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Executive Summary 

ASP2151 (amenamevir) is a helicase–primase complex inhibitor that shows antiviral activity 

against herpes simplex virus (HSV)-1, HSV-2, and varicella-zoster virus (VZV). We conducted 

pharmacological studies to evaluate and characterize the efficacy, mechanism of action, 

ASP2151-resistant mutants emerging risk in vitro and in vivo. 

At the first, an inhibitory effect of ASP2151 on enzymatic activities associated with a 

recombinant HSV-1 helicase-primase complex was assessed. To investigate the effect on viral DNA 

replication, we analyzed viral DNA in cells infected with herpes viruses (HSV, VZV, and human 

cytomegalovirus). In vitro and in vivo antiviral activities were evaluated using a plaque reduction 

assay and an HSV-1–infected zosteriform-spread model in mice. ASP2151 inhibited the 

single-stranded DNA-dependent ATPase, helicase and primase activities associated with the HSV-1 

helicase-primase complex. Antiviral assays revealed that ASP2151, unlike other known HSV 

helicase-primase inhibitors, exerts equipotent activity against HSV-1, HSV-2, and VZV through 

prevention of viral DNA replication. Further, the anti-VZV activity of ASP2151 (EC50: 

0.038–0.10 μmol/L) was more potent against all strains tested than that of acyclovir (ACV) (EC50: 

1.3–27 μmol/L). ASP2151 was also active against ACV-resistant VZV mutants. In a mouse 

zosteriform-spread model, ASP2151 was orally active and inhibited disease progression more 

potently than valacyclovir (VACV). 

In the next step, we characterized the ASP2151-resistant HSV-1, HSV-2, and VZV variants or 
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mutants based on findings from sequencing analysis, growth, pathogenicity, and susceptibility 

testing, identifying several single base-pair substitutions resulting in amino acid changes in the 

helicase and primase subunit of ASP2151-resistant mutants. Amino acid alterations in the helicase 

subunit were clustered near or within helicase motif IV, which is one of the six helicase motifs 

forming the functional active site, in the helicase gene of HSV-1, HSV-2, and VZV, while the 

primase subunit substitution associated with reduced susceptibility was found in ASP2151-resistant 

HSV-1 mutants. However, while susceptibility in the ASP2151-resistant HSV mutants to existing 

antiherpes agents was equivalent to that in wild-type HSV strains, ASP2151-resistant HSV and 

VZV mutants showed attenuated in vitro growth capability. Moreover, ASP2151-resistant HSV 

showed in vivo pathogenicity compared with the parent strains. 

Finally, to assess combination therapy of ASP2151 with existing antiherpes agents against 

HSV-1, HSV-2, and VZV, we conducted two-drug combination studies in vitro and in vivo. 

Combination activity effect of ASP2151 with ACV was tested by a plaque reduction assay and the 

data was analyzed using isobologram and response surface model. In vivo combination therapy of 

ASP2151 with VACV was studied in HSV-1 infected zosteriform-spread mice model. The antiviral 

activity of ASP2151 combined with ACV against ACV-susceptible HSV-1, HSV-2, and VZV 

showed statistically significant synergistic effect (P<0.05). In mouse zosteriform-spread model, the 

inhibition of disease progression by the combination therapy was more potent than that of each 

monotherapy (P<0.05). 

Here, we showed that ASP2151 possesses potent antiviral activity against not only HSV-1 
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and HSV-2 but also against VZV including ACV-resistant mutants. ASP2151 inhibited the multiple 

enzymatic activities associated with ssDNA-dependent ATPase, DNA helicase and primase assays. 

These data suggest that the antiviral activity of ASP2151 results from inhibition of the 

helicase-primase complex. Our second study findings demonstrated that important amino acid 

substitutions associated with reduced susceptibilities of HSV-1, HSV-2, and VZV to ASP2151 exist 

in both the helicase and primase subunits of the helicase-primase complex, and that mutations in 

the enzyme complex against ASP2151 might confer defects in viral replication and pathogenicity. 

The results of combination therapy study indicate that an antiherpes efficacy of the combination 

therapy of ASP2151 with ACV or VACV could show the synergistic effect against HSV and VZV 

infections and the strong anti-herpetic therapy would be feasible in severe diseases, such as 

encephalitis or in patients with immunosuppression. 

In conclusion, ASP2151 is a novel viral helicase-primase inhibitor with potent activity 

against not only HSV-1, HSV-2 but also VZV. Based on our results, ASP2151 warrants further 

investigation for the treatment of VZV, HSV-1, and HSV-2 infections. 

 

Some parts of this thesis were published as peer review articles. 

(1) Chono K, Katsumata K, Kontani T, Kobayashi M, Sudo K, Yokota T, et al. ASP2151, a novel 

helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes 

simplex virus types 1 and 2. J Antimicrob Chemother 2010;65:1733-41. 

(2) Chono K, Katsumata K, Kontani T, Shiraki K, Suzuki H. Characterization of virus strains 
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resistant to the herpes virus helicase-primase inhibitor ASP2151 (Amenamevir). Biochem 

Pharmacol 2012;84:459-67. 

