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Preface

For a given lattice I' Weierstrass constructed a doubly periodic meromorphic
function on C with period I'. We call it Weierstrass’ p-function. It was general-
ized on abelian varieties by Zappa in 1983. Let 7" = C"/T" be an n-dimentional
complex torus. [-invariant d-closed (0,1 — 1)-forms on C"/T" are considered as
representatives of classes in H"~1(T™ \ {0}, O). First, Zappa constructed a I'-
invariant 0-closed (0,1 —1)-form g, and then gave a d-closed (n—1,n— 1)-form
©“ on T™ \ {0} with the following property:

If T™ is an abelian variety and © is a divisor on 7" defined by a theta function
0, then we have

2
/@ (2 —p) = _8;382]- log 6 ) + constant.
In the case of one variable, this is just the relation between Weierstrass’ g-
function and a theta function.

The purpose of this paper is to give a further generalization of Zappa’s
result. We show that we can construct a similar (n —1,n — 1)-form p* even for
a non-compact quasi-abelian variety.

This paper consists of three chapters. In Chapter 1, we explain in detail a
part of the theory of Andreotti-Norguet which is the basis of our argument. We
think that our proofs are more explicit and comprehensible than the original
ones.

In Chapter 2, we state Zappa’s result. Several lemmas and propositions are
stated in more general setting in order to use them later.

In Chapter 3, Weierstrass’ p-function is generalized on quasi-abelian vari-
eties. Let X = C"/T be a toroidal group. We can construct a T'-invariant
O-closed (n — 1,n — 1)-form p¥ on X in the same manner as in the case of
complex tori. But when we consider a positive divisor © on X, we do not know
in general the convergence of the integral of ¥ on ©, because © is not com-
pact. Even if it converges, we are not able to apply the same argument as in
the case of abelian varieties. We suppose that X is a quasi-abelian variety of
kind 0 with the standard compactification X. We further assume that a positive
divisor © on X is holomorphically extendable to X. Then we can prove that
©" is integrable on © and a similar equation as the case of abelian varieties
is obtained (Theorem 3.7 in Chapter 3). To prove it, we first take a family of



relatively compact subdomains in X. We give formulas on these subdomains.
As the limit of them we obtain the expected formula.
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Chapter 1

Cohomology Groups of a
Punctured Polydisc

1.1 Cohomology groups

We give a proof of Lemma 2 in [5] in this section. This lemma is essentially
Proposition 31.1 in [6]. The proof given here is more explicit than that in [6].
Let D = {¢ € C; |¢| < 1} be the unit disc in C. Consider a polydisc of
n-dimention
D":=Dx---xD.
Let z = (21,...,2,) be coordinates of C".

Lemma 1.1 ([5]).
a) H(D"\ {0}, O)=0 fori#0, n—1.
b) H'(D™\ {0}, O)= H°(D", O) ifn = 2.

¢) H"1(D"\ {0}, 0) = { D caz™ s lm Vo = 0}~
aeNn

Proof. If n =2 2, then (b) is clear, because {0} is an analytic set of D™ with
codimention more than 1 .

We show a). For i = 1,...,n we set U; := {z € D"z # 0}. Then
$:={U;;i=1,...,n} is a Stein covering of D™ \ {0}. Therefore we get

HI(D"\ {0},0) = H(4L, O)
by Leray’s theorem. For any (ig,...,i,) € {1,...,n}9!, we set

U;

i0..-1q

I:Uioﬂ'”ﬂUiq.

Since 4l consists of n open sets, it is obvious that H™(4,O) = 0. For any
je{l,...,n} and (io,...,iq) € {1,...,n}?", we define a map

803,0"'2“ 1 D(Ujig...iq, O) = T'(Usg...i5 O)



by the following way: o

When j = i, for some u = 0,...,q we set <p;-“”'l" = id. When j # i, for
all 4 =0,...,q, we take R with 0 < R < 1 such that |z;| < R for any z =
(21,---52n) € Ujiy...i,- Let Cj(R) be a circle with center 0 and radius R. For
any f € I'(Ujs...i,, O) we define

T 1 f(Zl,...Zj_l,tj,Zj+1,...,Zn)
(P f)(2) = e dt;.
J 2V =1 Jo,(Rr) t; — zj J

Then we have goz-o"'qu € I'(Ui...i,» O).

If z; # 0, then we take 7 such that 0 < 7 < |z;| < R < 1 and denote by
C;(r) a circle with center 0 and radius r. By Cauchy’s integral theorem we can
represent f € I'(Ujy,..4,,O) as

217...Zj_17tj72j+1,...7Zn)dt

_ 1 /( |
IO = v /cj(R) ti =2 ’

Zl,---zj—latj,zj-‘,—l,- ,Zn)dt
j-

——_—
2V =1 Joj () tj — z;

Therefore we note that

i0...iq 1 F(21y o 2jm15 by 25415+ Zn)
D =g [ S s + £(2)
]'/”

for z = (21,..., 2,) with z; # 0.

Let 7‘1,0 7,? ; be the restriction map from functions on U,
0--lpy-elq .

on Uy,..;,, where Z;L means that i, shall be omitted. Then it follows that

iy to those

i0...1q 10 fprg _ d0..ig
'S ~ . = .
i?"'ié"""éqsoj, 90‘7 ’
10---2q J%0---1q _ . i
(pj Tig...iq - Zd on F(UZ(J..-Zq) O)'

For any j € {1,...,n}, we define a map
ki CUU,0) — CT (81, 0)

as follows:
For any f = (fi,...i,) € C1(U4,O) we set

20 bg—
(kjf)i0~..iq71 = (pjo ¢ 1fji0...iq,1-

Let § be the usual coboundary operater. We take any f € C?(4, O). For any
multiindex (ig, . ..,i,) € {1,...,n}9"! we calculate

(f = 0k;f —kjof)ig..iy = fig.iqg = (0Kj [igciy — (K50 )ig...iy-



Since

(0k; f)ig...i, = Z(*l)#(kjf)io...i]...iq

pn=0

q —~
:Z(_l)ﬂ‘)@j . qui()"-i;"-iq
©n=0

and
(k0 )io...ig = 23" (6 ) jio...ig
q
= (p;o..-zq (fio.,.iq _ Z(_1)u50;'0“'zqfjm...i]...@)
pn=0
= 0 figia = D (VPO T i o s
pn=0
we have

Jiooiq = 0k Fig..iy — (K50 f)ig..i, =
Fronin — gO}O"'quz‘o.--iq + Z(_l)ﬂwéomwmwfjiomi;miq
pn=0

q

- Z(_1)M‘P;‘0mlqsz'o..ﬁ...iq'

pn=0
When j ¢ {io,...,iq} we have gpj-o'”iqfiomiq = fiy...i,- Since

i0...0q 0. ip. g

i0~~iqf _ f _
J10--tp.nlg 10ueiipeniig ! J Jio- iy .ig?

®;

we have in general

fioeig = 0k [)ig.iy — (K50 f)ig...i,
0 ifj¢{i0,...,iq}

) , G0.eripes g o
(td—r ~ @ ) fig.a, if j =1, for some p,
80ty olg J q

where p; is g with j =i,. For any j € {1,...,n} we define a map
Q;: CUU,0) = CI(U,0)

by

éjf = f — 5kjf — k](;f
for any f € C9(4L, O). It is obvious that ®; maps an element in Z9(4, O) to
Z9(4, O). Then we define a map

O Z9(4,0) = Z9(4l, 0)



by @ := ®;0Pg0---0®,,. If 1 < g < n—2, then for any (ig, ..., i,) € {1,...,n}?
there exists j € {1,...,n} such that j ¢ {iop,...,%,}. Hence we have ®f = 0 for
any f € Z9(4, O). This means that f € B(4, O). Therefore we obtain

HiO)=0 for 1S g<n—2.
Next we show c¢). First we note
Z" N U, 0) =T (Urg...n, O).

Any f € T'(Uia...n, O) has the following Laurent expansion

n

o0
f= Z CaZ + Y (1)t Z In, (21,3 2y ey 20) 200,

aENn pn=1 n,=0

where g, (21, ..., %4, ., %) is a holomorphic function in (z1,..., 2,1, 2441, .., 2n) €
(D*)"~! and coefficients ¢, satisfy

lim 'Y/|ca| = 0.

|| =00

Let

n

oo
12 fiveom 1= Z:(—l)”_1 Z I, (21,3 2y ey 20) 200

pn=1 n,,=0

Then we have an element g = (g12...5...n) in C"2(U,0). Therefore we have

f= Z caz” " + 6y,
aGN’H
which shows the isomorphism in c). O

1.2 Generalized Martinelli formula

Let No := NU{0}. For any a = (ay,...,a,) € Nj we define a (0,n — 1)-form

—n

voi=| D ZrH | Y (i N dE).

