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1. Summary 

 

[Background and Aims] 

Hyperthermia (HT) has been considered a promising approach in cancer 

therapy and the anticancer effects have been verified by clinical trials for 

various types of cancer. However, the cytoprotective effects caused, at least in 

part, by an increase in heat shock proteins (HSPs) in some cancer cells have 

rendered HT less effective. The induction of HSPs is mainly mediated by the 

activation of heat shock transcription factor 1 (HSF1). In this study, we 

targeted HSF1-related proteins such as Bcl-2 associated athanogene 3 

(BAG3) and polo-like kinase 1 (PLK1) in order to attenuate the 

thermoresistance of HT. BAG3, a co-chaperone of the Hsp70, is a 

stress-inducible protein and confers cytoprotection against various stresses, 

including heat stress. PLK1 plays a role in activation of HSF1 and acts as an 

important regulator of mitosis in several cancer cells. Therefore, we 

examined the inhibitory effects of these HSF1-related proteins on sensitivity 

to HT in human cancer cells. 

 

[Methods] 

  We examined the effects of BAG3-knockdown by small interfering RNA 

(siRNA) on the sensitivity to HT (44 °C, 60 or 90 min) in human oral 

squamous cell carcinoma HSC-3 cells and human retinoblastoma Y79 cells, 

and examined the effects of PLK1-knockdown by siRNA or by the inhibition 
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of PLK1 activity with PLK1 inhibitor (BI-2536) on the sensitivity to HT 

(44 °C, 60 min) in human retinoblastoma Y79 and WERI-Rb-1 cells. 

Induction of apoptosis and inhibition of cell proliferation were used for the 

evaluation of hyperthermic effects. Apoptosis was monitored by chromatin 

condensation analysis, the sub-G1 phase of the cell cycle, and detection of 

cleavage of caspase-3. Cell proliferation was monitored by WST-8 assay and 

cell cycle analysis. Furthermore, we examined the role of the c-Jun 

N-terminal kinase (JNK) pathway and nuclear factor kappa B (NF-κB) 

activity in BAG3 silencing sensitized HT-induced apoptosis. We also 

investigated the effects of activating HSF1 through a combination of 

PLK1-knockdown and HT. 

 

[Results]  

1) Although the expression level of BAG3 was low under the non-stress 

conditions, it significantly increased in HSC-3 and Y79 cells treated with HT. 

2) BAG3-knockdown enhanced HT-induced apoptosis in HSC-3 and Y79 cells. 

3) The combination of BAG3-knockdown with inhibition of the JNK pathway 

further enhanced HT-induced apoptosis in HSC-3 cells. 

4) BAG3-knockdown maintained HT-induced NF-κB inactivity through IKKγ 

degradation and the subsequent inhibition of the phosphorylation of IκB and 

p65 in Y79 cells. 

5) PLK1-knockdown or PLK1 inhibitor (BI-2536) enhanced HT-induced 

apoptosis in the two retinoblastoma cell lines. 

6) PLK1-knockdown increased the percentages of G2/M and sub-G1 phases 
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significantly, under both the control and HT conditions in the two 

retinoblastoma cell lines. In the cell proliferation assay, the inhibition of 

viable cell proliferation was enhanced by the combination of 

PLK1-knockdown and HT. 

7) PLK1-knockdown inhibited HT-induced activation of HSF1, and the 

inactivation of HSF1 reduced the expression of HSPs and BAG3 in the two 

retinoblastoma cell lines. 

 

[Conclusions] 

As shown results of 1)-4), the silencing BAG3 sensitized HT in HSC-3 and 

Y79 cells. As shown results of 5)-7), the combination of PLK1 inhibition and 

HT enhanced apoptosis and inhibited cell proliferation through the 

inactivation of HSF1 concomitant with reductions in HSPs and BAG3 in 

human retinoblastoma cells. These findings indicated that the disruption of 

functions of HSF1-related proteins such as BAG3 and PLK1 may serve as a 

potential therapeutic strategy for HT therapy in patients with cancer 

tumors. 
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2. Introduction  

 

2.1 Hyperthemia (HT) and Heat shock proteins (HSPs) 

  Local hyperthermia (HT) has been used to treat patients with various 

cancers [Wust et al., 2002; Huilgol et al., 2010].The combination of HT with 

chemotherapy, radiotherapy, or both has been clinically used for patients 

with cancer in various organs, and the anti-tumor effects of these 

combinations have been verified by clinical trials [Van et al., 2000; Harima 

et al., 2001; Xia et al., 2006; Aktas et al., 2007; Van et al., 2010]. However, 

the cytoprotective effects caused, at least in part, by an increase in heat 

shock proteins (HSPs) in some cancer cells have rendered HT less effective 

[Parsell et al., 1993; Ohtsuka et al., 2000]. HSPs are highly conserved 

proteins whose expression is induced by various stresses, especially heat 

[Garrido et al., 2006]. HSPs have cytoprotective functions against various 

stresses and work as molecular chaperones. There are several families of 

HSPs, and the members of one of them, the Hsp70 family, play a central role 

as molecular chaperones. 

 

2.2 Retinoblastoma and HT 

   Retinoblastoma is the most frequent intraocular malignancy of 

childhood [MacCarthy et al., 2006], and is an inheritable cancer caused by 

mutations or deletions in the Rb1 gene [Classon et al., 2002]. Several 

therapeutic modalities have been employed to successfully manage most 

cases of retinoblastoma [Lin et al., 2009]. Chemotherapy coupled with 
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adjuvant focal treatments such as photocoagulation, cryopexy, and 

thermotherapy, forms the standard therapeutic regimen for the treatment 

retinoblastoma [Shields et al., 1996; Shields et al., 1997]. In addition, 

transpupillary thermotherapy by using an 810 nm diode laser is the most 

commonly prescribed focal treatment.  

   Several in vitro studies have demonstrated the efficacy of HT in the 

treatment of retinoblastoma [Inomata et al., 2002; Choi et al., 2003]. 

Clinically, transpupillary thermotherapy can successfully treat over 90% of 

small (less than 3.0 mm in diameter) tumors [Abramson et al., 2004; Shields 

et al., 1999]. However, tumors that are large in height or basal diameter are 

more difficult to control with HT therapy, and in such cases there is a high 

risk of HT complications, such as focal iris atrophy, peripheral focal lens 

opacity, retinal traction, retinal vascular obstruction, and transient 

localized serous retinal detachment [Shields et al., 1999]. Furthermore, it is 

considered that tumors with well-differentiated characteristics do not 

adequately respond to HT in retinoblastoma [Francis et al., 2013]. 

 

2.3  BAG3 (Bcl-2 associated athanogene 3) 

   BAG3 (Bcl-2 associated athanogene 3) is a family of co-chaperones that 

interact with the ATPase domain of Hsp70 through the BAG domain 

(110-124 amino acids) [Takayama et al., 1999; Rosati et al., 2007]. The 

induction of BAG3 is at least partly mediated by the activation of heat 

shock transcription factor 1 (HSF1) as in the cases of HSPs [Franceschelli 

et al., 2008]. Although the expression level of the BAG3 protein is low in 
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normal human cells, the level is increased in response to a wide variety of 

stresses, including oxidative stress [Bonelli et al., 2006], heavy metals 

[Pagliuca et al., 2003], heat stress [Liao et al., 2001], pulsed ultrasound 

[Tabuchi et al., 2007], retinal light damage [Chen et al., 2004] and HIV 

infection [Rosati et al., 2009]. BAG3 has been reported to be expressed in 

several tumors, such as pancreatic cancer [Liao et al., 2001], thyroid 

carcinoma [Chiappetta et al., 2007], prostate carcinoma [Staibano et al., 

2010], kidney cancer [Wang et al., 2009], glioblastoma [Festa et al., 2011] 

and ovary cancer [Suzuki et al., 2011]. It has been demonstrated that over 

expression of BAG3 plays a role in survival, whereas inhibition of BAG3 

expression improves the apoptotic response to drugs in cancer cells [Liu et 

al., 2009; Du et al., 2008; Wang et al., 2007; Zhu et al., 2012]. Previously, 

Liao et al. reported that BAG3 is more strongly induced after heat stress 

than after treatment with tumor necrosis factor-alpha in pancreatic cancer 

cells [Liao et al., 2001]. However, to our knowledge, there has been no 

report that BAG3 is involved in the HT sensitivity. In this study, we 

examined the effects of down-regulation of BAG3 on the sensitivity to HT in 

human oral squamous cell carcinoma (OSCC) cells and human 

retinoblastoma cells. 