(3) Chono K, Katsumata K, Suzukia H, Shiraki K. Synergistic Activity of Amenamevir (ASP2151) 

with Acyclovir against Herpes Simplex Virus Type 1, 2 and Varicella-zoster Virus. Antiviral 

Res 2013;97:154-60. 
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Chapter 1 General Introduction 

1.1. Pathogenicity and Treatment of Herpes Simplex Virus Type 1, Type 2, and 

Varicella-zoster Virus 

Herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV) are widely 

prevalent pathogens belonging to the human herpesvirus subfamily Alphaherpesvirinae of family 

Herpesviridae [Pellet and Roizman, 2007]. Both HSV and VZV establish life-long latent infections 

in sensory ganglia after the primary infection and eventually reactivate, leading to recurrent 

episodes. HSV infections are the most widespread infectious disease in the world, with no seasonal 

variation, and naturally occurring only in human beings [Whitley and Roizman, 2001], affecting 

nearly 60% to 95% of the adult human population globally [Fatahzadeh and Schwartz, 2007]. 

HSV-1 and HSV-2 cause genital herpes, herpes labialis or herpetic keratitis, and frequent disease 

recurrence dramatically affects the quality of life of afflicted individuals [Roizman et al., 2007]. 

VZV are also one of the most worldwide spread virus pathogens. Infection with VZV leads to the 

development of two distinct disease episodes: varicella as the primary episode and herpes zoster as 

the recurrent episode [Levin and Schmader, 2007]. 

Since the late 1970s, synthetic nucleoside analogs targeting viral DNA polymerase, such as 

acyclovir (ACV), penciclovir (PCV), valaciclovir (VACV), and famciclovir, have been developed 

for the treatment of HSV and VZV infections [Brady and Bernstein, 2004]. These nucleoside 

analogs represent safe and effective therapies for HSV and VZV infections. Nucleoside analogs 
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share the same mechanism of action, requiring phosphorylation by viral thymidine kinase (TK) and 

host kinases; after their phosphorylation, the analogs interfere with viral DNA polymerization 

through competitive inhibition with guanosine triphosphate and obligatory chain termination [Biron 

and Elion, 1980; Elion et al., 1977; Miller and Miller, 1980; Miller and Miller, 1982; Morfin and 

Thouvenot, 2003]. As viral TK is not essential for viral replication, HSV and VZV lacking a 

functional TK (TK-negative or TK-partial mutants) are still viable and result in cross-resistance to 

the nucleoside analog drug class [Coen and Schaffer, 1980; Larder and Darby, 1986; Piret and 

Boivin, 2011]. 

The pyrophosphate analog foscarnet (FOS) is a viral DNA polymerase inhibitor that 

interferes with the binding of diphosphate to DNA polymerase. Given that FOS does not require 

activation by TK, its antiviral effect can be exerted against ACV-resistant mutants lacking a 

functional TK [Oberg, 1989]. However, a number of nucleoside analog-resistant mutants with 

modifications to their DNA polymerase have been found to be resistant to FOS as well as other 

nucleoside analog antivirals [Piret and Boivin, 2011]. The emergence of such potentially 

multi-resistant mutants represents a growing concern, particularly among immunocompromised 

patients [Morfin and Thouvenot, 2003], highlighting the need for novel antiherpetic drugs with 

alternative mechanisms of action [Stránská et al., 2004]. These limitations of the current standard 

of care highlight the need for developing novel anti-herpes drugs with potent antiviral activity 

based on alternative mechanisms of action. 
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1.2. Helicase-primase Inhibitors as an Anti-herpes Agents 

Viral gene products essential for virus replication, such as the herpesvirus helicase-primase 

complex, are potential targets for novel antiviral agents. The helicase-primase complex performs 

essential functions in viral genome DNA replication and hence viral replication, responsible for 

both unwinding viral DNA at the replication fork and priming DNA synthesis [Crute et al., 2002; 

Crute et al., 1988; Crute et al., 1989; Dodson et al., 1989]. This complex consists of three 

proteins—the helicase, primase, and cofactor subunits. The helicase-primase complex possesses 

multi-enzymatic activities, including DNA-dependent ATPase and helicase localized in the helicase 

subunit and primase in the primase subunit; all of these enzymatic activities are needed for the 

helicase-primase complex to function in viral DNA replication and hence virus growth. 

The helicase-primase complex is well conserved among members of family Herpesviridae 

viruses. For instance, the genes encoding the HSV-1 and HSV-2 helicase subunit (UL5), primase 

subunit (UL52) and cofactor subunit (UL8) share homology with the ORF55, ORF6 and ORF52 

genes of VZV [Davison and Scott, 1986] and the UL105, UL70 and UL102 genes of the 

cytomegalovirus [Chee et al., 1990]. Therefore, agents that target the helicase-primase complex 

have the potential to represent novel, broad-spectrum, anti-herpes agents. 

Helicase-primase inhibitors (HPIs) could supplement the currently available therapies. Indeed, 

the amino-thiazolylphenyl-containing compound, BILS 179 BS, and the thiazole urea derivative, 

AIC316 (formerly known as BAY 57-1293), have been reported as helicase-primase inhibitors 

(HPIs) with anti-HSV activity [Crute et al., 2002; Kleymann et al., 2002]. BILS 179 BS has been 
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shown to have 10-fold more potent activity against HSV than ACV in vitro, while its in vivo 

efficacy was comparable to ACV in animal studies [Crute et al., 2002]. AIC316 showed two orders 

of magnitude greater potency against HSV than ACV in vitro, and superior in vivo activities 

compared with valaciclovir in mice and guinea pigs models [Kleymann et al., 2002]. Moreover, one 

phase 2 clinical study result of AIC316 were reported (ClinicalTrials.gov Identifier: 

NCT01047540) and another phase 2 study have been conducted for genital herpes patients [Tyring 

et al., 2012]. However, despite the potential shown by these compounds, their antiviral spectrum is 

limited, as both compounds inhibit HSV-1 and HSV-2 but not other human herpesviruses. As HPIs 

seem to be a promising class of anti-herpes drugs, further investigation is warranted to optimize the 

antiviral spectrum, potency, and in vivo efficacy of this class of drugs. 