1SjSn 1SjSn 1SkSn
k#j

Letting dz := /\ dz;j, we consider an (n,n — 1)-form K,(Xn) := dz AN Y,. For
1SjSn
any a = (aq,...,q,) € Nj we set

a+1l:=(a1+1,...,0,+1)and o/ := (ag,...,ap),

where 1 = (1,...,1). We also set al :=[],<;<, a;l.



Let B = {z € C™; Z zjZ; < 1} be the unit ball of C". We denote by
1Sj<n

S = 0B the boundary of B. Let

glel Hurttan

920 9207 - 929

The equation in the following proposition is called the generalized Martinelli
formula.

Proposition 1.2 (Proposition 1 in [4]). We have

/fK(”) B 27TF)" 1 ala‘f

atl ™ — 1! al 9z

for any holomorphic function f on a neighbourhood of B, where B has the direc-

V-1

tion in which dz N\ dZ is positive and the direction of S is compatible

with the formula of Stokes.

Proof. If n = 1, then it is just the integral formula of Cauchy. We prove the
statement by induction on n. To prove it we temporarily take the direction of

v—1
B in which /\ ( 2 dz; A dZ) is positive. Moreover, we assume that the
15jSn
direction of S is compatible with Stokes’s formula. We denote

1—n
1 1 j 50 j 5—0j o
borm e | 2 A0FY ] X (R A dE,
o\igign 2<j<n 2<k<n
k#j
L, = (—1)"dz A b,.

We can check B B
VYo = 004, KV =0L, = dL,

at any point with z; # 0 by straight calculation. For a multiindex 8 = («1 +
1,a9,...,a,) we have



/S FESY = lim d(fLg)

€20 Jsn{|z1|>¢}

€0 Sn{|z1|=¢e}
1 n—1
n—1 =0 — 8 {21 |=<} et
1—-n
1 Ty o .
/\ Lol Z 2% Z (=1)7z;% /\ d(Z™)
! 1Sj<n 2<5<n 2<k<n
P
R dz
= ——— lim f——= A dz;
n—1 -0 —8n{|21|=e} Zixﬁl 2§/g§n J
22§j§n(—1)j7jaj No<r<n d(ZE™)
k£

n—1
2(o1+1 Aj—a
(5( 1 )+Z2§j§nzj Z; J)

lim
n—1 a1l e=0 Jgnpz, oy 027"

Y o<i<n (1% Nogizn A7)
ki

n—1
2(c1+1 QXj=—a
(E (@t + 3 i<n 2 % J)

. (—1)"_1 21/ —1 80‘1fK(n,1).

o

()" 2my/—T Ll .
J

n—1 C¥1! SN{z1=0} 82?1
By the assumption of induction we have

o~ n— TN — n—1 8‘0‘/| o1
/S L C ) S ( f)(o).

a; “ra’+1" T / ’ / aq
N{z1=0} 62’1 (’I’L — 2)' a’! 82‘212 . azgn 621

We note that the relation between the original direction of B and one given here
to prove the statement is as follows:

(\E>nw/\w:(—1)"(”zl) A (‘/;szj/\dzj)

2
1550

Using the above result, we obtain the integral / K C(ﬁr)l in the original direction
s



as follows:

/ PR, = (1)
S

av/=T)m 1 olal
@)1 i

(n—1)! a! 9z«

n(n1) (=)t 2my/—1 (27y/—1)" ! 1 ol <3a1f> 0)
Zon

n—1 a! (n—2)! 0/!82';/2~--8 o\ 027

Then the proof is completed. O

1.3 Dolbeault isomorphism

We have seen cohomology groups of a punctured polydisc in Section 1.1. Lemma
1.1 ¢) shows that H"~1(D"\ {0}, O) is a Fréchet space generated by cohomology
classes

g e T( UL 0), a=(aa,...,an) €N

i=1

In this section, we study d-closed (0,7 — 1)-forms corresponding to cohomology
classes z;a’l -+ z7% =1 by the Dolbeault isomorphism.

Lemma 1.3 (Lemma 4 in [5]). a) By the Dolbeault isomorphism the cohomol-

ogy class of zl_o‘l_l szl ((ag, ... ) € NB) corresponds to the 0-closed

(0,n — 1)-form (up to a sign)

(n - 1)!wa+1 =
'22:1(_1)kaak+1d(z—la1+l) A A d(zjkaﬁ-l) Ao A d(%a""_l)

(n - 1)' (Z?Zl |Z;1j+1|2)n

b) The Dolbeault representative so chosen is such that to the class
(21 2p)7 " ZaeN{; Caz”® with lim|y| 00 14/ca = 0, corresponds to the 0-closed

(0,n — 1)-form expressed by absolutely convergent series

(n—1)! Z CaWat1 on C™\ {0}.

aeNy

Proof. a) Let (*?) be the sheaf of germs of C*° (a,b)-forms. We particularly
set &€ = £(®0) when (a,b) = (0,0). Since £(*? is a fine sheaf, it follows that

HY(D™\ {0}75(‘1717)) =0 for any ¢ = 1.

There exists ¢ = (¢, 7..,.) € C" (U, ) such that 2=~ = §y, i.e.

n

=Y ) T e

i=1

10



for we can consider 27! € C"1(4,¢) for all « € NZ. Then we have

n

Z(_l)i_l%..@_n =0.

i=1
Therefore we have Op = (5@1”;_%) e 7" 2(4, &), Since
Hn_Q(L[,E(O’l)) ~ Hn—2(Dn \ {0}’5(0,1)) =0,

there exists (¢, 7. . }--n) € C"3(4, (1)) such that

B =0((0r 7.5 = (D F01 5 5m) -

Repeating this procedure, we obtain (¢;) € C°(4l, £(®"=2)) such that
Opi = dp; for any 4, j with U; N U; # 0.
Therefore we can define a C* (0,n — 1)-form ¥ on D™ \ {0} by
VU :=dp; on U,.

It is clear that ¥ = 0. This form ¥ is the Dolbeault representative correspond-
ing to z=*7 L.
We set
P.:={|z|Zei=1,...,n}

for sufficiently small € > 0. Then we have
/ z7ot Z 052'8d21 cedzy = (2mV=1)"cq,
|z1]=e, | zn|=e

for any convergent series f =Y BeNn cﬁzﬁ in a neighbourhood of 0 in which P.
is contained. Namely z~®! are generators characterized by the above property.
Using Stokes’s theorem and repeating correspondence between Cech coho-

mology classes and O-cohomology classes, we obtain

/ 27N fdoy A Ndzy,
|z1]=¢,"+,|zn|=€

= Z/ (=1 Yo, = fdza A Adzy,

i=1 ‘Zl‘:EV"#‘ZH‘:E
n

_ i1 5.

= E <_1) / a(plznfdzl A Ndzy
i=1 [21]=¢, | 2:|Se,+ | 2n|=¢

:iZ/ Ufdzy A+ Adzy
|

zi|=¢,|z;|Se (5#9)

= / Ufdzy A+ Ndzy,
OP.

11



for

= ) T e

i=1

Hence we have
i/ Ufdzy A+ Ndzy, = 27V —1)"¢q.
OP-

Therefore, it holds that for any holomorphic function f on a neighbourhood of

B
la
oB Dz

where B is an open ball with center 0 and sufficiently small radius. For K411 =
w A Y1 it holds that

TV/=T)" 1 ol
fKaH:(?ﬁ) Lol

0B (n—1)! ol 9z«

by Proposition 1.2 in the previous section. Therefore, the representative in the
Dolbeault classes corresponding to 2=~ 1 is (n — 1)1 1 (up to sign).
b) From (a) we see that the series

(’I’L - 1)' Z Cawa-i-l

aeNy

formally corresponds to

(21 - ~zn)71 Z Caz @ with

aeNg

lim 'Y/|ca| = 0.
| — 00

Then it suffices to show that the above series converges absolutely on C™ \ {0}.
Take § with 0 < § < 1. Let 31" | |2;|> > 6. Then we have |z;| > ¢ for some i.
Therefore we have

n S 20;+2 S 2|a]+2
Z |Zj‘2aj+2 > |Zi|2ozi+2 > () > () .
n n

j=1

o~

Consequently the absolute value of the coefficient of dzg A --- Adz; A--- Ndz,
in tq41 is estimated by

s 2la|+2\ "
[T awlzglizaf -zl ((n> )
k#j
aq Qn
Haml( 2 ) ( 2] )
- J 2n 2n 2n :
e @) \(3) ()

12




Thus we see that the absolute value of the coefficient of dzz A - - -/\d/z;j A Ndzy
in > cathat1 is estimated by

1 .
n

Hence the series converges uniformly on compact subsets in C™ \ {0}. O

n

13



Chapter 2

Zappa’s Results

2.1 Cohomology groups of a punctured torus

Let T™ = C"/T" be a complex torus of n-dimension, where I' is a lattice of C™.
Let 7 : C™ — T™ be the canonical projection. We can take a neighbourhood V'
of 0 in 7™ such that

(V)= |_| U, (disjoint union),
~eTl’

mly, Uy =V

is a biholomorphic mapping, where U, is a polydisc with center v. Applying
Mayer-Vietoris’ theorem to T = V U (T™\ {0}), we obtain a cohomology exact
sequence

0— H(T", 0) = H°(V,0)® H*(T"\ {0},0) = --- — H¥(T",0) —
H*(T",0) @ H¥(T™\ {0},0) = H*(V\{0},0) = --- = H"2(V\ {0},0)
— H" YT, 0) - H" Y (V,0)® H" 1 (T \ {0},0) — H" (V' \ {0},0)
— H™(T",0) — H"(V,0) ® H"(T" \ {0},0) — H"(V \ {0},0) — 0.

