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Abstract

In 2012, a new boson was discovered with the mass 126 GeV at the Large Hadron Collider
(LHC). After that, the spin of this boson turned out to be zero. It was also confirmed that this
boson couples to many of the standard model (SM) particles. Consequently, the new particle
was identified to be a Higgs boson, which plays a role of triggering spontaneous breaking of
the electroweak gauge symmetry and generating masses of elementary particles. Furthermore,
its coupling strength to the other particles seems to be consistent with the prediction in the
SM within the error of the current data. Therefore, the SM was found to be a very successful
model even with including the Higgs sector.

However, none of the researchers believes that the SM is a fundamental theory of particle
physics. In the SM, only Electromagnetic Force and Weak Force are unified to Electroweak
Force at the energy scale above 100 GeV, which is written as a quantum gauge field theory
with the gauge symmetry SU(2)L × U(1)Y . On the other hand, Strong Force is described as
an independent gauge theory with SU(3)C , the quantum chromodynamics. Consequently, the
gauge structure of the SM is given by SU(3)C × SU(2)L × U(1)Y . From the viewpoint of the
history of unification of law in physics, the SM is nothing but a low energy effective theory of a
more fundamental theory such as the grand unified theory (GUT), in which the gauge structure
in the SM is derived from a more simple structure such as SU(5), SO(10), and so on.

Another reason why the SM is not a fundamental theory arises from its Higgs sector. As
the Higgs field is the order parameter of electroweak gauge symmetry breaking, it must be a
scalar field. It has been known that the introduction of such a scalar field into a gauge field
theory is problematic, yielding quadratic ultraviolet divergences in the radiative correction to
the mass of the Higgs boson. Renormalization of these quadratic divergences bring a serious
problem of huge fine-tuning, so-called the hierarchy problem. Clearly, a new physics model
beyond the SM is necessary at the TeV scale, in which the quadratic divergences are canceled
and the hierarchy problem disappears.

Introduction of supersymmetry (SUSY) at the TeV scale is a charming idea. SUSY is
the symmetry between bosons and fermions. The quadratic divergences from a bosonic loop
contribution and from a fermionic loop contribution are canceled with each other in SUSY
theories. Supersymmetric extensions of the SM have been extensively investigated for previous
three decades. The minimal supersymmetric standard model (MSSM) predicts a set of new
particles at the TeV scale, SUSY partner particles of the SM ones. In addition, the Higgs
sector is predicted to be composed of two Higgs doublets in the MSSM, in which the mass of
the SM-like Higgs boson is preferred to be less than about 120 GeV without large fine-tuning.
The recent LHC results that the mass of the Higgs boson is 126 GeV and that no other new
particles has not been found yet seem to indicate the tension between the MSSM and the
hierarchy problem. Some extended models from the MSSM are also investigated to relax this
tension. In the next-to-minimal supersymmetric standard model (NMSSM), the mass of the
Higgs boson can be greater than that in the MSSM, and the experiment value of the Higgs
boson mass may be explained easier.

SUSY-GUTs are attractive, because the hierarchy problem disappears and the gauge cou-
plings are unified with better accuracy as compared to the GUT without SUSY. The unification
scale is typically 1016 GeV. However, SUSY-GUTs also have a new fine-tuning problem. In
these models, there is the mass splitting between the color triplet and the SU(2)L doublet Higgs
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fields, which arises from common multiplet. This is so-called the doublet-triplet splitting prob-
lems. On the other hand, in general, it is very difficult to test models of GUTs at the collider
experiments. The GUT scale is typically O(1016) GeV that is inferred from gauge coupling
unification scale. Due to the decoupling theorem, it is difficult to test GUTs at the high energy
collider experiments. Currently, tests of GUTs rely on checking relations among parameters of
new particles by flavor experiments indirectly.

In this thesis, we discuss a new type of GUTs, the supersymmetric grand unified theory
with the Hosotani mechanism (SGGHU). This model was proposed to solve the doublet-triplet
problem. This model predicts the existence of adjoint chiral superfields whose quantum numbers
are equal to the gauge bosons in the SM, and masses are at the supersymmetric breaking scale,
namely at the TeV scale. The Higgs sector is extended with additional SU(2)L triplet and
singlet chiral multiplets. Therefore, properties of particles in the Higgs sector are different from
the SM, the MSSM and other models. In this thesis, phenomenological analyses of the SGGHU,
especially the mass spectrum of the particles in the model and the coupling constants of the
Higgs sector are investigated. We calculate deviations in coupling constants of the standard
model-like Higgs boson and the mass spectrum of the additional Higgs bosons. We find that
our model is distinguishable from the others by precision measurements of these couplings and
masses of the additional Higgs bosons. We show the testability of our model at the collider
experiments such as the luminosity up-graded Large Hadron Collider and the International
Linear Collider.
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Chapter 1

Introduction

The standard model (SM) for particle physics has been successful in describing high-energy
phenomena at collider experiments. Particles in the SM cannot have masses under the gauge
symmetry SU(3)C × SU(2)L × U(1)Y . In order to give masses to the SM particles, the elec-
troweak symmetry (SU(2)L × U(1)Y ) is broken into the electromagnetic symmetry (U(1)EM)
by introducing an SU(2)L doublet which obtains the vacuum expectation value (VEV) by the
spontaneous symmetry breaking. Consequently, quarks, charged leptons and weak gauge bosons
obtain their mass. In July 2012 at the Large Hadron Collider (LHC) a new boson with the
mass of 126 GeV was found [1]. Since spin-2 was excluded with 99% C.L. by ATLAS [2] and
CMS [3], it was confirmed that the spin of this boson is 0. Its coupling to many of the SM par-
ticles was also confirmed. From these facts, a new particle was identified to be a Higgs boson.
In addition, its coupling strength to the SM particles is almost correspond to the prediction in
the SM within the error of the current data. The SM is likely to be correct at the moment.

However, there are good reasons to consider new physics beyond the SM. We already know
phenomenological problems such as the existence of dark matter [4], baryon asymmetry of the
universe and neutrino oscillation, all of which cannot be explained in the SM. The SM also has
a theoretical problem, so-called the hierarchy problem. Since quadratic ultraviolet divergences
appear in the radiative correction to the mass of the Higgs boson, a huge cancelation between
its bare mass and loop contribution is required for the renormalization of the Higgs boson mass.
It is a serious fine-tuning. We need a new physics model which can solve this problem.

The Higgs sector in the SM has the minimal form with only one SU(2)L doublet scalar
field, which is just a hypothesis. Actually, some of new physics models have extended Higgs
sectors. For instance, the Higgs sector in the minimal supersymmetric standard model (MSSM)
is composed of two doublet scalar fields. The Higgs sector in some models which can explain
the mass of the neutrino contains an additional SU(2)L triplet scalar field. If the form of the
Higgs sector is experimentally determined, we can decide a new paradigm for physics beyond
the SM. Even though no other new particles is found directly at the collider experiments, we can
obtain properties of the Higgs sector by an indirect way. Measuring the Higgs boson couplings
with high accuracy, we could obtain deviations in Higgs couplings from the SM predictions.
Using these deviations and finding the pattern of deviations at future collider experiments, the
Higgs sector could be determined by fingerprinting with the data. With this guide, we focus
on physics of the Higgs sector.

It has been known that the supersymmetry (SUSY) can solve the hierarchy problem. SUSY
is the symmetry between bosons and fermions. Since the loop effect of scalar bosons is opposite
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from that of fermions, the quadratic divergences from a bosonic loop contribution and from
a fermioic loop are canceled in SUSY models. In the MSSM, the Higgs boson is lighter than
the Z-boson at the tree-level. For this reason, the 126 GeV Higgs boson needs large loop
corrections with heavy superparticles. On the other hand, since an extended Higgs sector with
a singlet scalar field from the MSSM Higgs sector, so-called the next-to-MSSM (NMSSM [5]),
has an additional quartic coupling via the F-term, the Higgs boson can become relatively heavy
without requiring heavy superparticles as compared with the one of the MSSM [6,7].

From the viewpoint of the history of unification of law in physics, it is natural to consider
that the SM is a low energy effective theory of a more fundamental theory such as grand unified
theory (GUT [8]). Since the GUTs unify the gauge groups in the SM and quantize the electric
charge, the GUTs are very attractive models.

Since the SUSY solves the hierarchy problem, SUSY-GUTs [9] are well-motivated models
of physics beyond-the-SM. However, in the SUSY-GUTs, the GUT breaking scale is typically
O(1016) GeV inferred from the gauge coupling unification. Due to the decoupling theorem [10],
it is difficult to test the SUSY-GUTs at collider experiments, because effects of such a extremely
heavy particles on the low energy effective theory are negligible. At the same time, there is
another difficulty. In the SU(5) SUSY-GUT, the SU(2)L doublet fields necessarily accompany
color triplets Higgs fields. The color triplet Higgs fields are supposed to be as heavy as the GUT
scale for the proton lifetime, but SU(2)L doublet Higgs fields should be around O(102) GeV
for the electroweak symmetry breaking. That is, the SU(5) SUSY-GUT also has a fine-tuning
problem of the mass splitting between the color triplet and SU(2)L doublet Higgs fields, which
are generated from common multiplet, so-called doublet-triplet (DT) splitting problem [11–16].

In this thesis, we consider the supersymmetric grand unified theory with the Hosotani
mechanism, so-called the supersymmetric grand Gauge-Higgs unification (SGGHU). In this
model, the unified symmetry is broken by the Hosotani mechanism [17]. The extra-dimensional
component of the gauge field causes the symmetry breaking. It is known that the SGGHU
realizes naturally the DT splitting [18]. Furthermore this model predicts the existence of chiral
adjoint superfields, color octet, SU(2)L triplet and singlet at the SUSY breaking scale, whose
gauge quantum numbers are the same as the SM gauge bosons. We investigate the Higgs
sector of this model which is extended from that of the MSSM by the SU(2)L triplet and
the singlet chiral multiplets. Due to couplings between the MSSM Higgs doublet and new
Higgs triplet and singlet, the SM-like Higgs boson mass can become large as compared with
the prediction of the MSSM. We derive values of parameters in the low energy effective theory
using the Renormalization Group Equations (RGEs), and evaluate the masses and couplings
of the SGGHU Higgs sector particles. We show the testability of our model at future collider
experiments such as the International Linear Collider (ILC).

This thesis is organized as follows. In Chapter. 2, we review the SM. After the spontaneous
symmetry breaking, quarks, charged leptons, weak gauge bosons, and the Higgs boson obtain
their mass. The parameter in the Higgs sector is restricted by theoretical bounds. In Chapter. 3,
we review the THDM. There are two SU(2)L doublet scalar fields in this Higgs sector. We
analyze theoretical bounds and experimental constraints for parameters in the Higgs sector.
In Chapter. 4, we discuss the SGGHU. In particular, we focus on the Higgs sector which is
extended by the triplet and singlet. We show the testability of our model at collider experiments.
Conclusions are given in Chapter 5. In Appendix, we specify the Higgs sector in the NMSSM
and the SGGHU. Mass matrices of Higgs bosons, neutralinos and charginos, and coupling
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constants among Higgs bosons and other particles are summarized.
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Chapter 2

Standard Model

We here review the Higgs sector in the SM. In the SM, the Higgs sector includes only an
SU(2)L doublet scalar field which is the minimal form. After the spontaneous gauge symmetry
breaking, quarks, charged leptons, weak gauge bosons and Higgs boson obtain their masses.
Then we consider the bounds for the Higgs boson mass.

2.1 Masses of SM particles

2.1.1 Higgs boson mass and gauge boson masses

The Higgs sector of the SM is the minimal form with the one Higgs doublet as

LHiggs = |DµΦ|2 − V (Φ), V (Φ) = −µ2|Φ|2 + λ|Φ|4, (2.1)

Φ =

(
w+

1√
2
(v + h+ iz)

)
, (2.2)

where w+ and z are NG bosons and these are eaten by the longitudinal mode of gauge bosons
after the spontaneous symmetry breaking. v is the VEV of the doublet Higgs. Dµ is covariant
derivative

DµΦ = (∂µ − ig2W
a
µ

τa

2
− igYBµ

1

2
)Φ. (2.3)

From the vacuum condition as the following

∂V

∂h

∣∣∣∣
0

= 0, (2.4)

we obtain µ2 = λv2. The mass of the Higgs boson is

m2
h = 2λv2. (2.5)

We obtain the masses of gauge bosons from the kinematic term after the spontaneous
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SU(3)c SU(2)L U(1)Y

Qi
L 3 2 +1/6

uiR 3 1 +2/3
diR 3 1 −1/3
LiL 1 2 −1/2
eiR 1 1 −1
Φ 1 2 +1/2

Table 2.1: Quantum number of fermions

symmetry breaking. The Z boson, the W boson and the photon are the following:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), (2.6)

Zµ =
1√
2
(g2W

3
µ − gYBµ), (2.7)

Aµ =
1√
2
(gYW

3
µ + g2Bµ). (2.8)

The mass of W boson and Z boson are mW =
g2
2
v and mZ =

√
g22+g2

Y

2
v, respectively. However

the photon remain massless. Using the mixing angle θw, Z and A is written by
(
Z
A

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W 3

B

)
, (2.9)

where

cos θw =
g2√

g2
2 + g2

Y

, sin θw =
gY√
g2
2 + g2

Y

. (2.10)

2.1.2 Fermion masses

The masses of fermions also are obtained by the spontaneous symmetry breaking. In the SM,
quantum number of fermions is Tab.(2.1). The Yukawa sector is written as

LY = −[Qi
LY

ij
d ΦdjR +Qi

LY
ij
u ΦCujR + LiLY

ij
l ΦejR + h.c.], (2.11)

where ΦC = iτ2Φ
∗, Yu,d,l is a 3× 3 complex matrix. These Yukawa terms are diagonalized by a

bi-unitary transformation as

Qi
L → U ijQj, LiL → U ij

l Q
j, uiR → V ij

u u
j
R, diR → V ij

d d
j
R, eiR → V ij

l e
j
R. (2.12)

L → −[Qi
LY

diag
d ΦdjR +Qi

LY
diag
u ΦCujR + LiLY

diag
l ΦejR + h.c.], (2.13)

These diagonalized Yukawa matrices are given by

Y diag
u =




yu 0 0
0 yc 0
0 0 yt


 , Y diag

d =




yd 0 0
0 ys 0
0 0 yb


 , Y diag

l =




ye 0 0
0 yµ 0
0 0 yτ


 . (2.14)
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Therefore, the mass of fermion is the following

mf =
yf√
2
v. (2.15)

2.2 Bound from theory
Bound of the Higgs mass can be obtained from theoretical consideration. We here mention the
unitarity bound and the triviality bound.