 

2.4  HT and c-Jun N-terminal kinase (JNK) pathway  

   Past reports have shown that HT-induced apoptosis was related to 

activation of the JNK pathway [Alcala et al., 2010; Hayashi et al., 2011; 

Gaitanaki et al., 2008; Gabai et al., 2000] and was suppressed by the JNK 
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inhibitor [Chung et al., 2003]. In contrast, several investigators have 

suggested that JNK pathway enhancement was associated with 

anti-apoptotic effects [Wang et al., 2009; Sloss et al., 2008]. We therefore 

considered that it would be of interest to examine the role of the JNK 

pathway in BAG3 silencing sensitized HT-induced apoptosis. We also 

investigated the effects of JNK inhibition in combination with 

BAG3-knockdown on HT in HSC-3 cells. 

 

2.5  BAG3 and nuclear factor kappa B (NF-κB) activity  

The major signaling pathways that govern cell proliferation and 

anti-apoptosis involve nuclear factor kappa B (NF-κB) protein in cancer 

cells [Chuma et al., 2014; Bassères et al., 2006; Wang et al., 1996]. BAG3 is 

known to sustain NF-κB activation by inhibiting the delivery of inhibitor of 

kappa B kinase γ (IKKγ) to the proteasome [Ammirante et al., 2010; Rosati 

et al., 2012]. NF-κB is crucial for cell viability and cell cycle progression in 

human retinoblastomas [Poulaki et al., 2002; Qu et al., 2011]. Previous 

studies demonstrate that HT induces proteasome inhibition, and thus 

inhibits the activity of NF-κB [Aravindan et al., 2009; Kokura et al., 2003; 

Mattson et al., 2004; Pajonk et al., 2005]. However, to our knowledge, the 

role of BAG3 in the HT sensitivity in retinoblastoma is unknown. In this 

study, we examined the effect of BAG3 on the HT sensitivity and 

investigated whether the NF-κB pathway is involved in the HT-induced 

expression of BAG3 in human retinoblastoma cells.  
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2.6  Polo-like kinase 1 (PLK1) and heat shock transcription factor 1 

(HSF1) 

   The induction of HSPs is mainly mediated by the activation of HSF1, 

which binds to conserved regulatory sequences called heat shock elements 

(HSE) that are located in the promoter regions of HSP genes [Morimoto et 

al., 1998]. HSF1 largely localizes to the cytoplasm as an inactive monomer. 

Under stresses such as heat shock, HSF1 forms an active trimer and 

translocates from the cytoplasm to nucleus. This active HSF1 binds to the 

HSE of DNA, thereby activating the transcription of HSPs [Morimoto et al., 

1998]. It has been reported that phosphorylation of HSF1 and HSF1 nuclear 

translocation are regulated by polo-like kinase 1 (PLK1) [Kim SA et al., 

2005; Lee et al., 2008]. PLK1 is an important regulator of mitosis and plays 

a role in G2/M phase progression by regulating CDK1, cyclin B1, and 

cdc25C [Roshak et al., 2000; Schmit et al., 2009]. Overexpression of PLK1 

has been reported in many cancer cells [He et al., 2009; Wang et al., 2012; 

Ito et al., 2004], and several studies have shown that the depletion of PLK1 

using RNA interference inhibits cancer cell proliferation and induces 

apoptosis [Guan et al., 2005; Nogawa et al., 2005]. It has been demonstrated 

that PLK1 depletion using RNA interference or PLK1 inhibitor enhances 

the effects of chemotherapy and radiotherapy without affecting normal cells 

[Liu et al., 2006; Maire et al., 2013; Gerster et al., 2010]. In addition, a 

PLK1 inhibitor (BI-2536) has been used in a multi-center, multi-tumor 

phase II trial [Schöffski et al., 2010]. However, to our knowledge, there has 

been no report that PLK1 is involved in HT sensitivity, even though PLK1 
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plays a role in the activation of HSF1. In this study, we examined the effects 

of PLK1-knockdown (PLK1-targeted small interfering RNA) and PLK1 

inhibitor (BI-2536) on sensitivity to HT in human retinoblastoma cells.  

 

 2.7  Purpose in this study 

One of the problems with HT therapy is that cells acquire 

thermoresistance. In order to attenuate the thermoresistance of HT, we 

examined the inhibitory effects of HSF1-related proteins such as BAG3 and 

PLK1 on sensitivity to HT in human cancer cells.  
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3. Materials and Methods   

 

3.1 Cell culture and heat treatment   

A human OSCC HSC-3 cell line was obtained from the Human Science 

Research Bank, Japan Health Sciences Foundation (Tokyo, Japan) and 

human retinoblastoma Y79 and WERI-Rb-1 cell lines were obtained from 

the Riken Bioresource Center (Tsukuba, Japan). The cells were cultured in 

E-MEM medium or RPMI-1640 medium (Wako Pure Chemical Industrials, 

Ltd., Osaka, Japan) supplemented with 100 U/ml penicillin, 100 µg/ml 

streptomycin, and 10% fetal bovine serum (FBS) at 37˚C in humidified air 

with 5% CO2. When the cells were treated with HT, the cell culture dishes 

were sealed by wrapping them in parafilm and then soaked in a water bath 

at 42˚C, 43˚C, or 44˚C for 60 or 90 min. The temperature was monitored 

with a digital thermometer during heating. After HT, the cells were 

incubated for 1-24 h at 37˚C.  

 

3.2 Silencing of BAG3 using small interfering RNA (siRNA) for HSC-3 cells 

Based on the human BAG3 nucleotide database, three siRNAs, 

designated as BAG3-1, BAG3-2, and BAG3-3, were synthesized (Table 1). 

Luciferase siRNA (CGUACGCGGAAUACUUCGA) was used as a negative 

control siRNA. Cells were incubated in Opti-MEM® I Reduced Serum 

Medium (Life Technologies Japan Ltd., Tokyo, Japan) containing 20 nM 

siRNA and LipofectamineTM RNAiMAX (Life Technologies Japan Ltd.) at 

37˚C. Six hours after the transfection, the medium was exchanged for 
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E-MEM medium supplemented with 10% FBS, and the cells were 

maintained at 37˚C for 42 h. 

Name Sequence-TT Position GC%

siBAG3-1 AGAGGUGGAUUCUAAACCU 1338 42

siBAG3-2 UGCAGAAGAUCCCCACACA 1929 53

siBAG3-3 GGUGGAUUCUAAACCUGUU 1341 42

Table 1. Nucleotide sequences of siRNAs for BAG3.

Human BAG3 nucleotide database : GenBank accession number, NM_004281

 

3.3 Silencing of BAG3 or PLK1 using siRNA for Y79 and WERI-Rb-1 cells 

The three BAG3 siRNAs and four PLK1 siRNAs used for 

PLK1-knockdown were designed by Nippon EGT Co., Ltd (Toyama, Japan). 

The sequences of the siRNAs are listed in Table1, 2. A lusiferase siRNA 

(CGUACGCGGAAUACUUCGA) was used as a negative control siRNA. 

Cells were incubated in Opti-MEM® I Reduced Serum Medium (Life 

Technologies Japan Ltd., Tokyo, Japan) containing 50 nM siRNA and 

LipofectamineTM RNAiMAX (Life Technologies Japan Ltd.) at 37˚C. 

Twenty-four hours after transfection, the medium was exchanged for 

RPMI-1640 medium supplemented with 10% FBS, and the cells were 

maintained at 37˚C for 24 h.  
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Name Sequence-TT Position GC%

siPLK1-1 AGAUCACCCUCCUUAAAUA 1477 37

siPLK1-2 UCACCCUCCUUAAAUAUUU 1480 32

siPLK1-3 CACGCCUCAUCCUCUACAA 1372 53

siPLK1-4 ACCGAGUUAUUCAUCGAGA 562 42

Table 2. Nucleotide sequences of siRNAs for PLK1.

Human PLK1 nucleotide database : GeneBank accession number, NM_005030

 

 

3.4 Compound treatment 

A JNK inhibitor SP600125 (R&D Systems, Inc., Minneapolis, MN, USA) 

and PLK1 inhibitor BI-2536 (Selleck Chemicals, Houston, TX, USA) were 

dissolved in dimethyl sulfoxide (DMSO) and added to the culture medium. 

After 1 h of compound treatment, cells were exposed to HT. 

