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Abstract 

It is unclear whether general anesthetics induce enhancement of neural inhibition 

and/or attenuation of neural excitation. We studied the effects of pentobarbital (5xl0-4 

mol/L), propofol (5x10-4 mol!L), ketamine (10-3 mol!L), halothane (1.5 vol%) and 

isoflurane (2.0 volo/o) on both excitatory and inhibitory synaptic transmission in rat 

hippocampal slices. Excitatory or inhibitory synaptic pathways were isolated using 

pharmacological antagonists. Extracellular microelectrodes were used to record 

electrically evoked CAl neural population spikes (PSs). In the presence of a y-
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aminobutyric acid type A (GABAA) receptor antagonist (bicuculline), the inhibitory 

actions of pentobarbital and propofol on PSs were completely eliminated, while those of 

ketamine, halothane and isoflurane were only partially attenuated. In order to isolate the 

N -methyl-D-aspartate (NMDA) receptor mediated PS (NMDA PS), non-NMDA 

glutamate receptors and G ABAA receptors were blocked by their antagonists in the 

absence ofMi+. Ketamine, halothane and isoflurane decreased the NMDA PS, and 

pentobarbital and propofol had no effect on it. The non-Nl\1DA receptor mediated PS 

(non-NMDA PS) was examined using the antagonists for l'J MDA and GABAA 

receptors. Volatile but not iv anesthetics reduced the non-"t'J MDA PS. These findings 

indicate (a) that pentobarbital and propofol produce inhibitory actions on PSs due to 

enhancement of the GABAA receptor - mediated response, (b) that ketamine reduces 

NMDA receptor- and enhances GABAA receptor-mediated responses, and (c) that 

halothane and isoflurane depress all of GABAA receptor-, l'� MDA receptor- and non­

NMDA receptor-mediated synaptic transmission. 
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Implications: Volatile anesthetics depress both excitatory and inhibitory synaptic 

transmission of in vitro rat hippocampal pathways, whereas iv anesthetics produce 

more specific actions on inhibitory synaptic events. These results provide further 

support that general anesthetics produce drug-specific and selective effects on different 

pathways in the central nervous system. 
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Introduction 

Although the mechanisms underlying general anesthesia are not well elucidated, it 

is possible that the anesthetic state can be achieved by enhancing neuronal inhibition, by 

decreasing neuronal excitation, or by a combination of both. Since Nicoll [ 1] initially 

suggested that general anesthetics enhance inhibitory synaptic transmission, y -

aminobutyric acid (GABA) mediated synaptic inhibition has been investigated as a 

target site for these drugs. Enhancement of the G ABA receptor channel response may 

be a primary action of volatile anesthetics [2] whereas varlious iv anesthetics enhance 

GABA-mediated inhibition [3, 4]. 

A large number of studies have investigated the effects of general anesthetics on 

excitatory synaptic transmission. Richards [5] was the first to demonstrate that 

halothane depressed excitatory synaptic transmission in central nervous system 

preparations in vitro. It was later shown that halothane depress glutamate receptor­

mediated excitatory postsynaptic currents using patch-cla1mp techniques [ 6]. MacIver et 

al. demonstrated that volatile anesthetics depressed glutamatergic synaptic transmission 

via reduction of presynaptic glutamate release in CA 1 neurons of rat hippocampal 

slices[7]. 

These findings imply that not all general anesthetics affect excitatory and 

inhibitory synaptic transmission in the same manner. To our knowledge there have not 

been any reports compared the effects of various anesthetics on both excitatory and 

inhibitory synaptic transmission using identical preparation. In the present study, we 

pharmacologically isolated excitatory and inhibitory synaptic pathways in the area CA 1 



of rat hippocampus in vitro, and have then examined the effects of various intravenous 

and volatile anesthetics under these conditions. 