2.2.1 Tree-level Unitarity bound

From the unitarity of S-matrix, we can restrict the parameter of the Higgs sector [19], namely,
the coupling λ (or the mass of the Higgs boson mh = 2λv) in the SM. Due to the optical
theorem, The total cross section σtot can be written by the imaginary part of the scattering
amplitude with the scattering angle θ = 0 as

σtot =
1

s
Im[M(θ = 0)], (2.16)

where s is the squired center of mass energy. Since the main contribution of the σtot comes
from 2 body → 2 body process, σtot is also written by

σtot ≥
1

s

∫
d cos θ

|M|
32π

. (2.17)

On the other hand, the amplitude M can be expanded in terms of the Jth partial wave
amplitude aJ as

M = 16π2

∞∑

J=0

(2J + 1)PJ(cos θ)aJ . (2.18)

By combining the Eqs. (2.16), (2.17) and (2.18), we obtain

Re(aJ)
2 + {Im(aJ) −

1

2
}2 ≤ (

1

2
)2 (2.19)

This equation suggests that aJ has to be on the circle with the radius 1/2 and the center
coordinate (0,1/2) in the complex plane. Therefore, |Re(aJ)| ≤ 1/2 at the tree level. We apply
this constraint to the elastic scattering process of longitudinal component of the W boson,
W+
LW

−
L → W+

LW
−
L . In the high energy limit, 0th partial wave amplitude can be calculated as

a0 ∼ −GFm
2
h

4
√

2π
. (2.20)

From Eq. (2.19), we obtain the upper bound of the Higgs boson mass

mh <
2π

√
2

GF

∼ (873 GeV)2. (2.21)
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By considering the partial wave unitarity on the four-channel system, W+
LW

−
L , 1/

√
2ZLZL,

1/
√

2HH and HZL, we can obtain the stronger constraint. In the high energy limit, the scatter-
ing process for longitudinal component of the weak gauge bosons can be replaced by the NG bo-
son modes which is known as the equivalence theorem [20] . In the basis of {w+w−, zz, hh, hz},
this 4 × 4 s-wave amplitude matrix t is given as

t = −GFm
2
h

4π
√

2




1 1√
8

1√
8

0
1√
8

3
4

1
4

0
1√
8

1
4

3
4

0

0 0 0 1
2


 . (2.22)

Since this matrix t has eigenvalues {3/2, , 1/2, , 1/2, , 1/2} ×GFm
2
h/4π

√
2, we obtain

m2
h < (712 GeV)2. (2.23)

2.2.2 Triviality bound

Quartic coupling constant is important in the Higgs sector. Because if quartic coupling constant
is less than zero, then there is possibility that the vacuum is unstable. Using RGEs, we estimate
the quartic coupling constant at the arbitrary scale. In other words, we can know the breaking
scale of this model. In the SM, the running of the quartic coupling constant is written as [21]

dλ

d logQ
≃ 1

16π2
[24λ2 + 12y2

t λ− 6y4
t ], (2.24)

where λ is quartic coupling constant and Q is an arbitrary scale. As shown in above the
equation, running of λ is sensitive for yt. Therefore the top mass mt is an important parameter.
In Ref. [22], when mt = 171.0 GeV, the SM is unbroken at the GUTs scale. On the other hand,
when mt = 175.3 GeV, the vacuum is meta-stable above O(108) GeV.
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Chapter 3

Two Higgs Doublet Model

We review the Higgs sector in the Two Higgs doublet model (THDM). The THDM has two
SU(2)L doublet scalar fields. It is one of the simple extended Higgs model. There are many
motivations for THDM such as SUSY [23], radiative seesaw models [24–26] and electroweak
baryogenesis [27,28]. In the Higgs sector, there are many parameters as compared with that of
the SM. On the other words, additional Higgs bosons other than SM-like Higgs boson appear.
Next, we consider bounds of parameters in Higgs sector from the experimental and theoretical
constraints. Finally, we show the allowed region of parameters.

3.1 Higgs sector

THDM contains two SU(2)L doublet scalar fields. The most general Higgs potential is written
as

V (Φ1,Φ2) =m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −m2

3(Φ
†
1Φ2 + h.c)

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+ [
λ5

2
(Φ†

1Φ2)(Φ
†
1Φ2) + λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.], (3.1)

where Φ1 and Φ2 are SU(2) doublet fields with Y = 1/2, m1,2 and λ1−4 are real, and m3 and
λ5−7 are complex. Yukawa sector is given by

LYTHDM = −[Qi
LY

ij
d (Φ1 + Φ2)d

j
R +Qi

LY
ij
u (ΦC

1 + ΦC
2 )ujR + LiLY

ij
l (Φ1 + Φ2)e

j
R + h.c.]. (3.2)

As we can see from Eq.(3.2), Yukawa sector cannot be diagonalized simultaneously. In other
words, general THDM contain flavor changing neutral current(FCNC) at tree-level. In order
to avoid the tree-level FCNC, we consider the THDM with discrete Z2 symmetry under which
two Higgs fields behave as Φ1 → Φ1 and Φ2 → −Φ2 but we allow soft breaking term [29].
There are four kinds of Yukawa interactions under the discrete Z2 symmetry which are listed
in Tab. 3.1 [30,31]. Then the Higgs potential is given by

V(Φ1,Φ2) =m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −m2

3(Φ
†
1Φ2 + h.c)

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+ [
λ5

2
(Φ†

1Φ2)(Φ
†
1Φ2) + h.c.]. (3.3)
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Φ1 Φ2 uR dR lR QL, LL
Type I + - - - - +
Type II + - - + + +
Type X + - - - + +
Type Y + - - + - +

Table 3.1: The charge assignments of the discrete Z2 symmetry

λ6,7 terms are forbidden by the discrete Z2 symmetry. This Higgs sector has real six parameters
and two complex parameters. We take two complex parameters λ5 and m3 to be real assuming
that CP is conserved in the Higgs sector. The Higgs doublet fields are parametrized as

Φi =

(
w+

1√
2
(vi + hi + izi)

)
. (3.4)

where the VEVs v1 and v2 satisfy
√
v2

1 + v2
2 = v ≃ 246 GeV and tanβ = v2/v1. The mass

eigenstates are obtained by rotating the component fields as
(
h1

h2

)
= R(α)

(
H
h

)
,

(
z1

z2

)
= R(β)

(
z
A

)
,

(
w±

1

w±
2

)
= R(β)

(
w±

H±

)
, (3.5)

where w± and z are Nambu-Goldstone bosons, h, H, A and H± are respectively two CP-even,
one CP-odd and charged Higgs bosons, and

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (3.6)

From the vacuum conditions:

m2
1 = m2

3 tan β − λ1

2
v2

2 −
1

2
λ̄v2

2,

m2
2 = m2

3 cot β − λ2

2
v2

1 −
1

2
λ̄v2

1, (3.7)

where λ̄ = λ3 + λ4 + λ5. Using Eq.(3.5) and Eq.(3.7), we obtain physical scalar masses as

m2
H± = M2 − 1

2
(λ4 + λ5)v

2,

m2
A = M2 − λ5v

2,

m2
H,h =

1

2

[
M2

11 +M2
22 ±

√
(M2

11 +M2
22)

2 + 4M2
12

]
. (3.8)

Matrix elements Mij are

M2
11 = λ1v

2 cos4 β + λ2v
2 sin4 β + 2λ̄v2 sin2 β cos2 β,

M2
22 = M2 + (λ1 + λ2 − 2λ̄) sin2 β cos2 β,

M2
12 =

1

2
(−λ1 cos2 β + λ2 sin2 β + λ̄ cos 2β)v2 sin β cos β, (3.9)
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where soft breaking parameter M2 = m2
3/(sin β cos β) [32]. The eight parameters λ1−5 and

m2
1−3 are replaced by mixing angles α and β, physical masses mA, mh, mH and mH± , the VEV

v and soft breaking parameter M2. In particular, the quartic coupling constants are expressed
in terms of physical Higgs boson masses, mixing angles and the soft breaking parameter as

λ1 =
1

v2 cos2 β
(−M2 sin2 β +m2

H cos2 α+m2
h sin2 α), (3.10)

λ2 =
1

v2 sin2 β
(−M2 cos2 β +m2

H sin2 α+ h2
h cos2 α), (3.11)

λ3 =
1

v2
[−M2 + (m2

H −m2
h)

sin 2α

sin 2β
+ 2m2

H± ], (3.12)

λ4 =
1

v2
(M2 +m2

A − 2m2
H±), (3.13)

λ5 =
1

v2
(M2 −m2

A). (3.14)

The coupling constants of the CP-even Higgs boson with the weak gauge boson hWW and
HWW are proportional to sin(β − α) and cos(β − α), respectively. When sin(β − α) = 1,
only h couples the weak gauge bosons. Then h behaves as the SM Higgs boson. Therefore,
in this case h is called the SM-like Higgs boson. It is interesting that THDM has different
couplings of the Higgs boson for each types of Yukawa interactions. In this thesis, we do not
mention difference for types of Yukawa interactions, although we refer to constraints which are
independent of that.

3.2 Bounds of parameters

We here consider the constraints of the parameters of the Higgs sector from experimental and
theoretical bounds, namely, the oblique corrections, the tree-level unitarity and the vacuum
stability which restrict the parameters without depending on the type of Yukawa interactions
in THDM.

3.2.1 Oblique corrections

New physics effects on the electroweak oblique parameters are parameterized by the S, T and
U parameters [33]. In the THDM, the contributions to the electroweak parameters from the
scalar boson loops are given by

SΦ = − 1

4π
[F ′

∆(mH± ,mH±) − sin2(β − α)F ′
∆(mH ,mA) − cos2(β − α)F ′

∆(mh,mA)], (3.15)

TΦ = −
√

2GF

16π2αEM

{
−F∆(mA,mH±)

+ sin2(β − α)[F∆(mH ,mA) − F∆(mH ,mH±)]

+ cos2(β − α)[F∆(mh,mA) − F∆(mh,mH±)]
}
, (3.16)
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where

F∆(m0,m1) =
m2

0 +m2
1

2
− m2

0m
2
1

m2
0 −m2

1

ln
m2

0

m2
1

, (3.17)

F ′
∆(m0,m1) = − 1

3
[
4

3
− m2

0 lnm2
0 −m2

1 lnm2
1

m2
0 −m2

1

− m2
0 +m2

1

(m2
0 −m2

1)
2
F∆(m0,m1)]. (3.18)

For the case with m0 ∼ m1, we have

F∆(m0,m1) ∼
2(m0 −m!)

2

3
− (m0 −m1)

4

30m3
1

+ · · · , (3.19)

F ′
∆(m0,m1) ∼ +

1

3
lnm2

1 +
m0 −m1

6m1

+ · · · . (3.20)

When all the additional heavy scalar bosons are degenerate mA = mH = mH± , we obtain
SΦ = TΦ = 0. In the SM-like limit sin(β − α) = 1 with the further assumption mA = mH , we
have

SΦ = − 1

12π
log

m2
H±

m2
A

, (3.21)

TΦ = +

√
2GF

12π2αEM

(mA −mH±)2. (3.22)

The quadratic dependence on the mass difference between heavy scalar bosons can be early
understood by the approximate formula for mA ∼ mH± in Eq. (3.22). Therefore, the deviation
of the T parameter is insensitive to M .

3.2.2 Tree-level unitarity and vacuum stability

In the SM, the mass of the Higgs boson is constrained by the tree level unitarity. It has been
studied by considering 6×6 scattering matrix of two body scalar states (hh, hz, zz, ω+ω−, hω+, zω+)
where each eigenvalues of scattering matrices are restricted to be less than an criteria ξ as
a0 ≤ ξ [19]. For ξ = 1/2, the Higgs boson mass is bounded to be less than about 710 GeV. In
the THDM, there are 14 neutral [34], 8 singly charged and a doubly charged two body states [35].
In our numerical analysis, absolute values of all eigenvalues for the s-wave amplitude matrix
are required to be less than 1/2 as for a criteria to keep perturbativity [36].

For the constraint from vacuum stability, the Higgs potential is required to be positive for
a large value of the order parameter. In the SM, this condition is expressed by λ > 0 at the
tree level. In the THDM, the condition for vacuum stability is given by [37–39]

√
λ1λ2 + λ3 + min [0, λ4 − |λ5|] > 0. (3.23)

3.3 Combination of Constraints

Combining above constraints, we can show that the results in the case with sin(β − α) = 1,
m2
H = m2

A = M2 and mh = 117, 140, 240, 500 GeV (on the mA – ∆m plane) in Fig. 3.1 as in
Ref. [40], where ∆m = mA −mH± . The masses of neutral scalars and the soft-breaking mass
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parameter are taken to be degenerate m2
A = m2

H = M2. This choice of the parameters would
be rather special in the sense that there is no tanβ dependence in this case. In Eqs.(3.10)
and (3.11) with sin(β − α) = 1, terms dependent on tanβ are proportional to m2

H −M2, and
then one of λ1 and λ2 tends to large when tanβ 6= 1. Therefore, the parameter space is more
restricted by the unitarity constraints in the case without degeneracy. Also when sin(β−α) = 1
is slightly relaxed, the bound from tree level unitarity becomes sensitive to tan β. For larger
values of tanβ, the bound becomes more restrictive. Consequently, the tree level unitarity
bound shown in Fig. 3.1 can be regarded as the most conservative which is independent of the
values of tan β.

In conclusion, we can restrict parameters of the Higgs sector from theoretical bounds and
experimental constraints in the THDM. The magnitude of the mass difference between addi-
tional heavy scalar bosons can be determined to satisfy the electroweak precision data. Since
large coupling constant in the Higgs sector violate the tree-level unitarity, the large mass dif-
ference is also restricted. For the mh ∼ 126 GeV, as shown in the upper two panels of Fig. 3.1,
the only mass difference is restricted.