 

 3.5  Western blotting 

The cells were dissolved in a lysis buffer (150 mM NaCl, 1% Nonidet 

P-40 and 50 mM Tris-HCl, pH 8.0) containing protease inhibitor cocktail 

(Nacalai Tesque, Inc., Kyoto, Japan). After electrophoresis on 

SDS-polyacrylamide gel, the proteins were transferred electrophoretically 

onto polyvinylidene fluoride membranes. The following primary antibodies 

were used: rabbit monoclonal anti-BAG3 (Funakoshi Co., Tokyo, Japan); 
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mouse monoclonal anti-glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and PLK1 (Millipore Co., Temecula, CA, USA); rabbit polyclonal 

anti-cleaved caspase-3, caspase-3, HSF1, cdc25c, CDK1, c-Jun, JNK, and 

phospho-JNK (Cell signaling Technology Inc., Beverly, MA, USA); mouse 

monoclonal anti-HSP70 and HSP40 (MBL Co., Ltd. Nagoya, Japan); rabbit 

polyclonal anti-HSP27 antibody (MBL Co., Ltd.); rabbit polyclonal 

anti-IκBα and IKKγ (Cell signaling Technology Inc., Bevery, MA, USA); and 

rabbit monoclonal anti-phospho-IκBα, cyclinB1, and phospho-c-Jun (Cell 

signaling Technology Inc.); rabbit monoclonal anti-phospho-HSF1 (Gene Tex 

Inc., Irvine, CA, USA); mouse monoclonal anti-Histone H1 (Santa Cruz 

Biotechnology Inc., Santa Cruz, CA, USA). The immunoreactive proteins 

were visualized by a luminescent image analyzer (LAS 4000mini, GE 

Healthcare Co., Tokyo, Japan) using an enhanced chemiluminescence 

detection system. GAPDH served as the loading control. The nuclei and 

cytoplasm were separated by using a Nuclear / Cytosol Fractionation Kit 

(BioVision, Inc., Mountain View, CA, USA) according to the manufacturer’s 

protocol [Mani et al., 2006]. The proteins in the nuclear and cytoplasmic 

fractions were used for western blotting.  

 

3.6  RNA isolation 

Total RNA was extracted from the cells using an RNeasy Total RNA 

Extraction kit (Qiagen K.K., Tokyo, Japan) and was treated with on-column 

DNase I (RNase-free DNase kit, Qiagen K.K., Tokyo, Japan ) [Tabuchi et al., 

2013]. 
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3.7  Real-time quantitative polymerase chain reaction (qPCR) assay 

Real-time qPCR was performed on a Real-time PCR system Mx3000P 

(Agilent Technologies, Inc., Santa Clara, CA, USA) using a SYBR PreMix 

ExTaq kit (Takara Bio Inc., Shiga, Japan). The relevant primer sequences 

are listed in Table 3. The mRNA expression level of the proteins was 

normalized to that of GAPDH [Tabuchi et al., 2013].  

Table 3. Nucleotide sequences of primers and a probe for target genes

Genes Orientation Nucleotide sequence (5’→3’) GeneBank accession no.

PLK1
Sense  

Antisense

CGAGGACAACGACTTCGTGT

GGTTGCCAGTCCAAAATCCC

NM_005030

HSF1
Sense  

Antisense  

GGGAACAGCTTCCACGTGTT

TGGAACTCCGTGTCGTCTCT

NM_005526

BAG3
Sense 

Antisense              

CGACCAGGCTACATTCCCAT

TCTGGCTGAGTGGTTTCTGG

NM_004281

IKKγ
Sense

Antisense  

GTCCCCTCTTTTGGGGTAGA

CAAGTGGTTCGAGCAGACAG

NM_001099856

GAPDH
Sense 

Antisense              

AAGGACTCATGACCACAGTCCAT

CCATCACGCCACAGTTTCC

NM_002046

 

3.8  Cell cycle analysis 

Cells were exposed to HT, and then cultured at 37˚C. After 24 h of 

culturing, the cells were fixed in 70% ice cold ethanol for at least 24 h at 

-20˚C and subsequently treated with 0.25 mg/ml RNase A. After the 

staining with propidium iodide (PI) at a concentration of 0.05 mg/ml, the 

samples were finally run on an Epics XL flow cytometer (Beckman Counter, 
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Fullerton, CA, USA) [Furusawa et al., 2012]. 

 

3.9  Analysis of cell death 

Cells were exposed to HT, and then cultured at 37˚C. After 12 h of 

culturing, the cells were harvested to examine cell death. We performed 

chromatin condensation analysis using a Nuclear-ID Green Chromatin 

Condensation Kit (Enzo Life Sciences Inc., Farmingdale, NY, USA) 

according to the manufacturer’s protocol [Park et al., 2011]. The samples 

were run on an Epics XL flow cytometer.  

 

  3.10  Cell viability and cell proliferation analysis by WST-8 assay 

Cells were treated with HT and then incubated for 24 h at 37 °C. After 

incubation, the cells were seeded with a volume of 100μL onto 

96-well-plates. The Cell Count Reagent SF (Nacalai Tesque, Inc., Kyoto, 

Japan), a water-soluble tetrazolium salt WST-8 

[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-te

trazolium, monosodium salt]-based assay was used to analyze cell 

proliferation. In brief, 10 μL of the reagent solution was added to each well, 

followed by incubation at 37°C for 3 h. The concentration of the formazan 

dye produced was determined from the absorbance at 450 nm by using a 

microplate reader (Bio-Rad, Hercules, CA, USA).  

 

  3.11  Immunocytochemistry 

Cells were washed with PBS and fixed in methanol for 10 min at room 
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temperature. Then, the cells were seeded in an eight-well chamber slide, 

and incubated with Blocking One HistoTM (Nacalai Tesque, Inc.) for 1 h 

at room temperature. Next, cells were incubated with the first antibody 

against HSF1 (Cell signaling Technology Inc.) for 24 h at 4˚C and treated 

with the ChromeoTM 488-labeled secondary antibody (Active Motif, 

Carlsbad, CA, USA) for 1 h at 25˚C. Finally, cells were stained with 

4,6-diamidino-2-phenylindole (DAPI) (Molecular Probes, InvitrogenTM, 

Eugene, OR, USA) for 5 min for nuclear visualization and thoroughly 

washed before observation under a fluorescent microscope (Olympus 

BX-61 microscopic image analyzer; Olympus Co., Ltd., Tokyo, Japan). 

 

3.12  Statistical analysis  

Data are represented as mean ± S.D. Student’s t-test was used for 

statistical analysis and p < 0.05 was considered to be statistically 

significant.  
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4. Results 

 

4.1  Effects of HT on apoptosis in human OSCC HSC-3 cells 

At first, we examined the effects of HT on apoptosis in HSC-3 cells 

using chromatin condensation, a marker for apoptosis. When HSC-3 cells 

were incubated at different temperatures for 90 min, apoptosis was not 

observed at 41 and 42˚C, but significantly increased at 43 and 44˚C. The 

percentage of apoptosis at 44˚C (mean ± SD; 14.5 ± 0.4%) was greater than 

that at 43˚C (6.4 ± 1.8%) (Figure 1). Therefore, we selected the HT at 44˚C 

for 90 min for use in the following experiments. 
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Figure 1. Effects of HT on apoptosis in human OSCC HSC-3 cells. The cells were incubated at different 

temperatures for 90 min, and then cultured at 37˚C for 12 h. The apoptosis was monitored using chromatin 

condensation. Data are presented as means ± SDs (n = 4). *: p<0.05 (Student’s t-test). 
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4.2  HT-induced apoptosis in retinoblastoma cells under various 

temperature conditions  

Next, we examined the effects of HT on apoptosis in Y79 and WERI-Rb-1 

cells in order to determine the appropriate HT conditions for the induction of 

apoptosis. When we monitored apoptosis using chromatin condensation as 

an apoptotic marker, the percentages of apoptotic cells were 4.72 ± 1.1% in 

the control Y79 cells and 4.98 ± 1.1% in the control WERI-Rb-1 cells. When 

Y79 and WERI-Rb-1 cells were incubated at 42˚C for 60 min, apoptosis did 

not increase significantly during the recovery periods after HT, but it did 

increase significantly during the recovery following 60-min incubation at 

43˚C or 44˚C (Figure 2). The percentages of apoptotic cells at 43˚C in the Y79 

cells were 6.2 ± 1.6% at 6 h after HT, 7.7 ± 0.8% at 12 h after HT (p<0.05), 

and 7.1 ± 0.9% at 24 h after HT (p<0.05); in the WERI-Rb-1 cells, they were 

6.4 ± 0.7% at 6 h after HT, 7.6 ± 0.5% at 12 h after HT (p<0.05), and 7.6 ± 

0.8% at 24 h after HT (p<0.05). The percentages of apoptotic cells at 44˚C in 

the Y79 cells were 8.2 ± 1.1% at 6 h after HT (p<0.05), 11.3 ± 0.9% at 12 h 

after HT (p<0.05), and 10.1 ± 2.2% at 24 h after HT (p<0.05); in the 

WERI-Rb-1 cells, they were 8.3 ± 1.2% at 6 h after HT (p<0.05), 13.0 ± 1.3% 

at 12 h after HT (p<0.05), and 11.5 ± 0.9% at 24 h after HT (p<0.05). The 

percentages of apoptosis at 44˚C were thus greater than those at 43˚C. 