By Lemmal.l a) in Chapter 1 and
H{(V,0)=0if i 21,
we have the following exact sequence
0— H"1(T",0) = H" 1 (T"\ {0},0) —
H" N (V\ {0},0) % H™(T",0) - 0.
Therefore we obtain

H"1(T™\ {0},0) = H"H(T", 0) & Keré.

14



H"=1(T",0) is an n-dimensional vector space generated by (0,n — 1)-forms
with constant coefficients. H" (U, \ {7}) is isomorphic to H"~*(V \ {0}, 0).
It is a Fréchet space generated by Cech cohomolgy classes expressed by (z —
v~ e T(N,U;, 0), a € NI (Lemma 1.1). A J-closed (0,n — 1)-form
(n — 1)ba11(2,7) corresponds to the cohomology class of (z —v) ™1 by the
Dolbeault isomorphism, where

Yot (FDF(EE = AR) T Aj=1 d((z75 - 35) %)
JF#k

n
(5 125 =l )

(Lemma 1.3). For a sufficiently small ¢ > 0, we set an open ball B.(v) with
radius € and center . By the generalized Martinelli formula, we have

(2my/=1)" 1 9ol f

(n—1)! ol 8z

¢a+1(zv 7) =

(2.1) / Fbasa(z7) Adz =
Se(v)

for any holomorphic function f on a neighbourhood of B.(v). Here we note
that
Va1 ANdz = (=1)""Ddz Apyyq = dz Agya.

If we set o = (0,...,0) in (2.1), then we have

[ o nae= B0
Se(v) (n—1)!

From the above equality it follows that

olel
o™

 (2ry=T) glely
/sm)fwl(zﬁmdz_ -1 oy

(2.2)

And we see that Kerd is generated by ¥a11 (Ja| = 1). Let

(—1)lel glel

¢Oé(za’y) = al %7/}1(’2)7)
Since olal ool
a,ya 11[}1(’277) = (71)‘01'%1/}1(277)’
it follows from (2.1) and (2.2) that
(2.3) | aa(e) = dalz) Adz =0
S:(7)

for any holomorphic function f on a neighbourhood of B.(7).

Proposition 2.1 (Proposizione 1 in [9]). The form ¢a11(2,7) — ¢dal(z,7) is
d-exact.

15



Proof. First we prove that 1411 — ¢q is O-closed. From (2.3) we have

0= /5 S da) nde
= / d[f(wa-i-l - (ba) A dz]
Be(7)

— [ 1Bars — du)
Be(7)

for any holomorphic function f on a neighbourhood of B.(y). Since f is arbi-
trary, it must be that d(¥a11 — o) = 0 on B.(y). Furthermore 1411 — ¢q is
O-closed on C™ \ {7}, because it is real analytic.

Then 1o+1 — o defines a d-cohomology class in H"~1(U,, \ {7}, O). There-
fore there exists a (0,n — 2)-form o such that

Yas1 = Ga=(n—1)! Y cstpir + o,

BENy

where lim g '4/|cg| = 0. From (2.3) we have
0:/ f((n—l)!Zc5¢g+1 —|—50)/\dz
Se(7)
=Y eatn-0t [ fopands
s

()
=Y @rv/1 2 Al

E 928 (’7)

for any holomorphic function f on a neighbourhood of B.(). Since f is arbi-
trary, we have cg = 0 for all 8 € Nij. Thus we obtain

¢<x+1 - (ba = do.
O

By a straight calculation we obtain the following explicit representation of

ba
(24) ¢a(zﬂ7) =
(Jact 1] = 1) Ehoy (“D (o + DEE = T0)™H A d(F ~ )% )
(n— 1N a+1)! (211 N _'Yj|2)|a+1| .

Proposition 2.2. When lim '4/|co| =0, the series 3. cathar1 and S cada

|ae] =00

converge uniformly on any compact set of C™ \ {v}, and give the same class in

H=HC"\ {~},0).

16



Proof. By Proposition 2.1, it is clear that if Y c,¢, is convergent, then the
above two series give the same class. Threrfore we prove that Y ¢, ¢, converges.

Take a sufficiently small p; > 0 and a sufficiently large number ps. We
estimate the absolute value of any coefficient of ¢ (2,7) on p1 < ||z — || £ po.
Since

(=% + 1)@ — 0™+ N d((z —55)™ )
j;ﬁk

= kHae+1 Zk_’YkH 7))\ dz,
=1 j=1 i#k
the absolute value of the coefficient of this (0,n — 1)-form is estimated by

n

n

) 1
[Tcee+ D) [T 1z = 1% 2 =l < Ja+ 2] pl
=1

Therfore the absolute value of the coefficient of A 2k dZj In ¢q is estimated by

(la+1|—=1)!
(n— 1D a+1)!

| + 1|n —2|a+1]| \a+1|

Hence we see that the absolute value of the coefficient of A, dzj in}_ cagq is
estimated by

a+1 —1)! 2 1 1
Zlcalulaﬂ%l”m ooy,

— Dl (a+1)!
Since
1
, (|a+ 1] —1)! 2t Jatl fel
1 —_ 1" = 1i lol/
a0 (Ca| (n—1D!(a+1)! jlot 10" P2 P [cal
we obtain the conclusion. O

2.2 ['-invariant forms

We first prove the following lemma which is the key lemma showing the con-
vergence of series. We state it in a general form in order to use it in the next
chapter.

Lemma 2.3. Let T' be a discrete subgroup of C™ with rank ' = n+m (1 <
m = n). Then the series 3. cr (o} 7]~ converges for A > n +m.

Proof. Take generators 71, ..., Yn+m of I'. For any ¢ € Ny we set

I i={a1v1+ -+ GngmVntm; 01, -, Gngm € Zylaj| Si (j=1,...,n+m)}.

17



The number of elements of T'; \ T';_ is given by

#O N\ i) = (20 + D)™™ — (28 — )"+
= 2((2i 1) (24 1) 22— 1) e (20— 1),

Since
(22. + 1)n+m—j(22~ _ 1)j—1 g 22(n+m—1)in+m—1

for j =1,...,n+ m, we have
(F \Fz 1)<A n+m 17

where A, ,, = 2(n+m)22 =1 Let k be the distance of the boundary of the
parallelotope given by I'1 \ {0} from the origin. Then we have ||| 2 ki for all
yeTi\ Ty

Therefore we obtain

S =Y Y

~yelr\{0} i=1~yel;\I'i—1

S
<
=2 >
=1 yel;\I'i—1
L)
 Aum 1
= kA — A—(ntm—1)"

If A > n+m, then A — (n+m — 1) > 1. Then the series Y ° ) ~—im—y

—(ntm—1)
converges. 0

For the later use we give the following proposition in a more general form
(cf. Proposizione 2 in [9]).

Proposition 2.4. Let T' be a discrete subgroup of C™* withrank ' = n+m (1 £
m < n). If a multiindex o € N satisfies o] > —n + m + 1, then the series

(2.5) £ (2) =D ¢al2,7)

yel

converges uniformly on compact subsets of C* \ I'. Therefore it is a O-closed
T-invariant (0,n — 1)-form on C™\ T.

Proof. Take any p > 0. Suppose that ||z]| < p and z ¢ I'. Since

(—1)* (o + 1)@ -0+ N\ d((F - 7))
J#k

= Haz-i-l Zk_’YkH dz)r,
/=1 /=1

18



we see that the absolute value of the coefficient of A, dz in ¢a(2,7) for fixed
k is estimated from above by

(lo + 1] = Dl + 1" [Ty |2e — vel** |25 — Wl
(n—1Na+1)! |z — ||~ 2le+1l

For all v € T except a finite number of elements, we have ||y|| > 2p. Since
|z = 7|l > |||l for such a v, the above estimate is further bounded by

(Ja+1] = Dla + 1|n2|a|+2n—1||,\/||—(|a\+2n—1)
(n—1)!(a+1)! '

It holds that |a| +2n —1 > n+m if |a] > —n + m + 1. Then the series
2er\ {0} [|v]|~e+27=1) converges by Lemma 2.3. This shows that the series
(2.5) converges uniformly on compact subsets of C™ \T'. It is obvious that e is
O-closed and I'-invariant. O

The next proposition is also a general form of the result which is stated in
[9] (cf. Proposizione 3 in [9]).

