensional and multimodal which is usually 
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polluted by noises and missing data, the process of weight training is a complex con-

tinuous optimization problem. Alireza Askarzadeh and Alireza Rezazadeh aim to deal 

with the application of a recently invented metaheuristic optimization algorithm, bird 

mating optimizer (BMO), for training feed-forward ANNs. The simulation results in-

dicate the superior capability of BMO to tackle the problem of ANN weight training 

[59]. L.M. Sasu et al. proposed to Bayesian ARTMAP (BA) to analyze the efficiency 

of regression problems. And (i) they generalize the BA algorithm using the clustering 

functionality of both ART modules, and name it BA for Regression (BAR); (ii) they 

prove that BAR is a universal approximator with the best approximation property [60]. 

Ahmad Taher Azar et al. used probabilistic neural networks (PNN) to apply for the 

purpose of detection and classification of breast cancer. The results reveal that PNN is 

a quite good classifier by achieving accuracy rates of 100 and 97.66 % in both train-

ing and testing phases, respectively [61]. A. A. Kalteh et al. presented a novel hybrid 

intelligent method for detection of the breast cancer patterns. The proposed method 

includes two main modules: clustering module and the classifier module. In the clus-

tering module, the input data will be clustered by a technique being a suitable combi-

nation of the modified imperialist competitive algorithm (MICA) and K-means algo-

rithm (K-MICA algorithm). And in the classifier module, several neural networks, 

such as the multilayer perceptron, probabilistic neural networks and the radial basis 

function neural networks are investigated. The result reveals that K-MICA algorithm 

and RBF neural networks hold the highest performance [62]. Mustafa Serter Uzer et 

al. suggested to using SFSP or SBSP combining with SCG NN to find a solution for 

the problem of breast cancer. By the two hybrid methods (SFSP and SBSP), the di-

mension of the feature space for input has been decreased from 9 to 5 thanks to the 

selection of these two hybrid features, and the performance of SBSP + NN is much 

better and the five types of inputs are the Clump thickness, the Uniformity of cell size, 

the single epithelial cell size, the bare nuclei and the normal nucleoli, respectively 

[63]. Brijesh Verma et al. proposed two types of hybrid combination Parallel Neu-

ral-based Clusters Fusion (PNCF) and Parallel Neural-based Strong Clusters Fusion 

http://link.springer.com/search?facet-author=%22Mustafa+Serter+Uzer%22
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(PNSCF) which are a novel hybrid ensemble approach for classification which can be 

defined as a process of combining various algorithms and techniques in such a way 

that it can utilize the strengths of each individual technique and compensate for each 

other’s weaknesses [64]. A. Marcano et al. presented to use the biological metaplas-

ticity property of neurons and Shannon’s information theory to the multilayer percep-

tron (MLP). This model defines artificial metaplasticity as a learning procedure that 

produces greater modifications in the synaptic weights with less frequent patterns than 

frequent patterns, as a way of extracting more information from the former than from 

the latter [65].  

As showed of the earlier works of breast cancer using ANN above, much effort has 

been devoted over the past several decades to the development and improvement of 

pattern classification models for breast cancer detection. Three trends of researches of 

classification models using ANN can be extracted: (i) propose the new type neural 

network model; (ii) using new training algorithms; (iii) propose hybrid system which 

using the ANN as the classifiers. Owing to the further application of cancer detection, 

not only do the patients or doctors need to know the classification result, but to know 

the symptoms that derive this result. The traditional neural networks and most of hy-

brid system have almost obtained high classification. However, there is a black box on 

their decision process, with no explanation as to how the decisions are attained [52, 

66]. Hybrid heuristic methods like GA or neural networks combining with fuzzy rules 

will handle this problem caused by black box approaches, but it is also a key limita-

tion of identifying which input factors are more significant than the others [52, 67].  
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4.2 Wisconsin breast cancer database overview 
 

Table 4-1 WBCD description of attributes 
Attribute 
Numeber Attribute Description Value of 

attributes 
1 Clump thickness 0.1-1 
2 Uniformity of cell size 0.1-1 
3 Uniformity of cell shape 0.1-1 
4 Marginal adhesion 0.1-1 
5 Single epithelial cell size 0.1-1 
6 Bare nuciei 0.1-1 
7 Bland chromatin 0.1-1 
8 Normal nucieoll 0.1-1 
9 Mitoses 0.1-1 

In this study, the Wisconsin Breast Cancer Database (WBCD) (UCI Machine Learn-

ing Repository) which is from Fine Needle Aspirates (FNA) is used for datasets of 

classifiers. The datasets comprise 699 samples and each record has nine attributes 

which are showed in Table 4-1. We designate the mensuration as value between 0.1 

and 1, and 0.1 is closed to benign and 1 is the most anaplastic. Either benign or ma-

lignant, this dataset has 16 samples with missing attribute values. Because these data 

instances are rejected by some classification algorithms and we use the same method 

which uses 683instances in order to compare. So there are 444 (65.0%) benign in-

stances and 239 (35.0%) malignant instances. 
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4.3 Simulation parameters 

Table 4-2 shows the Mean squared error (MSE), epoch of learning (Epochs), learning 

constant, parameters of NMDN and numbers of patterns used in the training and test-

ing phases. And in the test samples, the number of benign samples is 133, the malig-

nant is 72. In order to compare the performance between NMDN and BPNNs, we 

carry out an experiment with Wisconsin breast cancer database. They are both imple-

mented in MATLAB 2013b (MATLAB Neural Network Toolbox, version 8.1 is for 

BPNNs) and on an intel Core-i5 computer of 3.4 GHz with 8 GB of RAM. 

 

Table 4-2 Simulation parameters applying to WBCD. 

Types of 
classifiers MSE Epochs Learning 

constant 
NMDN pa-

rameters 
Number of 

patterns 
    k theta Train Test 

BPNNs 0.01 1000 0.01 NA* NA* 478 205 
NMDN 0.01 1000 0.01 3 0.5 478 205 

*NA: not applicable 

In the simulation, for the purpose of analysis, different quantities of branches are 

chosen. If the number of inputs is N and the number of branch is M, the quantity of 

modifying 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖 of the NMDN is 2𝑀𝑀 × 𝑁𝑁. Moreover, if the number of inputs is 

N and the number of node of hidden layer is M, the quantity of modifying weights and 

threshold is 𝑀𝑀 × 𝑁𝑁 + 𝑀𝑀 + 1. Table 4-3 is the structure of the BPNNs and NMDN. 

In addition, the sigmoid function is chosen as the node function of the BPNNs. For 

either NMDN or BPNNs, in order to analyze accurately and reflect their performance 

completely, the simulation will run 100 times with different random initial values on 

each condition. 
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Table 4-3 The structures of NMDN and BPNNs. 