Material and Method 
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Solution and Drugs: The composition of the artificial cerebrospinal fluid (ACSF) 

was (mmol!L): NaCl 124, KCl 5, NaH2P04 1.25, CaCl2 2, MgS04 2, NaHC03 26, 

Glucose 10, made with distiled (18M n purity) water. ACSF was pre-cooled (8-1 0 oC ) 

and equilibrated with 95°/o oxygen I 5o/o carbon dioxide gas mixture before use (pH 7.35-

7.45). The Mi+ -free ACSF was identical to the ACSF except that MgS04 was omitted. 

Pentobarbital, ketamine and halothane were purchased frorn Dinabot (Osaka, Japan), 

Sigma (St. Louis, MO, USA), and Takeda (Osaka, Japan), respectively. Isoflurane and 

propofol were kindly donated from Dinabot and Zeneca (Cheshire, UK), respectively. 

CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) was obtained from Tocris Cookson 

(Bristol, UK). Other chemicals used were obtained from Sigma. 

Preparation of Hippocampal Slices: The technique for the preparation of rat 

hippocampal slices was identical to the method described previously by Hirota & Roth 

[8]. After approval had been obtained from the Animal Research Committee of Toyama 

Medical and Pharmaceutical University, male Wistar rats (1 00-200g) were deeply 

anesthetized with sevoflurane and decapitated. The brain was rapidly removed, and the 

dissected hippocampus was sliced in cold ACSF (8-1 0 oC ) transversely to its long axis 

( 4001-lm thick) with a microslicer (Dosaka EM, Osaka, Japan). Slices were placed onto a 
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ny Ion mesh at a liquid-gas interface in a recording chamber at 3 7 oC . A humidified gas 

mixture (95%0i5o/oC02) was applied to the chamber at a rate of 1L/min and ACSF was 

continuously perfused at a rate of 90 ml!hour. 

Recording and Stimulation: Square-wave paired-pulse stimuli (5-1 0 volt, 0.05 ms, 

40 ms interval, 0.1 Hz), generated with a SEN-7203 stimu]ator (Nihon Kohden, Tokyo, 

Japan), were delivered to Schaffer collateral fiber via a nichrome bipolar electrode. The 

minimal stimulus intensity that elicited a maximal population spike amplitude ("maximal 

stimulus") was used. Extracellular recordings were made w·ith the 2 mol/L NaCl filled 

glass microelectrodes (3-6 MQ) placed in the area of CA 1 cell bodies. Evoked responses 

were amplified (low -and high-cut filters set at 1 Hz and 10 kHz, respectively ) with a 

MEZ-830 1 amplifier (Nihon Kohden, Tokyo, Japan) and ,AiD conversions were made 

at a rate of 14,400 Hz using a MacADIOS (GW, MA, USA). Data were stored on a 

hard disk of a Macintosh computer for later analysis. 

Drugs Administration: Pentobarbital, ketamine, bicuculline and AP5 were 

dissolved in ACSF at required concentrations. Stock solutions of CNQX (1 o-3 mol/L) 

was prepared in dimethyl sulfoxide (DMSO), and propofol was dissolved in 10% 

Intralipid (Pharmacia AB, Stockholm, Sweden) at a concentration of 10 mg/ml. These 

stock solutions were diluted in ACSF prior to perfusion into the chamber. The 

concentrations of DMSO and Intralipid utilized in the experiments did not affect the 

field potentials. Volatile anesthetics, halothane and isoflurane, were applied as vapors to 

the chamber with 95%02/5%C02 gas mixture, using a vaporizer, previously calibrated 

with an anesthetic gas analyzer (Capnomac� Datax, Finland). The concentrations of 
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volatile anesthetics, expressed as volume percent (vol o/o), refer to the dial settings on the 

vaporizer. All drugs were applied for 20 minutes prior to recording in order to obtain 

stable effects. The Mi+ -free ACSF was used in experiments examining NMDA 

receptor-mediated responses since Mi+ has been reported to block the NMDA channel 

at negative membrane potentials [ 1 0]. The iv anesthetic concentrations applied to in 

vitro preparations were calculated based on the method previously described by 

Richards [ 11]. The doses of pentobarbital, propofol and ketamine required to 

anesthetize experimental animals range from 20-30 mg/kg [ 11], 10-24 mg/kg [ 4] and 44-