Proposition 2.5. Iflim|q| o 'V/|cal = 0, then the series

(2.6) > cagt

uniformly converges on compact subsets in C*\T', and is a 0-closed I'-invariant
(0,n —1)-form on C* \ T, where

2 if m=n,
€0 = 1 ifm=n-—1,
0 ifm<n—1.

Proof. Take any p > 0. As in the proof of the previous proposition, the absolute
value of the coefficient of A\, dz; in the serie (2.6) is estimated by

Z |Ca|da2|a\+2n71 Z ”,ny(\alﬁLanl)

lee|Ze0 yEe\{0}

- g [ Anm S~ 1
= Z |Ca| el k_‘a|+2n—1 Z i|a\+n—m
1=1

la|Ze0

9 |a|4+2n—1 oo 1
g Z |ca|daAn,m (k) Z?

|a|2e0 i=1

on ||z|| £ p. Here we set

(la+1] — DY+ 1™

da = (n—Dla+1)
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and k and A, ,, are constants in the proof of Lemma 2.3. Since we have
1

9 || +2n—1 oo 1 To] 9
lim |Ca|do¢An,m (k) Z: ﬁ = E |al\igloo lo‘m =0,

|| =00 Pt
the proof is complete. O

We use the above proposition in the case of rank I' = 2n. The series eff and
(2.6) are I-invariant and generate cohomology classes of H"~1(T™ \ {0}, 0).
But these do not generate all of kerd. In fact, classes of || = 1 are omitted. To
construst a class of |a] = 1, we have to change it.

Let §i be kronecker’s delta. We set 6 = (&%,...,0,) € Np. We write
¢si = ¢'. Consider the series

(2.7) oh(2) =0 (,00+ > (¢'(2,7) = G'(7)),
+erV{0}

where N . o
Gi(y) = n gy (=1)"Vi Ve /\j;ék dz;
)= REER |

Considering 77, = (7 — z) + zi) (%% — Zx) + Zk), we obtain
or(2) = ¢'(2,0)

‘2n+2 n

n 2n+2 _ ”—
veT\{0} k:l j#k
n n
R Y| T G - wE - [ a5
k=1 j#k
by a simple calculation. We have
[P = Nz = AI1P" 2] < el ]2
with a suitable constant ¢ for ||y|| — ||z — || = ||2||. Therefore the absolute value

of any coefficient of the series (2.7) is estimated by

d Y plly)m e

Yer\{0}

on ||z|] £ p for any p > 0, where d is a suitable constant. Then pi converges
uniformly on any compact set of C" \ I'. We can prove that p& is I-invariant
in an analogous way to the proof for Weierstrass’ p-function.

Restrictions of pi and ¢ constructed as above to U, \ {7} generate ker 4.
By a simple calculation we obtain the following formulas for these forms

0

8Zk

9 ; 545
87%@%:_( FHDep ™

78 = —(ag + 1) for |a| = 2,
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2.3 Mittag-Leffler type theorem for the classes
of Dolbeault

For the sake of simplicity, we represent

(d2)i = \ dzj, (d2)r = )\ d5
i#k i#k

from now on. We write the Martinelli kernel as follows

B(210) = (3, ¢) = b= TV ER = G (@)
(Z?:l |2 — Cj|2)

The Taylor expantion of ¢(z, () is formally given by

oo

k
1 (&0 "0
k=1~ \j=1 j

J=1
o0
=: Zd)k,
k=0

where

k

n n k
0 _ 0 k o a=p
(szﬁz] +sz8zj) $(0,0) =" ( , > > W(QC)Z 2

j=1 j=1 £=0 || =£
|l =k—¢
Let |[¢| be the maximum value among the absolute values of coefficients of .
Lemma 2.6 (Lemma 1 in [10]). We have

_ k
n+k—1 k|| || —2n—k+1 2"t (16]|z]|

% g8’€( )|z i<l < 2 .
n-1 TPt \ el

Proof. We have

k

2
ol < 712" max

2 0
~ k! la|+|8|=k

82297°

(o,o\.

‘We note
%
9z29zP

0%
82297°

0.0] = |y €0

It follows that

|ex] n — 1) .
0 w(z,O) - Z(,l)|a\+5*1M§a+5 ||| 720 HaD (gz),..

9z 2 (n—1)!
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We have the following estimation

@ —a+8°) | —2(n+|al)
=5 (Z el

| 2, ) g ()

n+v=p
olnl o ol
18l T (zats®) L —2(n+|al)
<2 max |2 (2 )(% (1=l )’

Furthermore we have
ol s , , o
‘8%7<Za+ ) =TT (o8- o 87— o D)) 7"

1: 70

oM (||z|| 2(n+|a|))

< (ntlal) - (n+ o] + [v] = D] 722l

0z"
Since
H(ai+5f)"'(0%+5f—m+1): H H
00 niro T
S H Z
i=1
2\o¢|+1
we obtain
e\ O 2 (n+lal+[8] = 1)!
Z_ (z~ Z —2(n+|al) la|+1 2n—k+1
07" (Z ) BER (HZH )‘ 2 (n+ o] — 1)! =1 '
Hence we have
A O*y
P — Oa = 30
az‘xaiﬁ( O' ’82’“85 (¢ )‘
< (|a|+n—1) 2|m2|a\+1 (Tl+|0[|+‘5| ) ||<|| 2n—k+1
(n—1)! (n+ laf —1)!
+k—1)!
_ 2k2(” 2n—k+1
eI

Thus we obtain

2k n+k .
ol < Tl T e

<ok nthk-1 ki | —2n—k+1
<t (TTETD ) baltpl e
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We can represent ¢, as follows:

- k
Vi = ]il%( IZ ) l;ﬁ %(O,C)Zagﬁ

|B|=k—¢
1 k o )

i |Q+Zp—kg|z_pk! ( k—p ) WQpEMO,C)z%ﬂ

=: Z q/}a,p.

|| +p=Fk
Coefficients of 1), are homogeneous polynomials of degree p in Zy, ..., %,, and

we have the representation

1/) = Zzwa,p-

a p=0

Similarly coefficients of 1, , are homogeneous polynomials of degree p — 1 in

Z1, ...y 2n. Since
Ed) = Z Zgwa,p

a p=0

and 9 is O-closed, it must be that 01, , = 0. Hence we have 9y, = 0. From
the above fact and Lemma 2.6, we obtain the following lemma.

Lemma 2.7 (Lemma 2 in [10]). The Martinelli kernel ¥(z,() (¢ # 0) is ex-
panded into Taylor series > po oV of O-closed forms which has norm conver-

gence in a neighbourhood of the origin. The series is uniformly convergent on

any compact set in the open ball with radius %.

Definition 2.8 ([10]). Let w be a 0-closed (0,n — 1)-form on C\ {&}. If there

exists a form

Z cp(z, &) with cg # 0 for some 8 of || =k

IBI=k

such that w — Zlﬂ\ﬁk cpp(2, &) is O-exact, then € is called a singularity of polar
type of order k of w.

Since operators 0 and % are commutative, the form
J

(—1)lel glely,

o Oz V7

Pa(2,8) =

_1)led glaly,
- 1;) ( oj 0z% (z,¢)
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is a sum of d-closed forms. This series converges uniformly on ||z|| < @ (Lemma
2.7).

The following theorem is a generalization of the theorem of Mittag-Leffler.

Theorem 2.9 (Teorema 1 in [10]). Let = = {&; k € N} be a discrete set in C™.
We suppose that for every & a form

Gi(z) = Z ak,aPa(2, k)

|a|Smy

with singularity & is given. Then there exists a O-closed (0,n — 1)-form F(z)
on C™ \ E satisfying the following:
For any &, there exist an open neighbourhood Uy of & and a (0,n — 2)-form
Hy(z) in Uy such that

F(z) — Gr(z) = 0Hy(z).

Proof. Renumbering if it is necessary, we may assume [[&p41] 2 [|§kl|. By
Lemma 2.7, we can take a 0-closed form Pj(z) which consists of a partial sum
in Taylor expansion of G (z) such that

1 k
Gu(2) - PN = (5) for el £ gl

The series Y, | (G (z) — Px(2)) is uniformly convergent on any compact subset
of C™\ E and J-closed. We set

oo

F(z) = (Gi(2) — Pu(2)).

k=1

We show that the form F(z) satisfies the required condition.
For any ¢, we take a Stein neighbourhood Uy, of & such that Uy NE = {&}.
owzk(Gr(2) — P (2)) is a O-closed form on Uy,. The sum is d-exact for Uy, is

Stein. Furthermore, Py(z) is d-exact for it is a partial sum. Hence,

F(2) = Gi(2) = —=Pu(2) + Y _ (G (2) = Pu(2))
k' #k
is O-exact on Uy,. O
As in Theorem 2.9, let 2 = {{; k € N} be a discrete set in C™ with ||€x11]] 2

ll€k|l. Moreover, without loss of generality, we may assume ||&|| = 2 (k € N).
By Lemma 2.6, we have

1\ F
[n(2,&0)| < (2) for ||z < H&H.
If we set

h
Pl (z) == (0,&) + > vi(z &),
k=1
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then coefficients of Peh(z) are polynomials of order h in z; and Z;. By the above
estimate, we see that

> (%= &) — PE(2))

k=1

converges uniformly on any compact subset of C™ \ Z.