 NMDN BPNNs  
Input Branch HL* Output 

9 

5 
8 

1 

9 

10 
16 
17 

15 
24 
25 

20 
32 
33 

25 40 
41 

*HL: the node of Hidden layer 
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4.4 Performance on the accuracy 

Classification accuracy: In this simulation, classification accuracy for the data sets is 

measured using the equation: 

𝑘𝑘𝑎𝑎𝑎𝑎𝑂𝑂𝑐𝑐𝑘𝑘𝑎𝑎𝑐𝑐 =  
𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑂𝑂 + 𝐹𝐹𝑁𝑁
%                                   (12) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and 

false negatives, respectively. 

True positive (TP): An input is detected as malignant and the teacher targets also 

label so. 

True negative (TN): An input is detected as benign as diagnosed by the teacher tar-

gets. 

False positive (FP): An input is detected as malignant, although the teacher targets 

show the opposite. 

False negative (FN): An input is detected as benign breast cancer, although the 

teacher targets label is malignant. 

We use the following expressions for sensitivity and specificity analysis, 

𝑆𝑆𝑒𝑒𝑆𝑆𝑘𝑘𝑖𝑖𝑂𝑂𝑖𝑖𝑆𝑆𝑖𝑖𝑂𝑂𝑐𝑐 =
𝑇𝑇𝑂𝑂

𝑇𝑇𝑂𝑂 + 𝐹𝐹𝑁𝑁
 %                                              (13) 

𝑆𝑆𝑆𝑆𝑒𝑒𝑎𝑎𝑖𝑖𝑆𝑆𝑖𝑖𝑎𝑎𝑖𝑖𝑂𝑂𝑐𝑐 =
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑂𝑂
%                                               (14) 

The average sensitivity and average specificity listed in the Table 4-4 belong to av-

erage performance of the BPNNs and NMDN, and the average accuracy is shown in 

Table 4-5. 

As mentioned above, in order to compare the performance, in Table 4-4 and Table 

4-5, the NMDN and BPNNs are chosen the similar quantity of modification, and gen-

erated 100 runs separately. The following analysis of the other sections is also under 

the same condition. As shown in the Table 4-4 and Table 4-5, NMDN is superior to 

classical BPNNs training in most of the cases especially on the average accuracy. And, 
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the sensitivity is lower than specificity and it shows that the detection of malignant is 

more difficult than benign, indeed. Additional, with the growth of quantity of branch 

in NMDN and node of the hidden layer in BPNNs, the accuracy raises higher, too. In 

Table 4-4, the average sensitivity of NMDN raised from 50.7778% to 95.3611%, and 

the BPNNs’ raised from 61.1389% to 81.1389%. The increment of NMDN is 

44.5833%, and the BPNNs’ is 20%. However, there is basically no growth on the av-

erage specificity of NMDN and BPNNs. That means growth of sensitivity of NMDN 

raises faster than BPNNs’, and the growth of accuracy depends on the growth of sen-

sitivity. However, when the branch number of NMDN is 5, the average accuracy of 

NMDN is lower than the BPNNs. And from the branch is 10, the accuracy of NMDN 

is better than BPNNs. In [35], redundant synapses and dendrites are found in the 

nervous system at the early stages, and the unnecessary ones are soon filtered out and 

the necessary ones are strengthened and fixed, then form the ripened neural network 

function. So, an assumption can be proposed that there is some connection with the 

quantity of redundant synapses and branch of initial states. 

Table 4-4 The average sensitivity and specificity of NMDN and BPNNs on WBCD 
Branch/ 

Hidden Layer node 
 The average 

Sensitivity 
 The average 

Specificity 
NMDN BPNNs NMDN BPNNs NMDN BPNNs 

5 8 50.7778 61.1389 99.0301 98.5789 
9 63.0139 93.8271 

10 16 71.1687 65.2361 98.7594 97.5263 
17 69.1528 97.4436 

15 24 87.7917 71.4861 98.8195 97.5789 
25 77.6528 94.6316 

20 32 91.2778 77.7500 98.7218 97.5639 
33 79.6250 96.4337 

25 40 95.3611 81.1389 99.1203 98.4962 
41 80.4444 97.3233 

 

 

 

Table 4-5 Classification accuracies of classifiers used for detection of breast cancer. 
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Branch/ 
Hidden Layer node The average accuracy The best accuracy 

NMDN BPNNs NMDN BPNNs NMDN BPNNs 

5 8 82.0829 85.4293 98.5366 99.0244 
9 83.0049 99.0244 

10 16 89.0683 86.1854 99.5122 98.5366 
17 87.5037 98.5366 

15 24 94.9463 88.4164 99.5122 98.0448 
25 88.6683 99.0244 

20 32 96.1073 90.6049 99.5122 98.5366 
33 90.5561 98.5366 

25 40 97.8000 92.4000 100 98.5366 
41 91.3951 98.5366 



４１ 
 

4.5 Performance on convergence rate 

The convergence rate is one of the most prominent evaluation strategies of the classi-

fiers’ performance. In this simulation, we suppose the accuracy whether reach 90% as 

the foundation of the convergence. Furthermore, the convergence rate is shown with 

the epochs. The test condition is:  

1, if accuracy≥ 90%, stop training and return the epochs;  

2, if epochs = 1000, stop training. 

Table 4-6 The average epochs of NMDN and BPNNs. 
NMDN BPNNs 

Branch Average epochs HL node Average epochs 

5 123.09 8 207.80 
9 203.44 

10 112.92 16 226.66 
17 275.86 

15 133.10 24 310.21 
25 303.28 

20 123.45 32 343.11 
33 384.59 

25 63 40 337.5 
41 395.87 

As shown in Table 4-6, in each condition, the NMDN’s average epoch of conver-

gence is fewer than the corresponding BPNNs’. And, with the growth of calculation, 

on the whole, the average epoch of NMDN turns to decrease. In the opposite, the 

BPNNs’ turns to increase. The reasons may be include as: 

1: The structure of the NMDN. Because, there are 4 types of synaptic connection, 

with the growth of the branch, the patterns types of the connections will increase in a 

geometric ratio on the whole. In the other word, after training, the ideal shape of den-

drites may be formed more easily. 

2: To the BPNNs, there are no conceptions about the structure after training, so the 

more Hidden Layer nodes, the more hard to form a stable structure. 

Especially, when the branch number of NMDN is 25, the average epoch is 63. 

However, the corresponding BPNNs’ average epoch is 337.5 and 395.87. In other 

words, the average convergence epoch of BPNNs is 5.35 and 6.28 times that of 
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NMDN’s, respectively. As shown above, when branch number of NMDN is 25, the 

accuracy and convergence performance better than others. So the following compari-

son with the NMDN and BPNNs will be focused in this condition. 