 

1.3. Structurally Novel Class of Helicase-primase Inhibitor, ASP2151 

Here, we study that ASP2151 (international nonproprietary name: amenamevir), an 

oxadiazolephenyl derivative, is a structurally novel class of HPI that possesses potent antiviral 

activity against not only HSV-1 and HSV-2 but also VZV (Chapter 2). Due to promising preclinical 

profiles on antiviral activity, safety, tolerability and pharmacokinetics, ASP2151 was selected as a 

development candidate and the clinical efficacy has been evaluated in two phase 2 clinical studies 

for the patients with herpes zoster (ClinicalTrials.gov Identifier: NCT00487682) and genital herpes 

[Tyring et al., 2012]. 

Mutants resistant to HSV-specific HPIs AIC316 and BILS 179 BS were previously 
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characterized in terms of prevalence of pre-existing resistance, ability of replication in vitro, and 

pathogenicity in mice. However, few studies have characterized ASP2151-resistant HSV and VZV 

variants or mutants. To analyze the effect of amino acid mutations in helicase and primase on in 

vitro and in vivo growth characteristics, we characterized the ASP2151-resistant HSV-1, HSV-2, 

and VZV variants or mutants based on findings for sequencing analysis, growth, pathogenicity, and 

susceptibility testing (Chapter 3). 

Given its different mechanism of action compared with nucleoside analog drugs, ASP2151 is 

expected to exhibit a combination effect with existing nucleoside analog antiherpes drugs against 

HSVs and VZV strains as well as nucleoside analog drug-resistant mutants. However, while 

combination therapy of ASP2151 with nucleoside analog antiherpes drugs may be a promising 

option in cases of severe disease, such as herpes encephalitis or in patients with 

immunosuppression, whether or not such combination therapy will have synergistic, additive, or 

antagonistic effects compared to either drug in monotherapy remains unclear. To assess the 

combination therapy of ASP2151 and existing nucleoside analog antiherpes drugs, we tested the 

antiviral activity of ASP2151 combined with ACV and other nucleoside analogs (PCV and 

vidarabine) in vitro and a combination therapy with ASP2151 and VACV in a mouse model of 

zosteriform spread (Chapter 4). 
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Chapter 2 ASP2151, a Structurally Novel Helicase-primase Inhibitor, Possesses 

Antiviral Activity against Varicella-zoster Virus, Herpes Simplex Virus Types 1, and 2 

2.1. Introduction 

ASP2151, an oxadiazolephenyl derivative, is a structurally novel class of helicase-primase 

inhibitor that possesses potent antiviral activity against not only herpes simplex virus type 1 

(HSV-1) and type 2 (HSV-2) but also varicella-zoster virus (VZV). In this chapter, we report that an 

inhibitory effect of ASP2151 on enzymatic activities associated with a recombinant HSV-1 

helicase-primase complex was assessed and viral DNA in cells infected with herpes viruses (HSV, 

VZV, and human cytomegalovirus) was analyzed to investigate the effect on viral DNA replication. 

Moreover, in vitro and in vivo antiviral activities were evaluated using a plaque reduction assay and 

an HSV-1–infected zosteriform-spread model in mice. 

 

2.2. Materials and Methods 

2.2.1. Ethics Statement 

All animals were housed and handled according to the Animal Ethical Committee guidelines 

of Yamanouchi Pharmaceutical Co., Ltd., which is now known as Astellas Pharma Inc. and the 

Astellas Pharma’s Institutional Animal Care and Use Committee guidelines. 

 

2.2.2. Compounds 

ASP2151 (molecular weight, 482.55; international non-proprietary name, amenamevir) was 
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synthesized by Astellas Pharma Inc. (Tokyo, Japan). Acyclovir (ACV; Sigma-Aldrich, St. Louis, 

MO, USA), penciclovir (PCV; LKT Laboratories, St. Paul, MN, USA), vidarabine (VDB; 

Sigma-Aldrich, St. Louis, MO, USA), and valaciclovir (VACV) as Valtrex® film tablets 

(GlaxoSmithKline, Middlesex, UK) were purchased from commercial suppliers. 

 

2.2.3. Viruses and Cell Lines 

Four VZV strains clinically isolated in the United States were kindly provided by Dr. Ann M. 

Arvin (Stanford University School of Medicine, Palo Alto, CA, USA). All other viruses and cell 

lines were provided by Rational Drug Design Laboratories (Fukushima, Japan). Human embryonic 

fibroblast (HEF) cells were grown in Eagle’s minimum essential medium supplemented with 10% 

fetal bovine serum (FBS), 100 units/mL penicillin G and 100 μg/mL streptomycin (Invitrogen, 

Carlsbad, CA, USA). VZV, HSV-1 and HSV-2 were propagated using HEF cells in maintenance 

medium containing 2% FBS. Human cytomegalovirus (HCMV) was cultured using MRC-5 cells. 

 

2.2.4. Preparation of Helicase-primase Complex 

Recombinant baculoviruses expressing HSV-1 UL5 (helicase), UL52 (primase) and 

N-terminally histidine-tagged UL8 (cofactor) of wild-type HSV-1 KOS strain were prepared using 

the Bac-to-Bac® Baculovirus Expression System (Invitrogen). The recombinant HSV-1 strain KOS 

helicase-primase complex was expressed in Sf9 cells triply infected with the baculoviruses, and 

then purified using Ni-NTA agarose resin (Invitrogen) in accordance with a previously described 
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method [Calder and Stow, 1990; Crute et al., 1991; Ramirez-Aguilar et al., 2002]. 