Definition 2.10 ([10]). We define the exponent of convergence of = by
C:=inf{yeN; i 1 < 4o00}.
2 T&ln

In the case that Y ,- W = +o0 for any v € N, we set C := 0.

Lemma 2.11 ([10]). If a discrete set 2 = {&g; k € N} in C™ have the exponent
of convergence C € N, then

> (W(z6) — PET(2))

k=1
converges uniformly on any compact subset of C™ \ Z.

Proof. Since ||€|| = oo (k — 0), for any R > 0 there exists a natural number
N(R) such that
€]l > 32R for any k > N(R).

Since we have the estimate

o0

> (¥(z.&) — PE(2))

k=N(R)

o0

=1 > > &)

k=N(R) {=C—2n+1

> > 2n=1 7162\ *
> 5 e (el
> > 16R\* 2n-!

22 (Ilékll) (165121

k=N(R) =C—2n+1

B 00 2n_1(16R)C_2n+1 0o (16R> {+2n—14C
-2 e (Z &

A

A

k=N(R) (=C—2n+1
0o 1 oo 1 L+2n—14C
<2HI6R)CTI YT Y () < +o0
= C
k=N(R) I€R1E (s \2
on ||z|| £ R, the proof is complete. O
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Theorem 2.12 (Teorema 2 in [10]). Let E = {&§;k € N} be a discrete set in
C™ with exponent of convergence C. Then a 0-close form w on C™ \ E with
singularity of polar type of minimum order (= 1) at each point of 2 is given by

w=> (¥(z &) - Pi(2)),

k=1
where we set
7= if C =00
i1=C—2n if2n <C < o0
P,i: if C < 2n.

And %w A dz has the residue 1 at each point of =.
Proof. (I) In the case of C = co. We have already proved that Y= (¢(2, &) —
Pi(z)) converges. As in the proof of Theorem 2.9, we see that

w—1(z,&) = —Pf(2) + >_(¥(z.&) — P{(2))
1#£k

is J-exact on a neighbourhood of &, for any & (k € N). Therefore &, is a
singularity of polar type of order 1 for w.

(IT) In the cace of 2n < C < co. By Lemma 2.11 377, (1(z, &) — PE~2"(2))
is convergent. The same argument as in (I) shows that & is a singularity of
polar type of order 1 for w.

(III) In the case of C < 2n. It is enough to prove that > -, ¢(z, &) con-
verges uniformly on any compact set in C\ E.

For any R > 0, there exists a natural number N(R) such that

l€k|l > 32R for any k = N(R).

Then, as in the proof of Lemma 2.7, we obtain

o0 o0 1
Z V(2 k)| = 2" Z W < 400
k=N(R) k=1 15k

for ||| = R.
(IV) Since w has the minimum order 1 at each &, we obtain
(n—1)! / (n—1)! /
—_ wAdz = ————— Y(z, &) Ndz
@2rv=1)" Js. () @rv=1)" Js ()
(n—1! @rvy=-1)"
(2ny/—1)» (n—1)!

by Proposition 1.2. O

1
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2.4 Generalization of the Legendre relation

In this section, we construct a d-closed (0,n — 1)-form corresponding to Weier-
strass’ (-function. And we give a formula which generalizes the Legendre rela-
tion.

If T is a lattice of maximal rank in C™, then its exponent of convergence is
2n + 1 (see Lemma 2.3). Therefore, we can define the following form

(r(2) = 9(z0)+ Y (U(z7) = Pj(2)

yer\{o}
=00+ Y (ww) 002 = 3 (FE0 + gf_(om)zi» ,
yer\{o} i=1 ¢ v

where
P (2) = ¢(0,7) + ¥1(z, 7).
We have the representation of P2(z) defined by (2.7) as follows:

RO =30+ ¥ (G- ghom).

YEr\{0}

We note that (r(z) has the following properties
(r(z) = —Cr(—2),

0 () = —pii(a).

8Zi

Fix any v € T'. Noting that ¥(z +v,v") = ¥(z,7" — ) for all ' € T, we obtain

Cr(z+7,0) = ¢r(z)
=1z, —) = ¥(z,00+ Y (2,7 =) —(2,7)

v'€r\{0}

- N
> 3 (Fh0ni - gh0y
v'er{o} i=1

—— ¥ > (Fh0a - ge0.w)

Y/ €M {0} i=1
=:1).
Let 41, ...,%2n be generators of I'. We write v; = (71,...,7m;) € C" (j =
1,...,2n). We set
Y11 o Y1,2n
G:(’ylav’YQn):
Tnl e ’Yn,2n
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Let C(0) be the fundamental parallelotope with center at the origin. Using
faces

2n

1 1
Fki =<z€ C";z=i§7k+2)\j’yj, [Aj] = 3 ( k=1,...,2n,
=1
o
we can represent the boundaty 0Cg(0) of C(0) as
2n 2n
0Cc(0) = > (-DFEF 43 (—1)hF
k=1 k=1
We set
((z) = 3 Gl 3,
i=1

My = Zm-j(d?)i, j=1...,2n
=1

By the generalized Martinelli formula, we have

(2my/—1)" _ s »
(n—1)! _/60G(0) r(z) A da.

We represent the detarminant of the matrix which omits the i-th row and the

k-th column from ( g ) as g . Take real variables (t1, ..., ta,) such that
ik
Z1 tl
=G
Zn t2n

Then the above formula is

27T\/j]. n n _ % % n é —
E =Sy [ S| | 6] i,
’ k=1 -3 -3 =1 k i,k
2n % % n é .
3 0 [C Ce)|, | G| deednd,
k=1 2 2 =1 k i,k
2n 3 % n
= 2(71)1%1/ ) / Z <Q(z(t)) o+ ¢i(z(t)) F>
_1 _1 4 A .
k=1 2 2 =1
« dty---dty - - - dto,
ik
2n n ; 1 é .
:Z( 1)* 1ka/ / o dty -+~ dty - - dtoy,.
k=1 i=1 -3 -3 i,k
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Then we get a generalization of the Legendre relation

(28) GRS o e

(n—1)!
1=1 k=1

G
G

ik

2.5 Generalization of Weierstrass’ p-function

In this section, we assume that an n-dimentional complex torus M = C"/I" is
an abelian variety. For the sake of simplicity, we write p’(z) = p&(z) omitting
[. Let 7 : C* — M be the canonical projection. Consider p'(z — p) for any
p € 7 1(p). We can consider p'(z) as a form on M, because it is I-invariant. We
write p’(2 — p) when p'(z — p) is considered on M. We treat other I-invariant
forms and functions in the same manner. Let B be a sufficiently small open ball
containing p. It holds by (2.1) that

Crv=D"OF ) [ p)pi(e - p) nde

(2:9) (n—1)! 0z 9B

for any holomorphic function f on a neighbourhood of B.
Definition 2.13 ([11]). We define a 0-closed (n — 1,n — 1)-form o (z) on
M\ {0} by

(n—1)!
(2my/—1)n—1

Remark . Dolbeault classes of p and its derivatives generate H™ (M \
{p}, Q" 1) as a Frechét space.

(2.10) " (2) = (=1)7 1" (2) A (dzy).

There exists a theta function 6 (# 0) for M is an abelian variety. We can
take a positive C*° function h such that w = h|0|? is [-invariant. Let © be the
divisor on M defined by 6 = 0.

Proposition 2.14 (Proposizione 1 in [11]). Let p ¢ O, and take p € 7~ 1(p).
Let Q be a fundamental parallelotope such that p is not contained in the interior
Q° of Q. Then we have

2

- 9 o) -
by p) = — y—- iy
(2.11) /@p (z—p) 5207, log 6(p) + 5 /Lg\Qalogh/\p (z — D).

