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Preface

For a given lattice Γ Weierstrass constructed a doubly periodic meromorphic
function on C with period Γ. We call it Weierstrass’ ℘-function. It was general-
ized on abelian varieties by Zappa in 1983. Let Tn = Cn/Γ be an n-dimentional
complex torus. Γ-invariant ∂-closed (0, n− 1)-forms on Cn/Γ are considered as
representatives of classes in Hn−1(Tn \ {0},O). First, Zappa constructed a Γ-
invariant ∂-closed (0, n−1)-form ℘i, and then gave a ∂-closed (n−1, n−1)-form
℘ij on Tn \ {0} with the following property:
If Tn is an abelian variety and Θ is a divisor on Tn defined by a theta function
θ, then we have ∫

Θ

℘ij(z − p) = − ∂2

∂zi∂zj
log θ

∣∣∣
p
+ constant.

In the case of one variable, this is just the relation between Weierstrass’ ℘-
function and a theta function.

The purpose of this paper is to give a further generalization of Zappa’s
result. We show that we can construct a similar (n− 1, n− 1)-form ℘ij even for
a non-compact quasi-abelian variety.

This paper consists of three chapters. In Chapter 1, we explain in detail a
part of the theory of Andreotti-Norguet which is the basis of our argument. We
think that our proofs are more explicit and comprehensible than the original
ones.

In Chapter 2, we state Zappa’s result. Several lemmas and propositions are
stated in more general setting in order to use them later.

In Chapter 3, Weierstrass’ ℘-function is generalized on quasi-abelian vari-
eties. Let X = Cn/Γ be a toroidal group. We can construct a Γ-invariant
∂-closed (n − 1, n − 1)-form ℘ij on X in the same manner as in the case of
complex tori. But when we consider a positive divisor Θ on X, we do not know
in general the convergence of the integral of ℘ij on Θ, because Θ is not com-
pact. Even if it converges, we are not able to apply the same argument as in
the case of abelian varieties. We suppose that X is a quasi-abelian variety of
kind 0 with the standard compactification X. We further assume that a positive
divisor Θ on X is holomorphically extendable to X. Then we can prove that
℘ij is integrable on Θ and a similar equation as the case of abelian varieties
is obtained (Theorem 3.7 in Chapter 3). To prove it, we first take a family of
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relatively compact subdomains in X. We give formulas on these subdomains.
As the limit of them we obtain the expected formula.
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Chapter 1

Cohomology Groups of a
Punctured Polydisc

1.1 Cohomology groups

We give a proof of Lemma 2 in [5] in this section. This lemma is essentially
Proposition 31.1 in [6]. The proof given here is more explicit than that in [6].

Let D = {ζ ∈ C ; |ζ| < 1} be the unit disc in C. Consider a polydisc of
n-dimention

Dn := D × · · · ×D.

Let z = (z1, . . . , zn) be coordinates of Cn.

Lemma 1.1 ([5]).
a) Hi(Dn \ {0}, O) = 0 for i ̸= 0, n− 1.
b) H0(Dn \ {0}, O) ∼= H0(Dn,O) if n ≧ 2.

c) Hn−1(Dn \ {0}, O) ∼=

{∑
α∈Nn

cαz
−α ; lim

|α|→∞
|α|
√
|cα| = 0

}
.

Proof. If n ≧ 2, then (b) is clear, because {0} is an analytic set of Dn with
codimention more than 1 .

We show a). For i = 1, . . . , n we set Ui := {z ∈ Dn; zi ̸= 0}. Then
U := {Ui; i = 1, . . . , n} is a Stein covering of Dn \ {0}. Therefore we get

Hq(Dn \ {0},O) ∼= Hq(U,O)

by Leray’s theorem. For any (i0, . . . , iq) ∈ {1, . . . , n}q+1, we set

Ui0...iq := Ui0 ∩ · · · ∩ Uiq .

Since U consists of n open sets, it is obvious that Hn(U,O) = 0. For any
j ∈ {1, . . . , n} and (i0, . . . , iq) ∈ {1, . . . , n}q+1, we define a map

φ
i0...iq
j : Γ(Uji0...iq ,O) → Γ(Ui0...iq ,O)
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by the following way:
When j = iµ for some µ = 0, . . . , q we set φ

i0...iq
j = id. When j ̸= iµ for

all µ = 0, . . . , q, we take R with 0 < R < 1 such that |zj | < R for any z =
(z1, . . . , zn) ∈ Uji0...iq . Let Cj(R) be a circle with center 0 and radius R. For
any f ∈ Γ(Uji0...iq ,O) we define

(φ
i0...iq
j f)(z) :=

1

2π
√
−1

∫
Cj(R)

f(z1, . . . zj−1, tj , zj+1, . . . , zn)

tj − zj
dtj .

Then we have φ
i0...iq
j f ∈ Γ(Ui0...iq ,O).

If zj ̸= 0, then we take r such that 0 < r < |zj | < R < 1 and denote by
Cj(r) a circle with center 0 and radius r. By Cauchy’s integral theorem we can
represent f ∈ Γ(Uji0...iq ,O) as

f(z) =
1

2π
√
−1

∫
Cj(R)

f(z1, . . . zj−1, tj , zj+1, . . . , zn)

tj − zj
dtj

− 1

2π
√
−1

∫
Cj(r)

f(z1, . . . zj−1, tj , zj+1, . . . , zn)

tj − zj
dtj .

Therefore we note that

(φ
i0...iq
j f)(z) =

1

2π
√
−1

∫
Cj(r)

f(z1, . . . zj−1, tj , zj+1, . . . , zn)

tj − zj
dtj + f(z)

for z = (z1, . . . , zn) with zj ̸= 0.

Let r
i0...iq

i0...îµ...iq
be the restriction map from functions on Ui0...îµ...iq

to those

on Ui0...iq , where îµ means that iµ shall be omitted. Then it follows thatr
i0...iq

i0...îµ...iq
φ
i0...îµ···q
j = φ

i0...iq
j ,

φ
i0...iq
j r

ji0...iq
i0...iq

= id on Γ(Ui0...iq ,O).

For any j ∈ {1, . . . , n}, we define a map

kj : C
q(U,O) → Cq−1(U,O)

as follows:
For any f = (fi0...iq ) ∈ Cq(U,O) we set

(kjf)i0...iq−1 := φ
i0...iq−1

j fji0...iq−1 .

Let δ be the usual coboundary operater. We take any f ∈ Cq(U,O). For any
multiindex (i0, . . . , iq) ∈ {1, . . . , n}q+1 we calculate

(f − δkjf − kjδf)i0...iq = fi0...iq − (δkjf)i0...iq − (kjδf)i0...iq .

5



Since

(δkjf)i0...iq =

q∑
µ=0

(−1)µ(kjf)i0...îµ...iq

=

q∑
µ=0

(−1)µφ
i0...îµ...iq
j fji0...îµ...iq

and

(kjδf)i0...iq = φ
i0...iq
j (δf)ji0...iq

= φ
i0...iq
j

(
fi0...iq −

q∑
µ=0

(−1)µφ
i0...iq
j fji0...îµ...iq

)

= φ
i0...iq
j fi0...iq −

q∑
µ=0

(−1)µφ
i0...iq
j fji0...îµ...iq ,

we have

fi0...iq − (δkjf)i0...iq − (kjδf)i0...iq =

fi0...iq − φ
i0...iq
j fi0...iq +

q∑
µ=0

(−1)µφ
i0...îµ...iq
j fji0...îµ...iq

−
q∑

µ=0

(−1)µφ
i0...iq
j fji0...îµ...iq .

When j /∈ {i0, . . . , iq} we have φ
i0...iq
j fi0...iq = fi0...iq . Since

φ
i0...iq
j fji0...îµ...iq = r

i0...iq

i0...îµ...iq
φ
i0...îµ...iq
j fji0...îµ...iq ,

we have in general

fi0...iq − (δkjf)i0...iq − (kjδf)i0...iq

=

0 if j /∈ {i0, . . . , iq}

(id− ri0
i0...îµj

...iq
φ
i0...îµj

...iq

j )fi0...iq if j = iµ for some µ,

where µj is µ with j = iµ. For any j ∈ {1, . . . , n} we define a map

Φj : C
q(U,O) → Cq(U,O)

by
Φjf := f − δkjf − kjδf

for any f ∈ Cq(U,O). It is obvious that Φj maps an element in Zq(U,O) to
Zq(U,O). Then we define a map

Φ : Zq(U,O) → Zq(U,O)
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by Φ := Φ1◦Φ2◦· · ·◦Φn. If 1 ≦ q ≦ n−2, then for any (i0, . . . , iq) ∈ {1, . . . , n}q+1

there exists j ∈ {1, . . . , n} such that j /∈ {i0, . . . , iq}. Hence we have Φf = 0 for
any f ∈ Zq(U,O). This means that f ∈ Bq(U,O). Therefore we obtain

Hq(U,O) = 0 for 1 ≦ q ≦ n− 2.

Next we show c). First we note

Zn−1(U,O) = Γ(U12···n,O).

Any f ∈ Γ(U12···n,O) has the following Laurent expansion

f =
∑
α∈Nn

cαz
−α +

n∑
µ=1

(−1)n−1
∞∑

nµ=0

gnµ(z1, . . . , ẑµ, . . . , zn)z
nµ
µ ,

where gnµ(z1, . . . , ẑµ, . . . , zn) is a holomorphic function in (z1, . . . , zµ−1, zµ+1, . . . , zn) ∈
(D∗)n−1 and coefficients cα satisfy

lim
|α|→∞

|α|
√
|cα| = 0.

Let

g12···µ̂···n :=
n∑

µ=1

(−1)n−1
∞∑

nµ=0

gnµ(z1, . . . , ẑµ, . . . , zn)z
nµ
µ .

Then we have an element g = (g12···µ̂···n) in C
n−2(U,O). Therefore we have

f =
∑
α∈Nn

cαz
−α + δg,

which shows the isomorphism in c).

1.2 Generalized Martinelli formula

Let N0 := N ∪ {0}. For any α = (α1, . . . , αn) ∈ Nn
0 we define a (0, n− 1)-form

ψα :=

 ∑
1≦j≦n

z
αj

j zj
αj

−n ∑
1≦j≦n

(−1)j−1zj
αj

∧
1≦k≦n
k ̸=j

d(zk
αk).

Letting dz :=
∧

1≦j≦n

dzj , we consider an (n, n − 1)-form K
(n)
α := dz ∧ ψα. For

any α = (α1, . . . , αn) ∈ Nn
0 we set

α+ 1 := (α1 + 1, . . . , αn + 1) and α′ := (α2, . . . , αn),

where 1 = (1, . . . , 1). We also set α! :=
∏

1≦j≦n αj !.
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Let B = {z ∈ Cn;
∑

1≦j≦n

zjzj < 1} be the unit ball of Cn. We denote by

S = ∂B the boundary of B. Let

∂|α|

∂zα
=

∂α1+···+αn

∂zα1
1 · · · ∂zαn

n
.

The equation in the following proposition is called the generalized Martinelli
formula.

Proposition 1.2 (Proposition 1 in [4]). We have∫
S

fK
(n)
α+1 =

(2π
√
−1)n

(n− 1)!

1

α!

∂|α|f

∂zα
(0)

for any holomorphic function f on a neighbourhood of B, where B has the direc-

tion in which

(√
−1

2

)n

dz ∧ dz is positive and the direction of S is compatible

with the formula of Stokes.