14 CHAPTER 3. TWO HIGGS DOUBLET MODEL

Figure 3.1: Theoretical and experimental constraints in the parameter space of the THDM.
Uncolored regions are allowed by all the constraints we here considered, i.e., tree level unitar-
ity/stability and electroweak precision data, and direct search bound of charged Higgs boson,
mH± < 79.3 GeV. The mass and mixing parameters are chosen as M2 = m2

H = m2
A, with the

SM-like limit sin(β − α) = 1. In this limit, constraints are independent from tanβ.



15

Chapter 4

Supersymmetric Grand Gauge-Higgs Uni-
fication

In this chapter, first we review briefly SU(5) GUT model which is the simplest GUT model,
and the DT splitting is the fine-tuning problem of mass difference between the colored triplet
Higgs field and the doublet Higgs field in SUSY-GUTs. Then, we discuss the Higgs sector in
the supersymmetric grand gauge-Higgs unification. In our model, the DT splitting is absent
and the Higgs sector is extended from the MSSM one by adding the triplet and the singlet
superfield. Finally, we show deviations in the Higgs couplings with the SM particles from the
SM predictions for some benchmark points, and in masses of additional Higgs bosons from the
MSSM predictions.

Grand Unified Theory [8]

The GUT unifies the SM gauge symmetry, SU(3)C×SU(2)L×U(1)Y . Here, we show the SU(5)
GUT which is the minimal GUT model.

The quarks and leptons of the SM are embedded in representation 5 and 10 of SU(5). The
representation 5 and 10 of SU(5) are given by

5 = {(3,1)1/3, (1,2)−1/2},
10 = {(3,2)1/6, (3,1)−2/3, (1,1)1}, (4.1)

where (X,Y)Z indicates the representation X of the SU(3)C , the representation Y of the
SU(2)L and the hypercharge Z. The adjoint representation 24 of SU(5) include the gauge
bosons of the SM. The adjoint representation 24 of SU(5) is written as

24 = {(8,1)0, (1,3)0, (1,1)0, (3,2)−5/6, (3,2)5/6} (4.2)

where (3,2)−5/6 and (3,2)5/6 are new gauge bosons, so-called X boson. In the GUT, the baryon
number and lepton number are not conserved because quarks and leptons are included in the
same multiplet. GUT models predict the proton decay because the X boson causes transitions
from the quark to the lepton. The amplitudes for the proton decay are inversely proportional
to the mass of the X boson. Since the proton decay has not been detected, the X boson is
supposed to be heavy . Its mass is specifically the GUT scale at the least. The Higgs doublet
which causes the electroweak symmetry breaking is embedded in the representation 5 of the
SU(5). This representation 5 is given by

5 = {(3,1)−1/3, (1,2)1/2}. (4.3)
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Doublet triplet splitting

Here, I mention the doublet triplet splitting which is a fine-tuning problem in the SUSY-GUT
models. As a simple example, we focus on the SUSY SU(5) GUT. This model has two Higgs
superfields H(5) = (HC , Hd)

T and H(5) = (HC , Hu)
T . The superpotential include the following

Yukawa terms

W ⊃ (QQHC), (QLHC), (URERHC), (URDRHC). (4.4)

Using these Yukawa terms, we can construct the dimension five operators that have the form

(QQQL), (URERURDR). (4.5)

The couplings of these effective interactions are expected to be of order

g
(5)
eff ∼ y2/M, (4.6)

where y is typical coupling constants, and M is a typical masses of superfields. Since these
interactions Eq. (4.5) are violating the conservation of the baryon and lepton number at the
one loop level, this model predicts the proton decay. The rate of the proton decay relates to
the effective coupling Eq. (4.6). To avoid the proton decay, M should be large, so HC is of
order the GUT scale [11–16].

The unified symmetry is broken, when the representation 24 Higgs field A obtains the VEV
as the following

〈A〉 =

(
2V 0
0 −3V

)
, (4.7)

where V is of order the GUT scale because this V proves the mass of X boson. The superpo-
tential which include Higgs fields is written as

WDT = H(5)[m+ λ5A(24)]H(5). (4.8)

After the unified symmetry breaking, the SU(3)C triplet Higgs fields and the SU(2)L doublet
fields obtain their mass as following

mC = m+ 2λ5V,

m2 = m− 3λ5V. (4.9)

As is known [41], the doublet Higgs fields are the electroweak scale while V is the GUT scale.
It is difficult to make this mass difference between the colored triplet and doublet Higgs fields
in the same multiplet. It is just a fine-tuning.
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4.1 Model

4.1.1 Review of Supersymmetric Grand GHU

In this subsection, we review briefly the grand GHU scenario proposed in Ref. [18]. This scenario
is a kind of the grand unification where the SU(5) unified gauge symmetry is broken by the
Hosotani mechanism [17]. The simplest setup that can accommodate the chiral fermions is a
five-dimensional (5D) SU(5) model compactified on an S1/Z2 orbifold with its radius being
of the GUT scale. We first discuss the non-SUSY version of the simplest setup discussed in
Ref. [42] for illustration purpose, and then supersymmetrize it [18].

The Hosotani mechanism works on higher-dimensional gauge theories for gauge symme-
try breaking. To be more concrete, the zero modes of extra-dimensional components of the
gauge fields, which behave as scalar fields after the compactification, develop VEVs to break
the gauge symmetry. In order to apply this mechanism to the SU(5) unified gauge symme-
try breaking, massless adjoint scalar fields, with respect to the SU(5) symmetry that remains
unbroken against the boundary conditions (BCs), should appear. It is known that such com-
ponents tend to be projected out in models that realize the chiral fermions due to the orbifold
boundary conditions. In Ref. [42], this difficulty is dodged via the so-called diagonal embed-
ding method [43] which is proposed in the context of the string theory. In our field theoretical
setup on the S1/Z2 orbifold, we impose two copies of the gauge symmetry with an additional
discrete symmetry that exchanges the two gauge symmetries. In other words, the symmetry is
SU(5) × SU(5) × Z2 in our SU(5) model. Here, we name the gauge fields for the two SU(5)

groups A
(1)
M and A

(2)
M , respectively, where M = µ(= 0-3), 5 is a 5D Lorentzian index, and define

the eigenstates of the Z2 action as X(±) = (X(1) ±X(2))/
√

2. We set the BCs around the two
endpoints of the S1/Z2, y0 = 0 and yπ = πR, as

A(1)
µ (yi − y) = A(2)

µ (yi + y), A
(1)
5 (yi − y) = −A(2)

5 (yi + y), (4.10)

for i = 0, π, where y denotes the 5th dimensional coordinate. With these BCs, we see that
A

(+)
µ and A

(−)
5 obey the Neumann BC at each endpoint to have the zero-modes, and thus that

the gauge symmetry remaining unbroken in the 4D effective theory is the diagonal part of the
SU(5) × SU(5) (or our GUT symmetry is embedded into the diagonal part) and an adjoint
scalar field is actually realized.

An interesting point is that the A
(−)
5 is not a simple adjoint scalar field but composes a

Wilson loop since it is a part of the gauge field. The Wilson loop is given by

W = P exp

(
i

∫ 2πR

0

g√
2
A

(−)
5

a
(T a1 − T a2 )dy

)
→ exp (idiag (θ1, θ2, θ3, θ4, θ5)) , (4.11)

where P denotes the path-ordered integral, g is the common gauge coupling constant, T1 and
T2 are the generators of the two SU(5) symmetries, and a is an SU(5) adjoint index. In the last
expression, we show the expression on the fundamental representation for concreteness, and we
have used the (remaining) SU(5) rotation to diagonalize A

(−)
5 . This expression shows that the

VEV (and actually the system itself) is invariant under the shift θi → θi + 2π.
The form of the VEV which is discussed in Ref. [42]. We are interested in is given by

θ1 = θ2 = θ3 = 2π and θ4 = θ5 = −3π, i.e. 〈W 〉 = diag(1, 1, 1,−1,−1) ≡ PW . This VEV does
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not affect the triplet component of the 5 representation but does affect the doublet to split

them. This “missing VEV”, which is forbidden for a simple adjoint scalar field by the traceless
condition, is allowed since the Wilson loop is valued on a group instead of an algebra and thus
is free from the condition. This fact plays an essential role to solve the DT splitting problem.

In this chapter, for simplicity, we do not consider matter fields that are non-singlet under
the both gauge groups. We introduce for instance a fermion Ψ(R,1)(1) with R being a rep-
resentation of the SU(5) group and its Z2 partner Ψ(1,R)(2). Here, we call the above pair a
”bulk R multiplet”. Their BCs are given by Ψ(1)(yπ − y) = −ηΨ

i γ5Ψ
(2)(yπ + y) where ηi = ±1

is a parameter associated with each fermion. As one of ηi can be reabsorbed by changing γ5,
i.e. by the charge conjugation, we set η0 = +1 and ηπ = η hereafter. Then, Ψ

(+)
L and Ψ

(−)
R have

the zero-modes when η = +1 while none have when η = −1, when the VEV of A5 is vanishing.

We note that it is always possible to gauge away the VEV of A5 (∝ θ). In this basis, called
the Scherk-Schwartz basis, the SU(5) breaking effect appears only on the BCs as

Ψ(1)(yπ − y) = −ηΨ
i γ5WRΨ(2)(yπ + y), (4.12)

where WR is the Wilson line phase acting on R. In concrete, for R = 5 with η = −1 when the
above VEV 〈W 〉 = PW is realized, the doublet component has the zero-mode while the triplet
does not.

The same story discussed above can be applied also in SUSY models if we replace all the
fields by the corresponding superfields. Thus, once the desired VEV PW is obtained, the DT
splitting is easily realized by introducing a bulk 5 hypermultiplet with η = −1 for the MSSM
Higgs fields. In a similar way, if we introduce bulk 10 hypermultiplets with η = +1, light
vector-like pairs (U c, Ū c) and (Ec, Ēc) appear. This is utilized to recover the gauge coupling
unification later.

Notice that the zero-modes appear always in vector-like pairs from the bulk fields. The
chiral fermions can be put simply on each boundary. Interestingly, when the VEV 〈W 〉 = PW
is realized, bulk fields serve vector-like pairs in SU(5) incomplete multiplets while the boundary
fields which do not couple to A5 and thus neither to the SU(5) breaking do chiral fermions in
SU(5) full multiplets.

The remaining task to show that the DT splitting problem is actually solved is to examine
when the VEV is realized. Here, we do not request that the vacuum resides on the global
minimum but just require only that it is stable so that the lifetime is long enough. For this
purpose, we have to check if there is no huge tadpole term for the fluctuation of θi around
the desired vacuum, δθi, and if it is not tachyonic around the desired vacuum. Since there are
two largely different scales, the compactification scale and the SUSY breaking scale, the RG
analysis should be performed.

Before going on the low energy effective theory, we note that the exchanging Z2 symmetry,
under which δθi is odd, remains unbroken on the relevant vacuum even though θi is non-trivial.
This is understood by the transformation of the Wilson line which is the order parameter.
Under the Z2 action W transforms as W → W ∗ and the VEV 〈W 〉 is invariant since it is real.
This Z2 invariance prohibit the tadpole terms. In the following, we introduce soft Z2 breaking
as small as the SUSY breaking scale, and thus a small tadpole term will be generated.
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4.1.2 Low Energy Effective Theory

The supersymmetric grand gauge-Higgs unification predicts the existence of chiral adjoint su-
perfields whose quantum number is the same as the standard model gauge fields. These new
chiral adjoint fields are originally embedded in the five-dimensional vector multiplets. In the
SUSY limit, these masses of new chiral adjoint superfields vanish because they are included
in the five-dimensional vector fields. These chiral adjoint fields obtain mass after the SUSY
breaking. Therefore masses of them are not compactification scale, but the SUSY breaking
scale.

We ignore the contribution of the SU(3)C octet to physics at the TeV scale although our
model predicts the existence of SU(3)C octet, SU(2)L triplet and singlet because this chiral
adjoint octet superfield is O(10) TeV due to the radiative correction. Therefore we focus on the
Higgs sector with the triplet and singlet chiral superfield in addition to the MSSM doublets.

The Higgs sector is constructed by the displayed fields in Tab. 4.1. Here Hu (Hd) gives up-
type quark (down-type quark and charged lepton) masses. The superpotential in the effective
theory is given by

W = µHu ·Hd + µ∆tr(∆2) +
µS
2
S2 + λ∆Hu · ∆Hd + λSSHu ·Hd , (4.13)

where ∆ = ∆aσa/2 with the Pauli matrices σa(a = 1, 2, 3). Notice that trilinear self-couplings
are absent among ∆ and S although these couplings are not forbidden by the gauge symmetries
because ∆ and S originate from the gauge supermultiplet. Furthermore, the new two Higgs
couplings λ∆ and λS are unified with the gauge couplings gGUT at the GUT scale as λ∆ =
2
√

5/3λS = gGUT. Masses of fermionic components of ∆ and S are written as m∆ and mS,
respectively, and their magnitudes are of order of the TeV scale because they are generated
by the SUSY breaking [44]. Similarly, the parameter of the supersymmetric tadpole of S is
of order of the SUSY breaking scale. This tadpole term is removed by field redefinition with
generality. The soft SUSY breaking terms are written as

Vsoft = m̃2
d|Hd|2 + m̃2

u|Hu|2 + 2m̃2
∆tr(∆†∆) + m̃2

S|S|2

+

[
BµHu ·Hd + ηS +B∆µ∆tr(∆2) +

1

2
BSµSS

2 + λ∆A∆Hu · ∆Hd + λSASSHu ·Hd + h.c.

]
.

(4.14)

The values of these parameters are obtained by solving the RGEs at the low energy scale.
Notice that the VEV of the neutral component v∆ of the triplet field has to be smaller than
≃ 10 GeV in order to satisfy the electroweak rho parameter.