Furthermore, the increase in apoptosis at 44˚C reached a plateau at 12 h 

after HT. Therefore, we concluded that the conditions most appropriate for 

the evaluation of HT-induced apoptosis in Y79 and WERI-Rb-1 cells were the 

observation at 12 h after HT at 44˚C for 60 min.  
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Figure 2. Effects of HT on apoptosis in human retinoblastoma Y79 (A) and WERI-Rb-1 (B) cells. The cells were 

incubated at different temperatures for 60 min and then cultured at 37˚C for 6-24 h. The apoptosis was monitored 

using chromatin condensation. Data are presented as means ± SDs (n = 4). *: p<0.05 vs. control (Student’s t-test). 

 

4.3  Induction of BAG3 by HT and BAG3-knockdown using siRNA in 

HSC-3 cells 

We performed western blotting to monitor the expression level of BAG3 in 

HSC-3 cells. Although the expression level of BAG3 was low under the 

non-stress conditions, it significantly increased in HSC-3 cells treated with 

HT at 44˚C for 90 min (Figure 3A). The treatment of the cells with siRNA for 

BAG3 almost completely suppressed the expression of BAG3 under either 

the non-HT- or HT-induced condition. Since the efficacy of silencing of this 

protein by each of three BAG3 siRNAs (siBAG3-1, -2 and -3) was similar, we 

chose the siBAG3-3 siRNA for use in the subsequent experiments. In 
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addition, the expression level of BAG3 was time-dependently increased, with 

the peak expression being observed from 6 to 12 h after the HT treatment. In 

contrast, the expression of BAG3 was very low during the course of recovery 

time periods after HT in HSC-3 cells transfected with the siBAG3-3 siRNA 

(Figure 3B). 
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Figure 3. Induction of BAG3 by HT and knockdown of BAG3 using siRNAs in HSC-3 cells. The cells transfected 

with each siRNA (siBAG3-1 to -3; 20 nM) were maintained at 37˚C. Forty-eight hours after transfection, cells were 

treated with HT at 44˚C for 90 min. (A) Inhibition of BAG3 by BAG3 siRNAs. Six hours after HT, cells were 

harvested. (B) Time-course of change in the expression of BAG3 in the cells treated with a siBAG3-3. After HT 

exposure, the cells were cultured at 37˚C for 0, 3, 6 and 12 h. Western blotting was performed using a specific 

primary antibody for BAG3 or GAPDH. GAPDH served as a loading control. Bands were quantified 

densitometrically and normalized to GAPDH. C, control (non-treatment). siluc, siRNA (20 nM) for luciferase. 
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4.4  HT-induced BAG3 expression and BAG3-knockdown using siRNA in 

Y79 cells 

We examined the expression of BAG3 in the human retinoblastoma Y79 

cells by western blotting. Although the expression level of BAG3 was very 

low under normal conditions, it was induced significantly by HT at 44°C for 

60 min. The transfection of the cells with each of the 3 BAG3 siRNAs 

(siBAG3-1, siBAG3-2, or siBAG3-3) almost completely suppressed the 

HT-induced BAG3 expression at both 50 nM and 100 nM siRNA 

concentrations. We selected the siBAG3-3 siRNA for transfection at a 

concentration of 50 nM in the subsequent experiments (Figure 4A). 

Additionally, effective knockdown of the mRNA level of BAG3 by siBAG3-3 

was confirmed using real-time qPCR (Figure 4B). Next, the time-dependent 

protein expression of BAG3 and HSPs such as HSP70 and HSP40 was 

analyzed after HT. The expression of BAG3 was found to increase gradually 

with time for up to 12 h after HT. Similarly, the expression of HSP70 and 

HSP40 increased gradually after HT treatment, regardless of the BAG3- 

knockdown (Figure 4C).  
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Figure 4.  BAG3-knockdown using siRNA and HT-induced BAG3 expression in Y79 cells. Y79 cells were 

transfected with 50 or 100 nM siRNA (siBAG3-1, siBAG3-2, or siBAG3-3) and cultured at 37°C for 48 h. After HT 

treatment (44°C, 60 min), the cells were incubated at 37°C. Six hours after HT, the cells were harvested for (A) 

western blotting and (B) real-time quantitative PCR. The cells were transfected with 50 nM siBAG3-3. The mRNA 

expression level of BAG3 was normalized to that of GAPDH. Date are presented as mean ± S.D. (n=4) * p<0.05 

(Student’s t-test) (C) Time-course changes in the protein expression of BAG3, HSP70, and HSP40. Y79 cells were 

transfected with 50 nM siBAG3-3 and harvested at 0, 1, 3, 6, and 12 h after HT. Western blotting was performed 

and GAPDH was used as the loading control. Ctr: control (non-treatment). siluc: siRNA for luciferase.  

 

4.5  HT-induced cell death and its enhancement by the silencing of BAG3 in 

HSC-3 cells 

When we monitored the cell death using PI staining, the percentage of 

cell death was very low, i.e., 1.7 ± 0.6% (mean ± SD), in the control cells 

transfected with the siRNA for luciferase. On the other hand, HT at 44˚C for 

90 min significantly elevated the cell death to 17.6 ± 3.9% (Figure 5A). 

Although silencing of BAG3 did not affect cell death under the non-stress 
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conditions, a significant increase in cell death (37.7 ± 6.5%) was detected in 

the cells treated with HT (Figure 5A). 

   We next studied whether BAG3-knockdown induced apoptosis in HSC-3 

cells under the control and HT conditions. The results are shown in Fig. 5B-F. 

When apoptosis was monitored by chromatin condensation, the percentage of 

apoptosis was 1.4 ± 0.6% in the control cells. Treatment of the cells with HT 

increased the percentage of apoptosis to 14.5 ± 0.4%. Under HT-treated cells, 

knockdown of BAG3 by siBAG3-3 effectively enhanced the HT-induced 

apoptosis (46.7 ± 4.8%) (Figure 5B). The raw data for the chromatin 

condensation are shown in Figure 5C. A similar enhancement of apoptosis 

was detected when HSC-3 cells were transfected with siRNA3-1 or siRNA3-2 

(Figure 5D).  

The sub-G1 phase of the cell cycle, a marker for apoptosis, was studied 

using a flow cytometer. In control cells, the percentage of the sub-G1 phase 

was 1.8 ± 0.5%, whereas it was 6.4 ± 1.4% in the cells treated with HT. Under 

HT-treated cells, BAG3 silencing significantly increased the percentage of 

cells in the sub-G1 phase (12.4 ± 2.9%) (Figure 5E). We further performed 

western blotting to confirm the induction of apoptosis detected by cleavage of 

caspase-3. Caspase-3 is a critical executioner of apoptosis, and proteolytic 

processing is required to generate the 17- and 19-kDa activated cleavages 

from its inactive 35-kDa full-length precursor during apoptosis [Nicholson et 

al., 1996]. Although the expression levels of the 17- and 19-kDa activated 

fragments of caspase-3 were very low in the control cells, significant 

elevations of these fragments were observed in HT-exposed cells, and they 



27 

 

were further enhanced by knockdown of BAG3 (Figure 5F).  
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Figure 5. HT-induced cell death and its enhancement by the silencing of BAG3 in HSC-3 cells. The cells transfected 

with siBAG3-3 (20 nM) were maintained at 37˚C. Forty-eight hours after transfection, cells were treated with HT at 
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44˚C for 90 min, and then cultured at 37˚C for 12 h. The cell death was monitored using various indexes, such as PI 

staining (A), chromatin condensation (B), the raw data for the chromatin condensation (C), similar apoptotic effects 

of knockdown of BAG3 using siRNAs (siBAG3-1 to -3; 20 nM) (D), and the sub-G1 phase in the cell cycle (E). 

Analyses were performed using flow cytometry. Data are presented as means ± SDs (n = 4-8). C, control 

(non-treatment). siluc, siRNA for luciferase (20 nM).  *: p<0.05 (Student’s t-test). (F) Western blotting was 

performed using a specific primary antibody for caspase-3 or GAPDH. GAPDH served as a loading control. Bands 

were quantified densitometrically and normalized to GAPDH. 