In addition, Fig. 4-1 shows the performance of the average mean squared error 

convergence curve of 100 experimental repetitions respectively on different branches 

of NMDN. As shown in Fig. 6, the convergence rate performs better than others on 

the 25 branches. So, the following comparison will be focused between the 25 

branches of NMDN and its corresponding BPNNs.  

𝑀𝑀𝑒𝑒𝑘𝑘𝑆𝑆 𝐸𝐸𝑐𝑐𝑐𝑐𝑘𝑘𝑐𝑐 =
1
𝑅𝑅

�[
1
2

�(𝐸𝐸𝑏𝑏 − 𝑂𝑂𝑏𝑏)
𝑆𝑆

𝑏𝑏=1

]
𝑅𝑅

𝑘𝑘=1

                                           (15) 

Moreover, as shown in Fig. 4-2, it is the average mean squared error convergence 

curve of 100 experimental repetitions respectively when the NMDN’s dendritic 

branch is 25 and the BPNNs’ hidden layer nodes are 40 and 41. And, the mean error is 

defined as Eq. 15. R and S are defined as the number of experimental repetitions and 

the training data. It is clearly that the convergence rate of NMDN is higher than 

BPNNs.  



４３ 
 

4.6 Performance on stability  

The stability is another prominent evaluation strategies of the classifiers’ perfor-

mance. In this simulation, we use the initial and final errors to judge the stability. 

As shown in Fig. 4-3, the initial error of NMDN shows that there are just a few of 

light fluctuations and the initial error is approximately from 0.13 to 0.1. However, the 

BPNNs’ range of variation is much huger than NMDN, and frequency is higher. In 

Fig. 4-4, the finial errors of NMDN converge to less than 0.05 and more stable than 

BPNNs. And, the BPNNs can fall into the local minimum more easily than NMDN by 

the final error. It indicates that the NMDN is more stable than BPNNs.  

Furthermore, the data set of final errors is analyzed statistically by generating a box 

and whiskers plot [68] in Fig. 4-5. Integrating with the Fig. 4-5 and Table 4-7 and Ta-

ble 4-8, once again explains that the NMDN is more stable than BPNNs. And owe that 

all the outliers of NMDN are mild outliers and the NMDN also is trapped into local 

minimum, combing with Table 4-5, the classification accuracy is high. That is to say, 

NMDN is surmised to possess the inhibition of the local minimum problem. 

Table 4-7 The important values of box and whisker for final errors in NMDN and 

BPNNs. 

 NMDN-25 BPNNs-40 BPNNs-41 
Upper whisker 0.037768 0.12785 0.12962 

Upper Quartile (Q3) 0.031862 0.087018 0.088252 
Median 0.029425 0.067329 0.068585 

Lower Quartile (Q1) 0.027771 0.057607 0.058141 
Lower whisker 0.025298 0.038776 0.040378 

Upper outer fence 0.044135 0.175251 0.178585 
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Table 4-8 The outliers of box and whisker for final errors in NMDN and BPNNs. 

NMDN-25 BPNNs-40 BPNNs-41 
0.038082 0.131893 0.144542 
0.038268 0.132584 0.174069 
0.038609 0.136827 0.24886 
0.03867 0.142562 0.315718 
0.038904 0.171905 0.331993 
0.039414 0.185008 0.652302 
0.042752 0.314692 0.668047 
0.042648 0.648997  
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4.7 Performance on AUC 

One of the method of evaluating classifier performance was used in calculating the 

Receiver Operating Characteristic (ROC) curve which is a two dimensional measure 

of classification performance, widely used in biomedical research to assess the per-

formance of diagnostic tests [69, 70]. In order to compare the performance of classifi-

ers and reduce ROC performance to a single scalar value representing expected per-

formance, a common method is to calculate the area under the ROC curve (AUC) [71]. 

When an AUC is close to 1, it indicates that the classifier is a very reliable diagnostic 

test [72]. The AUC can be computed by integrating the area under the ROC curve 

(summing the areas of trapezoids) or by the Mann-Whitney-Wilcoxon test statistic [73, 

74]. In this simulation, the average AUC values of 100 runs of NMDN and BPNNs 

are listed in Table 4-9. Moreover, the ROC curve is also shown in Fig. 4-6 

Table 4-9 The AUC of NMDN and BPNNs. 
NMDN BPNNs 

Branch AUC HL nodes AUC 

25 0.9741 40 0.9314 
41 0.9151 

As showed in Table 4-9, the average of AUC of NMDN is 0.9741, and the BPNNs’ 

are 0.9314 and 0.9151. It indicates that the NMDN classifier is more efficient than 

BPNNs. This indicates once again the superiority of NMDN over BPNNs, in this par-

ticular case. 
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4.8 Performance on the Dendrite Morphology 

As mentioned above, the dendrite morphology of NMDN is one of the most the char-

acteristic in the neuron model’s study. Following, the accurate prediction of NMDN’s 

dendrite morphology is presented.  

  In NMDN, due to the values of 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖 of sigmoid in synaptic function, four 

types of synaptic connections can be defined. The excitatory and inhibitory synapses 

are real connection states in neurons. After learning, if 0-constant connection exists in 

some branch, the output of the branch will be 0 (owing to the multiplication among 

synapses in one branch). In other words, the branch equals to be filtered out through 

learning. As Fig. 4-7 shows that it is one of the dendrite morphology of NMDN hold-

ing best accuracy after eliminating the 0-constant existing branches. 

  Furthermore, after learning, if 1-constant connection exists in some branch, the 

output of the corresponding synapse will be 1. However, in a branch, the interaction 

among synapses is given by a simple multiplication. Thus, for 1-constant connection, 

there is no influence on the output of the branch. So, the 1-constant connection can be 

eliminated in branches. As shown in Fig. 4-8, it is the ripened dendrite morphology of 

NMDN after learning. And, there are only the excitatory synapses existing as the ef-

fective ones in the ripened dendrite morphology. In addition, the performance of clas-

sification on AUC doesn’t have changed after eliminating branches and synapses in 

Fig. 4-9. 

  As mentioned above, the NMDN is developed for continuum of values between 0 

and 1. Thus, the ripened dendrite morphology can also be given by                          

𝑉𝑉 = 𝑥𝑥1 ∙ 𝑥𝑥3 ∙ 𝑥𝑥8 + 𝑥𝑥3 ∙ 𝑥𝑥6 ∙ 𝑥𝑥7 = 𝑥𝑥3(𝑥𝑥1 ∙ 𝑥𝑥8 + 𝑥𝑥6 ∙ 𝑥𝑥7)                          (16) 

Integrated Table 4-1 and Eq. 15, the Clump thickness, Uniformity of cell shape, 

Normal nucieoll, Bare nuclei, and Bland chromatin can be extracted as critical factors 

of breast cancer detection. 