4.2 RGE Analysis
In this section, we discuss the mass parameters and RGE of coupling constants in our model.
First, we focus on the unification of the three gauge coupling constants. The light adjoint chiral
multiplets , triplet and singlet, destroy unification of gauge couplings, which is achieved in the
minimal SUSY SU(5) GUT. Therefore the gauge couplings unification need additional extra
matter in the our model. Then, solving the RGEs, we derive the values of parameters at the
TeV scale. Finally, we show the some benchmark points consistent with the observed value of
the mass of the Higgs boson.
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SU(3)C SU(2)L U(1)Y
Hu 1 2 +1/2
Hd 1 2 −1/2
S 1 1 0
∆ 1 3 0

Table 4.1: Superfields in the Higgs sector.

4.2.1 Coupling Unification

The coefficients of the beta functions of the gauge couplings in the MSSM are given by

bMSSM = (33/5, 1,−3) , (4.15)

while contributions from the adjoint chiral multiplets are

δadjb = (0, 2, 3) . (4.16)

One way to recover the gauge coupling unification is to introduce incomplete SU(5) multiplets
whose contributions are

δaddb = (3 + n, 1 + n, n) , (4.17)

with n being a natural number. However, too large n may cause violation of perturbativity
around the GUT scale. We here take n = 1, and the unified gauge coupling is in a perturbative
region: αG ≃ 0.3. This case is realized by adding two vector-like pairs of (1,2)−1/2, one of
(̄3,1)−2/3 and one of (1,1)1, where the values denote SU(3)C , SU(2)L and U(1)Y quantum
numbers. Fig. 4.1 shows evolution of the gauge coupling constants in the MSSM (black lines),
the MSSM with the adjoint multiplets (red), and the MSSM with the adjoint and additional
chiral multiplets (blue).

In this model, the strong interaction is not asymptotically free irrelevantly to the choice of
the additional fields to recover the gauge coupling unification. Thus, the QCD corrections are
large, and the masses of the colored particles tend to be large at the TeV scale, as compared to
those in the MSSM. It is interesting to examine the extraordinary pattern of the mass spectrum
of the colored particles for the hadron colliders. We, however, focus on the colorless fields; the
SU(2) triplet and singlet Higgs multiplets. These additional fields couple to the two MSSM
Higgs doublets. Their coupling constants push up the SM-like Higgs boson mass due to the
tree level F -term contribution, and thus the correct value of the Higgs boson mass (around
126 GeV) can be easily realized.

Furthermore, they cause mixing between the MSSM doublet Higgs fields and the additional
Higgs fields, which results in modification of the coupling constants of the SM-like Higgs field.
When such corrections are large enough to be detected at collider experiments, we can dis-
criminate our model by precisely measuring the pattern of the deviations in the Higgs coupling
constants. In the next section, we will discuss these issues in more detail.

One of the characteristic features of this model is that the trilinear coupling constants
between the MSSM Higgs doublets and the additional triplet and singlet are unified with the
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Figure 4.1: Evolution of the gauge coupling constants in the MSSM (black lines), the MSSM with the adjoint
multiplets (red), and the MSSM with the adjoint and additional chiral multiplets (blue) [45].

SM gauge coupling constants at the GUT scale. Thus, the low-energy values of these coupling
constants in the Higgs sector are apparently determined by the RG running once the extra
matters are specified.

For instance, taking the above example of the additional chiral matter multiplets to recover
the gauge coupling unification, the Higgs sector coupling constants λ∆ (red line) and λS (blue),
and the gauge coupling constants (green) evolve as shown in Fig. 4.2. Here, we normalize the
singlet and U(1) gauge couplings as λ′S = (2

√
5/3)λS and g1 = (

√
5/3)gY , respectively, and

one-loop renormalization group equations are used. Since the SU(2) gauge coupling is strong
around the GUT scale, λ∆ grows as the energy decreases. After the SU(2) gauge coupling
becomes weak, λ∆ decreases as the energy decreases due to large trilinear couplings in the
superpotential. We note that the triplet coupling λ∆ remains in a perturbative region down to
the TeV scale. At the TeV scale, we obtain

λ∆ = 1.1 , λS = 0.25 . (4.18)

Similarly, the µ-parameters of the adjoint chiral multiplets are unified at the GUT scale, and
their ratio at the TeV scale is determined as µS : µ∆ : µO = 1 : 2.9 : 230, where µO stands for the
octet µ-parameter. The mass scale of the octet is far beyond the reach of collider experiments,
as discussed qualitatively above.

Let us turn to the running of the soft SUSY breaking parameters. Since the unified gauge
coupling is strong, the gaugino masses around the GUT scale must be large in order to avoid the
experimental gluino mass limit [46]. For instance, for the unified gaugino mass of M1/2 = 3600
GeV, the gluino mass is pushed down to mg̃ = 1400 GeV. As a result, soft mass parameters at
the TeV scale are typically as large as 4-7 TeV for colored particles and 1-2 TeV for colorless
particles. As in the MSSM, the soft mass squared of the up-type Higgs boson, |m̃2

hu
| is enhanced

due to the large top Yukawa interaction. Therefore, some tuning is needed to realize electroweak
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gauge couplings as λ′

S = (2
√

5/3)λS and g1 = (
√

5/3)gY , respectively, and one loop RGEs are used [45].

symmetry breaking. The higgsino mass parameter µ and the CP-odd Higgs boson mass mA

also tend to be 1-4 TeV. In order to realize scenarios where some of the extra Higgs boson
masses are of the order of O(100) GeV, further tuning is required among the input parameters.

4.2.2 Benchmark Points and the Mass of the SM-like Higgs boson

After the electroweak symmetry breaking, four CP-even, three CP-odd and three charged Higgs
bosons appear as physical states in the Higgs sector, as well as six neutralinos and three
charginos. Since the Higgs sector is extended by new additional particles as compared with
the MSSM, the predictions of our model is different from the MSSM. We here focus on the
mass of the SM-like Higgs boson, which is determined by low energy soft SUSY breaking pa-
rameters obtained by solving the RGEs discussed above.

First, we exemplify rough predictions of our low energy effective theory without solving the
RGEs. For relatively large triplet and singlet scalar masses, the SM-like Higgs boson mass is
approximately written as [47]

m2
h ≃ m2

Z cos2 β +
3m4

t

2π2v2

(
ln
m2
t̃

m2
t

+
X2
t

m2
t̃

(
1 − X2

t

12m2
t̃

))
+

1

8
λ2

∆v
2 sin2 2β +

1

2
λ2
Sv

2 sin2 2β ,

(4.19)

where mZ is the Z-boson mass, mt is the top quark mass, mt̃ is the average of the two stop
masses, and Xt = At−µ cot β parametrizes mixing between the two stop quarks. The first two
terms correspond to the MSSM prediction. The last two terms originate from the existence of
the trilinear couplings between the MSSM Higgs doublets and the additional triplet and singlet.
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Within the MSSM, at the tree level the SM-like Higgs boson mass is smaller than the Z-
boson mass. In order to reach 126 GeV using the effect of the stop loop correction, the mass
scale of the stops or the mixing parameter Xt should be large. For Xt = 0, the stop mass
should be of the order of O(10) TeV. Even in the maximum mixing case where Xt = ±

√
6mt̃,

the stop mass is required to be as large as O(1) TeV [7]. We also note that preferable range for
tan β is larger than 10.

In our model, on the contrary, the predicted Higgs boson mass tends to be larger than that
in the MSSM thanks to the tree level F-term contributions, in particular, for small tanβ region.
Such a result is reminiscent of the NMSSM [5], where the SM-like Higgs boson mass is raised
also by the coupling with a singlet superfield.

For calculation of the masses of the Higgs scalars and superparticles, we have used the
public numerical code SuSpect [48], which takes the DR renormalization scheme, instead of
the approximate formula Eq.(4.19). We have appropriately modified SuSpect to add the new
contributions from the Higgs trilinear couplings. Here, for the simplicity, we have taken the
limit v∆ → 0. The computation of the SM-like Higgs boson mass including these triplet and
singlet contributions is described in Appendix B.1. Notice that the formula given in Eq. (4.19)
is valid when the neutral components of the triplet and singlet are heavier than the MSSM-like
CP-even Higgs bosons. In general, the CP-even Higgs bosons mix with each other and the
formulas for their mass eigenvalues are rather complicated.

Then let us consider the mass of the SM-like Higgs boson including the radiative effects.
As we mentioned, in order to have a successful electroweak symmetry breaking, fine-tuning for
input parameters at the GUT scale is required. Therefore, we will show some benchmark points
that reproduce the mass of the SM-like Higgs boson, instead of scanning the parameter space.
We focus on the following three different cases:

(A) All the Higgs bosons other than the SM-like Higgs boson are heavy.

(B) The new Higgs bosons other than the MSSM-like Higgs bosons are heavy.

(C) The new Higgs bosons affect the SM-like Higgs boson couplings.

Bearing the fact that there are a few GeV uncertainties in the numerical computation of the
SM-like Higgs boson mass, we take the range of 122 GeV < mh < 129 GeV as its allowed
region. Examples of successful benchmark points of input parameters at the GUT scale are
listed in Tab. 4.2. Here, µ and B parameters for the extra matters have insignificant effects on
Higgs sector parameters, and are omitted from the list. Values of parameters of the TeV-scale
effective theory are obtained after RG running and shown in Tab. 4.3.

4.3 Impact on Higgs Properties

In this section, we discuss properties of the particles in the Higgs sector. We will show that our
model can be discriminative from others by measuring the coupling constants and the masses
of the Higgs sector particles at the LHC and future electron-positron collider [49–52]. Even in
the cases where the additional Higgs bosons are beyond the reach of direct discovery at these
colliders, the existence of these new particles can be indirectly probed by precise measurements
of the coupling constants of the discovered SM-like Higgs boson.
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Case tan β M1/2 µΣ

(A)(B)(C) 3 3600 GeV −300 GeV

Case A0 m̃2
0 m̃2

Hu
m̃2

Hd

(A) 5500 GeV (1000 GeV)2 (10375 GeV)2 (8570 GeV)2

(B) 1000 GeV (1800 GeV)2 (12604 GeV)2 (10381.5 GeV)2

(C) 8000 GeV (3000 GeV)2 (10605.1 GeV)2 (8751.4 GeV)2

Case m̃2
5 m̃2

10 m̃2
Σ

(A) −(6300 GeV)2 −(2000 GeV)2 −(570 GeV)2

(B) −(7700 GeV)2 −(1960 GeV)2 −(670 GeV)2

(C) −(6418 GeV)2 −(1638.5 GeV)2 −(400 GeV)2

Table 4.2: Benchmark points of input parameters at the GUT scale [45].

Case M1 M2 M3 µ∆ µS

(A)(B)(C) 194 GeV 388 GeV 1360 GeV −252 GeV −85.8 GeV

Case µ Bµ m̃u3
m̃q3

ytAt

(A) 205 GeV 41400 GeV2 3290 GeV 4830 GeV 4030 GeV

(B) 177 GeV 40800 GeV2 1730 GeV 4480 GeV 6050 GeV

(C) 174 GeV 42000 GeV2 4220 GeV 5550 GeV 2910 GeV

Case m̃∆ m̃S λ
∆

A
∆

λ′

SAS B
∆

µ
∆

BSµS mh

(A) 607 GeV 805 GeV 662 GeV 683 GeV 92000 GeV2 −78700 GeV2 123 GeV

(B) 784 GeV 612 GeV 1340 GeV 1110 GeV 30700 GeV2 −110000 GeV2 123 GeV

(C) 521 GeV 216 GeV 284 GeV 446 GeV 207000 GeV2 −33600 GeV2 122 GeV

Table 4.3: Parameters of the TeV-scale effective theory obtained after RG running [45].

4.3.1 Vertices of the SM-like Higgs boson

First, we investigate the couplings between the SM-like Higgs boson and SM particles, which
have been already measured to some extent at the LHC. So far, the SM predictions has been
consistent. In the future, precision of these observables will be significantly improved by the
high-luminosity LHC and the ILC, and therefore this method serves as a powerful tool in
discriminating beyond-the-SM models.

In our discussion, we treat the vacuum expectation value of the triplet field such as zero due
to the electroweak rho parameter with ρ ∼ 1. At the leading order, the Higgs coupling with
the W - or Z-boson is given by

ghV V = gVmV (RS
11 cos β +RS

12 sin β) , (V = W,Z) (4.20)

and those with the up-type quarks, down-type quarks and charged leptons by

ghuu =

√
2mu

v

RS
12

sin β
, ghdd =

√
2md

v

RS
11

cos β
, ghℓℓ =

√
2mℓ

v

RS
11

cos β
, (4.21)

where RS is mixing of CP-even Higgs boson matrix as shown Appendix B.1. The Higgs self-
coupling is

ghhh = RS
1aR

S
1bR

S
1cλsasbsc

. (4.22)
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ILC(250) ILC(500) ILC(1000) ILC(LumUp)√
s (GeV) 250 250+500 250+500+1000 250+500+1000

L (fb−1) 250 250+500 250+500+1000 1150+1600+2500
γγ 18 % 8.4 % 4.0 % 2.4 %
gg 6.4 % 2.3 % 1.6 % 0.9 %
WW 4.8 % 1.1 % 1.1 % 0.6 %
ZZ 1.3 % 1.0 % 1.0 % 0.5 %
tt̄ – 14 % 3.1 % 1.9 %
bb̄ 5.3 % 1. % 1.3 % 0.7 %
τ+τ− 5.7 % 2.3 % 1.6 % 0.9 %
cc̄ 6.8 % 2.8 % 1.8 % 1.0 %
µ+µ− 91 % 91 % 16 % 10 %
ΓT (h) 12 % 4.9 % 4.5 % 2.3 %
hhh – 83 % 21 % 13 %
BR(invis.) < 0.9 % < 0.9 % < 0.9 % < 0.4 %

Table 4.4: This table was reported in Ref. [52]. Summary of expected accuracies ∆gi/gi for model independent
determinations of the Higgs boson couplings. The theory errors are ∆Fi/Fi = 0.1%. For the invisible branching
ratio, the numbers quoted are 95% confidence upper limits.

where λsasbsc
are tree-level couplings among CP-even Higgs bosons in the gauge basis. The

effective vertex of hγγ is given by [53]

Γ(h→ γγ) =
GFα

2m3
h

128
√

2π3

× |
∑

f

NCQ
2
fghffA

h
1/2(τf ) + ghV VA

h
1(τW ) +

m2
Wλhh+

i h
−

i

2c2Wm
2
h±i

Ah0(τh±i
)

+
∑

χ±

i

2mW

m±
χi

λ
hχ+

i χ
−

i

Ah1/2(τχ±

i

) +
∑

f̃i

1

m2
f̃i

g
hf̃if̃i

NCQ
2
f̃i
Ah0(τf̃i

)|2, (4.23)

where Ahi are amplitudes at lowest-order for spin-0, spin-1/2 and spin-1 particle contributions,
the number of color is NC = 3, Qf denote the electric charges of fermions f and τX = m2

h/4m
2
X

with loop mass mX . For the definitions of the amplitudes Ahi , see, for example, Ref. [53]. The
Higgs boson couplings with the charged Higgs bosons are given by

λhh+
i h

−

j
= RS

1aR
C
ibR

C
jcλsaw

+

b
w−

c
. (4.24)

The corresponding in the SM are

ghV V |SM = gVmV , ghuu|SM =

√
2mu

v
, ghdd|SM =

√
2md

v
, ghℓℓ|SM =

√
2mℓ

v
, ghhh|SM =

m2
Z

v
.