Proof. Take an open ball B with center p and sufficiently small rudius such
that 771(B) N 0Q = (. Let T be a tubular neighbourhood of © with piecewise
differentiable boundary such that TN B = (). We can take a C™ function p
with p =2 0 on M such that

[ 1 ifqeT
”(Q)_{o if g€ B.
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We have

(2.12) /@” =/p@”
(S] (C]

= <13310g9|7p@”>

=5 </ 00logw A pp® /8810gh/\pp>
:_</ dlogw A dp A p% /8810gh/\pgo)

by the Poincaré-Lelong equation. Since ddlog|8]?> =0 on M \ ©, we obtain

(2.13) / dlogw A dp A
M

:/ dlogw A dp A o
M\ (BUT)

:/ 90logw A pp — d(dlogw A pp™)
M\(BUT)

= / 90logh A pp'd +
M\ (BUT)

/ ogw/\pp”+/ logw A g
:/ d0log h A pp'd + / logw A p'.
M\(BUT)

oT

On the other hand, we have

(2.14) / 00log h A pp'l = / 00logh A " + / 90logh A pp'.
M T M\ (BUT)

From (2.12), (2.13) and (2.14) it follows that

/=1 g _ g
(2.15) Pl =— (— Ologw A p% +/ 8810gh/\p”> )
) 2m or T

By Stokes’ theorem, we have

(2.16) / 00logw A p¥ = / d(dlogw A p')
M M
=— 8logw/\pij—/ dlogw A o™,
T OB
Moreover, since d91logh = ddlogw on M \ T, we have

— 8logw/\pij:/

aT M\ (BUT)

:/ 5810gh/\pij+/ dlogw A p'.
M\(BUT) oB
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Therefore, we obtain

(2.17) / P = vl / 00logh A o +/ dlogw A p%
e 2m M\B OB

by (2.15). Setting B’ := 7~ 1(B) N Q, we have

(2.18) / 90logh A " :/ d(dlogh A ')
M\B Q\B’
:i/ dlogh A ¥ — dlogh A p".
aQ aB’

On the other hand, since dlog|0|> = dlog 6, we obtain
(2.19) dlogw A " :/ (9logh + dlog|0?) A g™
OB oB’

= / (0logh + 0log8) A o
OB’

By the definition of ¥ and (2.9), we have

n—l

dlogh A o = log 0 z—D)ANdz
g0 Np 2wfﬂ133/8z]gp( p)

OB’

= 27r\/7 log 6(p).

Zj

We finally obtain

- 92
U 1 V=2 1
/@go 92207, og@(iﬂ+ / dlogh A p¥.

O

Lemma 2.15 (Proposizione 2 in [11]). The term % faQalogh A 9% (2 — D)
in (2.11) is a constant independent of p.

Proof. By the definition of %, we have

—_1/ dlogh A (2 — p)
21 aQ

V=1 (n-1) i y |
21 (2my/—1)n— (=) 1 610gh/\p (z = D) A (dz);
(=1
(%¢4W1 LQ -logh ¢'(z —p) Adz.
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Since h is the exponent of a polynomial of degree 2 in z; and Z;, % log h is
J
represented as the following linear polynomial

n

> (a2 + b %) + ;.

r=1
It holds that
9 i
(2.20) —logh p'(z —p) Ndz
FfUF, 0z;

F,

n
= (ajryre + by re) / ©'(z — D) Adz,
r=1
because @’ Adz is I-invariant. Therefore, it is sufficient to show that the integral
/ ©'(z—p)ANdz

4

is independent of p.
Let Hy := w(F, ) be the real (2n — 1)-dimensional hypersurface of M deter-
mined by F,”. We have

/ pi(z—@Adz:/ pi(z—p)/\dz:/ o' (2) A dz.
B He Hy—p

We take a different point ¢ € M which does not lie on Hy. We denote by D the
domain in M surrounded by Hy, — p and H; — q. Then we have

/mp@i(z)/\dz/mq pi(z)/\dZ:/Dd(pi(z)/\dz)zo.
]

Combining Propositon 2.14 with Lemma 2.15, we obtain the following the-
orem which shows that p* is a generalization of Weierstrass’ p-function.

Theorem 2.16 (Teorema in [11]). Let © be the above divisor. Then we have

- 92
] _ I L.
(2.21) [0 o o2 0(P) + e,

where c;; is a constant independent of p.
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Chapter 3

Generalization to
Quasi-Abelian Varieties

3.1 Toroidal groups and quasi-abelian varieties

Connected complex Lie groups on which holomorphic functions are only con-
stants are called toroidal groups. It is known that a toroidal group is commu-
tative. Then it is considered as a quotient C"/I" of C™ by a discrete subgroup
I with rank T'=n+m (1 £ m £ n). When rank T = 2n, it is a complex torus.
In this section, we treat the case of non-compact toroidal groups.

Let X = C"/T be a toroidal group with rank ' =n+m (1 <m < n—1).
Take generators v1 = (Vi1,---,Y1n)s--->VYnem = (Yntm,1y---sVntmm) of T
The matrix
Y11 Yndm,l
p— . .

Yin e ’Yner,n

given by these generators is called a period matrix of X. By a suitable change
of variables and generators, we can write P as

0 Im T
(3.1) p_( P RZ),

where I}, is the unit matrix of degree k, the matrix (I, T) is a period matrix
of an m-dimensional complex torus, and (R; Rs) is a real matrix. We say
that coordinates in the expression (3.1) are toroidal coordinates. The condition
HY(X,0) = C is written in terms of (R; Rz) (see [2] for details). We write the
toroidal coordinates as

2= (2",2") = (21, -, Zm> Zmats - -y 2n)-

In the following we use these coordinates. Let Rt be the real linear subspace
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of C" spanned by I'. Then
Cp =R N V/—1RET™

is the maximal complex linear subspace contained in R, which is of complex
dimension m. A toroidal group X is called a quasi-abelian variety if there exists
a hermition form H on C" such that

(a) H is positive definite on CJ,

(b) the imaginary part A := Jm?H is Z-valued on I" x T'.

A hermitian form H satisfying the above conditions (a) and (b) is said to be an
ample Riemann form for X. We set Ar := A|R¥+me?+m for an ample Riemann
form H. Since Ar is an alternating form, we have

rank Ar =2(m+k), 0k < —(n—m).

DN | =

In this case we say that H is of kind k. If a quasi-abelian variety X has an
ample Riemann form of kind k, then it also has an ample Riemann form of kind
k' for any k' with k < k' < 1(n — m). Then the kind of a quasi-abelian variety
was defined in [3] as follows.

Definition 3.1. The kind of a quasi-abelian variety X is the smallest integer
k with0 < k < %(n —m) such that there exists an ample Riemann form of kind
k for X.

Let X = C"/T" be a quasi-abelian variety of kind 0. Then the matrix (I,,, T)
in (3.1) is a period matrix of an m-dimensional abelian variety A. The projection
z +— z' induces a (C*)"~™-bundle o : X — A over A. Replacing fibres (C*)"~™
with (P1)"~™ we obtain the associated (P1)"~™-bundle 7 : X — A over A.
We say that X is the standard compactification of a quasi-abelian variety X of
kind 0.

3.2 Cohomology groups and the Dolbeault iso-
morphism
Let X = C"/T be a toroidal group withrank ' =n+4+m (1 <m <n—1). Tt

has the canonical projection 7 : C" — X. Let 0 be the unit element of X. We
can take a neighbourhood V of 0 in X such that

V) = |_| U, (disjoint union),
yel
mly, Uy =V

is a biholomorphic mapping, where U, is a polydisc with center v. In the same
way as in Section 2.1 in Chapter 2, we obtain the following cohomology exact
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sequence

0— H(X,0) - H(V,0)® H* (X \ {0},0) = --- —» H*¥(X,0) —

H*(V,0) & H*(X \{0},0) = H*(V\ {0},0) = --- = H"*(V \ {0},0)
— H"YX,0) = H*" Y(V,0)® H" (X \ {0},0) — H" YV \ {0},0)
— H"(X,0) - H™"(V,0) ® H"(X \ {0},0) — H™(V \ {0},0) — 0.

When rank T' = n + m, the toroidal group X = C"/T" is strongly (m + 1)-
complete. Then we have

HY (X,0)=0 for iZm+1.
Since n = 2, we have
H°(X\ {0},0)=H°(X,0)=C.
Furthermore we have
HY(V\{0},0)=0 for i#0,n—1

(Lemma 1.1 in Chapter 1). Substituting these results to the above exact se-
quence, we obtain the following proposition.

Proposition 3.2 (Proposition 1 in [1]). For a toroidal group X = C"/T" we
have _ _
H(X\ {0},0) = Hi(X,0) for i#n—1,

H1(X\{0},0)= H"Y(X,0) @ H" YV \ {0},0).

Since cohomology groups H'(X,O) of a toroidal group X is comletely de-
termined by [7] and [8], the above proposition shows that if H"~1(V \ {0}, O)
is decided, then we can understand cohomology groups of a punctured toroidal
group X \ {0}. We note that

H" 1V \{0},0) = H" 1 (U, \ {r},0)
for any v € I'. Especially, when 1 <m < n — 1, we have H" (X, 0) = 0 and
H" H(X\{0},0) = H" " (U, \ {1}, 0).

