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Abstract 

Complex spike activity In Purkinje cells in rat cerebellar 

cortex was studied utilizing multiple electrode recording 

techniques. Two approaches were used to analyze spatiotemporal 

relationships within the complex data arrays recorded during these 

experiments: a) grouping cells with similar spatiotemporal firing 

patterns via the projection method and b) so-called principal 

component analysis. The grouping technique enabled the 

visualization of relationships within an tentire neuron set, through 

the projection of cross-correlation vectors from hyperdimensional 

to lower dimensional space. Each cluster of cross-correlation 

vectors corresponded well to the rostrocaudal organization of 

climbing fiber activity In cerebellar cortex. Application of principal 

component multivariate analysis revealced major components of 

complex spatiotemporal variance in climbing fiber activity of 

multiple Purkinje cells. A maximum variance of 30% may be 

ascribed to the first and second components, which corresponded, 

respectively, to synchronicity and spatial grouping In the 

spatiotemporal organization. These analyses permitted a global and 

quantitative description of the simultaneous activity of groups of 

individual neurons. 
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Previous multi-electrode studies of cerebellar Purkinje cell 

activity analyzed temporal interactions between different folia 

oriented in a rostrocaudal band and between folia tn different parts 

of the rat cerebellar cortex 1 8. As the number of cells recorded 

increases from 32 in our first studies 16 to 9618
, more sophisticated 

methods of data analysis have been required. Recently, 

multichannel neuronal activity has been recorded using optical 

measurements6 as well as multiple microelectrodel,9. However, 

methods for the analysis of such complex multiple neuronal activity 

is still lacking5 ,9. This paper details two techniques: a) projection 

method and b) principal component analysis. The latter is often 

applied to analyze the magnitude of responses to various 

stimuli2,3,8. Preliminary reports have been presented4, 17. 

EXPERIMENTAL PROCEDURES 

Database 

The experimental procedures and the database for this paper 

have been described in detaii18. However, in the present study, all 

data comprising 64 and 96 bit structures were reconstructed using 

a 10-msec sampling rather than the 1 -msec sampling used in the 

previous analysis18. 

Cross-correlation 

To ascertain the relationship betwjeen the activities of two 

given neurons with x(t) and y(t) spike trains, a cross-correlation 

function was calculated as described in a previous paper16: 
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(1 ) 

where Xi and Yi represent number of spikes in x(t) and y(t) during 

'ti, respectively. X(�'t/T) and Y(�'t/T) are the mean number of spikes 

in x(t) and y(t) during T, respectively; n 1s the total number of 'ti 
during T; <Pxy('t) is the number of spikes 1n a given lag time, 't, of 

the cross-correlation in the spike trains of x(t) and y(t). 

Cross-correlation coefficients were calculated over a 

maximum time span of -250 to 250 1nsec and for a possible 

combination of any two neurons; 48c2=11 28 pairs for 48 neurons in 

one cerebellar hemisphere and 96c2=4560 pairs for 96 neurons in 

both hemispheres. ·The maximum coefficient over this time span 

was chosen as the coefficient from one complex spike train (master 

neuron) to another (sub-neuron); usually the coefficient value was 

maximum at time lag 't =0. A correlation matrix, C, was thus 

calculated automatically from this procedure. 

Projection method 

The level of activity of a gtven neuron with respect to another 

neuron may be represented by a cross-correlation as a function of 

time lag. When the activity of many · neurons is recorded 

simultaneously, it is difficult to determine the relationship among 

the individual cells. One way to represent such data is to use the 

projection method (Fig. l A). If each element of the cross-

correlation matrix is considered to be an activity vector component, 

as: 

(2) 
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where N is the number of recorded neurons (Fig. lAb), each cross­

correlation vector may then be plotted as a point (a vector) in the 

N -dimensional space providing a succinet quantitative description 

of the overall activity (Fig. lAc). After calculating all the cross­

correlation pairs possible for the recorded neurons, a total of N­

points of cross-correlation vectors may be plotted on the N­

dimensional space (Fig. lAc). The relative distance between the 

vectors will then describe the similarity of firing among different 

neurons. 