(4.25)

It is useful to define deviation parameters that

κX =
ghXX

ghXX |SM

, (4.26)
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Figure 4.3: The deviations in the Higgs boson coupling with the tau lepton κτ and that with the bottom
quark κb from the SM predictions are plotted. The predictions of the three benchmark points (A), (B) and (C)
in the SGGHU are shown with green blobs. The MSSM and NMSSM predictions are shown with red and blue
lines, respectively. For the purpose of illustration, the NMSSM line is slightly displaced from κτ = κb [45].

where X denotes SM particles. Such deviations are extracted from measurements of the decay
widths of the Higgs boson.

In Fig. 4.3, the deviations in the Higgs boson coupling with the tau lepton κτ and that
with the bottom quark κb from the SM predictions are plotted. The predictions of the three
benchmark points (A), (B) and (C) in the SGGHU are shown with green blobs. The MSSM and
NMSSM predictions are shown with red and blue lines, respectively. Here, we simply adjust the
stop masses and mixing so that the observed Higgs boson mass is reproduced. In our model,
the Higgs boson couplings to the down-type quarks and charged leptons are common and fall
in the type-II Yukawa interactions of the THDM. Therefore, the predicted SGGHU deviations
lie on the MSSM and NMSSM lines, as is evident from Eq.(4.21). The present LHC data has
already constrained the parameter space from the measurement of the Higgs boson coupling
with the tau lepton as κτ < 1.3 [54]. At the ILC with

√
s = 500 GeV, expected accuracies for

the deviations κτ and κb are 2.3% and 1.6%, respectively [52] (in Tab. 4.4).

In Fig. 4.4, the deviations in the Higgs boson coupling with the weak gauge bosons κV and
that with the bottom quark κb from the SM predictions are plotted. The predictions of the
three benchmark points (A), (B) and (C) in the SGGHU are shown with green blobs. The
MSSM predictions are shown with red lines for tanβ = 10 (thick line) and tanβ = 3 (dashed).
The NMSSM predictions are shown with blue grid lines, which indicate mixings between the
SM-like and singlet like Higgs bosons of 10%, 20% and 30% from the right to the left. As is
reported in Ref. [52] (in Tab. 4.4), the ILC with

√
s = 500 GeV can reach accuracy of 1.0%

(1.1%) for the Higgs boson coupling with the Z-boson (the W -boson). Therefore, signatures
different from the MSSM and its variants are expected to be observed using κV at the ILC.
Notice that the VEV of the neutral component of the triplet Higgs boson v∆ is small compared
to those of the doublet Higgs bosons. Therefore, the mixing between the SM-like Higgs boson
and the CP-even component of the Higgs singlet dominates over that between the SM-like Higgs
boson and the triplet component. In this sense, our model is similar to the NMSSM. It will be
difficult to distinguish our model only from these observables.
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Figure 4.4: The deviations in the Higgs boson coupling with the weak gauge bosons κV and that with the
bottom quark κb from the SM predictions are plotted. The predictions of the three benchmark points (A),
(B) and (C) in the SGGHU are shown with green blobs. The MSSM predictions are shown with red lines for
tan β = 10 (thick line) and tanβ = 3 (dashed). The NMSSM predictions are shown with blue grid lines, which
indicate mixings between the SM-like and singlet like Higgs bosons of 10%, 20% and 30% from the right to the
left [45].

In Fig. 4.5, the deviations in the Higgs boson coupling with the charm quark κc and that
with the bottom quark κb from the SM predictions are plotted. As in Fig. 4.4, the predictions
of the three benchmark points (A), (B) and (C) in the SGGHU are shown with green blobs,
and the MSSM and NMSSM predictions are shown with red and blue lines, respectively. In
sharp contrast to the κV -κb relation, correlations between κc and κb strongly depend on the
value of tanβ. For example, the benchmark point (C) with tanβ = 3 is not covered by the
NMSSM predictions with tanβ = 10, and the deviation can be measured at the ILC with√
s = 500 GeV, which aims to measure κc with accuracy of 2.8% (in Tab. 4.4). Independent

tan β measurement using decay of the Higgs boson at the ILC [55,56] will also play an important
role in discriminating models. Although it will be difficult to completely distinguish our model
from the NMSSM from the precision measurements of Higgs boson couplings, if the deviation
pattern of the Higgs couplings is found to be close to our benchmark points, there is a fair
possibility that the SGGHU is realized. The ILC is absolutely necessary for investigating the
Higgs properties and distinguishing particle physics models.

As for other Higgs boson couplings, the deviations of the Higgs boson coupling with the
photon are 0.94 < κγ < 1.0, and those of the Higgs self-coupling 0.82 < κh < 0.93 for the
benchmark points we show. To observe deviations in these observables from the SM predictions
one needs more precise measurements at the ILC with

√
s = 1 TeV [52] (in Tab. 4.4).

4.3.2 Additional Higgs bosons

Finally, we mention the additional MSSM-like Higgs bosons. Since four-point couplings in the
Higgs sector are expressed in terms of gauge couplings and F-term couplings in SUSY models,
differences of the masses of the additional MSSM-like Higgs bosons is useful measures in probing
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Figure 4.5: The deviations in the Higgs boson coupling with the charm quark κc and that with the bottom
quark κb from the SM predictions are plotted. See the caption of Fig. 4.4 for details [45].

more fundamental physics. The charged Higgs boson mass mH± is given by

m2
H± = m2

H±|MSSM(1 + δH±)2

≃ m2
A +m2

W +
1

8
λ2

∆v
2 − 1

2
λ2
Sv

2 , (4.27)

where δH± is the deviation in mH± from the MSSM and mA is the CP-odd Higgs boson mass.
The sign of the singlet contribution is opposite to the triplet one due to the group theory. From
Eq. (4.18), mH± becomes large as compared to the MSSM. We emphasize that these λS and
λ∆ couplings are determined by the RGEs and predicted mH± is always large as compared
with the MSSM that in this model. Since mH±|MSSM is the sum of mA and mW , we can
obtain δH± by measuring mA and mH± precisely. Fig. 4.6 shows the deviation in mH± from the
MSSM as a function of mA in the large soft mass scenario. The green, blue and red lines show
the NMSSM, the triplet-extended MSSM and our model, respectively. The mass deviation is
O(1) % −O(10) %. On the other hand, the deviation in the heavy CP-even Higgs boson mass
mH from the MSSM prediction is less than O(1) %. Since the charged Higgs mass can be
determined with an accuracy of a few percent at the LHC [51], we can test our model.

When the masses of the triplet-like and singlet-like scalar bosons are below 500 GeV, the
ILC and CLIC [50] have capability to directly produce these new particles. For example, the
benchmark point (C) gives mass spectrum of the Higgs sector particles shown in Tab. 4.5. In
this case, the mass of the lighter triplet-like Higgs boson ∆± is less than 500 GeV, and we can
probe ∆± using the channel e+e− → ∆+∆− → tbt̄b̄, which proceeds via the mixing between
the MSSM-like and triplet-like charged Higgs bosons.
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Figure 4.6: The deviation in mH± from the MSSM as a function of the CP-odd Higgs boson mass mA in the
large soft mass scenario. The green, blue and red line correspond to the NMSSM, the MSSM with triplet and
our model case, respectively [45].

CP-even CP-odd Charged

122 GeV − −
139 GeV 171 GeV 204 GeV
370 GeV 304 GeV 496 GeV
745 GeV 497 GeV 745 GeV

Table 4.5: Mass spectrum of the Higgs scalars for the benchmark point (C) [45].
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Chapter 5

Conclusion

We have discussed the phenomenology of the Higgs sector. In particular, we have focused
on the low energy effective theory of the supersymmetric grand Gauge-Higgs unification and
investigated the testability of this model at collider experiments.

The Higgs boson couples to many standard model particles and plays a role of triggering
spontaneous breaking of the electroweak gauge symmetry. The discovered new boson at the
Large Hadron Collider whose coupling strength to the other particles seems to be consistent
with the prediction in the SM within the error of the current data. Therefore, the SM is very
successful model. However, no one believes that the SM is a fundamental theory of particle
physics. The first reason is that the gauge symmetry of the SM is not unified. From viewpoint
of the history of unification of law in physics, the SM is nothing but low energy effective theory
of a more fundamental theory such as the grand unified theory. Another reason is that, the
SM has phenomenological and theoretical problems which cannot be explained in this model.
The hierarchy problem is the fine-tuning problem. Since quadratic divergences appear in the
radiative correction to the mass of the Higgs boson, a huge cancelation between its bare mass
and loop contribution is required for renormalization of the Higgs boson mass in the SM. These
quadratic divergences could be canceled and the hierarchy problem could disappear in a new
physics model beyond the SM.

In these situations, SUSY-GUTs are attractive, because in these models, the SM gauge
groups are unified and the hierarchy problem disappears. Furthermore, the gauge couplings are
unified at the GUT scale. However, SUSY-GUTs also have a fine-tuning problem of the mass
difference between the colored triplet Higgs field and the SU(2)L doublet Higgs field, which are
originated from common multiplet, so-called doublet-triplet splitting. We need a new physics
model which can solve this problem.

In the chapter 3, we have reviewed the two Higgs doublet model as a one of the simplest
extended Higgs model. The THDM contains two SU(2)L doublet scalar fields. It is interesting
that different physics depending on the assignment of the Z2 charge appear in this model. We
can restrict parameters of the Higgs sector which are independent of assignment of Z2 charge
from the vacuum stability, the tree-level unitarity and the precision measurement. We have
shown the allowed region of parameters of the Higgs sector.

In the chapter 4, we have discussed the SGGHU. In this model, the SU(5) grand unified
gauge symmetry is broken by the Hosotani mechanism. This model can provide a natural solu-
tion to the DT-splitting thanks to the phase nature of the Hosotani mechanism and predicts the
existence of the new adjoint chiral superfields whose quantum numbers are equal to the gauge
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bosons in the SM and masses are at the SUSY breaking scale. The Higgs sector is extended
from the MSSM one by the SU(2)L triplet and singlet chiral superfields. We have evaluated
the masses and couplings of the Higgs sector in the our model. These are different from the
SM, the MSSM and other models. For some benchmark points, we have calculated deviations
of couplings between the SM-like Higgs boson and SM particles from the SM predictions. The
deviations of the couplings form the SM values prove to be O(1)% when the triplet-like and
singlet-like Higgs boson masses are below ≃ 1 TeV. In the case of light Higgs bosons, for in-
stance, benchmark point (C), Higgs bosons will be directly produced by the ILC and the CLIC.
The deviation of the charged Higgs boson mass from that of the MSSM is O(1)% – O(10)%
when their masses are below ≃ 500 GeV. Such a deviation is within the scope of the LHC. The
extended Higgs sector in the SUSY models means that the neutralino and chargino sectors are
also extended. In our model, there are six neutralinos and three charginos. We have specified
these mass matrices and couplings to the Higgs bosons in Appendix B.3.2.

We emphasize that our supersymmetric grad gauge-Higgs unification model is a good ex-
ample of the grand unified theory that is verifiable at collider experiments.



Appendix A

NMSSM

In this appendix, we specify the Higgs sector in the NMSSM as the simplest extended of the
MSSM with Z3 symmetry.