250 mg/kg [ 12]. Since the iv anesthetics can be considered diluted by the extracellular 

fluid (20-30% of the total body weight), these amounts of pentobarbital, propofol and 

ketamine should have maximum concentrations in the extracellular fluid in the ranges of 

3-5x1 o-4 mol/L, 2-6x1 o-4 mol/L and 2-1 Ox1 o-4 mol/L. On the basis of these calculations 

the concentration-response curves generated in preliminary experiments, and the 

calculated ED 50 values of anesthetics were then tested in the current study: 

pentobarbital 5x 1 o-4 mol!L, propofol 5x 1 o-4 mol!L, ketamine 1 o-3 mol!L, halothane 1. 5 

volo/o and isoflurane 2. 0 volo/o. 

Evaluation of Inhibitory and Excitatory Synaptic Transmission: The extent to 

which inhibitory synaptic transmission contributes to depression of population spikes 

(PSs) were studied in the presence of the GABAA receptor antagonist, bicuculline 

methiodide (BMI, 5x 1 o-5 mol/L ). Two types of ionotropic glutamate receptors were 

pharmacologically isolated using specific receptor antagonists [ 13]. In order to assess 

the NMDA receptor-mediated PS (NMDA PS), the GABAA receptor antagonist (BMI, 



5x10-5 mol/L) and the non-NMDA receptor antagonist (CNQX, 10-6 mol/L) were 

applied under Mi+ -free conditions. The GABAA receptor antagonist and the NMDA 

receptor antagonist AP-5 (DL-2-amino-5-phosphonovaler:ic acid, 5x1 o-5 mol/L) were 

used to evaluate the non-NMDA receptor-mediated PS (non-NMDA PS). 
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Data Analysis: PS amplitudes were measured for evaluation in a similar manner as 

previously described [8]. Measurements were made from onset to the peak of the 

waveform. For data analysis, five evoked waves were collected and averaged. The effects 

of the majority of anesthetics were determined on the first evoked PSs (PS 1s) in the 

current experiments, however, the second evoked PSs (PS2s) were used for 

pentobarbital and propofol, since our previous studies have revealed that iv anesthetics 

produce greater effects on PS2 than PS 1 in identical preparations [9]. Statistical 

significance of the data was determined using ANOV A followed by Bonnferroni test. A 

P value less than 0.05 was considered significant. Data are expressed as mean±S.D. 

Results 

Effects of General Anesthetics on Field Potentials: In control conditions (no 

anesthetic), the amplitude of PS2 was larger than that of PSl. Pentobarbital and 

propofol decreased PS2 with a minimal change in PS 1. Ket:tmine decreased both PS 1 and 

PS2 to the same extent, whereas the volatile anesthetics, isoflurane and halothane, had 

greater effects on PS 1 compared to PS2 (Table; Fig. 1, ACSF). The effects were 

completely recovered upon washout. 

----�=�---- -·-
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Effects of General Anesthetics on GABAergic Inhibition: The administration of 

BMI induced multiple spikes and enhanced the PSI and PS2 amplitudes to I07.6±6.4% 

and I06.8±6.I% of control (n=6), respectively (Fig. I, +BMI). The inhibitory effects of 

pentobarbital and propofol on PSs were completely eliminated with BMI, while the 

effects of ketamine, halothane and isoflurane were only partially suppressed (Fig. 2). 

The results indicate that the inhibitory effects of pentobarbital and propofol are mainly 

due to the GABAA-mediated mechanisms. Since other factors may be involved in the 

actions of ketamine and volatile anesthetics, the following experiments on excitatory 

synaptic transmission were performed. 

Effects of General Anesthetics on NMDA Receptors: The administration of CNQX 

in the absence ofMi+ reduced the amplitudes of PSI and PS2 to 77.0±7.5o/o and 

89.I±6.7% of control, respectively (n=5). BMI added to the Mi+ -free ACSF 

containing CNQX induced multiple spikes without significant changes in amplitudes of 

PSI and PS2. Under these conditions, PSs were elicited via NMDA receptor-mediated 

synaptic transmission. Pentobarbital and propofol had no significant effect on NMDA 

PSs, while ketamine, halothane and isoflurane significantly decreased NMDA PSs (Fig. 