Our objective was to determine the distribution of these 

points in the N -dimensional space. One way to s�mplify and 

visualize the distribution is to project the vectors from N­

dimensional space to two- or three-dimensional space. If we define 

the correlation vector to be: 

p=Ck (3) 
where k is the unit vector, and if we determine their directions of 

projection, the variance of vector p may be obtained: 

Var (p) = k'C2k 

where the apostrophe indicates the transformation of k. The unit 

vector k with the maximum variance is calculated by a 

characteristic equation: 

c2k = Ak. 

Solving this equation gtves the eigenvalue and eigenvector for the 

matrix c2. The eigenvector is the same as that for matrix C, while 

the eigenvalue, /..., is the square of that for matrix C. It is evident, 

then, that the projections of N -points on a lower dimensional space 

are g1ven by vector p of a lower dimensional space, where the 

eigenvalue is taken to be the largest value. When a set of points on 
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an N -dimensional space ts projected on a two-dimensional plane, 

only the first and second eigenvectors are used (Figs. lAc and 3). 

Principal component analysis 

Firing patterns recorded tn multi-electrode experiments 

demonstrate a high level of variability in time and space. Thus a 

procedure able to extract patterns from a large volume of data 

would be most welcome. It is well-known that principal 

component analysis is one of the most useful methods to extract 

in variance in a statistical field7, 14. Then� is a difference, however, 

in applying such analysis to recordings of neuronal activity and the 

statistical data used in standard textbooks. One important 

difference is that in the multivariate analyses of statistics, the raw 

data does not include null points while neuronal data sets contain 

many such points when neurons are silent. In the following we 

applied a procedure similar to principal component analysis to 

neuronal data. 

Sampling data from multiple electrode recordings may be 

regarded as measurements taken on P different trials (recording 

time) for N different variables (numb(�r of recorded neurons), 

where trials are defined as a function of time. An entire data set 

may thus be placed in a P x N data matrix composed of 1 or 0 

elements as: 

X= ( Xij ) where Xij = 1 or 0, i = l. .. P, j = l .... N (4) 

although the matrix involves null data sets when all the neurons 

are silent at a given moment (Fig. IB). The mean firing frequency 

and standard deviation of spontaneous activity is usually different 

among neurons. To simplify the analysis a new variable, Zij, is 

introduced, allowing the original data to be standardized such that 
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the mean firing frequency for all the cells is identical and has a 

standard deviation of 1 .  Thus, the new variable, Zij, is: 

z .. = {xij- ij) 

Using 

which 

lJ 

!_ � {x . - X-' 2 pL ffiJ AjJ m=l where 

this new variable we can calculate a 

each element 

cij= 

IS: 

f (x · - XJ(x · - ij) ffil 1 ffiJ J m=l 
t {xmi- iJ2t {�mj- iJ)2 m=l m=l 

:-

(5) 

correlation matrix, C, in 

i, j = 1 ,  ..... , N (6) 

This definition is similar to the formula for the cross-correlation at 

time lag = 0 defined in eq. ( 1 ). 

Principal component analysis seeks to explain the variance­

covariance structure of data sets by using linear combinations of 

original variables, that is, to account for the variability by 

identifying a small number of principal components. The 

theoretical basis and analytical details of this type of analysis are 

described in many standard textbooks 7, l4 .. 

Briefly, consider the linear combinations: 

(7) 
where Zi = (Zil, Zi2, ...... , ZiN) is the colu1nn vector of a standardized 

data matrix and k is a directional unit vector. 

The variance of y is given to be: 

Var(y) = k' C k. 

The principal components are those uncorrelated linear 

combinations Yi whose variance is as large as possible. The first 

component is the linear combination with maximum variance. The 

solution of the direction vector k is the eigenvector of correlation 
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matrix C. The eigenvalue is equal to the variance of the correlation 

matrix. For maximum variance we must take the largest 

eigenvalue, which corresponds to the first principal component. 

The second largest eigenvalue corresponds to the second principal 

component. 

The eigenvalue and its corresponding eigenvector cannot 

usually be estimated as analytical means. In the case of special 

structures with uniform correlation 1natrices, 

eigenvalue, A. 1, can be estimated to be: 

the largest 

A.1=1+ (N-l )Q 

where Q is an element of the uniform correlation matrix. 

that if N >>1, the largest eigenvalue is proportional to NQ. 