A.1 Higgs potential
The Higgs sector of superpotential W and soft-SUSY terms Vsoft are written as

W = +λSSH1H2 +
κ

3
S3, (A.1)

Vsoft = m2
H1
H†

1H1 +m2
H2
H†

2H2 +m2
SS

†S + (−λSASSH1H2 +
κ

3
ASS

3 + h.c.). (A.2)

The SU(2)-doublet superfields are contracted by the antisymmetric tensor ǫab, with ǫ12 = 1.
The neutral component of Higgs fields can be decomposed into their vevs, CP-even and CP-odd
fluctuations as,

H0
i =

1√
2
(vi + Si + iPi), S =

1√
2
(vS + S3 + iP3). (A.3)

The CP-even and the CP-odd mass matrices are diagonalized by an orthogonal matrices RS

and RP , respectively

hi = RS
ijSj,

ai = RP
ijPj. (A.4)

A.2 Definitions of the couplings

A.2.1 Higgs self-couplings

Here, we use for si stands for {hd, hu, s0}, hi stands for {h,H, s0}, pi stands for {zd, zu, zs}, ai
stands for {G0, A, zs} and h±i stands for {G±, H±}. Also, vi stands for {vd, vu} with tan β =
v2/v1 and (v2

1+v2
2)

2 = (246GeV)2. The terms of neutral Higgs sector in the NMSSM Lagrangian
can be written as

L ⊃− λsisjsksl
SiSjSkSl − λpipjpkpl

PiPjPkPl − λsisjpkpl
SiSjPkPl

− λsisjsk
SiSjSk − λsipjpk

SiPjPk, (A.5)

33
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where λs1s1s2s2 = λs1s2s1s2 = λs2s1s1s2 = λs1s2s2s1 = λs2s1s2s1 = λs2s2s1s1 . The trilinear neutral-
Higgs self couplings are written as

λs1s1s1 = λs1p1p1 =
1

8
(g2

2 + g2
Y )v1, λs2s2s2 = λs2p2p2 =

1

8
(g2

2 + g2
Y )v2,

λs1p2p2 = 3λs1s2s2 = −1

8
(g2

2 + g2
Y − 4λ2

S)v1, λs2p1p1 = 3λs2s1s1 = −1

8
(g2

2 + g2
Y − 4λ2

S)v2,

λs3p1p1 = λs3p2p2 = 3λs1s1s3 = 3λs1s1s3 =
λ2
S

2
vS,

λs3s3s3 =
Aκκ

3
√

2
+ κ2vS, λs3p3p3 = −Aκκ√

2
+ κ2vS,

λs1s3s3 =
3λS
2

(−κv2 + λSv1), λs2s3s3 =
3λS
2

(−κv1 + λSv2),

λs1p3p3 =
λS
2

(κv2 + λSv1), λs2p3p3 =
λS
2

(κv1 + λSv2),

λs3p1p3 = −κλSv2, λs3p2p3 = −κλSv1, λs1s2s3 = −λS
6

(
AS√

2
+ κvS),

λs1p2p3 = λs2p1p3 = λS(
AS√

2
− κvS), λs3p1p2 = λS(

AS√
2

+ κvS). (A.6)

The quartic neutral-Higgs self couplings are written as

λs1s1s1s1 = λs2s2s2s2 = λp1p1p1p1 = λp2p2p2p2 =
1

32
(g2

2 + g2
Y ), λs3s3s3s3 = λp3p3p3p3 =

κ2

4
,

λs1s1s2s2 = λp1p1p2p2 = − 1

96
(g2

2 + g2
Y − 4λ2

S), λs1s2s3s3 = λp1p2p3p3 = −κλS
24

,

λs1s1s3s3 = λs2s2s3s3 = λp1p1p3p3 = λp2p2p3p3 =
λ2
S

24
,

λs1s1p1p1 = λs2s2p2p2 =
1

16
(g2

2 + g2
Y ), λs1s1p2p2 = λs2s2p1p1 = − 1

16
(g2

2 + g2
Y − 4λ2

S),

λs1s1p3p3 = λs2s2p3p3 = λs3s3p1p1 = λs3s3p2p2 =
λ2
S

4
,

λs1s2p3p3 = λs3s3p1p2 = −λs1s3p2p3 = −λs2s3p1p3 =
κλS
4

λs3s3p3p3 =
κ2

2
. (A.7)

These couplings can be rewritten as

λsisjhkhl
= 6RS

kaR
S
lbλsisjsasb

, λsisjhkhl
= RP

kaR
P
lbλsisjpapb

,

λsihkhl
= 3RS

kaR
S
lbλsisasb

, λsiakal
= RP

kaR
P
lbλsipapb

. (A.8)
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The terms of the charged and neutral Higgs sector in the NMSSM Lagrangian can be written
as

L ⊃−
∑

i,j,k,l

λsisjh
+

k
h−

l
SiSjh

+
k h

−
l −

∑

i,j,k,l

λpipjh
+

k
h−

l
PiPjh

+
k h

−
l

−
∑

i,k,l

λsih
+

k
h−

l
Sih

+
k h

−
l −

∑

i,k,l

iλpih
+

k
h−

l
Pih

+
k h

−
l , (A.9)

where h±i is the mass eigenstates and stands for (G±, H±). The trilinear neutral-charged cou-
pling are written as

λs1h+
1 h

−

1
=

1

4

(
(g2

2 + g2
Y cos 2β)v1 + (2λ2

S − g2
2)v2 sin 2β

)
,

λs1h+
2 h

−

2
=

1

4

(
(g2

2 − g2
Y cos 2β)v1 − (2λ2

S − g2
2)v2 sin 2β

)
,

λs1h+
1 h

−

2
=

1

4

(
g2
Y sin 2βv1 + (λ2

S − g2
2)v2 cos 2β

)
,

λs2h+
1 h

−

1
=

1

4

(
(g2

2 − g2
Y cos 2β)v2 + (2λ2

S − g2
2)v2 sin 2β

)
,

λs2h+
2 h

−

2
=

1

4

(
(g2

2 + g2
Y cos 2β)v2 − (2λ2

S − g2
2)v2 sin 2β

)
,

λs2h+
1 h

−

2
=

1

4

(
g2
Y sin 2βv2 + (2λ2

S − g2
2)v2 cos 2β

)
,

λs3h+
1 h

−

1
=
λS
2

(
2λSvS − (

1√
2
AS + κvS)

)
,

λs3h+
2 h

−

2
=
λS
2

(
2λSvS + (

1√
2
AS + κvS)

)
,

λs3h+
1 h

−

2
=
λS√

2
(AS + κvS) cos 2β,

λp1h+
1 h

−

2
=

1

4
(2λ2

S − g2
2)v1, λp2h+

1 h
−

2
=

1

4
(2λ2

S − g2
2)v2,

λp3h+
1 h

−

2
=
λS√

2
(AS −

√
2κvS), (A.10)

λs1s1h+
1 h

−

1
= λs2s2h+

2 h
−

2
= λp1p1h+

1 h
−

1
= λp2p2h+

2 h
−

2
=

1

8
(g2

2 + g2
Y cos 2β),

λs1s1h+
2 h

−

2
= λs2s2h+

1 h
−

1
= λp1p1h+

2 h
−

2
= λp2p2h+

1 h
−

1
=

1

8
(g2

2 − g2
Y cos 2β),

λs1s2h+
1 h

−

1
= λp1p2h+

2 h
−

2
= −λs1s2h+

2 h
−

2
= λp1p2h+

1 h
−

1
=

1

8
(2λ2

S − g2
2) sin 2β,

λs1s1h+
1 h

−

2
= λp1p1h+

1 h
−

2
= −λs2s2h+

1 h
−

2
= λp2p2h+

1 h
−

2
= −g

2
Y

8
sin 2β,

λs1s2h+
1 h

−

2
= −λp1p2h+

1 h
−

2
=

1

8
(2λ2

S − g2
2) cos 2β, λs3s3h+

1 h
−

2
= −λp3p3h+

1 h
−

2
=
κλS
2

cos 2β,

λs3s3h+
1 h

−

1
= −λp3p3h+

2 h
−

2
=
λS
2

(λS − κ sin 2β), λs3s3h+
2 h

−

2
= −λp3p3h+

1 h
−

1
=
λS
2

(λS + κ sin 2β).

(A.11)
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A.2.2 Higgs-neutralino couplings

In the NMSSM, the Lagrangian contain Higgs-neutralino couplings as

L ⊃ −
∑

ikl

λsiψ0
k
ψ0

l
Siψ

0
kψ

0
l − i

∑

ikl

λpiψ0
k
ψ0

l
Piψ

0
kψ

0
l + h.c., (A.12)

where ψ0
i = {B̃0, W̃ 0, h̃0

1, h̃
0
2, s̃

0}. The couplings in Eq. (A.12) are symmetric for exchanging
the neutralino indices k and l. The non-zero Higgs-neutralino couplings are following [57]

λs1ψ0
1ψ

0
3

= −λp1ψ0
1ψ

0
3

= −gY
4
, λs1ψ0

2ψ
0
3

= −λp1ψ0
2ψ

0
3

= +
g2

4
,

λs1ψ0
4ψ

0
5

= λp1ψ0
4ψ

0
5

= +
λS

2
√

2
, λs2ψ0

1ψ
0
4

= −λp2ψ0
1ψ

0
4

= +
gY
4
,

λs2ψ0
2ψ

0
4

= −λp2ψ0
2ψ

0
4

= −g2

4
, λs2ψ0

3ψ
0
5

= λp2ψ0
3ψ

0
5

= − λS
2
√

2
,

λs3ψ0
3ψ

0
4

= λp3ψ0
3ψ

0
4

= − λS
2
√

2
, λs3ψ0

5ψ
0
5

= λp3ψ0
5ψ

0
5

=
κ√
2
. (A.13)

A.2.3 Higgs-chargino couplings

The Lagrangian also contain the Higgs-chargino couplings as

L ⊃ −
∑

ikl

λsiψ
+

k
ψ−

l
Siψ

+
k ψ

−
l − i

∑

ikl

λpiψ
+

k
ψ−

l
Piψ

+
k ψ

−
l + h.c., (A.14)

where ψ+
i = {W̃+, h̃+

u } and ψ−
i = {W̃−, h̃−d }. The non-zero Higgs-chargino couplings are

following [57]

λs1ψ+
1 ψ

−

2
= −λp1ψ+

1 ψ
−

2
= +

g2√
2
, λs2ψ+

2 ψ
−

1
= −λp2ψ+

2 ψ
−

1
= +

g2√
2
,

λs3ψ+
2 ψ

−

2
= λp3ψ+

2 ψ
−

2
= +

λS√
2
. (A.15)

A.3 One-loop self energies and tadpole

A.3.1 Scalar self energies

The Higgs contributions to the scalar self energies

16π2ΠH
sisj

(p2) =
3∑

k

2λsisjhkhk
A(mhk

) +
3∑

k,l

2λsihkhl
λsjhkhl

B0(p
2;mhk

,mhl
)

+
3∑

k

2λsisjakak
A(mak

) +
3∑

k,l

2λsiakal
λsjakal

B0(p
2;mak

,mal
)

+
2∑

k

2λsisjh
+

k
h−

k
A(mh±

k
) +

3∑

k,l

λsih
+

k
h−

l
λsjh

+

k
h−

l
B0(p

2;mh±
k
,mh±

l
). (A.16)
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Here, A and B0 are the Passarino-Veltman functions [58].
The neutralino and chargino contributions to the scalar self energies

16π2Πχ
sisj

=
5∑

k,l

4λsiχ0
k
χ0

l
λ∗sjχ0

k
χ0

l

[
(p2 −m2

χ0
k
−m2

χ0
l
)B0(mχ0

k
,mχ0

l
) − A(mχ0

k
) − A(mχ0

l
)

−2mχ0
k
mχ0

l
B0(mχ0

k
,mχ0

l
)
]

+
2∑

k,l

2λsiχ
+

k
χ−

l
λ∗
sjχ

+

k
χ−

l

[
(p2 −m2

χ±

k

−m2
χ±

l

)B0(mχ±

k
,mχ±

l
) − A(mχ±

k
) − A(mχ±

l
)

−2mχ±

k
mχ±

l
B0(mχ±

k
,mχ±

l
)
]
. (A.17)

A.3.2 Tadpole

The contributions to the tadpoles from neutralinos and charginos

16π2T χi = −4
5∑

k

λsiχkχk
mχi

A(mχi
) − 4

2∑

k

λsiχ
+

k
χ−

k
mχi

A(mχi
). (A.18)

The contributions to the tadpoles from Higgs bosons

16π2T φi =

h,a,h±∑

φ

∑

k

λsiφkφk
A(mφi

). (A.19)





Appendix B

SGGHU

In this Appendix, we specify the Higgs sector in the SGGHU.

B.1 Higgs potential

F-term

In the Gauge-Higgs unification model, there are two Higgs doublet Hu = (H+
u ,H

0
u)

T ∼ (2, 1)
and Hd = (H0

d,H
−
d )T ∼ (2,−1), a Higgs singlet S ∼ (1, 0) and a Higgs triplet

∆ = ∆aT a =
1

2

(
∆3

√
2∆+

√
2∆− −∆3

)
∼ (3, 0), (SU(2) × U(1)),

where ∆+ = (∆1 − i∆2)/
√

2 and ∆− = (∆1 + i∆2)/
√

2. The low-energy superpotential is
written as following:

W =µ(Hui
(iτ2)ijHdj

) +
1

2
µ∆∆a∆a +

1

2
µSS

2 + λ∆Hui
(iτ2

σa

2
)ij∆

aHdj
+ λSSHui

(iτ2)ijHdj

=µ{H+
u H

−
d −H0

uH
0
d} +

1

4
µ∆{(∆3)2 + 2∆+∆−}

+
λ∆

2
{H−

d ∆3H+
u +H0

d∆
3H0

u −
√

2H0
d∆

−H+
u +

√
2H−

d ∆+H0
u}

+ λS{H+
u H

−
d S −H0

uH
o
dS} +

1

2
µSS

2. (B.1)

The F-term contributions are given by

VF = |FHd
|2 + |FHu

|2 + |FS|2 + |F∆0
|2 + |FH+

u
|2 + |FH−

d
|2 + |F∆+ |2 + |F∆−|2, (B.2)
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where

FH0
u

= − ∂W

∂H0
u

= +µH0
d +

λ∆

2
(H0

d∆
3 +

√
2H−

d ∆+) + λSH
0
dS,

FH0
d

= − ∂W

∂H0
d

= +µH0
u +

λ∆

2
(∆3H0

u −
√

2∆−H+
u ) + λSH

0
uS,

FS = − ∂W

∂S
= −µSS − λSH

+
u H

−
d + λSH

0
uH

0
d ,

F∆3 = − ∂W

∂∆3
= −µ∆∆3 +

λ∆

2
(H−

d H
+
u +H0

dH
0
u),

FH+
u

= − ∂W

∂H+
u

= −µH−
d +

λ∆

2
(H−

d ∆3 −
√

2H0
d∆

−) − λSH
−
d S,

FH−

d
= − ∂W

∂H−
d

= −µH+
u +

λ∆

2
(∆3H+

u +
√

2∆+H0
u) − λSH

+
u S,

F∆+ = − ∂W

∂∆+
= −µ∆∆− +

λ∆√
2
H−
d H

0
u,

F∆− = − ∂W

∂∆+
= −µ∆∆+ − λ∆√

2
H0
dH

+
u . (B.3)

D-term

The Higgs singlet ”S” has {1, 0}, that is, the D-term of this model is equivalent the D-term of
MSSM + triplet model.