Proof. If n = 1, then it is just the integral formula of Cauchy. We prove the
statement by induction on n. To prove it we temporarily take the direction of

B in which
∧

1≦j≦n

(√
−1

2
dzj ∧ dzj

)
is positive. Moreover, we assume that the

direction of S is compatible with Stokes’s formula. We denote

θα :=
1

n− 1

1

zα1
1

 ∑
1≦j≦n

z
αj

j zj
αj

1−n ∑
2≦j≦n

(−1)jzj
αj

∧
2≦k≦n
k ̸=j

d(zk
αk),

Lα := (−1)ndz ∧ θα.

We can check
ψα = ∂θα, K

(n)
α = ∂Lα = dLα

at any point with z1 ̸= 0 by straight calculation. For a multiindex β = (α1 +
1, α2, . . . , αn) we have
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∫
S

fK
(n)
β = lim

ε→0

∫
S∩{|z1|>ε}

d(fLβ)

= lim
ε→0

∫
S∩{|z1|=ε}

fLβ

=
(−1)n−1

n− 1
lim
ε→0

∫
−S∩{|z1|=ε}

f
∧

1≦j≦n

dzj

∧ 1

zα+1
1

 ∑
1≦j≦n

z
βj

j zj
βj

1−n ∑
2≦j≦n

(−1)jzj
αj

∧
2≦k≦n
k ̸=j

d(zk
αk)

=
(−1)n−1

n− 1
lim
ε→0

∫
−S∩{|z1|=ε}

f
dz1

zα1+1
1

∧

 ∧
2≦j≦n

dzj


∧∑

2≦j≦n(−1)jzj
αj
∧

2≦k≦n
k ̸=j

d(zk
αk)(

ε2(α1+1) +
∑

2≦j≦n z
αj

j zj
αj

)n−1

=
(−1)n−1

n− 1

2π
√
−1

α1!
lim
ε→0

∫
S∩{z1=0}

∂α1f

∂zα1
1

 ∧
2≦j≦n

dzj


∧∑

2≦j≦n(−1)jzj
αj
∧

2≦k≦n
k ̸=j

d(zk
αk)(

ε2(α1+1) +
∑

2≦j≦n z
αj

j zj
αj

)n−1

=
(−1)n−1

n− 1

2π
√
−1

α1!

∫
S∩{z1=0}

∂α1f

∂zα1
1

K
(n−1)
α′ .

By the assumption of induction we have∫
S∩{z1=0}

∂α1f

∂zα1
1

K
(n−1)
α′+1′ =

(2π
√
−1)n−1

(n− 2)!

1

α′!

∂|α
′|

∂z
α′

2
2 · · · ∂zα

′
n

n

(
∂α1f

∂zα1
1

)
(0).

We note that the relation between the original direction of B and one given here
to prove the statement is as follows:(√

−1

2

)n

ω ∧ ω = (−1)
n(n−1)

2

∧
1≦j≦n

(√
−1

2
dzj
∧
dzj

)
.

Using the above result, we obtain the integral

∫
S

fK
(n)
α+1 in the original direction
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as follows:∫
S

fK
(n)
α+1 = (−1)

n(n−1)
2

(−1)n−1

n− 1

2π
√
−1

α1!

(2π
√
−1)n−1

(n− 2)!

1

α′!

∂|α
′|

∂z
α′

2
2 · · · ∂zα

′
n

n

(
∂α1f

∂zα1
1

)
(0)

=
(2π

√
−1)n

(n− 1)!

1

α!

∂|α|f

∂zα
(0).

Then the proof is completed.

1.3 Dolbeault isomorphism

We have seen cohomology groups of a punctured polydisc in Section 1.1. Lemma
1.1 c) shows that Hn−1(Dn\{0},O) is a Fréchet space generated by cohomology
classes

z−α1−1
1 · · · z−αn−1

n ∈ Γ(
n∩

i=1

Ui,O), α = (α1, . . . , αn) ∈ Nn
0 .

In this section, we study ∂-closed (0, n− 1)-forms corresponding to cohomology

classes z
−α−1
1 · · · z−αn−1

n by the Dolbeault isomorphism.

Lemma 1.3 (Lemma 4 in [5]). a) By the Dolbeault isomorphism the cohomol-
ogy class of z−α1−1

1 · · · z−αn−1
n ((α1, . . . , αn) ∈ Nn

0 ) corresponds to the ∂-closed
(0, n− 1)-form (up to a sign)

(n− 1)!ψα+1 =

(n− 1)!

∑n
k=1(−1)kzk

αk+1d(z1
α1+1) ∧ · · · ∧ ̂d(zk

αk+1) ∧ · · · ∧ d(znαn+1)(∑n
j=1 |z

αj+1
j |2

)n .

b) The Dolbeault representative so chosen is such that to the class
(z1 · · · zn)−1

∑
α∈Nn

0
cαz

−α with lim|α|→∞ |α|
√
cα = 0, corresponds to the ∂-closed

(0, n− 1)-form expressed by absolutely convergent series

(n− 1)!
∑
α∈Nn

0

cαψα+1 on Cn \ {0}.

Proof. a) Let ε(a,b) be the sheaf of germs of C∞ (a, b)-forms. We particularly
set ε = ε(0,0) when (a, b) = (0, 0). Since ε(a,b) is a fine sheaf, it follows that

Hq(Dn \ {0}, ε(a,b)) = 0 for any q ≧ 1.

There exists φ = (φ1···̂i···n) ∈ Cn−2(U, ε) such that z−α−1 = δφ, i.e.

z−α−1 =

n∑
i=1

(−1)i−1φ1···̂i···n,
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for we can consider z−α−1 ∈ Cn−1(U, ε) for all α ∈ Nn
0 . Then we have

n∑
i=1

(−1)i−1φ1···̂i···n = 0.

Therefore we have ∂φ = (∂φ1···̂i···n) ∈ Zn−2(U, ε(0,1)). Since

Hn−2(U, ε(0,1)) ∼= Hn−2(Dn \ {0}, ε(0,1)) = 0,

there exists (φ1···̂i······̂j···n) ∈ Cn−3(U, ε(0,1)) such that

∂φ = δ((φ1···̂i······̂j···n)) =
(∑

±φ1···̂i······̂j···n

)
.

Repeating this procedure, we obtain (φj) ∈ C0(U, ε(0,n−2)) such that

∂φi = ∂φj for any i, j with Ui ∩ Uj ̸= ∅.

Therefore we can define a C∞ (0, n− 1)-form Ψ on Dn \ {0} by

Ψ := ∂φi on Ui.

It is clear that ∂Ψ = 0. This form Ψ is the Dolbeault representative correspond-
ing to z−α−1.

We set
Pε := {|zi| ≦ ε; i = 1, . . . , n}

for sufficiently small ε > 0. Then we have∫
|z1|=ε,··· ,|zn|=ε

z−α−1
∑

cβz
βdz1 · · · dzn = (2π

√
−1)ncα

for any convergent series f =
∑

β∈Nn
0
cβz

β in a neighbourhood of 0 in which Pε

is contained. Namely z−α−1 are generators characterized by the above property.
Using Stokes’s theorem and repeating correspondence between Čech coho-

mology classes and ∂-cohomology classes, we obtain∫
|z1|=ε,··· ,|zn|=ε

z−α−1fdz1 ∧ · · · ∧ dzn

=

n∑
i=1

∫
|z1|=ε,··· ,|zn|=ε

(−1)i−1φ1···̂i···nfdz1 ∧ · · · ∧ dzn

=

n∑
i=1

(−1)i−1

∫
|z1|=ε,··· ,|zi|≦ε,··· ,|zn|=ε

∂φ1···̂i···nfdz1 ∧ · · · ∧ dzn

= · · ·

= ±
∑∫

|zi|=ε,|zj |≦ε (j ̸=i)

Ψfdz1 ∧ · · · ∧ dzn

= ±
∫
∂Pε

Ψfdz1 ∧ · · · ∧ dzn,

11



for

z−α−1 =
n∑

i=1

(−1)i−1φ1···̂i···n.

Hence we have

±
∫
∂Pε

Ψfdz1 ∧ · · · ∧ dzn = (2π
√
−1)ncα.

Therefore, it holds that for any holomorphic function f on a neighbourhood of
B ∫

∂B

Ψfdz1 ∧ · · · ∧ dzn = ±(2π
√
−1)n(α!)−1 ∂

|α|f

∂zα
(0),

where B is an open ball with center 0 and sufficiently small radius. For Kα+1 =
ω ∧ ψα+1 it holds that∫

∂B

fKα+1 =
(2π

√
−1)n

(n− 1)!

1

α!

∂|α|f

∂zα
(0)

by Proposition 1.2 in the previous section. Therefore, the representative in the
Dolbeault classes corresponding to z−α−1 is (n− 1)!ψα+1 (up to sign).

b) From (a) we see that the series

(n− 1)!
∑
α∈Nn

0

cαψα+1

formally corresponds to

(z1 · · · zn)−1
∑
α∈Nn

0

cαz
−α with lim

|α|→∞
|α|
√
|cα| = 0.

Then it suffices to show that the above series converges absolutely on Cn \ {0}.
Take δ with 0 < δ < 1. Let

∑n
i=1 |zi|2 > δ. Then we have |zi| > δ

n for some i.
Therefore we have

n∑
j=1

|zj |2αj+2 ≧ |zi|2αi+2 >

(
δ

n

)2αi+2

>

(
δ

n

)2|α|+2

.

Consequently the absolute value of the coefficient of dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn
in ψα+1 is estimated by

∏
k ̸=j

αk|zj ||z1|α1 · |zn|αn

((
δ

n

)2|α|+2
)−n

=
∏
k ̸=j

αk|zj |
1(

δ
n

)2n
(

|z1|(
δ
n

)2n
)α1

· · ·

(
|zn|(
δ
n

)2n
)αn

.

12



Thus we see that the absolute value of the coefficient of dz1∧· · ·∧ d̂zj ∧· · ·∧dzn
in
∑
cαψα+1 is estimated by

|zj |
1(

δ
n

)2n ∑ |cα|wα, wi :=
|zi|(
δ
n

)2n .
Hence the series converges uniformly on compact subsets in Cn \ {0}.
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Chapter 2

Zappa’s Results

2.1 Cohomology groups of a punctured torus

Let Tn = Cn/Γ be a complex torus of n-dimension, where Γ is a lattice of Cn.
Let π : Cn → Tn be the canonical projection. We can take a neighbourhood V
of 0 in Tn such that

π−1(V ) =
⊔
γ∈Γ

Uγ (disjoint union),

π|Uγ : Uγ → V

is a biholomorphic mapping, where Uγ is a polydisc with center γ. Applying
Mayer-Vietoris’ theorem to Tn = V ∪ (Tn \ {0}), we obtain a cohomology exact
sequence

0 → H0(Tn,O) → H0(V,O)⊕H0(Tn \ {0},O) → · · · → Hk(Tn,O) →
Hk(Tn,O)⊕Hk(Tn \ {0},O) → Hk(V \ {0},O) → · · · → Hn−2(V \ {0},O)

→ Hn−1(Tn,O) → Hn−1(V,O)⊕Hn−1(Tn \ {0},O) → Hn−1(V \ {0},O)

→ Hn(Tn,O) → Hn(V,O) ⊕ Hn(Tn \ {0},O) → Hn(V \ {0},O) → 0.

By Lemma1.1 a) in Chapter 1 and

Hi(V,O) = 0 if i ≧ 1,

we have the following exact sequence

0 → Hn−1(Tn,O) → Hn−1(Tn \ {0},O) →

Hn−1(V \ {0},O)
δ−→ Hn(Tn,O) → 0.

Therefore we obtain

Hn−1(Tn \ {0},O) ∼= Hn−1(Tn,O)⊕Kerδ.