 

2.2.5. ATPase Assay 

Single stranded DNA-dependent ATPase activity of the HSV-1 helicase-primase complex was 

determined using an assay modified from a previously described method [Crute and Lehman, 1991]. 

The reaction buffer contained 20 mmol/L HEPES (pH 7.6), 2 mmol/L MgCl2, 10 mmol/L 

dithiothreitol (DTT), 9 μg/mL ssDNA prepared using calf thymus DNA (Sigma-Aldrich), 

90 μmol/L ATP (Roche Diagnostics K.K., Tokyo, Japan) and 25 ng of the enzyme complex in a 

reaction volume of 10 μL. The mixture containing ASP2151 at a concentration from 0.0001 μmol/L 

to 3 μmol/L was incubated for 75 min at 37 °C. ATP hydrolysis was determined by adding 10 μL of 

Biomol® green according to the manufacturer’s instruction (Enzo Life Science, Farmingdale, NY, 

USA). 

 

2.2.6. DNA Helicase Assay 

Forked DNA helicase substrate was prepared using the oligonucleotides: 

5′-CAGTCACGACGTTGTAAAACGACGGCCAGTGTTATTGCATGAAAGCCCGGCTG-3′ 

labeled at the 5' end with Alexa Fluor® 488 (Invitrogen), and unlabeled 

5′-GTCGGCCCACCTTCCTGTTATTGACTGGCCGTCGTTTTACAACGTCGTGACTG-3′ as 

previously reported [Graves-Woodward et al., 1997]. The reaction mixture (10 μL) contained 

20 mmol/L HEPES (pH 7.6), 1 mmol/L DTT, 5 mmol/L MgCl2, 2 mmol/L ATP, 1 μg 
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helicase-primase complex, 20 nmol/L forked DNA helicase substrate and a 5-μmol/L concentration 

of a capture strand (5′ -CAGTCACGACGTTGTAAAACGACGGCCAGT-3′). Reactions containing 

ASP2151 were allowed to proceed for 60 min at 30 °C, and then the products were electrophoresed 

through a 20% nondenaturing polyacrylamide gel. Fluorescence was detected using the 

ProXPRESS® 2D Proteomic Imaging System (PerkinElmer, Waltham, MA, USA). 

 

2.2.7. Primase Assay 

Primase activity was measured by detecting synthesized RNA primers in the presence of 

fluorescence-labeled CTP using the 51-mer DNA oligonucleotide: 

5′-CTTCTTCGGTTCCGACTACCCCTCCCGACTGCCTATGATGTTTATCCTTTG-3′ as a 

template [Crute et al., 2002; Ramirez-Aguilar et al., 2002]. Reaction mixtures (10 μL) containing 

50 mmol/L Tris-HCl (pH 8.0), 10 mmol/L MgCl2, 1 mmol/L DTT, 1 mmol/L ATP, 1 mmol/L GTP, 

1 mmol/L UTP, 2 μmol/L fluorescence-labeled CTP, 1 μmol/L of the 51-mer template and 2 μg of 

the helicase-primase complex were incubated at 30 °C for 90 min in the presence of vehicle (0.1% 

DMSO) or ASP2151. Reactions were then quenched by 10 μL of stop buffer containing 50 mmol/L 

EDTA (pH 8.0) and 90% (v/v) formamide. The products were heat denatured at 95 °C for 5 min 

and separated via denaturing polyacrylamide gel electrophoresis (15% polyacrylamide, 7 mol/L 

urea), and then fluorescence was detected using the ProXPRESS® 2D Proteomic Imaging System 

(PerkinElmer). 
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2.2.8. Polyacrylamide Gel Electrophoresis of Virus-specific PCR Fragments 

HEF cells infected with HSV-1, HSV-2, VZV, and HCMV were exposed to ASP2151 and 

incubated until plaques clearly appeared in virus control wells. Cells were then collected to extract 

whole DNA using the Gentra® Puregene® Cell Kit (Qiagen, Valencia, CA, USA). PCR was 

performed using a specific primer set targeting US4, ORF31, or UL83 for HSV-1 and HSV-2, VZV 

or HCMV, respectively (Table 1). Each PCR reaction was electrophoresed, stained, and visualized. 

Human β-actin gene was used as an internal control. 

 

2.2.9. Real-time PCR 

Real-time PCR was performed to quantify the VZV DNA in virus-infected HEF cells using 

ABI Prism 7900 HT (Applied Biosystems) with the primers and probe for VZV glycoprotein B 

gene [Pevenstein et al., 1999]. To normalize each of the DNA extracts, human β-actin gene was 

used as an internal control (TaqMan β-actin Control Reagents; Applied Biosystems, Carlsbad, CA, 

USA). 

 

2.2.10. Plaque Reduction Assay (PRA) and Cytotoxicity Assay 

HEF cells were seeded into multi-well plates and incubated until the cells formed a 

monolayer. After the medium was removed, the cells were infected with HSV-1, HSV-2, or VZV at 

a titer of 40 plaque-forming units (pfu)/well. The plates were then incubated for 1 h at 37 °C. After 

being washed twice with maintenance medium, cells were treated with the test compound until 
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clear plaques appeared. The cells were then fixed with 10% formalin in phosphate-buffered saline, 

and stained with 0.02% crystal violet solution. The number of plaques present was counted under a 

microscope. MTT assay or neutral red assay were conducted using HEF cells to determine the 

cytotoxic concentration causing 50% reduction in the number of viable cells (CC50). 