 

4.6  HT-induced apoptosis and its enhancement by BAG3-knockdown in 

Y79 cells 

Next, we examined whether BAG3-knockdown induced apoptosis in the 

Y79 cells under non-HT and HT conditions. The Nuclear-ID Green 

Chromatin Condensation Kit was used to monitor chromatin condensation 

as an indicator of apoptosis. As shown in Figure 6A, under non-HT 

conditions, the percentage of apoptotic cells treated with siRNA for luciferase 

or BAG3 was 5.3% ± 0.6% or 6.0% ± 0.5%, respectively, indicating that the 

BAG3-knockdown did not affect apoptosis (n=5, p=0.09). On the other hand, 

under HT conditions, BAG3-knockdown significantly enhanced the 

HT-induced apoptosis; the percentage of apoptotic cells treated with siRNA 

for luciferase or BAG3 was 12.7% ± 1.0% or 22.6% ± 2.4%, respectively (n=5, 

p=0.0003). We further examined the activation of caspase-3, an indicator of 

apoptosis, using an anti-cleaved caspase-3 antibody by western blotting and 

found that caspase-3 is cleaved under conditions of HT and is enhanced by 

BAG3-knockdown (Figure 6B).  
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Figure 6.  HT-induced apoptosis is enhanced by BAG3-knockdown in Y79 cells. Y79 cells transfected with 50 nM 

siBAG3 were subjected to HT at 44°C for 60 min, and then incubated at 37°C for 12 h. (A) Apoptosis was analyzed 

by flow cytometry. Date are presented as mean ± S.D. (n=5) *p<0.05 (Student’s t-test) (B) Activation of caspase-3 

was monitored by western blotting using an anti-cleaved-caspase-3 antibody. GAPDH was used as the loading 

control. Ctr: control (non-treatment). siluc: siRNA for luciferase. 

 

4.7  The effect of BAG3-knockdown on NF-κB activity in HT-exposed Y79 

cells  

To examine the effect of BAG3-knockdown on the activity of NF-κB in 

HT-exposed cells, western blotting was performed. We first examined the 

phosphorylation level of p65, a subunit of NF-κB, and IκBα. As shown in 

Figure 7A and B, under normal conditions, p65 and IκBα were highly 

phosphorylated in Y79 cells, whereas the phosphorylation levels were 

decreased immediately after HT treatment. This attenuation of the 

phosphorylation of p65 and IκBα gradually recovered in a time-dependent 
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manner 12 h after HT. BAG3-knockdown inhibited the recovery of 

phosphorylation of p65 and IκBα after HT. Next, we evaluated the 

expression level of IKKγ protein in the cells treated with siBAG3 and HT. 

BAG3-knockdown reduced the expression of IKKγ. However, when the cells 

were pre-treated with MG132, a proteasome inhibitor, the expression of 

IKKγ remained unchanged in the cells treated with siBAG3 and HT (Figure 

7C). In this experiment, we chose a concentration of 10 μM of MG132 based 

on previous reports that demonstrated effective inhibition of IKKγ 

degradation by this compound [Chuma et al., 2014; Ammirante et al., 2010]. 

On the other hand, BAG3-knockdown did not change the mRNA levels of 

IKKγ (data not shown). 
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Figure 7.  The effect of BAG3-knockdown on NF-κB activity in HT-exposed Y79 cells. Y79 cells transfected with 50 

nM siBAG3 were treated with HT at 44°C for 60 min, and then incubated at 37°C for 0–12 h. Western blotting was 

performed. (A, B) Time-course changes in the protein expression of p65, p-p65, IκBα, and p-IκBα. (C) The cells were 

treated with 10 μM MG132 for 1 h and then subjected to HT. After 12 h, the cells were harvested. GAPDH was used 



31 

 

as the loading control. Ctr: control (non-treatment). siluc: siRNA for luciferase. 

 

4.8  The effects of BAG3 silencing on the activation of the JNK pathway due 

to HT in HSC-3 cells 

The effects of BAG3 silencing on the activation of the JNK pathway due 

to HT were examined using western blotting. The expression levels of JNK 

and c-Jun proteins were almost constant in any treatment tested. On the 

other hand, the phosphorylation level of either JNK (p-JNK) or c-Jun 

(p-c-Jun) was increased in HT-treated cells, and silencing BAG3 further 

increased each HT-induced elevation of the phosphorylation level (Figure 8A). 

These HT-activated phosphorylations were inhibited effectively by the 

treatment of cells with the JNK inhibitor SP600125 at a concentration of 20 

µM (Figure 8B). Previous reports have indicated that the phosphorylation 

level of JNK is markedly inhibited in the cells treated with this compound 

(20 µM) [Wang et al., 2009; Lu et al., 2010]. Based on these facts, we chose a 

compound concentration of 20 µM to be used in the present study. 
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Figure 8. Effects of BAG3 silencing on activation of the JNK pathway due to HT in HSC-3 cells. (A and B) The cells 

transfected with siBAG3-3 (20 nM) were maintained at 37˚C. Forty-eight hours after transfection, cells were 

treated with HT at 44˚C for 90 min, and then cultured at 37˚C for 12 h. Western blotting was performed using 

specific primary antibodies, such as JNK, p-JNK, c-Jun, p-c-Jun and GAPDH. (B) The cells were pre-treated with 

vehicle (V; 1% DMSO) or SP600125 at a concentration of 20 µM for 1 h, and then exposed to HT. GAPDH served as 

a loading control. Bands were quantified densitometrically and normalized to GAPDH. C, control (non-treatment).  

 

4.9  The effects of SP600125 on apoptosis induced by the combination of 

BAG3 silencing with HT in HSC-3 cells 

To examine the effects of SP600125 on BAG3 silencing plus HT-induced 

apoptosis, a chromatin condensation assay was performed using a flow 

cytometer. The results are shown in Figure 9A. In both the control and 

HT-treated cells, the JNK inhibitor SP600125 did not affect apoptosis. In 

contrast, the inhibitor significantly elevated the level of apoptosis in the cells 

treated with the combination of BAG3 silencing and HT. The raw data are 
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also shown in Figure 9B.  
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Figure 9. Effects of the JNK pathway the on the apoptosis induced by the combination of BAG3 silencing with HT 

in HSC-3 cells. The cells transfected with siBAG3-3 (20 nM) were maintained at 37˚C. Forty-seven hours after 

transfection, cells were treated with vehicle (1% DMSO) or SP600125 (20 µM) for 1 h, and then exposed to HT at 

44˚C for 90 min. Twelve hours after HT, a chromatin condensation assay was performed using a flow cytometer (A). 

The raw data for the chromatin condensation (B). Data are presented as means ± SDs (n = 4). C, control 

(non-treatment). *: p<0.05 (Student’s t-test). 

 

4.10  PLK1-knockdown using siRNA in Y79 and WERI-Rb-1 cells 

We performed western blotting to select the most effective siRNA for 

PLK1. Forty-eight hours after siRNA transfection, siPLK1-1 markedly 

decreased the protein level of PLK1 in Y79 and WERI-Rb-1 cells (Figure 10A 

and B). On the other hand, the siRNA for luciferase, a negative control, did 

not affect PLK1 expression. Therefore, we chose the siPLK1-1 siRNA for use 

in the subsequent experiments. In addition, an effective knockdown of the 
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PLK1 mRNA level was verified using the real-time qPCR assay using 

siPLK1-1 (Figure 10C and D). We next examined whether the 

PLK1-knockdown would affect the expression levels of CDK1, cyclinB1, and 

cdc25c, which are required for cell cycle progression and are known 

downstream from PLK1 [Roshak et al., 2000; Schmit et al., 2009]. 

PLK1-knockdown induced the accumulation of CDK1, cyclinB1, and cdc25c. 

A similar protein expression pattern was found for the downstream targets 

of PLK1, such as CDK1, cyclinB1, and cdc25c (Figure 10E and F) .These 

results suggest that CDK1, cyclinB1, and cdc25c are targets of PLK1 and 

that PLK1-knockdown affects PLK1 downstream proteins in retinoblastoma 

cells, as reported previously [Gerster et al., 2010; Grinshtein et al., 2011].   
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Figure 10. PLK1-knockdown using siRNAs in Y79 (A) and WERI-Rb-1 (B) cells. Cells transfected with each siRNA 

(siPLK1-1 to -4; 50 nM) were maintained at 37˚C. Forty-eight hours after transfection, the cells were harvested for 

western blotting. Western blotting was performed using a specific primary antibody for PLK1 or GAPDH. GAPDH 

served as a loading control. The sequences of the four siRNAs are listed in Table 2. mock, siRNA transfection 
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reagent only. siluc, siRNA for luciferase (50 nM). (C and D) The effects of siRNA for PLK1 (siPLK1-1) on the mRNA 

expression level of PLK1 in Y79 and WERI-Rb-1 cells. Real-time quantitative PCR assay was performed with 

specific primers for PLK1 or GAPDH. The PLK1 mRNA level was normalized to the GAPDH expression level. Date 

are presented as mean ± SDs (n = 4). *: p<0.05 vs. siluc (control) (Student’s t-test). siluc, siRNA for luciferase. (E 

and F) PLK1-knockdown affects the expression of CDK1, cyclinB1, and cdc25c, which are known downstream of 

PLK1. Western blotting was performed using specific primary antibodies for CDK1, cyclinB1, cdc25c, and GAPDH. 

GAPDH served as a loading control. siluc, siRNA for luciferase (50 nM).  