14



Hn−1(Tn,O) is an n-dimensional vector space generated by (0, n − 1)-forms
with constant coefficients. Hn−1(Uγ \ {γ}) is isomorphic to Hn−1(V \ {0},O).
It is a Fréchet space generated by Čech cohomolgy classes expressed by (z −
γ)−α−1 ∈ Γ(∩n

i=1Ui,O), α ∈ Nn
0 (Lemma 1.1). A ∂-closed (0, n − 1)-form

(n − 1)!ψα+1(z, γ) corresponds to the cohomology class of (z − γ)−α−1 by the
Dolbeault isomorphism, where

ψα+1(z, γ) =

∑n
k=1(−1)k(zk − γk)

αk+1
∧n

j=1
j ̸=k

d((zj − γj)
αj+1)(∑n

j=1 |zj − γj |2αj

)n
(Lemma 1.3). For a sufficiently small ε > 0, we set an open ball Bε(γ) with
radius ε and center γ. By the generalized Martinelli formula, we have

(2.1)

∫
Sε(γ)

fψα+1(z, γ) ∧ dz =
(2π

√
−1)n

(n− 1)!

1

α!

∂|α|f

∂zα
(γ)

for any holomorphic function f on a neighbourhood of Bε(γ). Here we note
that

ψα+1 ∧ dz = (−1)n(n−1)dz ∧ ψα+1 = dz ∧ ψα+1.

If we set α = (0, . . . , 0) in (2.1), then we have∫
Sε(γ)

fψ1(z, γ) ∧ dz =
(2π

√
−1)n

(n− 1)!
f(γ).

From the above equality it follows that

(2.2)
∂|α|

∂γα

∫
Sε(γ)

fψ1(z, γ) ∧ dz =
(2π

√
−1)n

(n− 1)!

∂|α|f

∂γα
(γ).

And we see that Kerδ is generated by ψα+1 (|α| ≧ 1). Let

ϕα(z, γ) :=
(−1)|α|

α!

∂|α|

∂zα
ψ1(z, γ).

Since
∂|α|

∂γα
ψ1(z, γ) = (−1)|α|

∂|α|

∂zα
ψ1(z, γ),

it follows from (2.1) and (2.2) that

(2.3)

∫
Sε(γ)

f(ψα+1(z, γ)− ϕα(z, γ)) ∧ dz = 0

for any holomorphic function f on a neighbourhood of Bε(γ).

Proposition 2.1 (Proposizione 1 in [9]). The form ψα+1(z, γ) − ϕα(z, γ) is
∂-exact.
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Proof. First we prove that ψα+1 − ϕα is ∂-closed. From (2.3) we have

0 =

∫
Sε(γ)

f(ψα+1 − ϕα) ∧ dz

=

∫
Bε(γ)

d[f(ψα+1 − ϕα) ∧ dz]

=

∫
Bε(γ)

f∂(ψα+1 − ϕα) ∧ dz

for any holomorphic function f on a neighbourhood of Bε(γ). Since f is arbi-
trary, it must be that ∂(ψα+1 − ϕα) = 0 on Bε(γ). Furthermore ψα+1 − ϕα is
∂-closed on Cn \ {γ}, because it is real analytic.

Then ψα+1−ϕα defines a ∂-cohomology class in Hn−1(Uγ \ {γ},O). There-
fore there exists a (0, n− 2)-form σ such that

ψα+1 − ϕα = (n− 1)!
∑
β∈Nn

0

cβψβ+1 + ∂σ,

where lim|β|→∞
|β|
√
|cβ | = 0. From (2.3) we have

0 =

∫
Sε(γ)

f
(
(n− 1)!

∑
cβψβ+1 + ∂σ

)
∧ dz

=
∑

cβ(n− 1)!

∫
Sε(γ)

fψβ+1 ∧ dz

=
∑

(2π
√
−1)n

cβ
β!

∂|β|f

∂zβ
(γ)

for any holomorphic function f on a neighbourhood of Bε(γ). Since f is arbi-
trary, we have cβ = 0 for all β ∈ Nn

0 . Thus we obtain

ψα+1 − ϕα = ∂σ.

By a straight calculation we obtain the following explicit representation of
ϕα

(2.4) ϕα(z, γ) =

(|α+ 1| − 1)!

(n− 1)!(α+ 1)!

∑n
k=1(−1)k(αk + 1)(zk − γk)

αk+1
∧

j ̸=k d((zj − γj)
αj+1)(∑n

j=1 |zj − γj |2
)|α+1| .

Proposition 2.2. When lim
|α|→∞

|α|
√

|cα| = 0, the series
∑
cαψα+1 and

∑
cαϕα

converge uniformly on any compact set of Cn \ {γ}, and give the same class in
Hn−1(Cn \ {γ},O).
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Proof. By Proposition 2.1, it is clear that if
∑
cαϕα is convergent, then the

above two series give the same class. Threrfore we prove that
∑
cαϕα converges.

Take a sufficiently small ρ1 > 0 and a sufficiently large number ρ2. We
estimate the absolute value of any coefficient of ϕα(z, γ) on ρ1 ≦ ||z − γ|| ≦ ρ2.
Since

(−1)k(αk + 1)(zk − γk)
αk+1

∧
j ̸=k

d((zj − γj)
αk+1)

= (−1)k
n∏

ℓ=1

(αℓ + 1)(zk − γk)

n∏
j=1

(zj − γj)
αj

∧
j ̸=k

dzj ,

the absolute value of the coefficient of this (0, n− 1)-form is estimated by

n∏
ℓ=1

(αℓ + 1)
n∏

j=1

|zj − γj |αj |zk − γk| ≦ |α+ 1|nρ|α+1|
2 .

Therfore the absolute value of the coefficient of
∧

j ̸=k dzj in ϕα is estimated by

(|α+ 1| − 1)!

(n− 1)!(α+ 1)!
|α+ 1|nρ−2|α+1|

1 ρ
|α+1|
2 .

Hence we see that the absolute value of the coefficient of
∧

j ̸=k dzj in
∑
cαϕα is

estimated by ∑
|cα|

(|α+ 1| − 1)!

(n− 1)!(α+ 1)!
|α+ 1|nρ−2|α+1|

1 ρ
|α+1|
2 .

Since

lim
|α|→∞

(
|cα|

(|α+ 1| − 1)!

(n− 1)!(α+ 1)!
|α+ 1|nρ−2|α+1|

1 ρ
|α+1|
2

) 1
|α|

= lim
|α|→∞

|α|
√
|cα| = 0,

we obtain the conclusion.

2.2 Γ-invariant forms

We first prove the following lemma which is the key lemma showing the con-
vergence of series. We state it in a general form in order to use it in the next
chapter.

Lemma 2.3. Let Γ be a discrete subgroup of Cn with rank Γ = n + m (1 ≦
m ≦ n). Then the series

∑
γ∈Γ\{0} ∥γ∥−λ converges for λ > n+m.

Proof. Take generators γ1, . . . , γn+m of Γ. For any i ∈ N0 we set

Γi := {a1γ1 + · · ·+ an+mγn+m; a1, . . . , an+m ∈ Z, |aj | ≦ i (j = 1, . . . , n+m)}.
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The number of elements of Γi \ Γi−1 is given by

#(Γi \ Γi−1) = (2i+ 1)n+m − (2i− 1)n+m

= 2((2i+ 1)n+m−1 + (2i+ 1)n+m−2(2i− 1) + · · ·+ (2i− 1)n+m−1).

Since
(2i+ 1)n+m−j(2i− 1)j−1 ≦ 22(n+m−1)in+m−1

for j = 1, . . . , n+m, we have

#(Γi \ Γi−1) ≦ An,mi
n+m−1,

where An,m = 2(n+m)22(n+m−1). Let k be the distance of the boundary of the
parallelotope given by Γ1 \ {0} from the origin. Then we have ∥γ∥ ≧ ki for all
γ ∈ Γi \ Γi−1.

Therefore we obtain∑
γ∈Γ\{0}

∥γ∥−λ =
∞∑
i=1

∑
γ∈Γi\Γi−1

∥γ∥−λ

≦
∞∑
i=1

∑
γ∈Γi\Γi−1

(ki)−λ

≦ An,m

kλ

∞∑
i=1

1

iλ−(n+m−1)
.

If λ > n + m, then λ − (n + m − 1) > 1. Then the series
∑∞

i=1
1

iλ−(n+m−1)

converges.

For the later use we give the following proposition in a more general form
(cf. Proposizione 2 in [9]).

Proposition 2.4. Let Γ be a discrete subgroup of Cn with rank Γ = n+m (1 ≦
m ≦ n). If a multiindex α ∈ Nn

0 satisfies |α| > −n+m+ 1, then the series

(2.5) εαΓ(z) :=
∑
γ∈Γ

φα(z, γ)

converges uniformly on compact subsets of Cn \ Γ. Therefore it is a ∂-closed
Γ-invariant (0, n− 1)-form on Cn \ Γ.

Proof. Take any ρ > 0. Suppose that ∥z∥ ≦ ρ and z /∈ Γ. Since

(−1)k(αk + 1)(zk − γk)
αk+1

∧
j ̸=k

d((zj − γj)
αj+1)

= (−1)k
n∏

ℓ=1

(αℓ + 1)(zk − γk)
n∏

ℓ=1

(zℓ − γℓ)
αℓ(dz)k,
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we see that the absolute value of the coefficient of
∧

j ̸=k dz in ϕα(z, γ) for fixed
k is estimated from above by

(|α+ 1| − 1)!|α+ 1|n

(n− 1)!(α+ 1)!

∏n
ℓ=1 |zℓ − γℓ|αℓ |zk − γk|

∥z − γ∥−2|α+1| .

For all γ ∈ Γ except a finite number of elements, we have ||γ|| > 2ρ. Since
∥z − γ∥ > 1

2∥γ∥ for such a γ, the above estimate is further bounded by

(|α+ 1| − 1)!|α+ 1|n

(n− 1)!(α+ 1)!
2|α|+2n−1∥γ∥−(|α|+2n−1).

It holds that |α| + 2n − 1 > n + m if |α| > −n + m + 1. Then the series∑
γ∈Γ\{0} ∥γ∥−(|α|+2n−1) converges by Lemma 2.3. This shows that the series

(2.5) converges uniformly on compact subsets of Cn \Γ. It is obvious that εαΓ is
∂-closed and Γ-invariant.

The next proposition is also a general form of the result which is stated in
[9] (cf. Proposizione 3 in [9]).

Proposition 2.5. If lim|α|→∞
|α|
√
|cα| = 0, then the series

(2.6)
∑

|α|≧ε0

cαε
α
Γ

uniformly converges on compact subsets in Cn \Γ, and is a ∂-closed Γ-invariant
(0, n− 1)-form on Cn \ Γ, where

ε0 =

 2 if m = n,
1 if m = n− 1,
0 if m < n− 1.

Proof. Take any ρ > 0. As in the proof of the previous proposition, the absolute
value of the coefficient of

∧
j ̸=k dzj in the serie (2.6) is estimated by

∑
|α|≧ε0

|cα|dα2|α|+2n−1

 ∑
γ∈Γ\{0}

∥γ∥−(|α|+2n−1)


≦
∑

|α|≧ε0

|cα|dα

(
An,m

k|α|+2n−1

∞∑
i=1

1

i|α|+n−m

)

≦
∑

|α|≧ε0

|cα|dαAn,m

(
2

k

)|α|+2n−1 ∞∑
i=1

1

i2

on ∥z∥ ≦ ρ. Here we set

dα =
(|α+ 1| − 1)!|α+ 1|n

(n− 1)!(α+ 1)!
,
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and k and An,m are constants in the proof of Lemma 2.3. Since we have

lim
|α|→∞

(
|cα|dαAn,m

(
2

k

)|α|+2n−1 ∞∑
i=1

1

i2

) 1
|α|

=
2

k
lim

|α|→∞
|α|
√

|cα| = 0,

the proof is complete.