As the related work showed above, in [52], owing to the capability of decision tree, 
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the uniform of cell shape, Bare Nuclei, Bland Chromatin and Clump Thickness can be 

collected as the critical attributes of detecting breast cancer. However, in [63], the 

Clump thickness, the Uniformity of cell size, the single epithelial cell size, the bare 

nuclei and the normal nucleoli are selected as more probability to promote the accu-

racy of detection. In other words, these critical factors in [63] possess the first proba-

bility to determine whether the breast cancer is benign or malignant. To compare our 

simulation result with the ones gotten from [52] and [63], we can’t define which one 

is more reliable. However, the Clump thickness and Bare Nuclei may be surmised as 

important factors to detect the breast cancer, because, in our simulation, [52] and [63], 

these two attributes exist. Furthermore, another two attributes, marginal adhesion and 

mitoses, can be proposed to be removed from the detection items in the future. Be-

cause, these two attributes are not involved in the results of our simulation, [52] and 

[63]. 

  Furthermore, the NMDN is for the first time to be used into real world problem and 

continuum values problem. Although, as shown above, there is no influence on elimi-

nating 0-existing branch and 1-existing synapses at the best performance of NMDN, 

the further confirmation of the influence on eliminating branch and synapse has been 

introduced. Fig. 4-10 shows that after eliminating the 1-existing synapses, the average 

ROC of 100 repeat experiments decreases. That is to say, it can be surmised as a crite-

ria which if a branch was eliminated, whether there is some influence on the classifi-

cation that the 0-connection existing in the branch or not in the continuum values. 

Figure caption 
Fig. 4-1 The convergence rate on NMDN. 

Fig. 4-2 The convergence rate on NMDN and corresponding BPNNs 

Fig. 4-3 The initial Error of NMDN and BPNNs 

Fig. 4-4 The final Error of NMDN and BPNNs 

Fig. 4-5 The box and whisker for final errors in NMDN and BPNNs 

Fig. 4-6 The average ROC curves and AUC of NMDN and BPNNs 
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Fig. 4-7 The Dendrite Morphology of NMDN without the eliminated branches after 
learning 

Fig. 4-8 The Dendrite Morphology of NMDN after learning. 

Fig. 4-9 The ROC and AUC of NMDN holding best performance on eliminating 
branches. 

Fig. 4-10 The average ROC and AUC of NMDN on eliminating branches and synap-

ses. 

 

 

Fig. 4-1 The convergence rate on NMDN. 
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Fig. 4-2 The convergence rate on NMDN and corresponding BPNNs 

 

Fig. 4-3 The initial Error of NMDN and BPNNs 
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Fig. 4-4 The final Error of NMDN and BPNNs 

 

Fig. 4-5 The box and whisker for final errors in NMDN and BPNNs 
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Fig. 4-6 The average ROC curves and AUC of NMDN and BPNNs 

 

 

 

Fig. 4-7  The Dendrite Morphology of NMDN without the eliminated branches after 

learning 
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Fig. 4-8 The Dendrite Morphology of NMDN after learning. 

 

 

 

Fig. 4-9 The ROC and AUC of NMDN holding best performance on eliminating 

branches. 
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 Fig. 4-10 The average ROC and AUC of NMDN on eliminating branches and 

synapses. 
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5.1 Related work on overreaction in stock market 

5.1.1 Market Efficiency Theory 

The market efficiency theory states that, “one cannot consistently achieve returns in 

excess of average market returns on a risk-adjusted basis, given the information 

available at the time the investment is made” [75]. 

Historically, there was a very close link between the market efficiency theory and 

the random walk hypothesis and then the Martingale model. The random character of 

stock market prices was first modeled by Jules Regnault, a French broker, in 1863 and 

then by Louis Bachelier, a French mathematician, in his Ph.D. thesis in 1900 [76]. His 

work is almost ignored until 1950s, however the independent work has proved it from 

1930s. In his thesis, a small number of studies indicated that US stock prices and re-

lated financial series followed a random walk model.  

Professor Eugene Fama, who is as an academic concept of study and has worked 

at University of Chicago Booth School of business, has developed the effi-

cient-market hypothesis through his published Ph.D. thesis in the early 1960s at the 

same school. When behavioral economists became the mainstream, the hypothesis 

was widely accepted up until the 1990s, which had been a fringe element [77]. Em-

pirical analyses have consistently found problems with the efficient-market hypothesis, 

the most consistent being that stocks with low price to earnings outperform other 

stocks [78-81]. Alternative theories have proposed that cognitive biases cause these 

inefficiencies, leading investors to purchase overpriced growth stocks rather 

than value stocks [77]. Although the efficient-market hypothesis has become contro-

versial because substantial and lasting inefficiencies are observed, Beechey et al. 

(2000) consider that it remains a worthwhile starting point [82].  

In the mid-1960s, the efficient-market hypothesis as a prominent theory 

emerged. Paul Samuelson had begun to circulate Bachelier's work among economists. 

In 1964, Bachelier's dissertation along with the empirical studies which were men-
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tioned above were published in an anthology edited by Paul Cootner [83]. In 1965, 

Eugene Fama published his dissertation arguing for the random walk hypothesis 

[84]. Also, Samuelson published a proof showing that if the market is efficient prices 

will show random-walk behavior [85]. This is often cited in support of the effi-

cient-market theory, by the method of affirming the consequent [86, 87], however in 

that same paper, Samuelson warns against such backward reasoning, saying “From a 

no-empirical base of axioms you never get empirical results” [88]. In 1970, Fama pub-

lished a review of both the theory and the evidence for the hypothesis. The paper ex-

tended and refined the theory, and there are three forms of financial market efficiency 

which are weak, semi-strong and strong in the definitions.[89]. It has been argued that 

the stock market is “micro efficient” but not “macro efficient”. Samuelson, who has 

asserted that the EMH is more suited for individual stocks than it is for the aggregate 

stock market, pointed the main proponent. Samuelson's dictum has been strongly 

supported by research based on regression and scatter diagrams [90].  

Further to this evidence that the UK stock market is weak-form efficient, other 

studies of capital markets have pointed toward their being semi-strong-form efficient. 

The grain futures market which is from Khan indicated semi-strong form efficiency 

following the release of large trader position information (Khan, 1986). Studies by 

Firth (1976, 1979, and 1980) in the United Kingdom have compared the share prices 

existing after a takeover announcement with the bid offer. Firth found that the share 

prices were fully and instantaneously adjusted to their correct levels, thus concluding 

that the UK stock market was semi-strong-form efficient. However, the ability of 

market to efficiently respond to a short term, widely publicized event such as a take-

over announcement does not necessarily prove market efficiency related to other more 

long term, amorphous factors. David Dreman has criticized the evidence provided by 

this instant efficient response, pointing out that an immediate response is not neces-

sarily efficient, and that the long-term performances of the stock in response to certain 

movements are better indications. 