 

4.11  Knockdown of PLK1-induced apoptosis and its enhancement by HT in 

Y79 and WERI-Rb-1 cells 

We next examined whether PLK1-knockdown would induce apoptosis in 

Y79 and WERI-Rb-1 cells under the control and HT conditions. The results 

are shown in Figure 11. When apoptosis was monitored by chromatin 

condensation, the percentages of apoptosis were 4.96 ± 1.26% in the Y79 

control cells transfected with the siRNA for luciferase and 5.97 ± 1.08% in 

the WERI-Rb-1 control cells transfected with the siRNA for luciferase. 

Treatment of the cells transfected with siPLK1 significantly increased the 

percentage of apoptosis to 17.20 ± 1.67% in the Y79 cells and to 12.90 ± 0.94% 

in the WERI-Rb-1 cells. Under HT-treated cells, the percentage of apoptosis 

was 11.01 ± 1.10% in the Y79 cells and 12.48 ± 1.23% in the WERI-Rb-1 cells, 

and PLK1-knockdown enhanced HT-induced apoptosis (27.03 ± 2.05% in the 

Y79 cells and 21.73 ± 1.96% in the WERI-Rb-1 cells) (Figure 11A and B). We 

further performed western blotting to confirm the induction of apoptosis 

detected by the cleavage of caspase-3 in the two retinoblastoma cell lines. 

Although the expression levels of the 17- and 19-kDa activated fragments of 

caspase-3 were very low in the control cells, significant elevations of these 

fragments were observed in the knockdown of PLK1 cells. Furthermore, the 
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combination of PLK1-knockdown and HT enhanced these fragments of 

caspase-3 (Figure 11C and D). 
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Figure 11. PLK1-knockdown induced apoptosis, and this effect was enhanced by HT in retinoblastoma cells. Cells 

transfected with siPLK1 (50 nM) were maintained at 37˚C. Forty-eight hours after transfection, the cells were 

treated with HT at 44˚C for 60 min, and then cultured at 37˚C for 12 h. The apoptosis was monitored using 

chromatin condensation (A and B). Analyses were performed using flow cytometry. Data are presented as means ± 

SDs (n = 4-6). C, control (non-treatment). siluc, siRNA for luciferase (50 nM). *: p<0.05 (Student’s t-test). (C and D) 

Western blotting was performed using a specific primary antibody for cleaved caspase-3 or GAPDH. GAPDH served 

as a loading control.  

 

4.12  PLK1 inhibition using BI-2536 decreased cell viability in a 

dose-dependent manner in Y79 and WERI-Rb-1 cells. BI-2536 induced 

apoptosis, and its effects were enhanced by HT. 

  We next analyzed the effects of BI-2536, a PLK1 inhibitor, in the two 

retinoblastoma cell lines. The cells were treated with BI-2536 at various 

concentrations, and cell survival was determined using the WST-8 assay. 
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BI-2536 treatment decreased the viability of Y79 and WERI-Rb-1 cells after 

12 h and 24 h of treatment in a dose-dependent manner (Figure 12A and B). 

Furthermore, when apoptosis was monitored by chromatin condensation, 

BI-2536 (10 nmol/L)-induced apoptosis was enhanced by HT in the two 

retinoblastoma cell lines, as was siRNA-mediated PLK1 inhibition (Figure 

12C and D). 
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Figure 12. PLK1 inhibition using BI-2536 decreased cell viability in retinoblastoma cells. BI-2536 induced 

apoptosis, and its effect was enhanced by HT. (A and B) For the examination of cell viability, the Y79 and 

WERI-Rb-1 cells were inoculated at a density of 20 × 104 cells/ml and treated with various concentrations of a PLK1 

inhibitor, BI-2536. After incubation for 12 h or 24 h, cell viability was measured by the WST-8 assay. Data are 

presented as means ± SDs (n = 4), *: p<0.05 vs. vehicle (DMSO only) (Student’s t-test). (C and D) The Y79 and 

WERI-Rb-1 cells transfected with siPLK1 (50 nM) were maintained at 37˚C. Forty-eight hours after transfection, 

cells were treated with vehicle (DMSO only) or BI-2536 (10 nmol/L) for 1 h, and then exposed to HT at 44˚C for 60 

min. Twelve hours after HT, a chromatin condensation assay was performed using a flow cytometer. Data are 

presented as means ± SDs (n = 4). C, control (non-treatment). *: p<0.05 (Student’s t-test).   
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4.13  Effects of PLK1-knockdown on cell cycle analysis and cell proliferation, 

and its combined effects with HT in Y79 and WERI-Rb-1 cells. 

We next examined whether the silencing of PLK1 would affect cell 

proliferation in Y79 and WERI-Rb-1 cells under the control and HT 

conditions. The WST-8 assay was used to count the viable cells in the cell 

proliferation assay. The results are shown in Figure 13A and B. 

PLK1-knockdown inhibited the viable cell proliferation of Y79 and 

WERI-Rb-1 cells compared with the control cells. Furthermore, the 

inhibition of viable cell proliferation was enhanced by the combination of 

PLK1-knockdown and HT. We next performed cell cycle analysis using flow 

cytometry. The results are shown in Figure 13C-H. Treatment of the cells 

transfected with siPLK1 increased the percentages of G2/M and sub-G1 

phases significantly, under both the control and HT conditions in the two 

retinoblastoma cell lines. Although the combination of PLK1-knockdown and 

HT did not enhance G2/M arrest in comparison with the PLK1-knockdown 

alone, it did significantly increase the percentage of cells in the sub-G1 phase, 

a marker for apoptosis in the two retinoblastoma cell lines.  
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Figure 13. Effects of PLK1-knockdown on cell proliferation and cell cycle analysis, and the combined effects of 

PLK1 knockdown and HT in retinoblastoma cells. The Y79 and WERI-Rb-1 cells were transfected with siRNA for 

PLK1 (50 nM). Forty-eight hours after transfection, cells were treated with HT at 44˚C for 60 min, and then 

cultured at 37˚C for 24 h. (A and B) The WST-8 assay was used to count for the viable cells in the cell proliferation 

assay. Data are presented as the mean ± SD (n=6). *: p<0.05 (Student’s t-test). (C-H) Y79 and WERI-Rb-1 cells were 

harvested and fixed after 24 h of HT treatment. The percentages of cells in the different cell cycle phases were 

detected using flow cytometry. C, control (non-treatment). siluc, siRNA for luciferase (50 nM). Date are presented 

as mean ± SD (n=4-6). *: p<0.05 (Student’s t-test) 

 

4.14  PLK1-knockdown inhibits the HT-induced activity of HSF1 in Y79 

and WERI-Rb-1 cells. 

We examined whether the silencing of PLK1 would affect the expression 

of HSF1 using real-time qPCR. There were no significant differences in the 

HSF1 mRNA expression levels after siRNA transfection for PLK1 under the 

control and HT conditions in Y79 and WERI-Rb-1 cells (Figure 14A and B). 

Next, we performed western blotting to monitor the activity of HSF1 in Y79 
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cells. Although the expression level of phosphorylated HSF1 (p-HSF1) was 

low under the non-stress conditions, it significantly increased in Y79 cells 

treated with HT at 44˚C for 60 min. The peak expression of p-HSF1 was 

observed from 1 h to 3 h after the HT treatment. On the other hand, the 

treatment of the cells with siRNA for PLK1 strongly suppressed the 

phosphorylation of HSF1 under either the non-HT- or HT-induced condition 

(Figure 14C). We next investigated the role of PLK1 in HSF1 nuclear 

translocation in Y79 cells. Under the non-stress condition, expression of 

HSF1 was observed predominantly in the cytosolic fraction with or without 

knockdown of PLK1. Under the HT-induced condition, the expression of 

HSF1 showed an increased localization in the nucleus, but HSF1 nuclear 

translocation was decreased by the silencing of PLK1 (Figure 14D). To 

confirm the effect of PLK1-knockdown on the activity of HSF1, we performed 

immunocytochemistry in Y79 cells. The cells were transfected with siRNA 

for PLK1, HT was performed at 44˚C for 60 min, and the cells were cultured 

at 37˚C for 1 h. Under the non-stress condition, almost no formation of 

nuclear HSF1 granules was observed. On the other hand, under the 

HT-induced condition, the changes of HSF1 granules in the nucleus 

increased. However, the HT-induced nuclear granules of HSF1 were 

decreased by PLK1-knockdown (Figure 14E). 
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Figure 14. PLK1-knockdown inhibits the HT-induced activity of HSF1 in retinoblastoma cells. Cells were 

transfected with siRNA for PLK1 (50 nM) and then HT was performed at 44˚C for 60 min and then cultured at 37˚C. 

(A and B) Total RNA was extracted from cells at 3 h after HT treatment. The effects of siRNA for PLK1 on the 

HSF1 mRNA expression level were investigated under the control and HT conditions in Y79 and WERI-Rb-1 cells. 