We use the above proposition in the case of rank Γ = 2n. The series εαΓ and
(2.6) are Γ-invariant and generate cohomology classes of Hn−1(Tn \ {0},O).
But these do not generate all of kerδ. In fact, classes of |α| = 1 are omitted. To
construst a class of |α| = 1, we have to change it.

Let δik be kronecker’s delta. We set δi = (δi1, . . . , δ
i
n) ∈ Nn

0 . We write
ϕδi = ϕi. Consider the series

(2.7) ℘i
Γ(z) := ϕi(z, 0) +

∑
γ∈Γ\{0}

(
ϕi(z, γ)−Gi(γ)

)
,

where

Gi(γ) =
n
∑n

k=1(−1)kγiγk
∧

j ̸=k dzj

∥γ∥2n+2
.

Considering γiγk = ((γi − zi) + zi)((γk − zk) + zk), we obtain

℘i
Γ(z) = ϕi(z, 0)

+
∑

γ∈Γ\{0}

n(∥γ∥2n+2 − ∥z − γ∥2n+2)

(∥γ∥∥z − γ∥)2n+2

n∑
k=1

(−1)k(zi − γi)(zk − γk)
∧
j ̸=k

dzj


+

n

∥γ∥2n+2

n∑
k=1

(−1)k

(zi − γi)zk + (zk − γk)zi − zizk)
∧
j ̸=k

dzj


by a simple calculation. We have∣∣∥γ∥2n+2 − ∥z − γ∥2n+2

∣∣ ≦ c∥z∥∥γ∥2n+1

with a suitable constant c for ∥γ∥−∥z−γ∥ ≦ ∥z∥. Therefore the absolute value
of any coefficient of the series (2.7) is estimated by

d
∑

γ∈Γ\{0}

ρ∥γ∥−(2n+1)

on ∥z∥ ≦ ρ for any ρ > 0, where d is a suitable constant. Then ℘i
Γ converges

uniformly on any compact set of Cn \ Γ. We can prove that ℘i
Γ is Γ-invariant

in an analogous way to the proof for Weierstrass’ ℘-function.
Restrictions of ℘i

Γ and εαΓ constructed as above to Uγ \ {γ} generate ker δ.
By a simple calculation we obtain the following formulas for these forms

∂

∂zk
εαΓ = −(αk + 1)εα+δk

Γ for |α| ≧ 2,

∂

∂zk
℘i
Γ = −(δik + 1)εδ

i+δk

Γ .
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2.3 Mittag-Leffler type theorem for the classes
of Dolbeault

For the sake of simplicity, we represent

(dz)k =
∧
j ̸=k

dzj , (dz)k =
∧
j ̸=k

dzj

from now on. We write the Martinelli kernel as follows

ψ(z, ζ) := ψ1(z, ζ) =

∑n
k=1(−1)k(zk − ζk)(dz)k(∑n

j=1 |zj − ζj |2
)n .

The Taylor expantion of ψ(z, ζ) is formally given by

ψ(z, ζ) = ψ(0, ζ) +
∞∑
k=1

1

k!

 n∑
j=1

zj
∂

∂zj
+

n∑
j=1

zj
∂

∂zj

k

ψ(0, ζ)

=:
∞∑
k=0

ψk,

where n∑
j=1

zj
∂

∂zj
+

n∑
j=1

zj
∂

∂zj

k

ψ(0, ζ) =
k∑

ℓ=0

(
k
ℓ

) ∑
|α|=ℓ

|β|=k−ℓ

∂kψ

∂zα∂zβ
(0, ζ)zαzβ .

Let |ψk| be the maximum value among the absolute values of coefficients of ψk.

Lemma 2.6 (Lemma 1 in [10]). We have

|ψk| ≦ 8k
(
n+ k − 1
n− 1

)
∥z∥k∥ζ∥−2n−k+1 ≦ 2n−1

∥ζ∥2n−1

(
16∥z∥
∥ζ∥

)k

.

Proof. We have

|ψk| ≦
2k

k!
∥z∥k max

|α|+|β|=k

∣∣∣∣ ∂kψ

∂zα∂zβ
(0, ζ)

∣∣∣∣ .
We note ∣∣∣∣ ∂kψ

∂zα∂zβ
(0, ζ)

∣∣∣∣ = ∣∣∣∣ ∂kψ

∂zα∂zβ
(ζ, 0)

∣∣∣∣ .
It follows that

∂|α|ψ

∂zα
(z, 0) =

n∑
ℓ=1

(−1)|α|+ℓ−1 (|α|+ n− 1)!

(n− 1)!
zα+δℓ∥z∥−2(n+|α|)(dz)k.

21



We have the following estimation∣∣∣∣∂|β|∂zβ

(
zα+δℓ∥z∥−2(n+|α|)

)∣∣∣∣
=

∣∣∣∣∣∣
∑

η+ν=β

β!

η!

∂|η|

∂zη

(
zα+δℓ

) ∂|ν|
∂zν

(
∥z∥−2(n+|α|)

)∣∣∣∣∣∣
≦ 2|β| max

η+ν=β

∣∣∣∣∂|η|∂zη

(
zα+δℓ

) ∂|ν|
∂zν

(
∥z∥−2(n+|α|)

)∣∣∣∣ .
Furthermore we have∣∣∣∣∂|η|∂zη

(
zα+δℓ

)∣∣∣∣ ≦ ∏
ηi ̸=0

(αi + δℓi ) · · · (αi + δℓi − ηi + 1)∥z∥|α−η+δℓ|,

∣∣∣∣∂|ν|∂zν

(
∥z∥−2(n+|α|)

)∣∣∣∣ ≦ (n+ |α|) · · · (n+ |α|+ |ν| − 1)∥z∥−2n−2|α|−|ν|.

Since ∏
ηi ̸=0

(αi + δℓi ) · · · (αi + δℓi − ηi + 1) =
∏
ηi ̸=0

(αi + δℓi )!

(αi − ηi)!

≦
n∏

i=1

αi∑
ηi=0

(αi + δℓi )!

(αi − ηi)!

=

n∏
i=1

2αi+δℓi

= 2|α|+1,

we obtain∣∣∣∣∂|η|∂zη

(
zα+δℓ

) ∂|ν|
∂zν

(
∥z∥−2(n+|α|)

)∣∣∣∣ ≦ 2|α|+1 (n+ |α|+ |β| − 1)!

(n+ |α| − 1)!
∥z∥−2n−k+1.

Hence we have∣∣∣∣ ∂kψ

∂zα∂zβ
(0, ζ)

∣∣∣∣ = ∣∣∣∣ ∂kψ

∂zα∂zβ
(ζ, 0)

∣∣∣∣
≦ (|α|+ n− 1)!

(n− 1)!
2|β|2|α|+1 (n+ |α|+ |β| − 1)!

(n+ |α| − 1)!
∥ζ∥−2n−k+1

= 2k2
(n+ k − 1)!

(n− 1)!
∥ζ∥−2n−k+1.

Thus we obtain

|ψk| ≦
2k

k!
∥z∥k2k2(n+ k − 1)!

(n− 1)!
∥ζ∥−2n−k+1

≦ 8k
(
n+ k − 1
n− 1

)
∥z∥k∥ζ∥−2n−k+1.
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We can represent ψk as follows:

ψk =
1

k!

k∑
ℓ=0

(
k
ℓ

) ∑
|α|=ℓ

|β|=k−ℓ

∂kψ

∂zα∂zβ
(0, ζ)zαzβ

=
∑

|α|+p=k

∑
|β|=p

1

k!

(
k

k − p

)
∂kψ

∂zα∂zβ
(0, ζ)zαzβ

=:
∑

|α|+p=k

ψα,p.

Coefficients of ψα,p are homogeneous polynomials of degree p in z1, . . . , zn, and
we have the representation

ψ =
∑
α

∞∑
p=0

ψα,p.

Similarly coefficients of ∂ψα,p are homogeneous polynomials of degree p − 1 in
z1, . . . , zn. Since

∂ψ =
∑
α

∞∑
p=0

∂ψα,p

and ψ is ∂-closed, it must be that ∂ψα,p = 0. Hence we have ∂ψk = 0. From
the above fact and Lemma 2.6, we obtain the following lemma.

Lemma 2.7 (Lemma 2 in [10]). The Martinelli kernel ψ(z, ζ) (ζ ̸= 0) is ex-
panded into Taylor series

∑∞
k=0 ψk of ∂-closed forms which has norm conver-

gence in a neighbourhood of the origin. The series is uniformly convergent on

any compact set in the open ball with radius ∥ζ∥
16 .

Definition 2.8 ([10]). Let ω be a ∂-closed (0, n− 1)-form on C \ {ξ}. If there
exists a form ∑

|β|≦k

cβψβ(z, ξ) with cβ ̸= 0 for some β of |β| = k

such that ω−
∑

|β|≦k cβψβ(z, ξ) is ∂-exact, then ξ is called a singularity of polar

type of order k of ω.

Since operators ∂ and ∂
∂zj

are commutative, the form

ϕα(z, ξ) =
(−1)|α|

α!

∂|α|ψ

∂zα
(z, ξ)

=

∞∑
k=0

(−1)|α|

α!

∂|α|ψ

∂zα
(z, ξ)
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is a sum of ∂-closed forms. This series converges uniformly on ∥z∥ ≦ ∥ξ∥
32 (Lemma

2.7).
The following theorem is a generalization of the theorem of Mittag-Leffler.

Theorem 2.9 (Teorema 1 in [10]). Let Ξ = {ξk; k ∈ N} be a discrete set in Cn.
We suppose that for every ξk a form

Gk(z) =
∑

|α|≦mk

ak,αϕα(z, ξk)

with singularity ξk is given. Then there exists a ∂-closed (0, n − 1)-form F (z)
on Cn \ Ξ satisfying the following:
For any ξk, there exist an open neighbourhood Uk of ξk and a (0, n − 2)-form
Hk(z) in Uk such that

F (z)−Gk(z) = ∂Hk(z).

Proof. Renumbering if it is necessary, we may assume ∥ξk+1∥ ≧ ∥ξk∥. By
Lemma 2.7, we can take a ∂-closed form Pk(z) which consists of a partial sum
in Taylor expansion of Gk(z) such that

|Gk(z)− Pk(z)| ≦
(
1

2

)k

for ∥z∥ ≦ 1

32
∥ξk∥.

The series
∑∞

k=1(Gk(z)−Pk(z)) is uniformly convergent on any compact subset
of Cn \ Ξ and ∂-closed. We set

F (z) :=
∞∑
k=1

(Gk(z)− Pk(z)).

We show that the form F (z) satisfies the required condition.
For any ξk, we take a Stein neighbourhood Uk of ξk such that Uk∩Ξ = {ξk}.∑

k′ ̸=k(Gk′(z)− Pk′(z)) is a ∂-closed form on Uk. The sum is ∂-exact for Uk is

Stein. Furthermore, Pk(z) is ∂-exact for it is a partial sum. Hence,

F (z)−Gk(z) = −Pk(z) +
∑
k′ ̸=k

(Gk′(z)− Pk′(z))

is ∂-exact on Uk.

As in Theorem 2.9, let Ξ = {ξk; k ∈ N} be a discrete set in Cn with ∥ξk+1∥ ≧
∥ξk∥. Moreover, without loss of generality, we may assume ∥ξk∥ ≧ 2 (k ∈ N).
By Lemma 2.6, we have

|ψk(z, ξℓ)| <
(
1

2

)k

for ∥z∥ ≦ ∥ξℓ∥
32

.