There are three major forms of market efficiency hypothesis: “Weak”, “Semi-strong” 
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and “Strong” [75]. In weak-form efficiency, analyzing prices cannot predict future 

prices from the past. Excess returns using investment strategies based on historical 

share prices or other historical data cannot be earned in the long run. Technical analy-

sis techniques will not be able to consistently produce excess returns, though some 

forms of fundamental analysis may still provide excess returns. Share prices show no 

serial dependencies, that is to say, there are no patterns to asset prices. This implies 

that future price movements are determined entirely by information not contained in 

the price series. Hence, prices must follow a random walk. This soft EMH does not 

require that prices remain at or near equilibrium, but only that market participants not 

be able to systematically profit from market inefficiencies. However, while EMH pre-

dicts that all price movement is random in the absence of change in fundamental in-

formation, many studies have shown a marked tendency for the stock markets to trend 

over time periods of weeks or longer [91] and that, moreover, there is a positive cor-

relation between degree of trending and length of time period studied [92]. Various 

explanations for such large and apparently non-random price movements have been 

promulgated. There is a vast literature in academic finance dealing with the momen-

tum effect identified by Jegadeesh and Titman [93, 94]. Stocks that have performed 

relatively well (poorly) over the past 3 to 12 months continue to do well (poorly) over 

the next 3 to 12 months. The momentum strategy is long recent winners and shorts 

recent losers, and produces positive risk-adjusted average returns. Being simply based 

on past stock returns, the momentum effect produces strong evidence against 

weak-form market efficiency, and has been observed in the stock returns of most 

countries, in industry returns, and in national equity market indices. Moreover, Fama 

has accepted that momentum is the premier anomaly [95, 96]. The problem of algo-

rithmically constructing prices which reflect all available information has been stud-

ied extensively in the field of computer science [97, 98].  

In semi-strong form of market efficiency, it is implied that once there is publicly 

available new information, the share prices will be rapidly adjusted to reflect the in-

formation, it also shows that excess returns will be able to be reliably produced by 



５８ 
 

neither fundamental analysis nor technical analysis techniques. As a result, no arbi-

trage can be attained based on that information. Also, no technical analysis will be 

able to predict the share prices to generate excess returns. To test for it, the adjust-

ments to previously unknown news must be of a reasonable size and must be instan-

taneous, and then, consistent upward or downward adjustments after the initial change 

must be looked for. It would suggest that investors had interpreted the information in a 

biased fashion and hence in an inefficient manner if there are any such adjustments. 

In strong-form efficiency, share prices can reflect all public and private information, 

and no one can earn excess returns. If there are legal barriers to private information 

becoming public, as with insider trading laws, except in the case where the laws are 

universally ignored, strong-form efficiency is impossible. To test for this, a market 

needs to exist where investors cannot consistently earn excess returns over a long pe-

riod of time. No refutation even of strong-form efficiency follows with lots of fund 

managers worldwide, even if some money managers are consistently observed to beat 

the market, even a normal distribution of returns should be expected to produce a few 

dozen star performers. 

However, various phenomena suggest that the real financial market does not con-

form to the market efficiency hypothesis. The reasons include human irrationalities, 

such as overconfidence and overreaction of investors, so that they may sell winning 

stocks and hold on to losing stocks. There are other non-human-related errors, such as 

unfair distribution of information. For stock market particularly, Dreman and Berry 

found that, stocks with low P/E, which refers to price earnings ratio, earn greater 

risk-adjusted returns than high P/E stocks [99]. For the price earnings ratio anomaly, 

one of the explanations based on investor overreaction is that, companies with very 

low P/Es are thought to be undervalued, since investors are pessimistic after a series of 

bad news, such as poor earnings reports. The investor overreaction would further 

drive the stock price down. Once future earnings turn better, the price would be ad-

justed accordingly to more reasonably reflect the value of company. Similarly, the 

companies with high P/Es are overvalued, and the price would be driven down. To 
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specifically look into the behavior of investor overreaction, Debondt and Thaler, in 

their study “Does the Stock Market Overreact?”, suggested that people tend to 

overreact to unexpected and dramatic events [100].  

5.1.2 Stock Market Overreaction 

One way used to predict the extent of weak-form efficiency in stock markets is to 

test for the overreaction. The effect of overreaction suggests that investors overreact 

to good or bad news causing share prices to deviate from their equilibrium level. In 

particular, securities suffering abnormally low returns (losers) in the past will subse-

quently experience relatively higher returns while shares which have performed well 

in the past (winners) will do less well in the future. 

The Bayes rule states that: 

BAYES’S RULE 

P(A|B) =
𝑂𝑂(𝐴𝐴𝑖𝑖) ∙ 𝑂𝑂(𝐵𝐵|𝐴𝐴𝑖𝑖)

∑[𝑂𝑂(𝐴𝐴𝑖𝑖) ∙ 𝑂𝑂(𝐵𝐵|𝐴𝐴𝑖𝑖)]
 

where A1,…… , An is an all-inclusive set of possible outcomes given B. 

One condition of rational investor behaviors is that they use Bayes Rule to form new 

belief as new information becomes available. Each time period new information sig-

nals are added to the information set. The investors can correctly use the new infor-

mation set to update their expectations and thus determine the value of companies. 

Consequently, stock prices will accurately reflect fundamental values of the compa-

nies. And when there is unexpected positive or negative news, the prices will move up 

and down accordingly. However in real world, most investors are irrational when 

making decisions. Investors tend to give more weight of consideration to recent in-

formation or new data, and give less weight of consideration to historical data [101]. 

For instance, if a stock price drops, most irrational investors will have an incentive to 

buy in the stocks. Similarly, they are likely to sell the stock if stock price drops. And 

they will pay little attention to the long term paying power such as dividends. The 
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price earnings ratio (P/E) anomaly, as stated earlier in this paper, describes an obser-

vation that stocks with low P/E returns earn greater risk-adjusted returns than high P/E 

stocks [99].  

De Bondt and Thaler are the forerunners in the study of overreact on stock mark. 

They have used data of stock mark in the US between 1926 and 1982 to analyze 

whether investors overreact, and according to their research, there has been reversion 

on stock return in the long term because of investors’ irrational behavior [100]. Based 

on those observations, DeBondt suggested two hypothesis if a stock experiences sig-

nificant price movement, then a subsequent price movement in the opposite direction 

is likely to follow. Moreover, the level of extremeness is positively correlated between 

the initial and the following price movement [100]. To test the hypothesis, DeBondt 

proposed an empirical test method, using the data of monthly stock returns from 

1930s to 1970s. 