Real-time quantitative PCR assay was performed with specific primers for HSF1 or GAPDH. The HSF1 mRNA 

level was normalized to GAPDH expression level. Date are presented as mean ± SDs (n = 4). siluc, siRNA for 

luciferase. (C) After HT treatment, the Y79 cells were cultured at 37˚C for 1, 3, 6, 9 or 12 h. Then, the time-course of 

changes in the expression of phosphorylated HSF1 (p-HSF1) was examined by western blotting. Western blotting 

was performed using a specific primary antibody for p-HSF1 or GAPDH. GAPDH served as a loading control. siluc, 

siRNA for luciferase (50 nM). (D) The nuclei and cytoplasm were separated by using a Nuclear / Cytosol 

Fractionation Kit at 1 h after HT treatment in Y79 cells. The localization of HSF1 was analyzed by western blotting. 

Western blotting was performed using specific primary antibodies for HSF1, GAPDH, and Histone H1. GAPDH was 

used as a loading control of cytoplasm and Histone H1 was used as a loading control of nuclei. C, cytosolic fractions. 

N, nuclear fractions. (E) Immunocytochemistry was performed at 1 h after HT treatment in order to confirm the 

activity of HSF1 in Y79 cells. A specific primary antibody for HSF1 was used, and nuclei were stained with 

4,6-diamidino-2-phenylindole (DAPI). 
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4.15  PLK1-knockdown inhibits HT-induced proteins such as HSPs and 

BAG3 in Y79 and WERI-Rb-1 cells. 

We next investigated whether the HT-induced expression of HSPs and 

BAG3 would be affected by PLK1-knockdown in Y79 cells and WERI-Rb-1 

cells (Figure 15). The cells were transfected with siRNA for PLK1, HT was 

performed at 44˚C for 60 min, and the cells were cultured at 37˚C for 6 h. 

Although HT induced the expression of HSP70, HSP40, and BAG3 in control 

cells and cells transfected with siRNA for luciferase, PLK1-knockdown 

remarkably inhibited the HT-induced expression of those HSPs and BAG3 in 

the two retinoblastoma cell lines. These results suggest that PLK1 plays an 

important role in the induction of HSPs and BAG3. However, 

PLK1-knockdown did not affect the expression of HSP27. 
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Figure 15. PLK1-knockdown inhibits HT-induced proteins such as HSPs and BAG3 in Y79 (A) and WERI-Rb-1 (B) 

cells. Cells were transfected with siRNA for PLK1 (50 nM) and subjected to HT at 44˚C for 60 min. Then, the cells 
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were cultured at 37˚C for 6 h and harvested for western blotting. Western blotting was performed using specific 

primary antibodies for PLK1, HSP70, HSP40, HSP27, BAG3, and GAPDH. GAPDH served as a loading control. 

siluc, siRNA for luciferase (50 nM).  

 

 

5. Discussion 

 

5.1 The combination of silencing BAG3 and inhibition of the JNK pathway 

enhances HT sensitivity in human oral squamous cells. 

HT has been considered a promising approach in cancer therapy and 

the effectiveness of HT combined with chemotherapy or radiotherapy 

against various tumors has been shown [Van et al., 2000; Harima et al., 

2001; Xia et al., 2006; Aktas et al., 2007; Van et al., 2010]. However, these 

HT strategies are often insufficient. Previous studies have indicated that, 

in some cancers, the cytoprotective function to HT therapy is caused at 

least in part by the elevation of HSPs in the cancer cells [Parsell et al., 

1993; Ohtsuka et al., 2000]. BAG3, a co-chaperone of the Hsp70, is a 

stress-inducible protein and confers cytoprotection against various 

stresses, including heat stress [Bonelli et al., 2006; Pagliuca et al., 2003; 

Liao et al., 2001; Tabuchi et al., 2007; Chen et al., 2004; Rosati et al., 

2009]. In the present work, the silencing of BAG3 sensitized HT in 

human OSCC HSC-3 cells. To the best of our knowledge, this is the first 

report on the enhancement of HT sensitivity through the targeting of 

BAG3. Moreover, the combination of silencing BAG3 with inhibition of 

the JNK pathway further enhanced the sensitivity to HT in the HSC-3 

cells. 

In keeping with the previous reports, we observed a significant 
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induction of BAG3 expression in HSC-3 cells treated with HT at 44˚C for 

90 min [Tabuchi et al., 2012]. Under this condition, HT increased various 

apoptotic indexes, such as chromatin condensation, the cell population in 

the sub-G1 phase in the cell cycle and cleavage of caspase 3, suggesting 

that the type of cell death occurring in HSC-3 cells exposed to HT is 

apoptosis. It has been demonstrated that BAG3 exerts cytoprotective 

functions against various stresses in cooperation with Hsp70 [Bonelli et 

al., 2006; Pagliuca et al., 2003; Liao et al., 2001; Tabuchi et al., 2007; 

Chen et al., 2004; Rosati et al., 2009]. Furthermore, several kinds of 

apoptosis induced by the proteasome inhibitor [Liu et al., 2009; Du et al., 

2008; Wang et al., 2007], cisplatin [Festa et al., 2011], etoposide 

[Ammirante et al., 2010], a tumor necrosis factor-related 

apoptosis-induced ligand [Chiappetta et al., 2007], were reported to be 

enhanced by the down-regulation of BAG3. Therefore, we assumed that 

BAG3 silencing enhanced the sensitivity to HT of HSC-3 cells. As 

expected, BAG3-knockdown markedly enhanced HT-induced apoptosis, 

indicating that this protein is involved in the HT sensitivity in HSC-3 

cells.  

   Previous reports have shown that HT induced apoptosis via activation 

of the JNK pathway [Alcala et al., 2010; Hayashi et al., 2011; Gaitanaki 

et al., 2008; Gabai et al., 2000] and that the apoptosis was suppressed by 

treatment with a JNK inhibitor [Chung et al., 2003]. In contrast, the JNK 

pathway functions as anti-apoptotic effects [Wang et al., 2009; Sloss et al., 

2008], and phosphorylation of c-Jun by activated JNK pathway is 
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associated with down-regulation of death signaling [Shaulian et al., 2002]. 

Thus, it is thought that the JNK pathway has functions of both pro- and 

anti-apoptotic effects. In this study, although we confirmed the activation 

of the JNK pathway in HT-treated HSC-3 cells, SP600125, a JNK 

inhibitor, did not affect HT-induced apoptosis. On the other hand, very 

interestingly, treatment of HSC-3 cells with SP600125 significantly 

elevated apoptosis induced by the combination of the suppression of 

BAG3 function with HT. This finding therefore indicates that the JNK 

pathway may play a role in the cytoprotection conferred by this 

combination treatment in HSC-3 cells. This finding was also in 

agreement with previous studies [Wang et al., 2009; Sloss et al., 2008; 

Meriin et al., 1998; Kim YH et al., 2005]. That is, Lu et al. recently 

reported that the JNK inhibitor SP600125 enhances 

dihydroartemisinin-induced apoptosis by increasing the release of 

mitochondrial apoptotic factors in human lung adenocarcinoma cells [Lu 

et al., 2010].  Wang et al. demonstrated that inhibition of the JNK 

signaling pathway enhances proteasome inhibitor-induced apoptosis by 

suppression of the BAG3 expression in kidney cancer cells [Wang et al., 

2009]. At present, we do not know the detailed molecular interactions 

between BAG3 and the JNK pathway in HT-induced apoptosis. Further 

investigations will be needed to clarify this issue. 

In conclusion, our present findings suggest that disrupting the 

functions of both BAG3 and the JNK pathway may become an option for 

HT therapy in OSCC cells.    



46 

 

  

 5.2  BAG3 protects against hyperthermic stress by modulating NF-κB 

activity in human retinoblastoma Y79 cells.  

The anti-apoptotic role of BAG3 in heat stress remains unknown. In this 

study, we examined the effect of BAG3 on the HT sensitivity of human 

retinoblastoma Y79 cells. To our knowledge, this is the first report that 

demonstrates the enhancement of HT sensitivity by BAG3-knockdown in 

retinoblastoma cells. Furthermore, BAG3-knockdown maintained 

HT-induced NF-κB inactivity through IKKγ degradation and the subsequent 

inhibition of the phosphorylation of IκB and p65.   

   The expression of BAG3 as well as HSP70 and HSP40 is induced by HT at 

44°C for 60 min in retinoblastoma cells. The combination of these proteins is 

thought to have an anti-apoptotic role in heat stress. Previous reports 

demonstrate that BAG3 stabilizes anti-apoptosis-related proteins by 

protecting them from proteasome-mediated degradation [Boiani et al., 2013; 

Zhang et al., 2012]. However, in this study, BAG3-knockdown did not 

influence the expression of HSP70 and HSP40. It is possible that BAG3 does 

not interfere with the stabilization of HSP70 and HSP40 in retinoblastoma 

cells.  