If we set

Ph
ℓ (z) := ψ(0, ξℓ) +

h∑
k=1

ψk(z, ξℓ),
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then coefficients of Ph
ℓ (z) are polynomials of order h in zj and zj . By the above

estimate, we see that
∞∑
k=1

(
ψ(z, ξk)− P k

k (z)
)

converges uniformly on any compact subset of Cn \ Ξ.

Definition 2.10 ([10]). We define the exponent of convergence of Ξ by

C := inf{γ ∈ N;
∞∑
k=1

1

∥ξk∥γ
< +∞}.

In the case that
∑∞

k=1
1

∥ξk∥γ = +∞ for any γ ∈ N, we set C := ∞.

Lemma 2.11 ([10]). If a discrete set Ξ = {ξk; k ∈ N} in Cn have the exponent
of convergence C ∈ N, then

∞∑
k=1

(
ψ(z, ξk)− P C−2n

k (z)
)

converges uniformly on any compact subset of Cn \ Ξ.

Proof. Since ∥ξk∥ → ∞ (k → ∞), for any R > 0 there exists a natural number
N(R) such that

∥ξk∥ > 32R for any k ≧ N(R).

Since we have the estimate∣∣∣∣∣∣
∞∑

k=N(R)

(
ψ(z, ξk)− P C−2n

k (z)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=N(R)

∑
ℓ=C−2n+1

ψℓ(z, ξk)

∣∣∣∣∣∣
≦

∞∑
k=N(R)

∞∑
ℓ=C−2n+1

2n−1

∥ξk∥2n−1

(
16∥z∥
∥ξk∥

)ℓ

≦
∞∑

k=N(R)

∞∑
ℓ=C−2n+1

(
16R

∥ξk∥

)ℓ
2n−1

∥ξk∥2n−1

=
∞∑

k=N(R)

2n−1(16R)C−2n+1

∥ξk∥C

( ∞∑
ℓ=C−2n+1

(
16R

∥ξk∥

)ℓ+2n−1+C
)

≦ 2n−1(16R)C−2n+1
∞∑

k=N(R)

1

∥ξk∥C
∞∑

ℓ=C−2n+1

(
1

2

)ℓ+2n−1+C

< +∞

on ∥z∥ ≦ R, the proof is complete.
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Theorem 2.12 (Teorema 2 in [10]). Let Ξ = {ξk; k ∈ N} be a discrete set in
Cn with exponent of convergence C. Then a ∂-close form ω on Cn \ Ξ with
singularity of polar type of minimum order (= 1) at each point of Ξ is given by

ω =

∞∑
k=1

(
ψ(z, ξk)− P i

k(z)
)
,

where we set  i = k if C = ∞
i = C − 2n if 2n ≦ C <∞
P i
k = 0 if C < 2n.

And (n−1)!

(2π
√
−1)n

ω ∧ dz has the residue 1 at each point of Ξ.

Proof. (I) In the case of C = ∞. We have already proved that
∑∞

k=1(ψ(z, ξk)−
P i
k(z)) converges. As in the proof of Theorem 2.9, we see that

ω − ψ(z, ξk) = −P k
k (z) +

∑
ℓ ̸=k

(ψ(z, ξk)− P ℓ
ℓ (z))

is ∂-exact on a neighbourhood of ξk for any ξk (k ∈ N). Therefore ξk is a
singularity of polar type of order 1 for ω.

(II) In the cace of 2n ≦ C <∞. By Lemma 2.11
∑∞

k=1(ψ(z, ξk)−P
C−2n
k (z))

is convergent. The same argument as in (I) shows that ξk is a singularity of
polar type of order 1 for ω.

(III) In the case of C < 2n. It is enough to prove that
∑∞

k=1 ψ(z, ξk) con-
verges uniformly on any compact set in C \ Ξ.

For any R > 0, there exists a natural number N(R) such that

∥ξk∥ > 32R for any k ≧ N(R).

Then, as in the proof of Lemma 2.7, we obtain∣∣∣∣∣∣
∞∑

k=N(R)

ψ(z, ξk)

∣∣∣∣∣∣ ≦ 2n
∞∑
k=1

1

∥ξk∥2n−1
< +∞

for ∥ξk∥ ≧ R.
(IV) Since ω has the minimum order 1 at each ξk, we obtain

(n− 1)!

(2π
√
−1)n

∫
Sε(ξk)

ω ∧ dz = (n− 1)!

(2π
√
−1)n

∫
Sε(ξk)

ψ(z, ξk) ∧ dz

=
(n− 1)!

(2π
√
−1)n

(2π
√
−1)n

(n− 1)!
= 1

by Proposition 1.2.
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2.4 Generalization of the Legendre relation

In this section, we construct a ∂-closed (0, n− 1)-form corresponding to Weier-
strass’ ζ-function. And we give a formula which generalizes the Legendre rela-
tion.

If Γ is a lattice of maximal rank in Cn, then its exponent of convergence is
2n+ 1 (see Lemma 2.3). Therefore, we can define the following form

ζΓ(z) := ψ(z, 0) +
∑

γ∈Γ\{0}

(ψ(z, γ)− P 1
γ (z))

= ψ(z, 0) +
∑

γ∈Γ\{0}

(
ψ(z, γ)− ψ(0, γ)−

n∑
i=1

(
∂ψ

∂zi
(0, γ)zi +

∂ψ

∂zi
(0, γ)zi

))
,

where
P 1
γ (z) = ψ(0, γ) + ψ1(z, γ).

We have the representation of P 1
Γ(z) defined by (2.7) as follows:

P 1
Γ(z) = − ∂ψ

∂zi
(z, 0) +

∑
γ∈Γ\{0}

(
∂ψ

∂zi
(z, γ)− ∂ψ

∂zi
(0, γ)

)
.

We note that ζΓ(z) has the following properties

ζΓ(z) = −ζΓ(−z),
∂

∂zi
ζΓ(z) = −℘i

Γ(z).

Fix any γ ∈ Γ. Noting that ψ(z + γ, γ′) = ψ(z, γ′ − γ) for all γ′ ∈ Γ, we obtain

ζΓ(z + γ, 0)− ζΓ(z)

= ψ(z,−γ)− ψ(z, 0) +
∑

γ′∈Γ\{0}

(ψ(z, γ′ − γ)− ψ(z, γ′))

−
∑

γ′∈Γ\{0}

n∑
i=1

(
∂ψ

∂zi
(0, γ′)γi −

∂ψ

∂zi
(0, γ′)γi

)

= −
∑

γ′∈Γ\{0}

n∑
i=1

(
∂ψ

∂zi
(0, γ′)γi −

∂ψ

∂zi
(0, γ′)γi

)
=: ηγ .

Let γ1, . . . , γ2n be generators of Γ. We write γj = (γ1j , . . . , γnj) ∈ Cn (j =
1, . . . , 2n). We set

G := (γ1, . . . , γ2n) =

 γ11 · · · γ1,2n
...

...
γn1 · · · γn,2n

 .
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Let CG(0) be the fundamental parallelotope with center at the origin. Using
faces

F±
k :=

z ∈ Cn; z = ±1

2
γk +

2n∑
j=1
j ̸=k

λjγj , |λj | ≦
1

2

 , k = 1, . . . , 2n,

we can represent the boundaty ∂CG(0) of CG(0) as

∂CG(0) =
2n∑
k=1

(−1)k−1F+
k +

2n∑
k=1

(−1)kF−
k .

We set

ζΓ(z) =
n∑

i=1

ζi(z)(dz)i,

ηγj =
n∑

i=1

ηij(dz)i, j = 1, . . . , 2n.

By the generalized Martinelli formula, we have

(2π
√
−1)n

(n− 1)!
=

∫
∂CG(0)

ζΓ(z) ∧ dz.

We represent the detarminant of the matrix which omits the i-th row and the

k-th column from

(
G
G

)
as

∣∣∣∣ GG
∣∣∣∣
i,k

. Take real variables (t1, . . . , t2n) such that

 z1
...
zn

 = G

 t1
...
t2n

 .

Then the above formula is

(2π
√
−1)n

(n− 1)!
=

2n∑
k=1

(−1)k−1

∫ 1
2

− 1
2

· · ·
∫ 1

2

− 1
2

n∑
i=1

ζi(z(t))
∣∣∣
F+

k

∣∣∣∣ GG
∣∣∣∣
i,k

dt1 · · · d̂tk · · · dt2n

+
2n∑
k=1

(−1)k
∫ 1

2

− 1
2

· · ·
∫ 1

2

− 1
2

n∑
i=1

ζi(z(t))
∣∣∣
F−

k

∣∣∣∣ GG
∣∣∣∣
i,k

dt1 · · · d̂tk · · · dt2n

=
2n∑
k=1

(−1)k−1

∫ 1
2

− 1
2

· · ·
∫ 1

2

− 1
2

n∑
i=1

(
ζi(z(t))

∣∣∣
F+

k

− ζi(z(t))
∣∣∣
F−

k

)
×
∣∣∣∣ GG

∣∣∣∣
i,k

dt1 · · · d̂tk · · · dt2n

=

2n∑
k=1

(−1)k−1
n∑

i=1

ηik

∫ 1
2

− 1
2

· · ·
∫ 1

2

− 1
2

∣∣∣∣ GG
∣∣∣∣
i,k

dt1 · · · d̂tk · · · dt2n.
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Then we get a generalization of the Legendre relation

(2.8)
(2π

√
−1)n

(n− 1)!
=

n∑
i=1

2n∑
k=1

(−1)k−1ηik

∣∣∣∣ GG
∣∣∣∣
i,k

.

2.5 Generalization of Weierstrass’ ℘-function

In this section, we assume that an n-dimentional complex torus M = Cn/Γ is
an abelian variety. For the sake of simplicity, we write ℘i(z) = ℘i

Γ(z) omitting
Γ. Let π : Cn → M be the canonical projection. Consider ℘i(z − p̃) for any
p̃ ∈ π−1(p).We can consider ℘i(z) as a form onM , because it is Γ-invariant. We
write ℘i(z − p) when ℘i(z − p̃) is considered on M . We treat other Γ-invariant
forms and functions in the same manner. Let B be a sufficiently small open ball
containing p. It holds by (2.1) that

(2.9)
(2π

√
−1)n

(n− 1)!

∂f

∂zi
(p) =

∫
∂B

f(z)℘i(z − p) ∧ dz

for any holomorphic function f on a neighbourhood of B.

Definition 2.13 ([11]). We define a ∂-closed (n − 1, n − 1)-form ℘ij(z) on
M \ {0} by

(2.10) ℘ij(z) :=
(n− 1)!

(2π
√
−1)n−1

(−1)j−1℘i(z) ∧ (dzj).

Remark . Dolbeault classes of ℘ij and its derivatives generate Hn−1(M \
{p},Ωn−1) as a Frechét space.

There exists a theta function θ ( ̸≡ 0) for M is an abelian variety. We can
take a positive C∞ function h such that ω = h|θ|2 is Γ-invariant. Let Θ be the
divisor on M defined by θ = 0.

Proposition 2.14 (Proposizione 1 in [11]). Let p /∈ Θ, and take p̃ ∈ π−1(p).
Let Q be a fundamental parallelotope such that p̃ is not contained in the interior
Q◦ of Q. Then we have

(2.11)

∫
Θ

℘ij(z − p) = − ∂2

∂zi∂zj
log θ(p̃) +

√
−1

2π

∫
∂Q

∂ log h ∧ ℘ij(z − p̃).