Da = −g2

∑

i

(φ†
(i)t

a
(i)φ(i))

= −g2H
∗
ui

(
σa

2
)ijHuj

− g2H
∗
di

(
σa

2
)ijHdj

− g2∆
b∗iǫabc∆c (B.4)

DY = −gY
∑

i

(φ†
(i)Y(i)φ(i))

= −gY
2
H∗
ui
Hui

+
gY
2
H∗
di
Hdi

(B.5)
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The D-term is written as

VD =
1

2
(Da)2 +

1

2
(DY )2

=
gY

2

8
[(|H+

u |2 + |H0
u|2)2 − 2(|H+

u |2 + |H0
u|2)(|H0

d |2 + |H−
d |2) + (|H0

d |2 + |H−
d |2)2]

+
g2
2

8

[
|H+

u |4 + 2|H+
u H

0
u ∗ |2 + |H0

u|4 + |H0
d |4 + 2|H−

d
∗
H0
d |2 + |H−

d |4

+ {−8∆̄+∆̄−(∆3)2 + 8(∆+∆̄− + ∆̄+∆−)|∆3|2 − 8∆+∆−(∆3∗)2}
− 4

√
2(H0

u
∗
H+
u )(∆3∗∆− − ∆̄−∆3) − 4

√
2(H+

u
∗
H0
u)(∆

3∆̄+ − ∆3∗∆+)

− 2(|H+
u |2 − |H0

u|2)(∆̄−∆+ − ∆̄+∆−)

− 4
√

2(H−
d

∗
H0
d)(∆

3∗∆− − ∆̄−∆3) − 4
√

2(H0
d
∗
H−
d )(∆3∆̄+ − ∆3∗∆+)

− 2(|H0
u|2 − |H−

d |2)(∆̄−∆+ − ∆̄+∆−)

+ 4H0
u
∗
H0
d
∗
H+
u H

−
d + 4H0

uH
0
dH

+
u

∗
H−
d

∗
+ 2|H+

u |2|H0
d |2 − |H0

u||H0
d |2 + 2|H0

d |2|H−
d |2 ]
(B.6)

Soft-term

The Soft-term is written as

Ṽ =m̃2
d|Hd|2 + m̃2

u|Hu|2 + m̃2
∆(|∆3|2 + |∆−|2 + |∆+|2) + m̃2

S|S|2

+ [BµHu ·Hd + η̄S +B∆µ∆tr(∆2) +
1

2
BSµSS

2

+ λ∆A∆Hu · ∆Hd + λSASHu ·HdS + h.c.]

=m̃2
d(|H−

d |2 + |H0
d |2) + m̃2

u(|H+
u |2 + |H0

u|2) + m̃2
∆(|∆3|2 + |∆−|2 + |∆+|2) + m̃2

S|S|2

+ [Bµ{H+
u H

−
d −H0

uH
0
d} + η̄S +

1

2
B∆µ∆{(∆3)2 + 2∆+∆−} +

1

2
BSµSS

2

− λ∆

2
A∆{H−

d ∆3H+
u +H0

d∆
3H0

u −
√

2H0
d∆

−H+
u +

√
2H−

d ∆+H0
u}

+ λSAS{H+
u H

−
d S −H0

uH
0
dS} + h.c.] (B.7)

B.2 Tadpole

The fields component is written as

Hd =

( 1√
2
(hd + vd + izd)

w−
d

)
, Hu =

(
w+
u

1√
2
(hu + vu + izu)

)
,

S =
1√
2
(s0 + vS + izS),∆ =

1

2

(
1√
2
(∆0 + v∆ + iz∆)

√
2∆+

√
2∆− − 1√

2
(∆0 + v∆ + iz∆)

)
. (B.8)
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We obtain Vtot from VF , VD, Ṽ . The minimisation equations are given by

<
∂V

∂Hd

>=vd{µ2 +
λ2
S

2
(v2
S + v2

u) +
√

2λSµvS +
1

8
(g2

2 + gY
2)(v2

d − v2
u)

+
λ2

∆

8
(v2

∆ + v2
u) +

λ∆√
2
µv∆ +

λ∆λS
2

v∆vS + m̃2
d}

+ vu{−
λS√

2
µSvS −Bµ− λS

2
√

2
ASvS −

λ∆

2
√

2
µ∆v∆ − λ∆

2
√

2
A∆v∆} = 0, (B.9)

<
∂V

∂Hu

>=vu{µ2 +
λ2
S

2
(v2
S + v2

u) +
√

2λSµvS +
1

8
(g2

2 + gY
2)(v2

d − v2
u)

+
λ2

∆

8
(v2

∆ + v2
u) +

λ∆√
2
µv∆ +

λ∆λS
2

v∆vS + m̃2
u}

+ vd{−
λS√

2
µSvS −Bµ− λS

2
√

2
ASvS −

λ∆

2
√

2
µ∆v∆ − λ∆

2
√

2
A∆v∆} = 0, (B.10)

<
∂V

∂S
>=vS{µ2

S +
λ2
S

2
v2 +BSµS + m̃2

S}

+ λS{
1√
2
µv2 − 1√

2
µSvdvu −

1√
2
ASvdvu +

λ∆

4
v2v∆} −

√
2η̄ = 0, (B.11)

<
∂V

∂∆
>=v∆{µ2

∆ +B∆µ∆ +
λ2

∆

8
v2 + m̃2

∆}

+ λ∆{
1

2
√

2
µv2 +

λS
4
v2vS −

1

2
√

2
µ∆vdvu −

1

2
√

2
A∆vdvu} = 0. (B.12)

Eq.(B.9) and Eq.(B.10) lead to m̂2
3 and µ2

eff :

m̂2
3 = Bµ+

λS√
2
(µS + AS)vS +

λ∆

2
√

2
(µ∆ + A∆)v∆, (B.13)

µeff = µ+
λS√

2
vS +

λ∆

2
√

2
v∆. (B.14)

Tadpole is written as Eq.(B.13) and Eq.(B.14):

<
∂V

∂Hd

>=vd{µ2
eff +

λ2
S

2
v2
u +

λ2
∆

8
v2
u +

g2
2 + gY

2

8
(v2
d − v2

u) + m̃2
d} − vum̂

2
3 = 0, (B.15)

<
∂V

∂Hu

>=vu{µ2
eff +

λ2
S

2
v2
d +

λ2
∆

8
v2
d +

g2
2 + gY

2

8
(v2
u − v2

d) + m̃2
u} − vdm̂

2
3 = 0, (B.16)

<
∂V

∂S
>=vS(µ

2
S + m̃2

S +BSµS)

+
λS√

2
{µeffv

2 − (AS + µS)v
2sβcβ + 2(µS + η̄)} = 0, (B.17)

<
∂V

∂∆
>=v∆(µ2

∆ + m̃2
∆ +B∆µ∆)

+
λ∆

2
√

2
{+µeffv

2 − (A∆ + µ∆)v2sβcβ} = 0. (B.18)
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We obtain A∆ and vS from tadpole conditions:

A∆ =
4(m̃2

∆ + µ2
∆)√

2vdvu
v∆ +

µeff

sβcβ
− µ∆, (B.19)

vS =
λS{(v2

d + v2
u)µeff + (AS + µS)vdvu}√

2(m̃2
S + µ2

S)
. (B.20)

B.3 Mass matrices
In this thesis, we ignore v∆ because of the electroweak rho parameter.

B.3.1 Higgs mass matrices

CP-odd

In the CP-odd basis {zd, zu, zs, z∆}, the mass matrix M2
odd is written as

M2
odd =




m̂2
3tβ m̂2

3
λS√

2
(AS − µS)vsβ

λ∆

2
√

2
(µeff − µ∆s2β)vc

−1
β

· · · m̂2
3t

−1
β

λS√
2
(AS − µS)vcβ

λ∆

2
√

2
(µeff − µ∆s2β)vs

−1
β

· · · · · · m̃2
S + µ2

S −m2
3S +

λ2
S

2
v2 λSλ∆

4
v2

· · · · · · · · · m̃2
∆ + µ2

∆ −m2
3∆ +

λ2
∆

8
v2


 , (B.21)

where m2
3S ≡ BSµS, m

2
3∆ ≡ B∆µ∆, sβ = sin β, cβ = cos β, tβ = tanβ, and subscript −1

describes inverse number. We obtain the CP-odd Higgs boson mass:

m2
A ∼ m̂2

3

sin β cos β
(B.22)

CP-even

In the basis {hd, hu, s0,∆o}, the mass matrix M2
even is written by

M (0)2
even =



g22+g2Y
4

v2c2β + m̂2
3tβ −M2sβcβ

λS√
2
(2µeffcβ − (AS + µS)sβ)v

λ∆

2
√

2
µeffc2βc

−1
β

· · · g22+g2Y
4

v2s2
β + m̂2

3t
−1
β + ǫ λS√

2
(2µeffsβ − (AS + µS)cβ)v − λ∆

2
√

2
µeffc2βs

−1
β

· · · · · · m̃2
S + µ2

S +m2
3S +

λ2
S

2
v2 λSλ∆

4
v2

· · · · · · · · · m̃2
∆ + µ2

∆ +m2
3∆ +

λ2
∆

8
v2



,

(B.23)

where

M2 =
m̂2

3

sin β cos β
+ (

g2
Y

4
+
g2
2

4
− λ2

S −
λ2

∆

4
)v2. (B.24)

The mass of light CP-even Higgs boson mh and the heavy CP-even Higgs boson mH are written
as following

m2
h ∼ m2

Z cos2 2β +

(
λ2
s

2
+
λ2

∆

8

)
v2 sin2 2β , (B.25)

m2
H ∼ m̂2

3

sin β cos β
+m2

Z sin2 2β −
(
λ2
s

2
+
λ2

∆

8

)
v2 sin2 2β . (B.26)
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Charged

In the basis {w+
d , w

+
u ,∆

+, ∆̄+}, the mass matrix M2
charged is written by

M2
charged =



M2
C sin2 β M2

C sin β cos β λ∆

2
(µeffcβ − A∆sβ)v

λ∆

2
(µeffcβ − µ∆sβ)v

· · · MC cos2 β −λ∆

2
(µeffsβ − µ∆cβ)v −λ∆

2
(µeffsβ − A∆cβ)v

· · · · · · λ2
∆

4
s2
βv

2 +
g22
8
c2βv

2 + µ2
∆ + m̃2

∆ 0

· · · · · · · · · λ2
∆

4
c2βv

2 − g22
8
c2βv

2 + µ2
∆ + m̃2

∆


 ,

(B.27)

where

M2
C =

m̂2
3

sin β cos β
+ (

g2
2

4
− λ2

S

2
+
λ2

∆

8
)v2. (B.28)

We obtain the charged Higgs mass

m2
H± ∼ m2

W +m2
A + (−λ

2
s

2
+
λ2

∆

8
)v2. (B.29)

B.3.2 Neutralinos and charginos

Neutralinos

In the basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u, s̃0, ∆̃0), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)TMÑψ

0 + h.c., (B.30)

where

MÑ =




M1 0 −gY

2
vcβ

gY

2
vsβ 0 0

· · · M2
g2
2
vcβ −g2

2
vsβ 0 0

· · · · · · 0 −µeff − λS√
2
vsβ

λ∆

2
√

2
vsβ

· · · · · · · · · 0 − λS√
2
vcβ

λ∆

2
√

2
vcβ

· · · · · · · · · · · · µS 0
· · · · · · · · · · · · · · · µ∆



, (B.31)

where the M1 and M2 come from soft Lagrangian. If

mZ ≪ |µ±M1|, |µ±M2|, (B.32)
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then the neutralino masses are given by

mÑ1
= M1 +

m2
Zs

2
W (M1 + µeffs2β)

M2
1 − µ2

eff

, (B.33)

mÑ2
= M2 +

m2
W (M2 + µeffs2β)

M2
2 − µ2

eff

, (B.34)

mÑ3
= mÑ3

|MSSM +
(1 − s2β)v

2

(µeff − µS)(µeff − 1
2
µ∆)

{(λ
2
S

2
+
λ2

∆

8
)µeff − λ2

S

2
µ∆ − λ2

∆

8
µS}, (B.35)

mÑ4
= mÑ4

|MSSM − (1 + s2β)v
2

(µeff + µS)(µeff + 1
2
µ∆)

{(λ
2
S

2
+
λ2

∆

8
)µeff +

λ2
S

2
µ∆ +

λ2
∆

8
µS}, (B.36)

mÑ5
= µS +

λ2
Sv

2(µS − µeffs2β)

(µS − µeff)(µS + µeff)
, (B.37)

mÑ6
= µ∆ +

λ2
∆v

2(µ∆ − µeffs2β)

(µ∆ − µeff)(µ∆ + µeff)
. (B.38)

Charginos

In the basis ψ+ = (W̃+, H̃+
u , ∆̃

+) and ψ− = (W̃−, H̃−
d , ∆̃

−), the chargino mass part of the
Lagrangian is

Lchargino mass = −1

2
(ψ+)TMT

C̃
ψ− − 1

2
(ψ−)TMC̃ψ

+, (B.39)

where

MC̃ =




M2
g2√
2
vsβ 0

g2√
2
vcβ µeff

λ∆

2
vsβ

0 −λ∆

2
vcβ µ∆


 . (B.40)

The chargino masses correspond to the positive square roots of the eigenvalues of M †
C̃
MC̃ . In

the limit of Eq.(B.32) and v∆ → 0 with real M2, µeff and µ∆, the chargino masses are given by

mC̃1
∼M2 +m2

W

M2 + µeffs2β

M2
2 − µ2

eff

, (B.41)

mC̃2
∼ µeff +m2

W

µeff +M2s2β

µeff
2 −M2

2

+
λ2

∆

8
v2µeff +M2s2β

µeff
2 − µ2

∆

, (B.42)

mC̃3
∼ µ∆ +

λ2
∆

8
v2µ∆ + µeffs2β

µ2
∆ − µeff

2
. (B.43)

B.4 Definitions of the couplings

B.4.1 Higgs self-couplings

As A.2.1, we use for si stands for {hd, hu, s0,∆o}, hi stands for {h,H, s0,∆0}, pi stands for
{zd, zu, zs, z∆}, ai stands for {G0, A, zs, z∆}, w±

i stands for {w±
d , w

±
u ,∆

±, ∆̄±} and h±i stands for
{G±, H±,∆±, ∆̄±}. Also, vi stands for {vd, vu} with tan β = v2/v1 and (v2

1 +v2
2)

2 = (246GeV)2.
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The trilinear neutral-Higgs self couplings are written as