3A). 

Effects of General Anesthetics on Non-NMDA Receptor. AP-5 alone had no 

consistent effect on the shape of PS, and the application of AP-5 and BMI in ACSF 

enhanced the PSI and PS2 amplitudes to I21.7±8.7o/o and I20.I±6.6% of control, 

respectively (n=5). The non-NMDA PSs were not affected by pentobarbital, propofol 

and ketamine, but were significantly decreased with volatile anesthetics (Fig. 3B). 



Discussion 

The hippocampus is a highly laminated limbic structure with well-defined 

afferents, efferents and neurotransmitters, and may be one of the major target sites for 

general anesthetics [ 14]. Thus the hippocampal slice preparation is an ideal model 

system for the study of anesthetic action on synaptic transmission in the central 

nervous system. In the present study we evoked PSs in area CA 1 of rat hippocampus 

via stimulation of the Schaffer collateral fibers. This path\vay is monosynaptic and is 

inhibited via recurrent inhibitory interneurons. Since PS reflects the number and 

synchrony of pyramidal cells that generate action potentials, the gradual decline of 

neural excitability (run down) is expected to be minimal. 
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The concentrations of iv anesthetics tested in the current study were higher than 

the plasma concentrations in clinical settings. Since the doses of iv anesthetics to 

anesthetize experimental animals are 10 to 100 times higher than those for humans [ 4, 11, 

12], the different sensitivities to iv anesthetics between species (see Method) could be 

involved. It might be attributed to the limitations of the in vitro preparations: missing of 

the blood-born factors from ACSF and/or lack of certain inputs and outputs normally 

existing in the intact brain. The same degree of iv anesthetic concentrations [ 11, 12] have 

been actually employed for in vitro electrophysiological studies in brain slice 

preparations. 

GABA is the major inhibitory neurotransmitter in hippocampus. The GABAA 

receptor (the BMI sensitive receptor) is a ligand-gated ion channel consisting of a 
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chloride channel complex. When the postsynaptic G ABAA receptor is activated, 

chloride ions move into the postsynaptic cell causing an increased membrane 

conductance that inhibits postsynaptic action potential discharge and decreases 

excitatory synaptic responses. Glutamate is the major excitatory neurotransmit ter in the 

hippocampus. Glutamate receptors are divided into two functional subtypes (NMDA 

and non-NMDA) by their specific agonists. Glutamate released into the synaptic cleft 

activates both postsynaptic NMDA and non-NMDA receptors and induces an 

excitatory postsynaptic current (EPSC). The fast component ofEPSC is due to the non­

NMDA receptor and the slower component is attributed to the NMDA receptor. 

In the current study we have demonstrated for the first time in the same 

preparation that there are different actions of general anesthetics on inhibitory and 

excitatory synaptic events in the central nervous system. Pentobarbital and propofol 

augment GAB AA receptor-mediated inhibitory synaptic transmission but not NMDA 

and non-NMDA receptor-mediated excitatory synaptic transmission. The results are in 

agreement with previous reports [3,4]. It has previously been shown that pentobarbital 

can block NMDA receptor-mediated currents in isolated single hippocampal neurons 

[ 1 5]. Although the excitatory synaptic transmission might be altered, the current 

experiments provide evidence that pentobarbital has a prirnary action on inhibitory 

rather than excitatory synaptic transmission. 

We found that ketamine depresses NMDA PS but not non-NMDA PS, indicating 

that this anesthetic inhibits excitatory synaptic transmission via NMDA receptors as 

previously reported [ 1 6]. The effects of ketamine on GABA receptors are controversial. 
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Tang & Schroeder [17] and Brockmeyer & Kendig [1 8] reported that ketamine does not 

attenuate GABAergic synaptic transmission in the spinal cord. We observed, however, 

that BMI partially depressed the actions of ketamine, suggesting that the action of the 

anesthetic could be, in part, a result of enhancement of G.AJ3Aergic inhibitory synaptic 

transmission. Our results are consistent with other studies in the cervical ganglion [1 9] 

and hippocampus [20]. Since ketamine has different regional actions on the NMDA 

receptor [21], it is possible that ketamine could produce different actions on GABAergic 

transmission in the hippocampus compared to the spinal cord. 