Proof. Take an open ball B with center p and sufficiently small rudius such
that π−1(B) ∩ ∂Q = ∅. Let T be a tubular neighbourhood of Θ with piecewise
differentiable boundary such that T ∩ B = ∅. We can take a C∞ function ρ
with ρ ≧ 0 on M such that

ρ(q) =

{
1 if q ∈ T
0 if q ∈ B.
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We have ∫
Θ

℘ij =

∫
Θ

ρ℘ij(2.12)

=

⟨
−
√
−1

π
∂∂ log |θ|, ρ℘ij

⟩
= −

√
−1

2π

(∫
M

∂∂ logω ∧ ρ℘ij −
∫
M

∂∂ log h ∧ ρ℘ij

)
= −

√
−1

2π

(∫
M

∂ logω ∧ ∂ρ ∧ ℘ij −
∫
M

∂∂ log h ∧ ρ℘ij

)
by the Poincaré-Lelong equation. Since ∂∂ log |θ|2 = 0 on M \Θ, we obtain∫

M

∂ logω ∧ ∂ρ ∧ ℘ij(2.13)

=

∫
M\(B∪T )

∂ logω ∧ ∂ρ ∧ ℘ij

=

∫
M\(B∪T )

∂∂ logω ∧ ρ℘ij − ∂(∂ logω ∧ ρ℘ij)

=

∫
M\(B∪T )

∂∂ log h ∧ ρ℘ij +

∫
∂B

logω ∧ ρ℘ij +

∫
∂T

logω ∧ ℘ij

=

∫
M\(B∪T )

∂∂ log h ∧ ρ℘ij +

∫
∂T

logω ∧ ℘ij .

On the other hand, we have

(2.14)

∫
M

∂∂ log h ∧ ρ℘ij =

∫
T

∂∂ log h ∧ ℘ij +

∫
M\(B∪T )

∂∂ log h ∧ ρ℘ij .

From (2.12), (2.13) and (2.14) it follows that

(2.15)

∫
Θ

℘ij =

√
−1

2π

(
−
∫
∂T

∂ logω ∧ ℘ij +

∫
T

∂∂ log h ∧ ℘ij

)
.

By Stokes’ theorem, we have∫
M

∂∂ logω ∧ ℘ij =

∫
M

d(∂ logω ∧ ℘ij)(2.16)

= −
∫
∂T

∂ logω ∧ ℘ij −
∫
∂B

∂ logω ∧ ℘ij .

Moreover, since ∂∂ log h = ∂∂ logω on M \ T , we have

−
∫
∂T

∂ logω ∧ ℘ij =

∫
M\(B∪T )

∂∂ logω ∧ ℘ij +

∫
∂B

∂ logω ∧ ℘ij

=

∫
M\(B∪T )

∂∂ log h ∧ ℘ij +

∫
∂B

∂ logω ∧ ℘ij .
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Therefore, we obtain

(2.17)

∫
Θ

℘ij =

√
−1

2π

(∫
M\B

∂∂ log h ∧ ℘ij +

∫
∂B

∂ logω ∧ ℘ij

)

by (2.15). Setting B′ := π−1(B) ∩Q, we have∫
M\B

∂∂ log h ∧ ℘ij =

∫
Q\B′

d(∂ log h ∧ ℘ij)(2.18)

=

∫
∂Q

∂ log h ∧ ℘ij −
∫
∂B′

∂ log h ∧ ℘ij .

On the other hand, since ∂ log |θ|2 = ∂ log θ, we obtain∫
∂B

∂ logω ∧ ℘ij =

∫
∂B′

(∂ log h+ ∂ log |θ|2) ∧ ℘ij(2.19)

=

∫
∂B′

(∂ log h+ ∂ log θ) ∧ ℘ij .

By the definition of ℘ij and (2.9), we have∫
∂B′

∂ log θ ∧ ℘ij =
(n− 1)!

(2π
√
−1)n−1

∫
∂B′

∂

∂zj
log θ ℘ij(z − p̃) ∧ dz

= 2π
√
−1

∂2

∂zi∂zj
log θ(p̃).

We finally obtain∫
Θ

℘ij = − ∂2

∂zi∂zj
log θ(p̃) +

√
−1

2π

∫
∂Q

∂ log h ∧ ℘ij .

Lemma 2.15 (Proposizione 2 in [11]). The term
√
−1
2π

∫
∂Q

∂ log h ∧ ℘ij(z − p̃)

in (2.11) is a constant independent of p.

Proof. By the definition of ℘ij , we have

√
−1

2π

∫
∂Q

∂ log h ∧ ℘ij(z − p̃)

=

√
−1

2π

(n− 1)!

(2π
√
−1)n−1

(−1)j−1

∫
∂Q

∂ log h ∧ ℘ij(z − p̃) ∧ (dz)j

=
(n− 1)!

(2π
√
−1)n−1

(−1)n
∫
∂Q

∂

∂zj
log h ℘i(z − p̃) ∧ dz.
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Since h is the exponent of a polynomial of degree 2 in zi and zi,
∂

∂zj
log h is

represented as the following linear polynomial

n∑
r=1

(ajrzr + bjrzr) + cj .

It holds that ∫
F+

ℓ ∪F−
ℓ

∂

∂zj
log h ℘i(z − p̃) ∧ dz(2.20)

=
n∑

r=1

(ajrγrℓ + bjrγrℓ)

∫
F−

ℓ

℘i(z − p̃) ∧ dz,

because ℘i∧dz is Γ-invariant. Therefore, it is sufficient to show that the integral∫
F−

ℓ

℘i(z − p̃) ∧ dz

is independent of p.
Let Hℓ := π(F−

ℓ ) be the real (2n− 1)-dimensional hypersurface of M deter-
mined by F−

ℓ . We have∫
F−

ℓ

℘i(z − p̃) ∧ dz =
∫
Hℓ

℘i(z − p) ∧ dz =
∫
Hℓ−p

℘i(z) ∧ dz.

We take a different point q ∈M which does not lie on Hℓ. We denote by D the
domain in M surrounded by Hℓ − p and Hℓ − q. Then we have∫

Hℓ−p

℘i(z) ∧ dz −
∫
Hℓ−q

℘i(z) ∧ dz =
∫
D

d(℘i(z) ∧ dz) = 0.

Combining Propositon 2.14 with Lemma 2.15, we obtain the following the-
orem which shows that ℘ij is a generalization of Weierstrass’ ℘-function.

Theorem 2.16 (Teorema in [11]). Let Θ be the above divisor. Then we have

(2.21)

∫
Θ

℘ij(z − p) = − ∂2

∂zi∂zj
log θ(p̃) + cij ,

where cij is a constant independent of p.
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Chapter 3

Generalization to
Quasi-Abelian Varieties

3.1 Toroidal groups and quasi-abelian varieties

Connected complex Lie groups on which holomorphic functions are only con-
stants are called toroidal groups. It is known that a toroidal group is commu-
tative. Then it is considered as a quotient Cn/Γ of Cn by a discrete subgroup
Γ with rank Γ = n+m (1 ≦ m ≦ n). When rank Γ = 2n, it is a complex torus.
In this section, we treat the case of non-compact toroidal groups.

Let X = Cn/Γ be a toroidal group with rank Γ = n +m (1 ≦ m ≦ n − 1).
Take generators γ1 = (γ11, . . . , γ1n), . . . , γn+m = (γn+m,1, . . . , γn+m,n) of Γ.
The matrix

P =

 γ11 · · · γn+m,1

...
...

γ1n . . . γn+m,n


given by these generators is called a period matrix of X. By a suitable change
of variables and generators, we can write P as

(3.1) P =

(
0 Im T

In−m R1 R2

)
,

where Ik is the unit matrix of degree k, the matrix (Im T ) is a period matrix
of an m-dimensional complex torus, and (R1 R2) is a real matrix. We say
that coordinates in the expression (3.1) are toroidal coordinates. The condition
H0(X,O) = C is written in terms of (R1 R2) (see [2] for details). We write the
toroidal coordinates as

z = (z′, z′′) = (z1, . . . , zm, zm+1, . . . , zn).

In the following we use these coordinates. Let Rn+m
Γ be the real linear subspace
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of Cn spanned by Γ. Then

Cm
Γ := Rn+m

Γ ∩
√
−1Rn+m

Γ

is the maximal complex linear subspace contained in Rn+m
Γ , which is of complex

dimension m. A toroidal group X is called a quasi-abelian variety if there exists
a hermition form H on Cn such that
(a) H is positive definite on Cm

Γ ,
(b) the imaginary part A := ImH is Z-valued on Γ× Γ.
A hermitian form H satisfying the above conditions (a) and (b) is said to be an
ample Riemann form for X. We set AΓ := A|Rn+m

Γ ×Rn+m
Γ

for an ample Riemann

form H. Since AΓ is an alternating form, we have

rank AΓ = 2(m+ k), 0 ≦ k ≦ 1

2
(n−m).

In this case we say that H is of kind k. If a quasi-abelian variety X has an
ample Riemann form of kind k, then it also has an ample Riemann form of kind
k′ for any k′ with k ≦ k′ ≦ 1

2 (n−m). Then the kind of a quasi-abelian variety
was defined in [3] as follows.

Definition 3.1. The kind of a quasi-abelian variety X is the smallest integer
k with 0 ≦ k ≦ 1

2 (n−m) such that there exists an ample Riemann form of kind
k for X.

Let X = Cn/Γ be a quasi-abelian variety of kind 0. Then the matrix (Im T )
in (3.1) is a period matrix of anm-dimensional abelian variety A. The projection
z 7→ z′ induces a (C∗)n−m-bundle σ : X → A over A. Replacing fibres (C∗)n−m

with (P1)n−m, we obtain the associated (P1)n−m-bundle σ : X → A over A.
We say that X is the standard compactification of a quasi-abelian variety X of
kind 0.

3.2 Cohomology groups and the Dolbeault iso-
morphism

Let X = Cn/Γ be a toroidal group with rank Γ = n +m (1 ≦ m ≦ n − 1). It
has the canonical projection π : Cn → X. Let 0 be the unit element of X. We
can take a neighbourhood V of 0 in X such that

π−1(V ) =
⊔
γ∈Γ

Uγ (disjoint union),

π|Uγ
: Uγ → V

is a biholomorphic mapping, where Uγ is a polydisc with center γ. In the same
way as in Section 2.1 in Chapter 2, we obtain the following cohomology exact
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sequence

0 → H0(X,O) → H0(V,O)⊕H0(X \ {0},O) → · · · → Hk(X,O) →
Hk(V,O)⊕Hk(X \ {0},O) → Hk(V \ {0},O) → · · · → Hn−2(V \ {0},O)

→ Hn−1(X,O) → Hn−1(V,O)⊕Hn−1(X \ {0},O) → Hn−1(V \ {0},O)

→ Hn(X,O) → Hn(V,O) ⊕ Hn(X \ {0},O) → Hn(V \ {0},O) → 0.

When rank Γ = n + m, the toroidal group X = Cn/Γ is strongly (m + 1)-
complete. Then we have

Hi(X,O) = 0 for i ≧ m+ 1.

Since n ≧ 2, we have

H0(X \ {0},O) = H0(X,O) = C.

Furthermore we have

Hi(V \ {0},O) = 0 for i ̸= 0, n− 1

(Lemma 1.1 in Chapter 1). Substituting these results to the above exact se-
quence, we obtain the following proposition.

Proposition 3.2 (Proposition 1 in [1]). For a toroidal group X = Cn/Γ we
have

Hi(X \ {0},O) ∼= Hi(X,O) for i ̸= n− 1,

Hn−1(X \ {0},O) ∼= Hn−1(X,O)⊕Hn−1(V \ {0},O).