 

2.2.11. In Vivo Antiviral Activity 

Hairless mice (HOS:HR-1, female, aged 7 weeks at virus infection) were infected (designated 

as day 0 post-infection) with HSV-1 strain WT51 (15 μL/mouse of suspension at a titre of 

8.0 × 105 pfu/mL) at dorsolateral skin that had been scratched in a grid-like pattern with a 23-gauge 

needle under anesthesia. ASP2151 at doses of 0.3, 1, 3, 10, and 30 mg/kg, or VACV at doses of 3, 

10, 30 and 100 mg/kg (suspension in 0.5% methylcellulose solution) was orally administered twice 

daily for 5 days starting 3 h after viral inoculation. Ten mice per test group were used. Disease 

course was monitored daily for 17 days and scored on a composite scale from 0 to 7 based on the 

severity of zosteriform lesions and general symptoms according to the following criteria: Score 0, 

no sign of infection; Score 1, localized, barely perceptible small vesicles; Score 2, slight vesicle 

spread; Score 3, large patches of vesicles formed; Score 4, zosteriform vesicles; Score 5, large 

patches of ulcers formed; Score 6, large zosteriform ulcers (severe); Score 7, hind limb paralysis or 

death. 
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2.2.12. Statistical Analyses 

Statistical analyses were performed using SAS software (SAS Institute, Cary, NC, USA). The 

50% inhibition concentration (IC50) for the ssDNA-dependent ATPase assay, 50% effective 

concentration (EC50) for real-time PCR, and EC50 and 90% (EC90) effective concentration values 

for PRA, were calculated using nonlinear regression analysis with a sigmoid-Emax model. The 50% 

effective dose (ED50) values for ASP2151 and valaciclovir were calculated using linear regression 

analysis. 

 

2.3. Results 

2.3.1. Antiviral activity of ASP2151 against HSV-1, HSV-2, and VZV 

We focused on inhibitors of the herpesvirus helicase-primase complex as a new class of 

anti-herpesvirus agents. Our medicinal chemistry process was initiated based upon a 2-amino 

thiazole-containing HSV helicase-primase inhibitor (HPI) [Spector et al., 1998] to create more 

potent viral-specific agents with broader spectra and we consequently selected ASP2151 as a 

candidate for a novel anti-herpes agent. ASP2151 is a structurally new type of HPI containing an 

oxadiazolyl-phenyl as an essential moiety (Figure 1A). Full details of its synthesis, as well as the 

structure-activity relationship among ASP2151 and its related derivatives, will be published 

elsewhere. 

The inhibitory activity of ASP2151 against helicase-primase complex was assayed using the 

recombinant UL5-UL52-UL8 complex of HSV-1 strain KOS. HSV helicase-primase complex has 
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multiple enzymatic activities, namely DNA helicase and ssDNA-dependent ATPase activity 

catalyzed by the UL5 helicase subunit [Dodson and Lehman, 1991; Zhu and Weller, 1992] and 

primase activity catalyzed by the UL52 primase subunit [Klinedinst and Challberg, 1994]. Results 

showed that ASP2151 inhibited the DNA helicase activity of the complex at concentrations of 

0.1 μmol/L or higher (Figure 1B). Similarly, the ssDNA-dependent ATPase activity was inhibited in 

a concentration-dependent manner with a mean IC50 value of 0.078 μmol/L (n=3, standard error: 

0.016 μmol/L). Interestingly, ASP2151 also inhibited the primase activity at concentrations of 

0.03 μmol/L or higher (Figure 1C). 

We then conducted a PRA to compare the potential antiviral activity and specificity of 

ASP2151 against herpes family viruses in vitro with that of two known HSV HPIs; BILS 179 BS 

and BAY 57-1293 [Crute et al., 2002; Kleymann et al., 2002]. The EC50 values of BILS 179 BS 

against HSV-1 and HSV-2 were 0.060 μmol/L and 0.046 μmol/L, respectively (Table 2). BAY 

57-1293 also inhibited HSV-1 and HSV-2 replication at similar EC50 values of 0.014 μmol/L and 

0.023 μmol/L, respectively (Table 2). In contrast, the EC50 values of BILS 179 BS and BAY 

57-1293 against VZV were 4.1 μmol/L and 11 μmol/L, respectively. The EC50 value ratio for the 

anti-VZV activities of BILS 179 BS and BAY 57-1293 were approximately 1/70 and 1/790 of that 

against HSV-1. 

The oxadiazolyl-phenyl derivative ASP2151 constitutes a novel class of HPI distinguishable 

from the currently known HPIs. This distinction can be attributed to the equipotent antiviral activity 

of ASP2151 against VZV, HSV-1, and HSV-2. In the present study, ASP2151 inhibited VZV, 
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HSV-1 and HSV-2 replication with EC50 values of 0.047, 0.036 and 0.028 μmol/L, respectively 

(Table 2). In addition, EC90 values of ASP2151 against VZV, HSV-1, and HSV-2 also indicated 

similar antiviral potency against these viruses (Table 2). Importantly, ASP2151 showed no obvious 

cytotoxic effects at higher concentrations (CC50 value: >30 μmol/L), and the selectivity index (SI) 

was calculated to be at least 638 (Table 2). 