RESULTS 

Spatial distribution of the cross-correlation coefficient value 

(8) 
Noted 

Several large data sets were obtained during multiple­

electrode experiments in the cerebellar cortex. The number of 

recording electrodes, drugs applied and right or left recording 

locations were variable. Table 1 summarizes the mean values of 

the spontaneous firing frequency, cross-correlation coefficient and 

its standard deviation (SD) among neuronal pairs in 42 typical 

measurements in three experiments using 64  electrodes and 40 

typical measurements from three experiments using 96 electrodes. 

Note that since the sampling interval was 10-msec the cross­

correlation coefficients were larger than those described 

previously, where a 1-msec sampling interval was used 18. The 

firing characteristics of Purkinje cells. recorded in the 64- and 96-

electrode were similar to each other, as were those of cells recorded 

from either hemisphere. 
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electrode experiment was analyzed. The other data, included in 

Table 1 ,  exhibited similar characteristics. 

Figure 2 is a typical example of the spatial distribution of the 

cross-correlation of spontaneous activity (spont) and activity after 

application of harmaline (harm) and picrotoxin (PTX) in the right 

and left hemispheres (a right hemisphere neuron was chosen as the 

master neuron, M, In Fig. 2). The mean cross-correlation 

coefficients and SD were 0.071 ± 0.060, 0.1 68 ± 0.1 46, and 0.230 ± 

0.1 09 in the right site; and 0.064 ± 0.065, 0.1 97 ± 0.1 39 and 0.254 ± 

0.1 1 7  in the left site for spontaneous, harmaline and picrotoxin 

(PTX) cases, respectively. The larger dots corresponding to large 

correlation coefficients, · reveal a rostrocaudal organization of 

spontaneous activity with respect to the master neuron on the 

surface of Crus IIA. This organization is enhanced after application 

of harmaline. The bandwidth of the region of the highest 

correlation was about 500 Jlm. The cross-correlation coefficients 

were largest after picrotoxin application and its distribution 

became relatively uniform [mean SD/mean cross-correlation = 0.4 7 

(right); 0.46 (left) in PTX, compared with 0.87 (right); 0.71 (left) in 

harmaline]. In the hemisphere contralateral to the master neuron, 

some activity was correlated to the master neurons, again showing 

a rostrocaudal organization with some symmetrical, spontaneous 

and harmaline-induced firing, as discussed in detail in the previous 

paper l8. 

Projection method 

Figure 3 projects all the cross-correlation vectors onto a two­

dimensional plane for the spontaneous (spont), harmaline (harm) 

and picrotoxin (PTX) activity in Fig . 2. The electrode locations 
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corresponding to each master neuron for right (A) and left (B) 
hemispheres are shown. Each point is distributed unevenly on the 

plane but groups of points are apparent during spontaneous and 

harmaline-induced activity. Each point within such a group 

corresponds to a neuron within the same rostrocaudal band on the 

cerebellar cortex, as shown in Fig. 3. The right hemisphere 

recording area (Fig. 3A) contains a medial and a lateral rostrocaudal 

band, each approximately 500 J..Lm wide. In the case of harmaline 

the two bands were quite distinct (Fig. 3A, harm). After picrotoxin 

application (Fig. 3A, PTX), the points we:re mixed and the grouping 

unclear. The distance from the origin 1n axis 1 indicates the mean 

cross-correlation. This distance was greatest after picrotoxin 

application due to the large mean cross--correlation (Table 1 ). In 

the left hemisphere (Fig. 3B) three: groups appeared after 

harmaline application yet spontaneous activity showed a relatively 

unclear grouping on the two-dimensional plane. The width of the 

middle band was approximately 500 Jlm . 

Principal component analysis 

The eigenvalue calculated from the correlation matrix 1n 

principal component analysis yields the variance in spontaneous 

firing for a single neuron. The data in Fig . 2A for spontaneous 

activity is shown in Fig. 4A. Here the eigenvalues and the 

proportion of the total variance, eigenvalue I total summation of 

eigenvalue, are plotted as a function of order. By definition the 

eigenvalue is a monotonic decreasing function of order. The first 

and second components were greater than the others, but appeared 

to be relatively small (several %) (Table 1 ) . This indicates that 

approximately 1 0% of the variance of spontaneous activity could be 
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explained according to the first and second principal components, 

due to their lower cross-correlation values (average 0.061 for 

spontaneous activity). In the case of harmaline and picrotoxin-

induced activity, however, the proportion of the first and second 

components were comparatively large and typically accounted for 

more than 30 % of the variance of activity (Table 1 ). 