The present results demonstrated that volatile anesthetics exerted enhancement of 

the inhibitory synaptic transmission and reduction of the excitatory synaptic 

transmission. It has been reported that post synaptic G ABAA receptors are considered 

as a main target of general anesthetics [2] and recently Min1ic et al. [22] identified that 

there are the specific sites on GABAA receptors modulated by volatile anesthetics. 

Recent studies, however, propose that volatile anesthetics attenuate the glutamate 

receptor-mediated synaptic transmission in the central nervous system [5-7, 13]. 

Our experiments were based on the fact that the Schaffer collateral input to CA 1 

pyramidal neurons of the hippocampus is generated via glutamate-mediated 

monosynaptic excitatory synaptic transmission in combination with GABAAergic 

recurrent inhibition. It has also been reported that volatile anesthetics augment the 

GABA8 receptor-mediated inhibition in hippocampus [8] and that volatile anesthetics 

can depress postsynaptic sodium channels [23] and calciurn channels [24]. Thus, there 

is the possibility that a number of receptor-mediated pathways and/or post synaptic 
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events may be involved in the actions of volatile anesthetics. 

In conclusion the present study has shown that general anesthetics can produce 

different effects on GABAergic inhibitory and glutarnatergic excitatory synaptic 

transmission in the hippocampal pyramidal cell. Volatile anesthetics modulate both 

excitatory and inhibitory synaptic activities, whereas iv anesthetics produce more 

specific actions on inhibitory synaptic events. These result support the hypothesis of 

drug and site-specific mechanisms of general anesthesia [ 14, 25]. 

We thank Zeneca, Cheshire, UK, for the gift of propofol; and Dinabot, Osaka, 

Japan, for the gift of isoflurane and a isoflurane vaporizer. 
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Figure Legends 

Figure 1. 

The effects of propofol (5xl o-4 mol/L), ketamine (1 o-3 mol/L) and halothane (1.5 volo/o) 

on the evoked population spikes (PSs) in the absence and presence of specific receptor 

antagonists. PSs were elicited with a paired-pulse stimulus ( 5-l 0 volt, 0. 05 ms, 40 ms 

interval) at 0.1 Hz. The initial PS amplitudes (indicated by arrows) were used for data 

analysis. ACSF: artificial cerebrospinal fluid, BMI: bicuculline methiodide (5xl0-5 

mol/L), AP-5: DL-2-arnino-5-phosphonovaleric acid (10-5 mol/L), CN QX: 6-cyano-7-

nitroquinoxaline-2,3-dione (1 o-6 mol/L) 

Figure 2. 

Effects of general anesthetics on PS amplitudes in the artificial cerebrospinal fluid 

(ACSF) and the presence of GABAA receptor antagonist:, bicuculline methiodide (BMI, 

5xl0-5 mol/L). Each bar represents Mean±SD (o/o of control). PB: pentobarbital (5xl0-4 

mol/L), n=4; PRO: propofol (5xl0-4 mol/L), n=6; KET: ketamine (10-3 mol/L), n=6; 

HAL: halothane (1. 5 volo/o), n=5; ISO: isoflurane (2.0 vol%), n=5. *P<0.05 compared 

with data in the absence of anesthetics; tP<0.05 compared with data in the absence of 

BMI. 

Figure 3. 
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Effects of general anesthetics on the NMDA PS (A) and the non-NMDA PS (B). Each 

bar represents percent of control (Mean±SD). PB: pentobarbital (Sxl o-4 mol/L), n=4; 

PRO: propofol (Sxl0-4 mol/L), n=6; KET: ketamine ( 10-3 mol/L), n=6; HAL: halothane 

( 1.5 vol%), n=S; ISO: isoflurane (2.0 vol%), n=S. *P<0.05 compared with the data in 

the absence of anesthetics. 

-------
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