Lehmann (1990) has used data of stock mark in the US between 1965 and 1989 to 

identify the factors that have reversed the market in a short time interval, but 

short-term profitability can hardly be identified with overreaction. Rather, it is proba-

bly a result of pressures of price in short-term or lacking of liquidity. It thought that 

predictable variation in equity returns might reflect either predictable changes in ex-

pected returns or market inefficiency and stock price overreaction. These explanations 

can be distinguished by examining returns over short time intervals since systematic 

changes in fundamental valuation over intervals like a week should not occur in effi-

cient markets. This probably reflects inefficiency in the market for liquidity around 

large piece changes [102]. 

Zarowin (1989) examines the subsequent stock return performances of firms that 

have experienced extreme earnings years and finds that while the poorest earners out-

perform the best earners by a statistically significant smaller than the best earners at 

the time of portfolio formation. When the poorest earners are matched with the best 

earners of equal size, there is virtually no evidence of differential stock return perfor-
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mance, indicating that the market does not overreact to extreme earnings news, and 

suggesting that size discrepancies between winners and losers may be responsible for 

the apparent overreaction phenomenon [103]. 

To build the stock market value, one of the best ways is to use expert systems with 

Artificial Neural Networks (ANN), which can easily adapt the changes of the stock 

market. It is observed that in most of the cases ANN models give better result than 

other methods. However, there have been few studies on using the ANN for stock 

market. Generalized version of ARCH model Generalized ARCH (GARCH) model 

[104], Exponential GARCH (EGARCH) model [105] and Dynamic Architecture for 

Artificial Neural Networks (DAN2) and so on. From the late 1990s, Chinese scholars 

have studied overreact on stock mark in China. Zhang Renji, Zhu Pingfang, and Wang 

Huai-fang (1998) have found a falling trend on winner port-folio [106]. Zhu Shaoxing 

(2000) has conducted no overreaction in Shenzhen stock market [107]. Song Xian-

zhong and Tang Sheng (2006) have identified empirical study on overreaction and 

scale effect on the corporations listed in A-share market in Shanghai [108].  

In recent years, there have been a growing number of studies about movements of 

various kinds on stock market. Both academic researchers and practitioners have 

made tremendous efforts to predict the future movements of stock market. Zhang 

Yanqing and Wan Xuhui (2007) have developed a new ANN architecture Statistical 

Fuzzy Interval Neural Network based on Fuzzy Interval Neural Network [109]. Zhu 

Xiaotian, Wang Hong, Xu Li, and Li Huaizu (2008) have found trading volume can 

improve the prediction performance of neural networks by using basic and augmented 

neural network models [110]. Liao Zhe and Wang Jun (2010) have identified some 

results on the global stock indices by using stochastic time effective neural network 

model [111]. 

5.1.3 The study of the winner and loser portfolio 

In their seminal work, De Bondt and Thaler (1985) discovered patterns of return 
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predictability in the U.S. stock market for the long-term horizon of 3 to 5 years. 

Stocks with poor past returns (loser stocks) outperformed those with relatively well 

past performance (winner stocks). In other words, winner and loser stock returns tend 

to reverse over time. De Bondt and Thaler (1985) suggested that investor's overreac-

tions to good and bad news were the cause of this phenomenon. The authors postulat-

ed the overreaction hypothesis based on the findings of an experimental study in psy-

chology conducted by Kahneman and Tversky (1982) [112], wherein individuals were 

found to initially overreact to the arrival of unexpected news. In a similar vein, the 

overreaction hypothesis states that investors tend to overweigh the significance of re-

cent news. Investor's misjudgments cause prices to increase or decrease beyond rea-

sonable levels. Investors then realize their error in judgment, revise their beliefs and 

trade in a manner that results in a return reversal. Follow-up studies have shown that 

the observed overreaction could not be fully attributed to seasonality (De Bondt & 

Thaler, 1987) [113, 114], size (Zarowin, 1990) [114] or risk (Braun, Nelson, & Sunier, 

1995) [115].  

In addition to the long-term overreaction documented by De Bondt and Thaler 

(1985), many studies have documented the existence of short-term overreaction. 

Among these studies, that of Jegadeesh (1990) found significant returns for contrarian 

portfolios that had been formed based on the previous one-month return. Additionally 

[116], Lehman (1990) examined whether overreaction existed in weekly returns [102]. 

Winner and loser stocks were selected based on the returns for the past week. Portfo-

lio returns were then evaluated for five holding periods ranging from 1 to 52 weeks. 

Notable return reversals were documented for both winner and loser portfolios.  

Evaluating weekly returns, Lo and MacKinlay (1990) focused on whether contrari-

an profits are caused by overreaction [117]. Based on their results, the authors con-

cluded that stock market overreaction generated less than 50% of the profits. Moreo-

ver, the authors suggested that contrarian profits might not be solely driven by stock 

market overreaction and presented the lead lag effect as a primary contributor. How-

ever, Jegadeesh and Titman (1995) argued that contrarian profits are not generated by 
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the lead lag effect [118]. In their study, a similar strategy to that of Lo and MacKinlay 

(1990) was employed where stocks were ranked using past one-week returns, and the 

contrarian portfolio was held for the following week. A larger sample of stocks was 

employed over the period from 1963 to 1990. Significant contrarian profits were re-

ported. A decomposition of the contrarian profits revealed that a majority of the prof-

its could indeed be attributed to the overreaction of stock prices to firm-specific in-

formation. Providing further support, Da, Liu and Schaumburg (2010) recently dis-

covered that contrarian returns arise as a result of investor overreaction in response to 

the arrival of firm-specific news on discount rate as well as liquidity shocks [119].  

Kang, Liu and Ni (2002) found short-term contrarian returns for the Chinese stock 

market [120]. Unfortunately, the loser minus winner portfolio which was formed 

based on the past 1-week return yielded significant returns for only the holding period 

of 1 week. Whilst returns were largely positive from weeks 2 to 26, none of the re-

turns were significant. A later study by Wang, Burton and Power (2004) corroborated 

the evidence by documenting significant returns for only the first week after portfolio 

formation [121]. Returns for weeks 2 to 20 were insignificant. In contrast to situation 

in the Chinese market, Chou, Wei and Chung (2007) documented highly profitable 

contrarian returns for the Tokyo stock exchange [122]. For the one-month formation 

period, the returns were significant for all holding periods, from 1 to 24 months. Re-

cently, a study by Griffin, Kelly and Nardari (2010) covered 56 stock markets with 

loser minus winner portfolios constructed based on 1-week holding and formation pe-

riods [123]. Argentina, Zimbabwe, Canada and Pakistan recorded some of the highest 

average weekly returns for the contrarian portfolio. Overall, returns were significant 

for 21 out of the 26 developed stock markets and 14 out of the 17 emerging markets 

that were examined.  