Each element of the first and second eigenvectors IS plotted 

on the same plane in Fig. 4B (data corresponding to that in Fig. 2A 

right, 3A spont and Fig. 4A). Elements of the first eigenvector were 

always positive, while elements of the second eigenvector were 

either positive or negative and fell into t�.vo groups. It should be 

noted that by definition each eigenvector was normalized to unit 

length. 

What do eigenvalue and eigenvector In the principal 

component analysis suggest physiologically? The cross-correlation 

coefficient between any two neurons in 1the standard analysis can 

be calculated independently (eq. 1 ). The theory suggests that the 

first eigenvalue might be related to a summation of elements of the 

cross-correlation matrix over all possible combinations (eq. 8). 

Figure 4C plots the first eigenvalue as a function of the sum of 

cross-correlation elements (CC) excluding diagonal elements (mean 

cross-correlation value x number of neurons) for various 

experiments and animals 1n both hernispheres during a 96-

electrode recording. The first eigenvalue correlated well with the 

sum of the cross-correlation elements (Iegression line = 0.997). 

Also, elements of the first eigenvector were proportionate to the 

mean cross-correlation value of each master neuron, as shown in 

Fig. 4D (regression line = 0.993). The mean cross-correlation 

indicates an average for neurons firing simultaneously. This 
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suggests that the first component reflects the degree of firing 

synchronicity. 

The second component was related to Purkinje cell location as 

shown in Figs. 3 and 4B. No simple paratneter describes the spatial 

structure of the active neurons. The mean distance of points from 

the center of mass of the cross-correlation vectors in N -dimensional 

space may reflect some characteristics of the spatial distribution of 

the cross-correlation perhaps being equivalent to the standard 

deviation of the cross-correlation. Figure 4E compares the second 

eigenvalue and the SD of the cross-corre�lation (regression line = 

0.87). These results suggest that the second component represents 

informations related to the spatial distribution of the neurons firing 

in synchrony, as seen in the cross-correlation. 

Spatiotemporal patterns of firing 

The raster display in Fig. 5A represents spontaneous activity 

in Purkinje cells in the right hemisphere (cells as in Fig. 2A). Each 

line (row) shows the pattern of neuronal activity in a single neuron 

over an 2.5 sec period. A pair of four lines from upper side in the 

Figure arrayed four corresponding neurons of one column from 

rostral to caudal side in real recording ]location. Climbing fiber 

bursts lasted about 100 msec, blocking in spacell,l2 occasionally, 

although most of the neurons did fire simultaneously at some 

moment. 

These temporal and spatial firing patterns were relatively 

complex. Principal component analysis can be used, however, to 

induce a "typical" temporal and spatial pattern. Each principal 

component in the time domain is given by eq. (7). Elements of the 

eigenvector in the equation can be used as weighting factors for the 
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raw data. Figure SB shows the first (Fig. 5Ba) and second (Fig. SBb) 

components for the data in Fig. SA. It should be noted that the 

standardized data, as defined by eq. (5), was used. Since each 

element of the first eigenvector was positive (Fig. 4B), Figure SBa 

has the largest values whenever many neurons fire simultaneously. 

This suggests that the first component is related to the 

synchronicity of neuronal activity. 

Since the elements of the second eigenvector were either 

positive or negative (Fig. 4B), the second component is more 

complex. When neurons were active in the lateral site (lower lines 

in Fig. SA), the second component was large while activity in the 

medial neurons (upper in Fig. SB) yielded lower or negative values. 

This suggests that the second component may reflect spatial 

pattern information. It should be noted that by definition the first 

and second components are not correlated with each other. Figure 

SC shows a two-dimensional representation of the first and second 

components of possible patterns over all neurons. When points 

were separated from each other, the spatial firing patterns differed. 

The climbing fibers activated different groups of Purkinje cells at a 

different times. Thus each point in Fig. SC represents both 

temporal and spatial information. 