The anti-VZV activity of ASP2151 compared with ACV was further evaluated using several 

strains of VZV that included clinical isolates and an ACV-resistant mutant. ASP2151 inhibited the 

replication of all the VZV strains tested. The EC50 values of ASP2151 and ACV for 

ACV-susceptible VZV strains ranged from 0.038 to 0.10 μmol/L and 1.3 to 5.9 μmol/L, 

respectively (Table 3). ASP2151 was also active against the ACV-resistant mutant Kanno-Br, which 

showed reduced susceptibility to ACV (EC50 value: 27 μmol/L), with an EC50 value of 

0.082 μmol/L. The CC50 of ASP2151 was determined to be greater than 200 μmol/L (same as ACV) 

in HEF cells in a neutral red re-uptake assay, which provided an SI higher than 2000 (Table 3). No 

antiviral activity for ASP2151 was observed against HCMV, respiratory syncytial virus, influenza 

virus and human immunodeficiency virus-1 for concentrations up to 25 μmol/L. 

 

2.3.2. Inhibitory Effect on Virus DNA Replication 

Enzymatic activity of the helicase-primase complex is essential for virus replication, and 

inhibition of the initiation of DNA replication is believed to be the mechanism behind the antiviral 

activity of the HPIs. In order to study the effect of ASP2151 on viral DNA replication, we 
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measured the quantity of viral DNA in virus-infected cells exposed to ASP2151. At concentrations 

of 0.03 μmol/L or more, ASP2151 inhibited the DNA synthesis of VZV, HSV-1 and HSV-2 (Figure 

2A). However, no effect on viral DNA replication was observed in HCMV-infected cells at 

ASP2151 concentrations of up to 1 μmol/L. This observation was consistent with the PRA data. 

The IC50 value for VZV DNA replication was determined using real-time PCR. Both 

ASP2151 and ACV reduced the quantity of VZV DNA in a concentration-dependent manner, with 

IC50 values of 0.057 μmol/L and 0.44 μmol/L, respectively (Figure 2B). The IC50 value of ASP2151 

assessed via real-time PCR corresponded with the EC50 value for anti-VZV effect assessed using 

PRA. 

 

2.3.3. In Vivo Antiviral Activity 

The in vivo activity of ASP2151 was evaluated in mice cutaneously infected with HSV-1. In mice, 

cutaneous infection with HSV-1 leads to a progressive disease course due to virus 

zosteriform-spread [De Clercq, 1984]. When compared with vehicle, oral administration of 

ASP2151 and valaciclovir significantly reduced mortality on days 17, the cumulative disease score, 

and area under the disease score-time curve for the period from days 0 to 17 post-infection 

(AUCday0-17) at doses of ≥1 mg/kg twice daily and ≥10 mg/kg twice daily, respectively (P<0.05) 

(Table 5 and Figure 3). Based on the AUCday0-17, ED50 values (95% confidence interval) of 

ASP2151 and valaciclovir were calculated as 1.9 (0.9-3.4) mg/kg twice daily and 27 (14-74) mg/kg 

twice daily, respectively. ASP2151 was statistically significantly 14-fold potent to VACV in the 
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model. 

 

2.4. Discussion 

Here, we showed that the novel oxadiazolyl-phenyl type herpesvirus HPI ASP2151 

(amenamevir) possesses potent antiviral activity against not only HSV-1 and HSV-2 but also 

against VZV. ASP2151 is selective with low cytotoxicity in vitro, and is orally available and well 

tolerated in mice. So far, two classes of HPIs (thiazole urea [Kleymann et al., 2002] and 2 

amino-thiazolylphenyl [Crute et al., 2002; Spector et al., 1998] derivatives) have found to exert 

potent antiviral activity against HSV-1 and HSV-2 in vitro and in vivo, but both classes of agent 

were reported to be inactive against VZV. Thus, agents such as ASP2151 that target the 

helicase-primase complex also represent potential anti-herpesvirus agents with activity against 

VZV. 

The herpes helicase-primase complex is a heterotrimeric viral protein complex comprising 

helicase, primase, and cofactor subunits [Crute et al., 1991], which has essential functions involved 

in viral DNA replication. In the present study, ASP2151 inhibited the multiple enzymatic activities 

associated with the recombinant helicase-primase complex of HSV-1 strain KOS with similar 

potency, as assessed by ssDNA-dependent ATPase, DNA helicase and primase assays. The IC50 

value of ASP2151 against ssDNA-dependent ATPase (0.078 μmol/L) was found to be consistent 

with that of the antiviral activity against HSV-1 strain KOS as assessed in PRA (EC50, 

0.036 μmol/L, Table 2). In addition, the minimum concentration of ASP2151 at which DNA 
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replication of HSV-1 was almost completely inhibited was 0.1 μmol/L (Figure 2A), indicating a 

striking agreement between the inhibitory effect of ASP2151 on viral DNA replication and its 

antiviral effect as shown by the EC90 values of ASP2151 for HSV-1 using PRA (Table 2). These 

data suggest that the anti-HSV-1 activity of ASP2151 results from inhibition of the 

helicase-primase complex. 