One of the earliest studies of the Malaysian stock market was conducted by Mohd 

Arifin and Power (1996) [124]. The authors investigated overreaction using weekly 

data from 1990 to 1994. It should be noted that the study was severely limited in 

terms of sample size, as only 47 stocks were studied. Moreover, only the top and bot-
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tom 10 stocks were selected for the winner and loser portfolios. Thus, the stocks in the 

winner and loser portfolios were limited compared to previous studies. The KLSE 

composite index was used to compute market-adjusted excess returns, and the average 

cumulative excess return (ACER) was examined over ten weeks. The winner stocks 

exhibited negative returns for weeks one to three, and the loser stocks yielded positive 

returns throughout the ten weeks, indicating the existence of return reversals. The 

ACER of the loser minus winner stocks was also positive for all ten weeks. However, 

the statistical significance of the ACER could not be assessed as the t-value and/or 

p-value was not provided by the authors. Nevertheless, the CER p-value indicated that 

the returns were positively significant for one week following portfolio formation. 

Though accompanying data on significance was not provided, the authors concluded 

that overreaction is statistically significant for the first two weeks.  

Ahmad and Tjan (2004) found that winner and loser stocks experience return re-

versals and claimed that overreaction does occur in Malaysia [125]. However, loser 

minus winner portfolios did not yield any significant positive returns. On the contrary, 

the returns were negative and insignificant. As stipulated by De Bondt and Thaler 

(1985), the difference between the loser and winner portfolios has to be significantly 

positive to justify that overreaction is indeed present. The lack of evidence found 

could be attributed to the sample selection method employed. Rather than screening 

the entire stock universe and choosing a reasonable percentage or number of stocks 

for portfolio formation, only the top 10 best and worst performing stocks which were 

as reported by the local newspaper were selected. Moreover, the sample was tested for 

only a one-year period. The holding period was restricted to 1, 2 and 3 weeks. The 

authors also investigated the effect of the 1997 Asian financial crisis by dividing the 

sample into pre-crisis (January to June 1997) and crisis (July to December 1997) pe-

riods. Returns for the pre-crisis period remained negative but were surprisingly sig-

nificant at the 5% level for the two weeks holding period with a return of 7.88%. 

During the crisis, contrarian returns were positive but insignificant, and the highest 

return of 2.99% was obtained for the two weeks holding period. Overall, the evidence 
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pointed towards an unprofitable contrarian strategy for 1997.  

Recently, Ali, Nassir, Hassan and Abidin (2010) also studied short-term overreac-

tion in the Malaysian stock market [126]. However, the study was limited to gauging 

the market reaction to specific events. In particular, 13 individual events which took 

place between January 1987 and December 2006 were investigated. Overall, the re-

sults were inconclusive. Overreaction was found for some events (e.g. political 

events), but not for others such as international events. Nevertheless, it should be 

noted the actual sample size used in the study was not specified. Moreover, neither the 

method for computing abnormal returns nor the market proxy was detailed. 

In our previous study, we select the trading data from January 2007 to June 2011 in 

stock market in Shanghai, and the result of empirical study shows that there has been 

overreaction in the stock market [127]. In this simulation, the data from 2004 to 2014 

is chosen to verify the overreaction in shanghai stock market once again, and it is for 

the first time to take advantage of a neuron model with dendritic nonlinearity to fit 

and predict the tendency of overreaction. This new approach is aimed to provide a 

novel solution for future research. 

Chapter 5 is organized as follows: Section 5.2 gives the sample selection and test 

methods; Section 5.3 shows the experiments and results. The final section gives the 

conclusion and recommendations for future researches. This study will not only make 

contribution to the ANN research but also to the business implementations of stock 

market. 
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5.2 Empirical Study on the Overreaction 

5.2.1 Sample Selection and Test Methods 

This thesis extracts randomly 200 stocks from the shanghai stock market, the 

timeframe under examination is set from January 2004 to October 2014, and the data 

examined are the daily closing prices in that period. Considering stock dividends and 

right offerings, the returns of each stock is calculated on the price which excludes 

right. If a stock is in suspension, it means that the stock’s closing price remains the 

same. Based on the sequence of the level of cumulative abnormal returns in formation 

period, the 20 top stocks constitute the winner portfolio, and the loser portfolio is 

composed of the 20 lowest stocks. 

5.2.2 The Sorting Methods in Formation Period 

The formation period in the thesis is divided into 3 months, 6 months, 12 months 

and 24 months and the corresponding test period is divided into 1 month, 3 months, 6 

months, 12 months, 24 months and 36months. If the reference time, the length of 

formation period and the length of test period are set to T0, T1 and T2, respectively, 

then (T0 − T1, T1) is the formation period, and (T0, T0 + T2) is the test period. If refer-

ence time is constant, there can be more combinations of formation period and test 

period. The formations period and test period of these combinations do not overlap, 

but the current test period and the next formation period may overlap. 

The calculation of excess returns uses incorporates a marketing adjustment, as it is 

used by the De Bondt, Richard Thaler and Paul Zarowin. The formula is 

ERi,k=Ri,k-Rm,k; i=1,2,3,…,n 

Ri,k is yield of stock I in k month. 

Rm,k is yield of market in k month. 

Cumulative abnormal return of stock I in formation period is CE𝑅𝑅𝑖𝑖 = ∑ 𝐸𝐸𝑅𝑅𝑖𝑖,𝑘𝑘𝑘𝑘  
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5.2.3 The Test Methods in Test Period 

Based on the sequence of the level of cumulative abnormal returns in formation pe-

riod, the top 20 stocks make the winner portfolio and the lowest 20 stocks make the 

loser portfolio. Thus, the calculated average abnormal monthly returns of each com-

bination are given by: 

ARw,k =
∑ ERi,k

w
i

n1
                                                       (17) 

ARl,k =
∑ ERi,k

l
i

n1
                                                       (18) 

CARw,k = � ARw,k
k

                                                 (19) 

CARl,k = � ARl,k
k

                                                  (20) 

Here, ARw,k is the average abnormal monthly returns of winner portfolio, ARl,k is 

the average abnormal monthly returns of loser portfolio, CARw,k is the average cumu-

lative abnormal monthly returns of winner portfolio, and CARl,k is the average cumu-

lative abnormal monthly returns of loser portfolio. 
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5.3 Experiments and Results  

5.3.1 Empirical result of overreaction 

Table 5-1 CAR of the winner and loser portfolios. 