Effects of harmaline and picrotoxin 
From the above analysis it is suggested that the first and 

second components reflect synchronicity and the spatial 

information of the firing activity, respectively. The effects of 

harmaline (harm) and picrotoxin (PTX) on the first, second and 

third eigenvalues in a pair of 64- and 96-electrode experiments are 

shown in Fig. 6. The proportion of the first component was 
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increased by both harmaline and picrotoxin (Fig. 6A). However, the 

contribution of the second component was increased by harmaline 

and decreased by picrotoxin in some cases (Fig. 6B). This may be 

due to the effects of harmaline to enhance the synchronous firing of 

rostrocaudal bands of Purkinje cells while these disappeared in the 

presence of picrotoxin. The third components were not 

significantly affected by these drugs (Fig. 6C�). 

DISCUSSION 

Characteristics of sampling data 

In our analysis, climbing fiber activity at a moment was 

represented in a data matrix with 96 bits (Purkinje cells), as shown 

in eq. ( 4 ), with a sampling interval of 1 or 10 msec. Sampling at 

very short intervals resulted in many zero- or one-bit sets in the 

momentary data. On the other hand, sarnpling at long intervals 

yielded almost no zero bit sets due to a high probability of 

simultaneous firing. This procedure� also affected the 

standardization variable and the value of the cross-correlation 

coefficient in the principal ·component analysis. The cross­

correlation coefficients were larger with longer sampling intervals. 

It should be noted that principal component analysis does not yield 

an exact relationship among neurons if there is a time lag in the 

peak of the cross-correlation histogram. Since the time lag in these 

experiments was within 10 msec 18, this is not a factor and analysis 

of data samples at 1 0  msec may reflect the actual spatial and 

temporal relationship among the analyzed neurons. 

Projection method 

1 4  



Some simplification is clearly required in order to understand 

the complex temporal and spatial relationships within a population 

of active neurons. The projection of cross-correlation vectors to 

lower dimensional space indicated cl1ear groupings in the 

distribution of active neurons, as shown in Fig. 3. Since the 

distance between any two vectors reflected a similarity in the 

spatial distribution of the cross-correlation coefficients, neurons 

within the same group could have similar spatiotemporal firing 

patterns. It is known that the spontaneous climbing fiber activity 

occurs in 500 Jlm rostrocaudal bands in Crus IIA of .rat cerebellar 

cortex l6. The projection method revealled parallel relationships 

among neurons as shown in Fig. 3. 

Principal component analysis 

Principal component analysis may bte used to extract a few 

fundamental characteristics of spatiotemporal firing patterns. 

There is a difference, however, betv.reen electrophysiological 

activity data and data in the standard statistical textbooks. In 

statistical analysis, raw data does not include null sets. However, 

neuronal data have null points whenever all the sampled neurons 

are silent. For example, during spontaneous activity, more than 

half of the data points were null at a 1 0-msec sampling interval. 

Since null data is not meaningless and may not be omitted, the 

question of sampling distribution must be addressed. This is most 

evident when the firing frequency of all 1the neurons is low. The 

question of the time domain remains unsolved in theory probably 

because null data is also involved in this analysis. We can of course 

apply standard principal component analysis to our data, in which 

case the null patterns are skipped or compressed. But in this case 
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the correlation matrix might differ from those described above and 

the temporal information of the neuronal activity will certainly be 

lost. 

Using principal component analysis, only a small percentage 

of variance could be interpreted during spontaneous firing, as 

shown in Fig. 4A and Table 1. This may be due to the low mean of 

the cross-correlation coefficients. In the prlesence of ·harmaline and 

picrotoxin, more than 30 % of the variance could be interpreted in 

light of the first and second components (Table 1 ). 

The first eigenvalue can be estimated, assuming that the 

correlation matrix is uniform as described in the Methods. In the 

picrotoxin experiment, the cross-correlation matrix was close to 

uniform, which was equivalent to a lower ratio of (mean SD)/(mean 

cross-correlation). Figure 4C showed that the first eigenvalue was 

related to the sum of the element of cross-correlation matrix or the 

mean cross-correlation value. Since the mean cross-correlation 

indicates a degree of synchronicity in firing, the first component 

may be related to synchronicity in firing. This was also supported 

by the temporal variation of the first component, as shown in Fig. 

5Ba. In statistical analysis the first component describes size. 

Figure 4D demonstrated that . each component of the first 

eigenvector was well-correlated to mean cross-correlation value of 

each corresponding neuron. This suggests that the first eigenvector 

is directed to the center of the mass of the correlation vectors in N-

dimensional space. 