Thiazole urea- and 2 amino-thiazolylphenyl-type HPIs have been reported to possess 

comparable antiviral potency against HSV-1 and HSV-2 [Crute et al., 2002; Kleymann et al., 2002; 

Spector et al., 1998]. Indeed, PRA results demonstrated that BILS 179 BS and BAY 57-1293 had 

similar potency against HSV-1 and HSV-2 (Table 2). Of particular interest, in addition to its activity 

with regard to HSV-1 and HSV-2, ASP2151 demonstrated potent antiviral activity against VZV as 

well. The anti-VZV activity of ASP2151 was evaluated in VZV DNA quantification and PRA using 

not only laboratory-stocked strains but also several clinical isolates. In the PRA, the anti-VZV EC50 

values for strains tested ranged from 0.038 to 0.10 μmol/L for ASP2151 compared with 

1.3–5.9 μmol/L for ACV (Table 2). These PRA findings indicate that ASP2151 exerted more potent 

anti-VZV activity than did acyclovir in PRA, and this activity was also demonstrated in VZV-DNA 

quantification using real-time PCR. It is known that particular series of thymidine analogs like 

sorivudine possesses extremely potent in vitro anti-VZV activity to ACV and showed clinical 

efficacy more potent to ACV in herpes zoster patients [Gnann et al., 1998]. No helicase-primase 

inhibitor, however, has been reported to show anti-VZV activity so far. To our knowledge, 

ASP2151 is the first helicase-primase inhibitor exerting more potent anti-VZV activity than ACV. 
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As expected, ASP2151 was also active against an ACV-resistant VZV mutant (Table 3). Given that 

current nucleoside analog drugs, such as ACV and penciclovir, depend on viral TK for 

phosphorylation to an active form, drug-resistant mutants can be developed either through 

TK-negative mutations or reduced TK activity [Field, 2001; Morfin and Thouvenot, 2003]. 

Although the prevalence of ACV-resistant viruses is thought to be limited in immunocompetent 

patients (<1%), it cannot be ruled out that cross-resistant mutants may emerge, especially in 

immunocompromised patients [Field, 2001]. ASP2151 may therefore offer a therapeutic option for 

treating ACV- or penciclovir-resistant virus infections. 

Our in vivo studies using acute oral administration of ASP2151 showed that the course of 

disease progression for HSV-1 was ameliorated by ASP2151 in a dose-dependent manner and that 

cutaneous lesions and the mortality on day 17 post-infection due to HSV-1 infection were 

significantly improved. Since VZV is hard to infect to and replicate in animals, no conventional 

animal model has yet been developed to evaluate anti-VZV efficacy in vivo. In the present study, 

we assessed in vivo antiviral activity of ASP2151 using an HSV-1 zosteriform-spread model in 

mice to mimic zoster infections. In the present study, ASP2151 demonstrated 14-fold potent 

anti-HSV activity to valaciclovir in the model (Figure 3). Because ASP2151 showed equipotent 

antiviral activity against HSV-1 and VZV in vitro, the present in vivo data suggest the therapeutic 

potential of ASP2151 against VZV infections. Importantly, ASP2151 was well tolerated and 

revealed no obvious safety concerns in the 5-day experiment of dosing up to 30 mg/kg twice daily 

in mice. Furthermore, no safety issues were apparent in toxicology assessments in mice that 
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received ASP2151 for 4 weeks up to 500 mg/kg. The safety profile of ASP2151 may be explained 

at least partly by the high selectivity index (Table 2 and Table 3). Nevertheless, it is necessary to 

conduct further evaluations in terms of the tolerability, safety, and pharmacology profile of 

ASP2151 in preclinical and clinical studies before properly appraising this new anti-HSV and 

-VZV candidate. 

 

Chapter 3 Characterization of Herpes Simplex Virus Type 1, 2, and Varicella-zoster 

Virus Strains Resistant to ASP2151 

3.1. Introduction 

Synthetic nucleoside analogs such as acyclovir (ACV), penciclovir (PCV), valaciclovir 

(VACV), and famciclovir targeting viral DNA polymerase have been utilized as the gold standard 

therapy against HSV and VZV infections since the late 1970s in clinical settings. However, these 

analogs share the same mechanism of action, requiring phosphorylation by viral thymidine kinase 

(TK) and host kinases. After triphosphorylation of nucleoside analogs, these analogs interfere with 

viral DNA polymerization through competitive inhibition with guanosine triphosphate and 

obligatory chain termination [Biron and Elion, 1980; Elion, 1993; Elion et al., 1977; Miller and 

Miller, 1980; Miller and Miller, 1982]. As viral TK is not essential for viral replication, HSV and 

VZV lacking a functional TK (TK-deficient or TK-altered viruses) are still viable and therefore are 

imbued with cross-resistance to the nucleoside analog drug class [Coen and Schaffer, 1980; Larder 

and Darby, 1986; Piret and Boivin, 2011]. 
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Helicase-primase inhibitors (HPIs) could supplement the currently available therapies [Field 

and Biswas, 2011; Kleymann, 2004]. ASP2151 (amenamevir) is an HPI with an oxadiazolephenyl 

moiety that possesses antiviral activity against not only HSV-1 and HSV-2 but also VZV, differing 

from previously reported HPIs (BAY 57-1293 [Kleymann et al., 2002] and BILS 179 BS [Crute et 

al., 2002]), which inhibit HSV replication but not VZV, suggesting its application against diseases 

caused by both HSV (genital herpes, herpes labialis, and herpetic keratitis) and VZV infections 

(varicella and herpes zoster) [Levin and Schmader, 2007]. 

Mutants resistant to HSV-specific HPIs BAY 57-1293 and BILS 179 BS were previously 

characterized in terms of prevalence of pre-existing resistance, ability of replication in vitro, and 

pathogenicity in mice [Biswas et al., 2009; Crute et al., 2002; Levin and Schmader, 2007; Sukla, 

Biswas, Birkmann, Lischka, Ruebsamen-Schaeff, et al., 2010; Sukla, Biswas, Birkmann, Lischka, 

Zimmermann, et al., 2010]. However, few studies have been conducted to characterize 

ASP2151-resistant HSV and VZV mutants. 