Since cohomology groups Hi(X,O) of a toroidal group X is comletely de-
termined by [7] and [8], the above proposition shows that if Hn−1(V \ {0},O)
is decided, then we can understand cohomology groups of a punctured toroidal
group X \ {0}. We note that

Hn−1(V \ {0},O) ∼= Hn−1(Uγ \ {γ},O)

for any γ ∈ Γ. Especially, when 1 ≦ m < n− 1, we have Hn−1(X,O) = 0 and

Hn−1(X \ {0},O) ∼= Hn−1(Uγ \ {γ},O).

When m = n − 1, Hn−1(X \ {0},O) is generated by Hn−1(Uγ \ {γ},O) and
Hn−1(X,O). The (n − 1)-th cohomology group Hn−1(X,O) can be of n-
dimension or non-Hausdorff.

3.3 Definition of ℘ij

The (n−1)-th cohomology groupHn−1(Uγ\{γ},O) is generated by {ϕα(z, γ);α ∈
Nn

0} as shown in Chapter 2. Now we treat the case that 1 ≦ m ≦ n− 1. Then
we have −1 +m+ 1 ≦ 0. Therefore,

εαΓ(z) :=
∑
γ∈Γ

ϕα(z, γ)
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converges for any α ∈ Nn
0 with |α| ≧ 1 by Proposition 2.4. Then, we can define

℘i
Γ(z) without a modification as in (2.7). Hence, we set

℘i
Γ(z) := εδ

i

Γ (z).

By the definition of εαΓ the following equality is obvious

∂

∂zk
εαΓ = −(αk + 1)εα+δk

Γ ,

especially
∂

∂zk
℘i
Γ(z) = −(δik + 1)εδ

i+δk

Γ .

For the sake of simplicity we write ℘i(z) = ℘i
Γ(z) omitting Γ. It is obvious that

℘i(z) has the property (2.9) in Section 2.5 in Chapter 2. We give the following
definition of ℘ij as the case of a complex torus.

Definition 3.3. We define a ∂-closed (n−1, n−1)-form ℘ij(z) on a punctured
toroidal group X \ {0} by

(3.2) ℘ij(z) :=
(n− 1)!

(2π
√
−1)n−1

(−1)j−1℘i(z) ∧ (dz)j .

While ℘i(z) is a ∂-closed (0, n − 1)-form on Cn with singularities Γ, it is
Γ-invariant. Then we can consider it as a ∂-closed (0, n − 1)-form on X with
a singularity 0. Let p ∈ X and p̃ ∈ π−1(p). If we write ℘i(z − p), then it is
considered as a form on X. And if we write ℘i(z − p̃), then it is a form on Cn.
We treat ℘ij and other Γ-invariant forms and functions in the same manner.

3.4 Positive divisors

Let X = Cn/Γ be a quasi-abelian variety of kind 0. We take generators
γ1, . . . , γn+m of Γ such that the period matrix P = (γ1, . . . , γn+m) is of the
form in (3.1). For any j = 1, . . . , n−m, we set

vj := (δm+j
1 , . . . , δm+j

m+j−1,
√
−1δm+j

m+j , δ
m+j
m+j+1, . . . , δ

m+j
n ).

Then γ1, . . . , γn+m, v1, . . . , vn−m are a basis of Cn over R. Any z ∈ Cn is
represented uniquely by

z =
n+m∑
i=1

siγi +
n−m∑
j=1

tjvj , si, tj ∈ R.
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For a fixed z0 ∈ Cn we define the fundamental parallelotope Q of X with center
z0 by

Q :=

{
z0 + z; z =

n+m∑
i=1

siγi +
n−m∑
j=1

tjvj , − 1

2
< si <

1

2
(i = 1, . . . , n+m),

tj ∈ R (j = 1, . . . , n−m)

}
.

We denote an (n−m)-tuple of positive numbers R1, . . . , Rn−m by
R = (R1, . . . , Rn−m). Let R and R′ be two (n−m)-tuples of positive numbers.
Then

DR,R′ := Cm×
{(zm+1, . . . , zn) ∈ Cn−m;−R′

j < Imzm+j < Rj (j = 1, . . . , n−m)}

is a subdomain of Cn. Since the period matrix P of X is of the form in (3.1),
Γ acts on DR,R′ for any R and R′. Then we can define a subdomain XR,R′ :=
DR,R′/Γ of X. Let XR,R′ be the closure of XR,R′ in X. We denote

QR,R′ := Q ∩DR,R′ and (∂Q)R,R′ := ∂Q ∩DR,R′ ,

where ∂Q is the boundary of Q in Cn.
Let Θ be a positive devisor on X. It determines a holomorphic line bundle

L = [Θ] over X. It is well-known that L is given by a factor of automor-
phy ρ(γ, z). A system of local defining functions {θi} of Θ corresponds to an
automorphic form θ for ρ(γ, z), that is, θ is an entire function on Cn satisfying

θ(z + γ) = ρ(γ, z)θ(z)

for all z ∈ Cn and γ ∈ Γ. We note that if X is an abelian variety, then θ
is a theta function. A hermitian fibre metric of L gives a positive valued C∞

function h on Cn such that

(3.3) ω = h|θ|2

is a C∞ function on Cn with period Γ. Then ω is considered as a function on
X. It follows from this property that

(3.4) log h(z + γ) + log |ρ(γ, z)|2 = log h(z)

for all z ∈ Cn and γ ∈ Γ. For a positive divisor Θ we set

ΘR,R′ := Θ ∩XR,R′ .
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3.5 Formula on a subdomain

Let X = Cn/Γ be a quasi-abelian variety. Suppose that Θ is a generalized theta
divisor, that is, it is a positive divisor of which factor of automorphy ρ(γ, z)
is the exponent of a linear polynomial. We take a point p ∈ X with p /∈ Θ.
Let p̃ ∈ π−1(p). We can take a fundamental parallelotope Q of X such as p̃
is an interior point of Q. Let B be a small open ball centered at p such that
∂Q∩π−1(B) = ϕ. We denote by T an open neighbourhood of Θ with piecewise
differentiable boundary such that T ∩B = ϕ. For any two (n−m)-tuples R and
R′ of positive numbers, we set

TR,R′ := T ∩XR,R′ , (∂T )R,R′ := ∂T ∩XR,R′

and
ER,R′ := ∂XR,R′ \ (∂TR,R′ \ (∂T )R,R′),

where ∂XR,R′ and ∂TR,R′ are boundaries of XR,R′ and TR,R′ in X respectively.
We take a C∞ function ρ on X with 0 ≦ ρ ≦ 1 such that ρ = 1 on T and ρ = 0
on B.

Proposition 3.4 (Proposition 3 in [1]). We have∫
ΘR,R′

℘ij(z − p) = − ∂2

∂zi∂zj
log θ(p̃)

+

√
−1

2π

∫
∂QR,R′

∂ log h ∧ ℘ij(z − p)

+

√
−1

2π

∫
ER,R′

∂ logω ∧ (ρ− 1)℘ij(z − p),

(3.5)

where θ, h and ω are functions as in the previous section.

Proof. We first note that the current on XR,R′ determined by ΘR,R′ is extended
to a linear functional on the space of C∞ (n − 1, n − 1)-forms on XR,R′ since
XR,R′ is compact. Furthermore, the Poincaré-Lelong equation holds for such
an extended linear functional. Then we have by (3.3)∫

ΘR,R′

℘ij(z − p)(3.6)

=

∫
ΘR,R′

ρ℘ij(z − p)

=

⟨
−
√
−1

π
∂∂ log |θ|, ρ℘ij

⟩
= −

√
−1

2π

(
⟨∂ logω, ∂ρ ∧ ℘ij⟩ −

∫
XR,R′

∂∂ log h ∧ ρ℘ij

)
.
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Since ∂∂ log |θ|2 = 0 on XR,R′ \ TR,R′ , ρ = 1 on T and ρ = 0 on B, we obtain

(3.7) ⟨∂ logω, ∂ρ ∧ ℘ij⟩

=

∫
XR,R′\(B∪TR,R′ )

∂ logω ∧ ∂ρ ∧ ℘ij

=

∫
XR,R′\(B∪TR,R′ )

(∂∂ logω ∧ ρ℘ij − ∂(∂ logω ∧ ρ℘ij))

=

∫
XR,R′\(B∪TR,R′ )

∂∂ log h ∧ ρ℘ij −
∫
ER,R′

∂ logω ∧ ρ℘ij

+

∫
(∂T )R,R′

∂ logω ∧ ℘ij .

On the other hand we have

(3.8)

∫
XR,R′

∂∂ log h ∧ ρ℘ij =

∫
TR,R′

∂∂ log h ∧ ℘ij

+

∫
XR,R′\(B∪TR,R′ )

∂∂ log h ∧ ρ℘ij .

Then it follows from (3.6), (3.7) and (3.8) that

(3.9)

∫
ΘR,R′

℘ij(z − p)

=

√
−1

2π

(
−
∫
(∂T )R,R′

∂ logω ∧ ℘ij +

∫
TR,R′

∂∂ log h ∧ ℘ij

+

∫
ER,R′

∂ logω ∧ ρ℘ij

)
.

By Stokes’ theorem we have∫
XR,R′\(B∪TR,R′ )

∂∂ logω ∧ ℘ij

=

∫
ER,R′

∂ logω ∧ ℘ij −
∫
(∂T )R,R′

∂ logω ∧ ℘ij −
∫
∂B

∂ logω ∧ ℘ij .

Moreover, since ∂∂ logω = ∂∂ log h on XR,R′ \ TR,R′ , we obtain

(3.10) −
∫
(∂T )R,R′

∂ logω ∧ ℘ij

=

∫
XR,R′\(B∪TR,R′ )

∂∂ log h ∧ ℘ij +

∫
∂B

∂ logω ∧ ℘ij −
∫
ER,R′

∂ logω ∧ ℘ij .
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Then it follows from (3.9) that

(3.11)

∫
ΘR,R′

℘ij(z − p)

=

√
−1

2π

(∫
XR,R′\B

∂∂ log h ∧ ℘ij +

∫
∂B

∂ logω ∧ ℘ij

+

∫
ER,R′

∂ logω ∧ (ρ− 1)℘ij

)
.

We set B′ := π−1(B) ∩Q. By (3.4) it is obvious that ∂∂ log h is Γ-invariant
for Θ is a generalized theta divisor. Then we have∫

XR,R′\B
∂∂ log h ∧ ℘ij =

∫
QR,R′\B′

∂∂ log h ∧ ℘ij(3.12)

=

∫
∂QR,R′

∂ log h ∧ ℘ij −
∫
∂B′

∂ log h ∧ ℘ij .

On the other hand, noting ∂ log |θ|2 = ∂ log θ, we obtain

(3.13)

∫
∂B

∂ logω ∧ ℘ij =

∫
∂B′

∂ logω ∧ ℘ij =

∫
∂B′

(∂ log h+ ∂ log θ) ∧ ℘ij .

By the definition (3.2) of ℘ij and its property (cf. (2.10)), we have∫
∂B′

∂ log θ ∧ ℘ij(z − p̃) =
(n− 1)!

(2π
√
−1)n−1

∫
∂B′

∂

∂zj
log θ℘ij(z − p̃) ∧ dz

= 2π
√
−1

∂2

∂zi∂zj
log θ(p̃).

Then we obtain by (3.13)

(3.14)

∫
∂B

∂ logω ∧ ℘ij =

∫
∂B′

∂ log h ∧ ℘ij + 2π
√
−1

∂2

∂zi∂zj
log θ(p̃).

Thus, substituting (3.12) and (3.14) in (3.11), we finally obtain the desired
equality (3.5).