Theory indicates that the second eigenvector IS perpendicular 

to the first eigenvector and that the second eigenvalue gives the 

variance of the data projected onto the second eigenvector. This 

suggests that the second component is related to spreading of the 
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correlation vectors. One possible indicator of such spreading could 

be the standard deviation from the mean corresponding to the 

center of the mass. Figure 4E, showing the second eigenvalue, could 

be explained in this way. The fitness on the regression line in Fig. 

4E depends on the ratio of the second �eigenvalue to the third 

eigenvalue. If the second eigenvalue IS almost identical to the 

third, the vectors will be distributed within the circle and the 

spreading is not approximated by the SI). In this case, two-

dimensional projection does not represent a complete relationship 

and three-dimensional space might be preferable. The second 

component is defined by the shape factor In statistics. 

Beyond the third, components do. not contribute significantly 

to the variance because the proportion is small, as shown in Fig. 

4A. Therefore the third component in Fig. 6 is not an effective 

representation of characteristics of the data set. 

Comparison to other analyses. 

There are several methods for the analysis and 

representation of spatiotemporal firing patterns of groups of 

neurons. If only a few electrodes are used in an experiment, paired 

cross-correlation coefficients provide a useful and precise 

representation of the relationships among the neurons 15,19. This 

method is clearly inadequate for studying nearly 1 00 electrodes. 

We consider several other methods below. 

The most direct analysis would involve analyzing the spatial 
J\ 

pattern of activity for each point in time. Theoretically, different 2 

combinations exist in the N -different neurons recorded. We 

surmtse that this method is too direct and the results would be 

difficult to analyze and interpret. 
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A second method of analysis involves plotting the center of 

the mass from an entire array of paired cross-correlations, with the 

coordinate of: 
N 
Lcijrj 
j<i R·= ---

t N 
� c . .  LJ lJ 
j<i 

where r j IS a real coordinate of the j-th master neuron on the 

recording area 1 7. When there are clear groupings on neuronal 

activity, this type of plot might show some grouping on the plane. 

It could be speculated that when each neuron displayed a close 

correlation to another, the distribution of each point could 

concentrate on the center of the plane and mix to background 

points. 

The third method to apply standard clustering tools 7. We can 

calculate Euclidian distance between paired cross-correlation 

vectors in N -dimensional space. From this distance, similar 

groupings are represented by a tree structure. When many 

neurons are involved, however, this representation becomes 

complicated although it may yield similar results for grouping. 

The fourth is to apply metric multidimensional scaling to the 

correlation matrix 10. This analysis is very useful as compared with 

the three applications mentioned above when all the neurons are 

similarly correlated to each other. However, this method is 

sensitive to small differences among neuron groups. For example, 

if a neuron has a different firing pattern from the others due to 

electrode or recording conditions, this procedure will emphasize the 

difference. 
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In conclusions, we have applied several methods to analyze 

data obtained during multiple electrode recording experiments. 

The projection method and the so-callt�d principal component 

analysis were shown to be useful tools in the analysis and 

representation of some effective variables involved in complex 

spatiotemporal firing patterns. These analyses should be 

developed in further studies since multiple electrode recording 

could become one of most useful tools for the study of neuronal 

organization. 
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Figure legends 

Fig. 1. Schematic model for analysis in multiple electrode 

recordings. A. Projection method to represent whole relationship 

within an entire set. a, schematic spatial mapping of cross-

correlation coefficients to a master neuron �L Size of dots indicates 

degree of cross-correlation coefficient. In this model dots with 

higher values comprise a grouping and transversely distribute. b, 

elements of cross-correlation vector to the i-th neuron. N, number 

of neurons recorded. c, projection of cross-correlation vectors on 

two-dimensional plane from N-dimensional space. B. Geographical 

model of principal component analysis. a, raster display of raw 

data as a function of time. Each dot indicates firing of one neuron 

during one sampling interval. Each row line shows a time 

sequence for activity of one neuron. ch, channel (electrode). b, 

firing pattern at a moment as a vector in which component ts 

shown by bit pattern, c, Upper, vector re�presentation of a whole 

sampling data in N-dimensional space. Lower, projection of vectors 

on two-dimensional plane from N -dimensional space. 

Fig. 2. Spatial distribution of cross-correlation coefficients 

using 96-electrode bilateral recording. Sampling interval, 10 msec. 

A. Representation of coefficient value of cross-correlation to one 

master neuron, M, in right hemisphere (right) in the spontaneous 

state (spont), harmaline (harm) and picrotoxin (P TX) applications. 