When m = n — 1, H"}(X \ {0},0) is generated by H"~}(U, \ {7}, O) and
H" " Y(X,0). The (n — 1)-th cohomology group H" !(X,0) can be of n-
dimension or non-Hausdorff.

3.3 Definition of p¥
The (n—1)-th cohomology group H" (U, \{7}, O) is generated by {¢(z,7); o €

Ny} as shown in Chapter 2. Now we treat the case that 1 < m < n — 1. Then
we have —1 +m + 1 £ 0. Therefore,

ef(2) =) dalz7)

yel
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converges for any o € Nj with || = 1 by Proposition 2.4. Then, we can define
ph(z) without a modification as in (2.7). Hence, we set

pp(2) == et ().
By the definition of ef the following equality is obvious

6 [0 « k
a—Zker = —(ay + 1)t

especially

9 i 545"
@@F(Z) = (6 +ep .
For the sake of simplicity we write p’(2) = ph(2) omitting T'. It is obvious that
©'(2) has the property (2.9) in Section 2.5 in Chapter 2. We give the following
definition of p¥ as the case of a complex torus.

Definition 3.3. We define a 0-closed (n—1,n—1)-form o (z) on a punctured
toroidal group X \ {0} by

ij o (n—1)! VS PR oe ) -
(3:2) o) = G e (D) A 2);

While ©'(z) is a d-closed (0,n — 1)-form on C" with singularities T, it is
[-invariant. Then we can consider it as a d-closed (0,n — 1)-form on X with
a singularity 0. Let p € X and p € 7~ 1(p). If we write p’(z — p), then it is
considered as a form on X. And if we write p’(z — p), then it is a form on C™.
We treat p/ and other I'-invariant forms and functions in the same manner.

3.4 Positive divisors

Let X = C"/T’ be a quasi-abelian variety of kind 0. We take generators
Y1y -+ sYnem Of T' such that the period matrix P = (y1,...,Yn+m) is of the

form in (3.1). For any j =1,...,n —m, we set
o (sm+] m+j m+j sm+j +J
v; = (03 ,...,6m+j71,\/—16m+j,5m+j+1,...,(5;” 7.
Then 1, .., Yntm,V1s---,Un—m are a basis of C™ over R. Any z € C" is

represented uniquely by

n+m

n—m
zZ = Z Si7vi + Z tjv;, si,t; € R.
i=1 J=1

36



For a fixed 2 € C" we define the fundamental parallelotope @ of X with center
2V by

n+m n—m
1 1
Q= {zo—i—z;z: El sii + Eltjvj, —5<si<3 (t=1,...,n+m),
i j=

tjER(j:L...,n—m)}.

We denote an (n — m)-tuple of positive numbers Ry, ..., R,_m by
R=(Ry,...,Rn_m). Let R and R’ be two (n — m)-tuples of positive numbers.
Then

DR,R’ =C"x
{Zmt1s- o 20) €CVM =R < Omzpyj < Rj (j=1,...,n—m)}

is a subdomain of C™. Since the period matrix P of X is of the form in (3.1),
I acts on Dg, g for any R and R’. Then we can define a subdomain Xp g :=
Dpr r//T of X. Let X r be the closure of Xp p in X. We denote

Qrr =QNDrpr and (0Q)ppr :=0Q N Dg g,

where 0@ is the boundary of @ in C".

Let © be a positive devisor on X. It determines a holomorphic line bundle
L = [O] over X. It is well-known that L is given by a factor of automor-
phy p(7,2). A system of local defining functions {6;} of © corresponds to an
automorphic form @ for p(v, z), that is, 6 is an entire function on C™ satisfying

0(z +7) = p(v,2)0(2)

for all z € C® and v € I'. We note that if X is an abelian variety, then 6
is a theta function. A hermitian fibre metric of L gives a positive valued C'*°
function A on C" such that

(3.3) w = h|o|?

is a C'*° function on C™ with period I'. Then w is considered as a function on
X. It follows from this property that

(3.4) log (= + ) + log |p(7, 2) 2 = log h(z)
for all z € C™ and v € I'. For a positive divisor © we set

Orr =0NXgr.
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3.5 Formula on a subdomain

Let X = C"/T be a quasi-abelian variety. Suppose that © is a generalized theta
divisor, that is, it is a positive divisor of which factor of automorphy p(v, z)
is the exponent of a linear polynomial. We take a point p € X with p ¢ O.
Let p € 7~ (p). We can take a fundamental parallelotope Q of X such as p
is an interior point of Q. Let B be a small open ball centered at p such that
QN7 1(B) = ¢. We denote by T an open neighbourhood of © with piecewise
differentiable boundary such that TN B = ¢. For any two (n—m)-tuples R and
R’ of positive numbers, we set

TR,R’ Z:TﬂXR,R/, (aT)R’R/ = 8TﬁXR,R/

and
Erp =0Xpr \ (0Trr \ (OT)R,Rr’):

where 0X g g and 0T g/ are boundaries of Xg g and Tg g/ in X respectively.
We take a C°° function p on X with 0 =< p = 1 such that p=1on T and p =0
on B.

Proposition 3.4 (Proposition 3 in [1]). We have

. 92
1] . — _ ~
/@ P (z—p) 5207, log 0(p)
R,R
V=1
_|_4

271' 6QR,R’

] B
4 —V/ Dlogw A (p— 1) (z — p),
27T ER,R’

(3.5) dlogh A o (2 — p)

where 0, h and w are functions as in the previous section.

Proof. We first note that the current on X r determined by © g g/ is extended
to a linear functional on the space of C* (n — 1,n — 1)-forms on X g g/ since
X g g is compact. Furthermore, the Poincaré-Lelong equation holds for such
an extended linear functional. Then we have by (3.3)

(3.6) /O o (2~ p)

/ pp™ (z — p)

@R,R’

<;13810g |9,p@”>
e (

2T

= <<910gw75,0/\@“>—/

Xgr R

00log h A pp”) .
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Since 9d1log |0|> = 0 on Xg g \Tr.r', p=10onT and p =0 on B, we obtain
(3.7) (dlogw,dp A p)

:/ dlogw A dp A oY

Xg,r/\(BUTR gr)

= / (001logw A ppl — d(Dlogw A pp'))
Xp,r \(BUTg )

d0log h A pp — / dlogw A pp'

Egr g

/XR,R'\(BUTR.R’)

+ / dlogw A p.
(OT) g, R

On the other hand we have

(3.8) / 00log h A pp'd = / ddlogh A p¥
Xppr

TR,R’
+/ 00logh A pp'.
X g, r' \(BUTR R)

Then it follows from (3.6), (3.7) and (3.8) that
o) [ oi-p
Op.n/

v—1 g _ g
= <—/ Glogw/\p”—&—/ 00log h A p"
(OT) g, g

27T TR,R’
.
E

By Stokes’ theorem we have

dlogw A ppij>.

R,R/

/ 9dlogw A o'
Xr,r\(BUTR gr/)

:/ 8logw/\pij—/ 8logw/\pij—/ 310gw/\pij.
ER,R’ (aT)R.R’ oB

Moreover, since 90 logw = ddlog h on Xr,r \Tr,r, we obtain

(3.10) —/ dlogw A p%
(OT) g, r

Ealogh/\pij—i—/ alogwApij—/ dlogw A p.
oB E

R,R’

/XR,R/\(BUTR,R/)
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Then it follows from (3.9) that

(3.11) /O o (2~ p)

/1 _ ] .
=— / ﬁalogh/\p”Jr/ Ologw A ¥
2m Xp.r\B B

o),

We set B’ := 7~ 1(B) N Q. By (3.4) it is obvious that 99 log h is [-invariant
for © is a generalized theta divisor. Then we have

dlogw A (p — 1)@”).

R,R/

(3.12) / 00logh A " = / d0log h A "
Xgr,rr\B Qr,r/\B’

:/ dlogh A o' — dlogh A Y.
OQn B’

On the other hand, noting dlog |8]? = dlog f, we obtain

(3.13) dlogw A p = 810gw/\pij:/ (0logh + 0log0) A
OB oB’ oB’

By the definition (3.2) of ¥ and its property (cf. (2.10)), we have

y (n—1)!
dlogd N p(z—p log Ap" Ndz
- p7(z—p) = 277F" . az] 07 (2 —p)
=2mv—1 log 6(p).
TV 8%8% 0g 0(p)
Then we obtain by (3.13)
(3.14) dlogw A " = dlogh A 9" + 21/ — log 6(p).
0B OB’ ‘oz 3
Thus, substituting (3.12) and (3.14) in (3.11), we finally obtain the desired
equality (3.5). O

3.6 Main result

Let R = (Ry,...,Ry_m) be an (n — m)-tuple of positive numbers. When
Ry,...,Ry—m — 400, we simply write R — +oco. In the previous section
we have given the formula (3.5) on a subdomain Xg p/. A passage to the limit
as R, R’ — +oo implies the main formula.