3.6 Main result

Let R = (R1, . . . , Rn−m) be an (n − m)-tuple of positive numbers. When
R1, . . . , Rn−m → +∞, we simply write R → +∞. In the previous section
we have given the formula (3.5) on a subdomain XR,R′ . A passage to the limit
as R,R′ → +∞ implies the main formula.

We assume throughout this section that X is a quasi-abelian variety of kind
0 with the standard compactification X and Θ is a generalized theta divisor.

40



Proposition 3.5. If Θ has the holomorphic extension Θ on X, then ℘ij(z− p)
is integrable on Θ and we have∫

Θ

℘ij(z − p) = lim
R,R′→+∞

∫
ΘR,R′

℘ij(z − p)(3.15)

= − ∂2

∂zj∂zi
log θ(p̃) +

√
−1

2π

∫
∂Q

∂ log h ∧ ℘ij(z − p̃),

where
√
−1

2π

∫
∂Q

∂ log h ∧ ℘ij(z − p̃) = lim
R,R′→+∞

√
−1

2π

∫
(∂Q)R,R′

∂ log h ∧ ℘ij(z − p̃).

Proof. By the assumption, the function ω and the hermitian fibre metric {hi}
which gives h are extendable smoothly to X. Moreover we can take a neigh-
bourhood T of Θ whose closure T in X is a tubular neighbourhood of Θ. Then
coefficients of ∂ logω are bounded on a neighbourhood of (X \X) \ (T \ T ).

We recall the definition of

℘i(z) =
∑
γ∈Γ

φi(z, γ).

Here we write φi(z, γ) = ϕδ
i

(z, γ). We have the following explicit representation
of φi(z, γ)

φi(z, γ) = n
(zi − γi)

∑n
k=1(−1)k(zk − γk)(dz)k

(
∑n

j=1 |zj − γj |2)n+1
.

Then the absolute value of any coefficient of φi(z, γ) is estimated from above by
n/∥z − γ∥2n. Therefore, considering the definition (3.2) of ℘ij(z), we see that
the absolute value of any coefficient of ℘ij(z) is bounded by the following series
multiplied by a constant ∑

γ∈Γ

1

∥z − γ∥2n
.

We rewrite the last term in the formula (3.5) in Proposition 3.4 as follows:∫
ER,R′

∂ logω ∧ (ρ− 1)℘ij(z − p) =

∫
∂QR,R′\(∂Q)R,R′

∂ logω ∧ (ρ− 1)℘ij(z − p̃).

Since Γ ⊂ Rn+m
Γ and

DR,R′ ∼= Rn+m
Γ ×

n−m∏
j=1

(−R′
j , Rj),

there exists M > 0 such that

∥(z′,Rez′′)∥ ≦M
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for any z ∈ QR,R′ and any (n−m)-tuples R,R′ of positive numbers, where we
write Rez′′ = (Rezm+1, . . . ,Rezn). Let p̃ = (w′, w′′) be the representation of p̃
in toroidal coordinates. If we set

Γ0 := {γ ∈ Γ; ∥(w′,Rew′′) + γ∥ ≦ 2M},

then Γ0 is a finite set. For any z ∈ Cn and γ ∈ Γ we have

∥z − γ∥2 = ∥(z′,Rez′′)− γ∥2 + ∥Imz′′∥2,

where Imz′′ = (Imzm+1, . . . , Imzn) and ∥Imz′′∥2 =
∑n−m

j=1 |Imzm+j |2. For any
(n − m)-tuples R and R′ of positive numbers, we set R0

i := min{Ri, R
′
i} for

i = 1, . . . , n−m and R0 := (R0
1, . . . , R

0
n−m). We denote ∥R0∥2 :=

∑n−m
j=1 (R0

j )
2.

We may assume that R and R′ are so large that

∥Imz′′ − Imw′′∥ ≧ 1

2
∥R0∥

for all z ∈ ∂QR,R′ \ (∂Q)R,R′ . Then we have

∥z − p̃− γ∥2 = ∥(z′,Rez′′)− (w′,Rew′′)− γ∥2 + ∥Imz′′ − Imw′′∥2

≧ (∥(w′,Rew′′) + γ∥ − ∥(z′,Rez′′)∥)2 + ∥Imz′′ − Imw′′∥2

>
1

4
∥(w′,Rew′′) + γ∥2 + 1

4
∥R0∥2

for any γ ∈ Γ \Γ0 and any z ∈ ∂QR,R′ \ (∂Q)R,R′ . Therefore the absolute value
of any coefficient of ∂ logω ∧ (ρ− 1)℘ij(z − p̃) is estimated from above by

C

∑
γ∈Γ

1

∥z − p̃− γ∥2n
+

∑
γ∈Γ\Γ0

1

(∥(w′,Rew′′) + γ∥2 + ∥R0∥2)n


on ∂QR,R′ \ (∂Q)R,R′ , where C is a constant independent of R and R′. If
R,R′ → +∞, then R0 → +∞ and∑

γ∈Γ0

1

∥z − p̃− γ∥2n
→ 0.

Since∑
γ∈Γ\Γ0

1

(∥(w′,Rew′′) + γ∥2 + ∥R0∥2)n
<

∑
γ∈Γ\Γ0

1

∥(w′,Rew′′) + γ∥2n
< +∞,

we have ∑
γ∈Γ\Γ0

1

(∥(w′,Rew′′) + γ∥2 + ∥R0∥2)n
→ 0 as R,R′ → +∞.
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Then we obtain
√
−1

2π

∫
∂QR,R′\(∂Q)R,R′

∂ logω ∧ (ρ− 1)℘ij(z − p̃) → 0 as R,R′ → +∞.

Next we rewrite the second term in the right-hand side of (3.5) in Proposition
3.4 as follows

√
−1

2π

∫
∂QR,R′

∂ log h ∧ ℘ij(z − p̃)

=

√
−1

2π

∫
(∂Q)R,R′

∂ log h∧℘ij(z−p̃)+
√
−1

2π

∫
∂QR,R′\(∂Q)R,R′

∂ log h∧℘ij(z−p̃).

In the same manner as above we can see that
√
−1

2π

∫
∂QR,R′\(∂Q)R,R′

∂ log h ∧ (ρ− 1)℘ij(z − p̃) → 0 as R,R′ → +∞.

By the definition of ℘ij we have

√
−1

2π

∫
(∂Q)R,R′

∂ log h ∧ (ρ− 1)℘ij(z − p̃) =

− (n− 1)!

(2π
√
−1)n

∫
(∂Q)R,R′

∂

∂zj
log h ∧ ℘ij(z − p̃) ∧ dz.

Since Θ is a generalized theta divisor, h is the exponent of a polynomial of
degree 2 in zk and zk. Then we can write

(3.16)
∂

∂zj
log h =

n∑
k=1

(ajkzk + bjkzk) + cj .

Without loss of generality we may assume that the fundamental parallelotope
Q is centered at the origin. Then (∂Q)R,R′ consists of the following faces

F±
ℓ (R,R′) :=

{
z ∈ Cn; z = ±1

2
γℓ +

n+m∑
i=1
i ̸=ℓ

siγi +
n−m∑
j=1

tjvj ,

|si| ≦
1

2
(i = 1, . . . , ℓ̂, . . . , n+m),−R′

j ≦ tj ≦ Rj(j = 1, . . . , n−m)

}
for ℓ = 1, . . . , n+m. If we set

F±
ℓ :=

{
z ∈ Cn; z = ±1

2
γℓ +

n+m∑
i=1
i ̸=ℓ

siγi +

n−m∑
j=1

tjvj ,

|si| ≦
1

2
(i = 1, . . . , ℓ̂, . . . , n+m), tj ∈ R(j = 1, . . . , n−m)

}
,
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then ∂Q is the union of all F±
ℓ . It follows from (3.16) that for any z ∈ F−

ℓ (R,R′)
we have

∂

∂zj
log h(z + γℓ)−

∂

∂zj
log h(z) = cjℓ.

On the other hand, ℘i(z − p̃) ∧ dz is the same on two opposite faces F+
ℓ (R,R′)

and F−
ℓ (R,R′) for it is Γ-invariant. Then we obtain∫

F+
ℓ (R,R′)∪F−

ℓ (R,R′)

∂

∂zj
log h℘i(z − p̃) ∧ dz = cjℓ

∫
F−

ℓ (R,R′)

℘i(z − p̃) ∧ dz.

The absolute value of any coefficient of ℘i(z)∧ dz is bounded from above by
the series

∑
γ∈Γ 1/∥z−γ∥2n multiplied by a constant. From a similar argument

as above it follows that ℘i(z − p̃) ∧ dz is integrable on F±
ℓ and∫

F±
ℓ (R,R′)

℘i(z − p̃) ∧ dz →
∫
F±

ℓ

℘i(z − p̃) ∧ dz as R,R′ → +∞.

Thus we finally obtain

lim
R,R′→+∞

∫
ΘR,R′

℘ij(z − p) = − ∂2

∂zi∂zj
log θ(p̃) +

√
−1

2π

∫
∂Q

∂ log h ∧ ℘ij(z − p̃).

Lemma 3.6 (Lemma 2 in [1]). The term
√
−1
2π

∫
∂Q

∂ log h∧℘ij(z− p̃) in (3.15)
is a constant independent of p.

Proof. It is sufficient to show that the integral∫
F−

ℓ

℘i(z − p̃) ∧ dz

is independent of p.
Let Hℓ := π(F−

ℓ ) be the real (2n− 1)-dimensional hypersurface of X deter-
mined by F−

ℓ . We have∫
F−

ℓ

℘i(z − p̃) ∧ dz =
∫
Hℓ

℘i(z − p) ∧ dz =
∫
Hℓ−p

℘i(z) ∧ dz.

We take a different point q ∈ X which does not lie on Hℓ. We denote by Dp,q

the subdomain of X surrounded by Hℓ−p and Hℓ− q. For any (n−m)-tuple R
of positive numbers we set Dp,q(R) := Dp,q ∩XR,R, Hp(R) := (Hℓ − p) ∩XR,R

and Hq(R) := (Hℓ − q)∩XR,R. Let E
+
p,q(R) and E

−
p,q(R) be two components of

∂Dp,q(R) ∩ ∂XR,R. Then we have

∂Dp,q(R) = Hp(R) ∪Hq(R) ∪ E+
p,q(R) ∪ E−

p,q(R).
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By Stokes’ theorem we have∫
Hp(R)

℘i(z) ∧ dz −
∫
Hq(R)

℘i(z) ∧ dz +
∫
E+

p,q(R)

℘i(z) ∧ dz −
∫
E−

p,q(R)

℘i(z) ∧ dz

=

∫
Dp,q(R)

d(℘i(z) ∧ dz) = 0.

From the same argument as in the proof of Proposition 3.5, it follows that∫
E±

p,q(R)

℘i(z) ∧ dz → 0 as R→ +∞.

Hence we obtain ∫
Hℓ−p

℘i(z) ∧ dz =
∫
Hℓ−q

℘i(z) ∧ dz,

which completes the proof.

Combining Proposition 3.5 with Lemma 3.6, we obtain the following theo-
rem.

Theorem 3.7 (Theorem 1 in [1]). Let X be a quasi-abelian variety of kind 0
with the standard compactification X. Let Θ be a positive divisor on X given
by a holomorphic function θ on Cn. If Θ is holomorphically extendable to X,
then ℘ij is integrable on Θ and we have∫

Θ

℘ij(z − p) = − ∂2

∂zi∂zj
log θ(p̃) + cij

for any p ∈ X \Θ, where p̃ ∈ π−1(p) and cij is a constant independent of p.
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