Radius of dots indicates degree of cross-corTelation. Higher region 

tn cross-correlation shows rostrocaudal band structure in 

spontaneous state and harmaline and some symmetrical properties 

to contralateral hemisphere (left). Distribution in case of the PTX is 

1 



relatively uniform. 

neuron, 166 �m. B. 

Upper site, rostral. Spacing among each 

Recording site. Climbing fiber activities of 96 

electrodes were recorded from bilateral Crus IIA of rat cerebellar 

cortex. Tentative recording ratio to Purkinje cells was 16% using 

#150 electromicroscopic grid 

Fig. 3. Projection of cross-correlation vector to two­

dimensional plane in right (A) and left (B) hemispheres in cases of 

spontaneous state (spont), harmaline (harn1) and picrotoxin (PTX) 

applications. Data were the same as Fig. 2. Each dot connects to 

real recording location. Distribution of t!ach dot shows a whole 

relationship within an entire neuron set. In the spontaneous state 

(spont in A), two groups appear in right hemisphere (surrounded 

by rings). In harmaline (harm in A), separation between groups 

becomes more clear, but in picrotoxin (PTX in A), mixed. In the 

left hemisphere (B), there are three groups in case of harmaline 

(harm in B). Mesh in lower site, real electrode location ( 48 

electrodes) in both hemispheres. 

second axis. 

Ordinate, first axis; abscissa, 

Fig. 4. Relationships among eigenvalue, eigenvector and cross­

correlation. A. Eigenvalue and cu1mulated percentages of 

proportion of total vanance. First eigenvalue is the largest and the 

subsequent values are in decreasing order. Ordinate, eigenvalue 

(left); cumulated o/o (right). Abscissa, order. B.· Simultaneous 

representation of elements of the first and second eigenvectors on 

the same plane. All elements of the first eigenvector are positive. 

Elements of the second eigenvector are either positive or negative. 

Abscissa, element of the first eigenvector. Ordinate, element of the 

2 



second eigenvector. C. First eigenvalue as a function of summation 

of cross-correlation over all possible combinations in different 

experiments. Cross-correlation coefficient of regression line� r = 

0.997. CC, cross-correlation. Ordinate, first eigenvalue. Abscissa� 

summation of cross-correlation. D. Elements of the first 

eigenvector to mean cross-correlation value of the corresponding 

neurons. Cross-correlation coefficient of the regression line, r = 

0.993. Ordinate, elements of the first eigc�nvector. Abscissa, mean 

cross-correlation value to the corresponding master neuron. E. 

Second eigenvalue as a function of standard deviation (SD) of 

cross-correlation over all possible combinations, that is, 

corresponding to the mean spreading of the distribution from the 

center of the mass on cross-correlation vector. Correlation 

coefficient of regression line, r = 0. 83. Ordinate, second 

eigenvalue; abscissa, SD of the cross-correlation. 

Fig. 5. Spatiotemporal relations of spontaneous firing in right 

hemisphere. Sampling interval, 10 msec. A. Raster display of the 

real spontaneous firing during 2.5 sec. Each line (row) shows a 

raw temporal patterns of firing of one neuron as a function of time. 

Upper site, medial; lower site, lateral in right hemisphere. B. First 

(a) and second (b) principal components as a function of time to 

the above corresponding data. a, first co:mponent. Peak value In 

histogram IS approximately proportional to number of active 

neurons. b, second principal component. The values are large 

when neurons are active in the lateral site. c. 

representation 

Spatiotemporal 

of the first and second principal 

characteristics of firing at a 

Simultaneous 

components. 

moment are 

approximated to one point in the principal component analysis. 

3 



Fig. 6. Effect of variance (%) of the first (A)� second (B) and 

third (C) components to spontaneous state (spont), harmaline 

(harm) and picrotoxin (PTX). The first components increased to 

harmaline and picrotoxin applications. The second component 

decreased by picrotoxin 1n some cases. 'The third component did 

not change so much. Open, right hemisphere; filled, left 

hemisphere. Triangle, 64 electrodes; circle, 96 electrodes. 

Ordinate, proportion (%) of the eigenvalue. Abscissa, drugs. 

Fig. A. Distribution of elements of the first, second and third 

eigenvectors under various conditions corresponding to Table A. 
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