We assume throughout this section that X is a quasi-abelian variety of kind
0 with the standard compactification X and © is a generalized theta divisor.

40



Proposition 3.5. If © has the holomorphic extension © on X, then o (z —p)
1s integrable on © and we have

Uy _ ) — ; L, _
@13 [P pm [ )
2

. v—1 . ~
=_ log 0 A losh A 0¥ (2 —
52,00 og 0(p) + . a@a ogh A 9" (z — p),

where

V-1 ij o V-1 ij ~
7 oo Ologh A p"(z —p) = R7R1l1£r>1+00 o 00 Ologh A p"(z — D).
Proof. By the assumption, the function w and the hermitian fibre metric {h;}
which gives h are extendable smoothly to X. Moreover we can take a neigh-
bourhood T of © whose closure T in X is a tubular neighbourhood of ©. Then
coefficients of dlogw are bounded on a neighbourhood of (X \ X)\ (T'\ T).

We recall the definition of

0'(2) = pi(z7).

yer

Here we write ¢;(z,7) = ¢ (z,7). We have the following explicit representation

e (5 -7 S0 () (5 — 7))
() = g BT pe1 (=1)* (Z& — 7x) (d2)s,
wi(z,7) SN .

Then the absolute value of any coefficient of p;(z,7) is estimated from above by
n/||z — v||*™. Therefore, considering the definition (3.2) of p¥(z), we see that
the absolute value of any coefficient of % (z) is bounded by the following series
multiplied by a constant
1
2 Iz —~]*

el

We rewrite the last term in the formula (3.5) in Proposition 3.4 as follows:

[ owsento-neG-n= [ dlogw A (p— 1) (= - ).
ER,R/ aQR,R’\(aQ)R,R’

Since I' C R?“’L and

Drr 2R x [T (-R;, Ry),
j=1

there exists M > 0 such that

I(z", Rez")|| = M
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for any z € Qg p and any (n — m)-tuples R, R’ of positive numbers, where we
write Rez” = (Rezmq1, ..., Rezy,). Let p = (w',w”) be the representation of p
in toroidal coordinates. If we set

Lo :={yel;| (v, Rew") ++|| £ 2M},
then I'y is a finite set. For any z € C™ and v € I' we have
Iz = 7II* = [I(2", Rez") — 7]|* + [|Tmz"||?,

where Jm2" = (Jmzy, 41, ..., Jmz,) and [|[Imz"||> = 350" [Jmz,, 4 ;[%. For any
(n — ) tuples R and R’ of positive numbers, we set RY := min{R;, R;} for
i=1,...,n—mand R®:= (R],...,R)_,,). We denote ||R°||* := >>"_ " (R))*.
We may assume that R and R’ are so large that

1
[9me" = Jmw”|| = SR

for all z € OQr,r \ (0Q)r,r'- Then we have

Iz =5 = 3II* = [|(z/, Rez") — (w', Rew”) = y|]* + | Imz" — |
= ([|(w', Rew") + 7| — |(2/, Rez")[)* + || Tmz" — Tmw" ||
1 1
> 1”(’[1)/, E)‘{ew") + 'YH2 + 1”R0H2

for any v € T'\T'y and any z € 0QRr, r/ \ (0Q)r,r- Therefore the absolute value
of any coefficient of dlogw A (p — 1)p% (2 — p) is estimated from above by

Z 2 + Z " : 2 0
lz—p vll " (I (w’, Rew”) + |17 + | RO||?)"

yel ~y€l\Tg

on 0Qgr ' \ (0Q)Rr g, where C' is a constant independent of R and R’. If
R, R’ — 400, then R® — +00 and

2 llz =5 — 7l 7||2"

v€lo

Since

1
> <2 < oo
w’ " 2 0 w' " 2n ’
o W Rew) + P+ R 2 mew)+7||

we have

1

7;\;0 (Il (w’, Rew”) + ]2 + [[RO[|2)"

—0 as R,R — +oo.
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Then we obtain
s 3
— dlogw A (p—1)p”(z—p) =0 as R, R — +oo.

21 JoQp, w \(9Q) e

Next we rewrite the second term in the right-hand side of (3.5) in Proposition
3.4 as follows

A g
— dlogh A p"(z — p)
27 JoQp p
W) , v g
= — Olog h/\p”(z—ﬁ)—&——/ O0log hAp* (z—p).
27T (OQ)R,R’ 27T BQR,R’\(BQ)R,R/

In the same manner as above we can see that
A iy
— dlogh A (p—1)p” (2 —p) =0 as R, R — +oo.

27T BQR,R’\(BQ)R,R’

By the definition of g we have

W) g
e dlogh A (p—1)p" (2 —p) =
27T (BQ)R,R’
(n—1)! / B G
_—— —logh A p"(z—p) Ndz.
(27‘(\/—1)” Q) . 8zj ( )

Since O is a generalized theta divisor, h is the exponent of a polynomial of
degree 2 in z; and z;. Then we can write

a n
(3.16) 5. logh = > (ajrzk + bjnZr) + ¢j.
7 k=1

Without loss of generality we may assume that the fundamental parallelotope
Q is centered at the origin. Then (0Q)g, g consists of the following faces

1 n+m n—m
Féi(R7R,) = {Z eCr;z= :I:i’yg + Z Si%Yi + Z tjv;,
l;% Jj=1

1 ~
lsi] < 2(i:1,...,£,...,n+m),—R§<tj<Rj(j:1,...,n—m)}
for ¢ =1,...,n+m. If we set
1 n+m n—m
Fi = {Z €Chz=H5v+ Dot Y v,

i=1 j=1
14l J

[s;] < (izl,...,f,...,n—}—m),@-GR(jzl,...,n—m)},
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then 9Q is the union of all FiF. It follows from (3.16) that for any z € F, (R, R')
we have

0 0
9z log h(z + ve) — 9z log h(z) = c¢js-

On the other hand, p’(z — p) A dz is the same on two opposite faces F, (R, R)
and F, (R, R') for it is I'-invariant. Then we obtain

B , .
/ —loghpz(z—ﬁ)/\dzzcjg/ p'(z—p) Ndz.
F(R,R")UF, (R,R’) 0z, Fy (R,R)

The absolute value of any coefficient of p?(2) A dz is bounded from above by
the series 3 1/[|z— 7|/ multiplied by a constant. From a similar argument

as above it follows that p(z — p) A dz is integrable on F;* and
/ pi(zfﬁ)/\dz%/ '(z—p)Adz as R,R — 4o0.
FE(R,R") F

Thus we finally obtain

02 V-1
+
2T

li U(z—p)=— log 0(p dlogh A " (z — p).
R,R’l§+oo /@Rﬂ & (Z p) 82i82j ) (p) 08 p (Z p)

oQ
U

Lemma 3.6 (Lemma 2 in [1]). The term 2£7r1 faQ dlogh A (2 —p) in (3.15)
s a constant independent of p.

Proof. 1t is sufficient to show that the integral

/7pi(z—ﬁ)/\dz

4

is independent of p.
Let Hy := n(F, ) be the real (2n — 1)-dimensional hypersurface of X deter-
mined by F,”. We have

/ pi(zfﬁ)/\dz:/ pi(zfp)/\dz:/ ©'(2) Adz.
P Hy Hy—p

We take a different point ¢ € X which does not lie on H,. We denote by D, ,
the subdomain of X surrounded by Hy — p and H; —q. For any (n—m)-tuple R
of positive numbers we set D 4(R) := D, ¢ N Xg g, Hpy(R) := (H; —p) N XRr.r
and Hy(R) := (Hy —q) N Xg g Let Ef (R) and E, ,(R) be two components of
0D, 4(R) N 90Xk, r. Then we have

dDp4(R) = Hy(R)U Hy(R) U Ef (R)U E, ,(R).
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By Stokes’ theorem we have

/ pi(z)/\dz—/ pi(z)/\dz—i—/ pi(z)/\dz—/ ©'(2) A dz
Hp(R) Hq(R) Ej.q(R) Epq(R)
_ / d(g'(2) A dz) = 0.
Dp,q(R)

From the same argument as in the proof of Proposition 3.5, it follows that
/ e'(2)ANdz — 0 as R — +oo.
Ejy(R)

Hence we obtain
©'(2) Ndz = / ©'(2) Adz,

H;—p Hy—q

which completes the proof. O

Combining Proposition 3.5 with Lemma 3.6, we obtain the following theo-
rem.

Theorem 3.7 (Theorem 1 in [1]). Let X be a quasi-abelian variety of kind 0
with the standard compactification X. Let © be a positive divisor on X given
by a holomorphic function @ on C™. If © is holomorphically extendable to X,
then ©¥ is integrable on © and we have

y 52
iy —p) = — log 0(p) + ¢;:
/@p (z—p) 5207, og 0(p) + cij

for any p € X \ ©, where p € 77 1(p) and c;; is a constant independent of p.
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