NF-κB binds to its inhibitor IκB. Under conditions of stress such as 

hypoxia and ischemia, IKK leads to the phosphorylation and degradation of 

IκB [Hayden et al., 2004]. As a result, free NF-κB is strongly phosphorylated 

and then translocated to the nucleus. In this study, we found that HT 

inhibits the activation of NF-κB and the inactivity of NF-κB recovers 
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gradually after HT. This phenomenon concurs with the previous reports, in 

which heat stress inhibited the activity of NF-κB through the impairment of 

the proteasome function [Aravindan et al., 2009; Pajonk et al., 2005]. 

Furthermore, compared to HT alone, the combination of BAG3-knockdown 

and HT reduced the phosphorylation of IκB and p65 during the recovery 

period. Ammirante et al. reported that BAG3 binds to IKKγ and regulates 

the NF-κB activity by increasing the availability of IKKγ [Ammirante et al., 

2010]. It is possible that BAG3-knockdown destabilizes IKKγ during the HT 

recovery period and maintains the HT-induced inactive state of NF-κB. 

Poulaki et al. showed that the inhibition of NF-κB sensitizes the 

retinoblastoma cells to doxorubicin through the down-regulation of 

anti-apoptotic proteins such as Bcl-2, A1, and cIAP-2 [Poulaki et al., 2002]. 

Silencing BAG3 may induce apoptosis, at least in part, by maintaining the 

HT-induced inactive state of NF-κB.  

   In conclusion, BAG3-knockdown attenuates thermal resistance by 

maintaining HT-induced NF-κB inactivity. Our findings suggest that 

silencing BAG3 may serve as a potential therapeutic strategy for HT therapy 

in patients with retinoblastoma. 

 

5.3  Inhibition of PLK1 promotes HT sensitivity via inactivation of HSF1 

in human retinoblastoma cells. 

It has been considered that HSPs play a role in the acquisition of 

thermoresistance [Parsell et al., 1993; Ohtsuka et al., 2000], and the 

expression of HSPs is mainly regulated by HSF1 [Morimoto et al., 1998]. In 
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the current study, we focused on PLK1 because there have been several 

reports that PLK1 regulates the activity of HSF1 [Kim SA et al., 2005; Lee et 

al., 2008]. PLK1 also acts as an important regulator of mitosis [Roshak et al., 

2000], and several studies have shown that the expression of PLK1 is 

elevated in various types of cancer cells [He et al., 2009; Wang et al., 2012; 

Ito et al., 2004]. Further, it has been demonstrated that inhibition of PLK1 

promotes the sensitivity of cancer cells to chemotherapy or radiotherapy [Liu 

et al., 2006; Maire et al., 2013; Gerster et al., 2010], and clinical trials 

employing PLK1 inhibition have been performed for multiple tumors 

[Schöffski et al., 2010]. However, there have been no reports of the use of 

PLK1 to enhance HT sensitivity in retinoblastoma. In this study, we 

demonstrated for the first time that the combination of inhibition of PLK1 

and HT enhanced apoptosis and inhibited cell proliferation via the 

inactivation of HSF1 in human retinoblastoma cells. In addition, 

siRNA-mediated PLK1-knockdown and PLK1 inhibitor-mediated PLK1 

inhibition promoted HT sensitivity similarly. 

Previous reports have shown that overexpression of HSF1 was observed 

in human cancer cells of various origins [Dudeja et al., 2011; Hoang et al., 

2000; Cen et al., 2004]. Furthermore, the HSF1-induced overexpression of 

HSPs, such as HSP27, HSP70, and HSP90, has been reported in various 

cancers, and it has been demonstrated that these overexpressions are related 

to the development of cancer, invasiveness, metastasis, resistance to 

chemotherapy, and radiotherapy [Tang et al., 2005; Ciocca et al., 2002; Kase 

et al., 2009]. Several authors have reported that inhibition of HSF1 enhances 
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the effect of HT treatment concomitant with inhibition of HSPs [Rossi et al., 

2006; Tabuchi et al., 2011; Nakamura et al., 2010]. With respect to human 

retinoblastoma, Kase et al. and Jiang et al. demonstrated that HSP27, 

HSP70, and HSP90 were all significantly expressed in patients with this 

cancer, and these HSPs were related to cell proliferation and resistance to 

chemotherapy [Kase et al., 2009; Jiang et al., 2008]. In addition, several 

clinical reports demonstrated that HT is effective as a focal treatment, but 

these effects were limited to small retinoblastoma tumors [Shields et al. 

1999; Abramson et al., 2004]. Accordingly, we consider that the targeting of 

HSF1 and HSPs is a good approach to HT treatment in retinoblastoma. 

However, in this study we targeted PLK1, not HSF1, in order to enhance HT 

sensitivity, for the following reasons. First, PLK1 inhibition does not have 

many influences on normal cells even though it has strong anti-cancer 

activity [Nogawa et al., 2005; Liu et al., 2006; Maire et al., 2013]. Second, 

PLK1 inhibitor has been used already in clinical trials [Schöffski et al., 2010]. 

Third, the potential of PLK1 as a therapeutic target for HT has not been 

reported.  

  In the current study, the silencing of PLK1 inhibited HT-induced 

phosphorylation of HSF1, nuclear translocation of HSF1, and the formation 

of nuclear HSF1 granules. Previous reports have shown that 

phosphorylation of HSF1 and HSF1 nuclear translocation are regulated by 

PLK1 [Kim SA et al., 2005; Lee et al., 2008]. Kim et al. showed that 

inhibition of PLK1 suppresses the expression level of HSF1 after heat shock 

[Kim et al., 2010]. Moreover, Holmberg et al. showed that granule formation 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=20198330
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of HSF1 is required for some of the molecular mechanisms underlying the 

inducible phosphorylation and transcriptional activation of HSF1 [Holmberg 

et al., 2000]. In keeping with the previous reports, we here observed that 

PLK1 modulated activation of HSF1. Therefore, an inhibition of PLK1 may 

product a synergistic effect in HT through an inactivation of HSF1. 

Furthermore, we think that an enhancement of HT sensitivity may be 

involved in the inhibition of HT-induced HSPs, especially HSP70. Chen et al. 

reported that PLK1 mediated the phosphorylation of HSP70 during mitosis 

[Chen et al., 2011]. Inhibition of HSP70, a main player in thermoresistance, 

may be suppressed effectively by the inhibition of PLK1 and resulting 

inactivation of HSF1. However, HSP27 was not changed significantly by 

PLK1-knockdown. Additional work will be needed in regard to HSP27 and 

other HSPs. In addition, the silencing of PLK1 strongly inhibited the 

HT-induced expression of BAG3. BAG3 is a family of co-chaperones that 

interact with the ATPase domain of HSP70 through the BAG domain [Rosati 

et al., 2007]. The expression level of BAG3 is increased in response to various 

stresses, including heat stress [Kariya et al., 2013; Liao et al., 2001]. The 

induction of BAG3 is at least partly mediated by HSF1 [Franceschelli et al., 

2008]. We recently reported that the silencing of BAG3 enhanced HT 

sensitivity in human oral squamous cell carcinoma [Yunoki et al., 2013]. In 

the present work, the enhancement of HT sensitivity by PLK1-knockdown 

may have been related to the inhibition of BAG3. At present, the detailed 

molecular mechanisms underlying the relationship between PLK1 and 

thermoresistance are not well known. Further investigations will be needed 

http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20YJ%5BAuthor%5D&cauthor=true&cauthor_uid=21887822
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to clarify this issue. Furthermore, there are several limitations to this study. 

HT under in vitro experimental conditions ensures a more homogeneous 

heating than under clinical conditions. Additionally, HSPs are thought to be 

involved in the protection of retinoblastoma cells against heat damage. On 

the other hand, HSPs have anti-tumor immunity [Gurbuxani et al., 2001; 

Frey et al., 2012].. These opposite immunogenic and anti-apoptotic effects of 

HSPs may affect the therapeutic effects of this combination therapy. 

Accordingly, additional studies, including in vivo experiments, are needed to 

clarify the effect of combination therapy with HT and PLK1 inhibition. 

   In conclusion, the inhibition of PLK1 may attenuate the thermoresistance 

of HT through an inactivation of HSF1 concomitant with reductions in HSPs 

and BAG3. The combination of PLK1 inhibition and HT may become an 

option for HT therapy in patients with retinoblastoma.   

 

 

6. Conclusions 

   In conclusion, our present findings suggest that the disruption of 

functions of HSF1-related proteins such as BAG3 and PLK1 may serve as a 

potential therapeutic strategy for HT therapy in patients with cancer 

tumors. 
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