λs1s1s1 = λs1p1p1 =
1

8
(g2

2 + g2
Y )v1,

λs2s2s2 = λs2p2p2 =
1

8
(g2

2 + g2
Y )v2,

λs1p2p2 = 3λs1s2s2 = −1

8
(g2

2 + g2
Y − 4λ2

S − λ2
∆)v1,

λs2p1p1 = 3λs1s1s2 = −1

8
(g2

2 + g2
Y − 4λ2

S − λ2
∆)v2,

λs1s1s3 = λs2s2s3 =
λS

3
√

2
µeff , λs1s1s4 = λs2s2s4 =

λ∆

6
√

2
µeff ,

λs1p3p3 = 3λs1s3s3 =
λ2
S

2
v1, λs2p3p3 = 3λs2s3s3 =

λ2
S

2
v2,

λs1p3p4 = 3λs1s3s4 =
λSλ∆

4
v1, λs2p3p4 = 3λs2s3s4 =

λSλ∆

4
v2,

λs1p4p4 = 3λs1s4s4 =
λ2

∆

8
v1, λs2p4p4 = 3λs2s4s4 =

λ2
∆

8
v2,

λs3p1p1 = λs3p2p2 =
λS√

2
µeff , λs4p1p1 = λs4p2p2 =

λ∆

2
√

2
µeff ,

λs1s2s3 = − λS

6
√

2
(AS + µS), λs3p1p2 =

λS

2
√

2
(AS + µS),

λs1p2p3 = λs2p1p3 =
λS

2
√

2
(AS − µS), λs1s2s4 = − λ∆

12
√

2
(A∆ + µ∆),

λs4p1p2 =
λ∆

4
√

2
(A∆ + µ∆), λs1p2p4 = λs2p1p4 =

λ∆

4
√

2
(A∆ − µ∆), (B.44)

where unspecified quartic couplings are zero.
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The quartic neutral-Higgs self couplings are written as

λs1s1s1s1 = λp1p1p1p1 = λs2s2s2s2 = λp2p2p2p2 =
1

32
(g2

2 + g2
Y ),

λs1s1p1p1 = λs2s2p2p2 =
1

16
(g2

2 + g2
Y ),

λs1s1s2s2 = λp1p1p2p2 = − 1

96
(g2

2 + g2
Y − 4λ2

S − λ2
∆),

λs2s2p1p1 = λs1s1p2p2 = − 1

16
(g2

2 + g2
Y − 4λ2

S − λ2
∆),

λs1s1s3s3 = λp1p1p3p3 = λs2s2s3s3 = λp2p2p3p3 =
λ2
S

24
,

λs1s1p3p3 = λs2s2p3p3 = λs3s3p1p1 = λs3s3p2p2 =
λ2
S

4
,

λs1s1s3s4 = λp1p1p3p4 = λs2s2s3s4 = λp2p2p3p4 =
λSλ∆

48
,

λs1s1p3p4 = λs2s2p3p4 =
λSλ∆

4
,

λs1s1s4s4 = λp1p1p4p4 = λs2s2s4s4 = λp2p2p4p4 =
λ2

∆

96
,

λs1s1p4p4 = λs2s2p4p4 = λs4s4p1p1 = λs4s4p2p2 =
λ2

∆

16
,

(B.45)

where unspecified quartic couplings are zero.
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The trilinear neutral-charged coupling are written as

λs1w
+
1 w

−

1
=

1

4
(g2

2 + g2
Y )vd, λs1w

+
2 w

−

2
=

1

4
(g2

2 − g2
Y + 2λ2

∆)vd,

λs1w
+
3 w

−

3
=
g2
2

2
vd, λs1w

+
4 w

−

4
= −1

2
(g2

2 − λ2
∆)vd,

λs2w
+
1 w

−

1
=

1

4
(g2

2 − g2
Y + 2λ2

∆)vu, λs2w
+
2 w

−

2
=

1

4
(g2

2 + g2
Y )vu,

λs2w
+
3 w

−

3
= −1

2
(g2

2 − λ2
∆)vu, λs2w

+
4 w

−

4
=
g2
2

2
vu,

λs3w
+
1 w

−

1
= λs3w

+
2 w

−

2
= −λS(λ∆v∆ −

√
2µeff),

λs3w
+
3 w

−

3
= λs3w

+
4 w

−

4
= 0,

λs4w
+
1 w

−

1
= λs4w

+
2 w

−

2
=
λ∆

2
(λ∆v∆ −

√
2µeff),

λs4w
+
3 w

−

3
= λs4w

+
4 w

−

4
= g2

2v∆,

λs1w
+
1 w

−

2
=

1

8
(2g2

2 − 4λ2
S + λ2

∆)vu,

λs1w
+
1 w

−

3
=

1

4
(−

√
2g2

2v∆ + 2λ∆µeff),

λs1w
+
1 w

−

4
=

1

2
√

2
(g2

2 − λ2
∆)v∆ +

λ∆

2
µeff ,

λs1w
+
2 w

−

3
=
λ∆

2
µ∆, λs1w

+
2 w

−

4
=
λ∆

2
A∆,

λs1w
+
3 w

−

4
= 0,

λs2w
+
1 w

−

2
=

1

8
(2g2

2 − 4λ2
S + λ2

∆)vd,

λs2w
+
1 w

−

3
= −λ∆

2
A∆, λs2w

+
1 w

−

4
= −λ∆

2
µ∆,

λs2w
+
2 w

−

3
= − 1

2
√

2
(g2

2 − λ2
∆)v∆ − λ∆

2
µeff ,

λs2w
+
2 w

−

4
= −1

4
(−

√
2g2

2v∆ + 2λ∆µeff),

λs2w
+
3 w

−

4
= 0,

λs3w
+
1 w

−

2
=
λS√

2
(AS + µS),

λs3w
+
1 w

−

3
= λs3w

+
1 w

−

4
=
λSλ∆

2
√

2
v,d

λs3w
+
2 w

−

3
= λs3w

+
2 w

−

4
= −λSλ∆

2
√

2
v,u

λs3w
+
3 w

−

4
= 0,

λs4w
+
1 w

−

2
= − λ∆

2
√

2
(A∆ + µ∆),

λs4w
+
1 w

−

3
= −λs4w+

1 w
−

4
= − 1

4
√

2
(2g2

2 − λ2
∆)vd,

λs4w
+
2 w

−

3
= −λs4w+

2 w
−

4
= − 1

4
√

2
(2g2

2 − λ2
∆)vu,

λs4w
+
3 w

−

4
= −g2

2v∆, (B.46)
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The quartic neutral-charged coupling are written as

λs1s1w
+
1 w

−

1
=

1

8
(g2

2 + g2
Y ), λs1s1w

+
2 w

−

2
=

1

8
(g2

2 − g2
Y + 2λ2

∆),

λs1s1w
+
3 w

−

3
=
g2
2

4
, λs1s1w

+
4 w

−

4
= −1

4
(g2

2 − λ2
∆),

λs1s2w
+
1 w

−

2
=

1

8
(2g2

2 − 4λ2
S + λ2

∆),

λs1s3w
+
1 w

−

3
= λs1s3w

+
1 w

−

4
=
λSλ∆

2
√

2
, λs1s4w

+
1 w

−

3
= −λs1s4w+

1 w
−

4
= − 1

4
√

2
(2g2

2 − λ2
∆),

λs2s2w
+
1 w

−

1
=

1

8
(g2

2 − g2
Y + 2λ2

∆), λs2s2w
+
2 w

−

2
=

1

8
(g2

2 + g2
Y ),

λs2s2w
+
3 w

−

3
= −1

4
(g2

2 − λ2
∆), λs2s2w

+
4 w

−

4
=
g2
2

4
,

λs2s3w
+
2 w

−

3
= λs2s3w

+
2 w

−

4
= −λSλ∆

2
√

2
, λs2s4w

+
2 w

−

3
= −λs2s3w+

2 w
−

4
= − 1

4
√

2
(2g2

2 − λ2
∆),

λs3s3w
+
1 w

−

1
= λs3s3w

+
2 w

−

2
=
λ2
S

2
, λs3s4w

+
1 w

−

1
= λs3s4w

+
2 w

−

2
= −λSλ∆

2
,

λs4s4w
+
1 w

−

1
= λs4s4w

+
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−

2
=
λ2

∆

8
, λs4s4w

+
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−

3
= −λs4s4w+

3 w
−

4
= λs4s4w

+
4 w
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4
=
g2
2

2
. (B.47)

B.4.2 Higgs-neutralino couplings

In Gauge-Higgs Unification model, the Lagrangian contain Higgs-neutralino couplings as

L ⊃ −
∑

ikl

λsiψ0
k
ψ0

l
Siψ

0
kψ

0
l − i

∑

ikl

λpiψ0
k
ψ0

l
Piψ

0
kψ

0
l + h.c., (B.48)

where ψ0
i = {B̃0, W̃ 0, h̃0

1, h̃
0
2, s̃

0, ∆̃0}. The couplings in Eq. (B.48) are symmetric for exchanging
the neutralino indices k and l. The non-zero Higgs-neutralino couplings are following:

λs1ψ0
1ψ

0
3

= −λp1ψ0
1ψ

0
3

= −gY
4
, λs1ψ0

2ψ
0
3

= −λp1ψ0
2ψ

0
3

= +
g2

4
,

λs1ψ0
4ψ

0
5

= λp1ψ0
4ψ

0
5

= +
λS

2
√

2
, λs1ψ0

4ψ
0
6

= λp1ψ0
4ψ

0
6

= +
λ∆

4
√

2
,

λs2ψ0
1ψ

0
4

= −λp2ψ0
1ψ

0
4

= +
gY
4
, λs2ψ0

2ψ
0
4

= −λp2ψ0
2ψ

0
4

= −g2

4
,

λs2ψ0
3ψ

0
5

= λp2ψ0
3ψ

0
5

= − λS
2
√

2
, λs2ψ0

3ψ
0
6

= λp2ψ0
3ψ

0
6

= +
λ∆

4
√

2
,

λs3ψ0
3ψ

0
4

= λp3ψ0
3ψ

0
4

= − λS
2
√

2
, λs4ψ0

3ψ
0
4

= λp4ψ0
3ψ

0
4

= +
λ∆

4
√

2
. (B.49)

The couplings of the Higgs bosons to the neutralino mass eigenstates χ0
i are related to the

neutralino interaction eigenstates as

λφiχ0
k
χ0

l
= N∗

kaN
∗
lbλφiψ0

aψ
0
b
, (B.50)

where φi represent si or pi, N is the diagonalization matrix for neutralino mass matrix.
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B.4.3 Higgs-chargino couplings

The Lagrangian also contain the Higgs-chargino couplings as

L ⊃ −
∑

ikl

λsiψ
+

k
ψ−

l
Siψ

+
k ψ

−
l − i

∑

ikl

λpiψ
+

k
ψ−

l
Piψ

+
k ψ

−
l + h.c., (B.51)

where ψ+
i = {W̃+, h̃+

u , ∆̃
+} and ψ−

i = {W̃−, h̃−d , ∆̃
−}. The non-zero Higgs-chargino couplings

are following

λs1ψ+
1 ψ

−

2
= −λp1ψ+

1 ψ
−

2
= +

g2√
2
, λs1ψ+

2 ψ
−

3
= λp1ψ+

2 ψ
−

3
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λ∆

2
,

λs2ψ+
3 ψ

−

2
= λp2ψ+

3 ψ
−

2
= +

λ∆

2
, λs2ψ+

2 ψ
−

1
= −λp2ψ+

2 ψ
−

1
= +

g2√
2
,

λs3ψ+
2 ψ

−

2
= λp3ψ+

2 ψ
−

2
= +

λS√
2
, λs4ψ+

1 ψ
−

3
= −λp4ψ+

1 ψ
−

3
= +

g2

4
,

λs4ψ+
2 ψ

−

2
= λp4ψ+

2 ψ
−

2
= +

λ∆

2
√

2
, λs4ψ+

3 ψ
−

1
= −λp4ψ+

3 ψ
−

1
= −g2

4
. (B.52)

The mass matrix MC̃ for the charginos is diagonalized by a bi-unitary transformation

diag(mχ+
i
) = U∗MC̃V

†, (B.53)

where the unitary matrices U and V rotate the negative and positive chargino interaction
eigenstates, respectively, into the corresponding mass eigenstates

χ−
i = Uijψ

−
j , χ+

i = Vijψ
+
j . (B.54)

B.5 One-loop self energies and tadpole

B.5.1 Scalar self energies

The Higgs contributions to the scalar self energies

16π2ΠH
sisj

(p2) =
4∑

k

2λsisjhkhk
A(mhk

) +
4∑

k,l

2λsihkhl
λsjhkhl

B0(p
2;mhk

,mhl
)

+
4∑

k

2λsisjakak
A(mak

) +
4∑

k,l

2λsiakal
λsjakal

B0(p
2;mak

,mal
)

+
4∑

k

2λsisjh
+

k
h−

k
A(mh±

k
) +

4∑

k,l

λsih
+

k
h−

l
λsjh

+

k
h−

l
B0(p

2;mh±
k
,mh±

l
). (B.55)
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The neutralino and chargino contributions to the scalar self energies

16π2Πχ
sisj

=
6∑

k,l

4λsiχ0
k
χ0

l
λ∗sjχ0

k
χ0

l

[
(p2 −m2

χ0
k
−m2

χ0
l
)B0(mχ0

k
,mχ0

l
) − A(mχ0

k
) − A(mχ0

l
)

−2mχ0
k
mχ0

l
B0(mχ0

k
,mχ0

l
)
]

+
3∑

k,l

2λsiχ
+

k
χ−

l
λ∗
sjχ

+

k
χ−

l

[
(p2 −m2

χ±

k

−m2
χ±

l

)B0(mχ±

k
,mχ±

l
) − A(mχ±

k
) − A(mχ±

l
)

−2mχ±

k
mχ±

l
B0(mχ±

k
,mχ±

l
)
]
. (B.56)

B.5.2 Tadpole

The contributions to the tadpoles from neutralinos and charginos

16π2T χi = −4
6∑

k

λsiχkχk
mχi

A(mχi
) − 4

3∑

k

λsiχ
+

k
χ−

k
mχi

A(mχi
). (B.57)

The contributions to the tadpoles from Higgs bosons

16π2T φi =

h,a,h±∑

φ

∑

k

λsiφkφk
A(mφi

). (B.58)
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