Formation 
period 

Test period CAR 

 One 
month 

Three 
months 

Six 
months 

Twelve 
months 

Twenty- 
Four 

months 

Thirty- 
Six 

months 

Eighteen 
months 

Winner 
portfolio 

(W) 
0.1969 0.2918 0.3854 0.5064 0.7110 0.9838 

Loser 
portfolio 

(L) 
0.2495 0.4350 0.5590 0.6667 0.7864 0.9674 

L-W 0.0526 0.1433 0.1736 0.1603 0.0754 -0.0164 

According to the method and design mentioned above, a lot of descriptive data are 

gotten. And, we find that the average cumulative abnormal returns (CAR) of loser 

portfolio has been greater than that of winner portfolio in 18 months formation period. 

The result is basically consistent with the former study. And that is to say, there are 

clearly overreaction happened on the shanghai stock market. Table 1 shows the data 

belonging to the 18-month formation period, CAR of winner portfolio and loser port-

folio. Moreover, Figure 3 shows the alteration of CAR belonging to winner and loser 

portfolios. Combined Table 5-1 and Fig. 5-1, the difference of CAR between the loser 

and winner portfolios reaches a maximum of 17.36% at six month. Furthermore, the 

degree of overreaction gradually decreases with time, and finally has gone to disap-

pear. Moreover, one may get significant arbitrage profit on the overreaction period by 

buying the stocks of loser portfolio at an early stage and selling the ones of winner 

portfolio. 

However, the data listed in Table 5-1 is not enough to train the NMDN on a more 

refined level. In order to display the alteration of winner and loser portfolio more pre-

cisely, Fig. 5-2 shows the curve of 94-month test period with the step of one month. In 
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Fig. 5-2, the curve of L-W goes to under 0, meansings that the overreaction disappears. 

Furthermore, Fig. 5-3 shows the difference between loser portfolios’ the average ab-

normal monthly return (AR) and winner portfolios’. The NMDN is used to predict the 

difference of AR and then to predict the CAR curve of L-W. 

5.3.2 Parameters of NMDN 

As mentioned in Chapter 2, there are some parameters in NMDN need to be set up. 

Different parameters of NMDN have distinct influence on the training and predicting, 

however, there has been no clear criterion to determine which values of parameters 

can maximize the ability of NMDN. For the reason, Table 5-2 shows the mean 

squared error (MSE), epoch of learning (Epochs), learning constant (η), threshold (γ), 

K, Ksoma and Branch in this simulation empirically. 

Table 5-2 NMDN parameters applying for training and prediction. 

K Ksoma Branch γ η Epochs MSE 
3 3 25 0.5 0.01 10000 0.0001 

However, in order to train NMDN for prediction, the input data of NMDN is de-

fined in Table 5-3. In this simulation, the average abnormal monthly returns (AR) is 

selected as input data for NMDN, and n-months data, indicated as the step, is used for 

predict the data of (n+1)-month. The NMDN has been trained 50 times on each step, 

respectively. 

Table 5-3 The train data of NMDN. 

 
Step 

3 4 5 6 
Train data 40 

5.3.3 The result of prediction 

Fig. 5-4 shows the average curve of prediction on each step. The curve, using 3 

months data as input data to predict the data of following month, has departed from 

the standard curve. It discloses that there may be no relationship on using 3-months 
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data to predict the one of following month. Moreover, although it performs not so well 

on using the data of 4, 5 and 6 months to predict the data of the following month, 

NMDN has succeeded in predicting the tendency of L-W, which is decrease. In order 

to quantify the fitness of prediction, the goodness of fit, R, is introduced to compare 

the performance on different steps. Table 5-4 shows the values of R on different steps. 

Higher values indicate that the model fits the data better. 

Table 5-4 The goodness of fit, Rnew. 

 
Step 

3 4 5 6 
Rnew -0.2548 0.6601 0.6763 0.6797 

Combined Fig. 5-4 with Table 5-4, it becomes evident that the R turns larger with 

increasing steps. The growth of R indicates that with the increase of steps, the correla-

tion between the data of first n-month and following month greatly improves. This 

result indicates a possible connection between on the first n-month and following 

months. 

Figure caption 

Fig.5-1 CAR curves of 18-month formation period. 

Fig.5-2 CAR curves of 18-month formation period for 94 months. 

Fig. 5-3 The difference between loser portfolio’s CAMR and winner portfolio’s. 

Fig.5-4 Average prediction result on different steps. 
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Fig.5-1 CAR curves of 18-month formation period. 

 

Fig.5-2 CAR curves of 18-month formation period for 94 months. 
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Fig. 5-3 The difference between loser portfolio’s CAMR and winner portfolio’s. 

 

Fig.5-4 Average prediction result on different steps. 
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In this thesis, a neuron model with dendritic nonlinearity (NMDN) is proposed to be 

used for classifying the breast cancer, and is compared with the classic BPNNs on the 

accuracy, convergence rate, stability and AUC. The average accuracy of NMDN is 

97.8%. And, with the growth of quantity of branches in NMDN and nodes of the hid-

den layer in BPNNs, growth of sensitivity raises. Furthermore, the growth of accuracy 

in NMDN is faster than BPNNs. In addition, the accuracy of NMDN having 5 

branches is lower than BPNNs, thus, a conjecture is proposed that there is some con-

nection on the quantity of redundant synapses and branches of initial state. The con-

vergence rate of NMDN converges faster with the growth of branch; conversely, the 

convergence rate of BPNNs is slower with the growth of nodes in hidden layer. 

Through comparing the initial and final errors of NMDN and BPNNs, not only does 

the NMDN perform more steadily, but also releases the local minimum problem. The 

average AUC of NMDN is 0.9741, higher than BPNNs. It indicates that the perfor-

mance of NMDN is superior and stable from another aspect. Finally, we extract a re-

lationship on attributes to detect the breast cancer from the evolved dendrite mor-

phology. To combine the results in this thesis with the ones of [52] and [63], The uni-

form shape, Bare Nuclei and the Clump thickness can be treated as the important fac-

tors to detect the breast cancer. In addition, the uniformity of cell size, marginal adhe-

sion and mitoses may be removed from the detection of breast cancer in the future. On 

the basis of analysis, the results show that the NMDN processes a superior ability of 

classifying the possible breast cancer. Moreover, it is proved that a neuron holds a 

very huge computing ability and the brain of the computation is undervalued [21]. We 

also believe that the proposed model can be helpful to the medical researchers for 

them as a new choice for their final decision.  

Moreover, the overreaction in Shanghai stock market is confirmed once again by 

using later data. With time going by, the influence of overreaction, which happened 

from 2007, can be found to decrease and to disappear finally. 

And, for the first time, NMDN is also used to predict the tendency of overreaction. 

The first n-months’ data is treated as input data to predict the data of following month. 



７５ 
 

The result shows that the neuron model possesses huge computational ability and 

successes in predicting the tendency of overreaction. Moreover, with the increase of 

steps on inputs, the correlation between the data of first n-month and following month 

turns more and more tightly together. Moreover, NMDN provides another new ap-

proach for the researchers. 
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