Here, to analyze the effect of amino acid mutations in helicase and primase on in vitro and in 

vivo growth characteristics, we characterized the ASP2151-resistant HSV-1, HSV-2, and VZV 

variants or mutants based on findings for sequencing analysis, growth, pathogenicity, and 

susceptibility testing. 

 



 

Page 31 of 108 

3.2. Materials and Methods 

3.2.1. Ethics Statement 

All animals were housed and handled according to Astellas Pharma Inc.'s Institutional Animal 

Care and Use Committee guidelines and the Animal Ethical Committee guidelines of Yamanouchi 

Pharmaceutical Co., Ltd., which is now known as Astellas Pharma Inc. 

 

3.2.2. Compounds 

ASP2151 (molecular weight, 482.55; international non-proprietary name, amenamevir) was 

synthesized at Astellas Pharma Inc. (Tokyo, Japan). Acyclovir (ACV), vidarabine (araA), and 

idoxuridine (IDU) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Penciclovir (PCV) 

was purchased from LKT Laboratories Inc. (St. Paul, MN, USA). 

 

3.2.3. Viruses and Cell Lines 

HSV-1 strains (KOS, A4-3, and WT-51), HSV-2 strains (G, Lyon, and Kondo), and human 

embryonic fibroblast (HEF) cells were provided by Rational Drug Design Laboratories (Fukushima, 

Japan). HSV-1 US clinical isolates CI-25 and CI-116 and HSV-2 US clinical isolate CI-5243 were 

kindly provided by Dr. Sawtell from Cincinnati Children's Hospital Medical Center (Cincinnati, 

OH, USA). HSV-2 MS strain and Vero cells (derived from African green monkey kidney cells) 

were purchased from American Type Culture Collection (Manassas, VA, USA). The cells were 

grown in growth medium consisting of Eagle's minimum essential medium (Sigma-Aldrich, St. 
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Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS; Nichirei Biosciences, Tokyo, 

Japan), 100 U/mL penicillin G, and 100 mg/mL streptomycin (Invitrogen, Carlsbad, CA, USA). 

Maintenance medium containing 2% FBS was used for infection and propagation of viruses. 

HSV-1 and HSV-2 strains were propagated using HEF cells in maintenance medium. 

 

3.2.4. Selection of ASP2151-resistant Mutants of HSV-1, HSV-2, and VZV 

ASP2151-resistant mutants of HSV-1 or HSV-2 were derived from KOS- or Lyon-infected 

HEF cells through serial passages in the presence of ASP2151. ASP2151-resistant HSV-1 mutants 

were selected by 14 serial passages of supernatant of parent HSV-1 strain KOS starting from a 

single stock clone in the presence of stepwise increasing concentrations of ASP2151 from 0.1 to 

160 μmol/L. ASP2151-resistant HSV-2 mutants were selected by three serial passages of stepwise 

increasing concentrations of ASP2151 from 1.0 to 10 μmol/L. The cell-free ASP2151-resistant 

mutants of HSV-1 and HSV-2 stock, respectively, designated as K2151rm and L2151rm, were 

stored at -80 °C. 

ASP2151-resistant VZV mutant, “C2151rm”, was selected by serial passage of VZV strain 

CaQu using HEF cells in the presence of stepwise-increasing concentrations of ASP2151 from 0.1 

to 60 μmol/L. In brief, monolayered HEF cells in a 25 cm2 flask were initially infected with 

cell-free VZV stock of parental strain CaQu and cultured in the presence of EC50 concentration of 

ASP2151 (0.1 μmol/L) until cytopathic effects were visible. After cells were harvested, 10% of the 

collected cells were then dispersed on fresh monolayered HEF cells as cell-associated VZV source 
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and incubated in the presence of 1-, 2-, or 4-times concentration of ASP2151 than previously used. 

After 4 to 6 days incubation, the cells from the flask, in which cytopathic effects were evident for 

over 50% of cells, were used as viral source for next passage. The procedure was continued until 

ASP2151 concentration reached at 60 μmol/L (600 times EC50 value). After the ASP2151 

concentration reached at 60 μmol/L, virus passage was repeated 5 times in the presence of 

60 μmol/L ASP2151 to avoid a contamination. Total number of passages and total period of the 

process were 16 and 72 days, respectively. Then cell-free VZV stock, designated as C2151rm, was 

prepared according to the method described previously [Baba et al., 1984]. 

 

3.2.5. Plaque-purified ASP2151-resistant HSV Mutants 

Plaque-purified ASP2151-resistant HSV-1 and HSV-2 mutants were obtained via single 

plaque purification from K2151rm and L2151rm, respectively, using HEF cells in 24-well plates. To 

prepare the plaque-purified stocks, a single plaque was picked up from one of the plaques of 

K2151rm or L2151rm present in infected HEF cells using a micropipette under a microscope 

(repeated three times). Large-volume stocks isolated from the third passage were then prepared in 

ASP2151-free medium by infecting HEF cells in a 75-cm2 tissue culture flask. 

 

3.2.6. Sequencing Analyses 

DNA regions, including the full-length open reading frame of the helicase (UL5) and primase 

(UL52) genes of HSV-1 and HSV-2, were amplified via polymerase chain reaction (PCR) using the 
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corresponding primer sets (Life Technologies, Carlsbad, CA, USA) (HSV-1 UL5, 

5'-ATCTCGCGGAACAGCATCGT-3' and 5'-GCTATACGCGATGGTCGTCTGT-3'; HSV-2 UL5, 

5'-AGGAGAATCTCGCGGAACA-3' and 5'-TGACCCAGGAGTCAAAGGG-3'; HSV-1 UL52, 

5'-GGATCATCTCATATTGTTCCTC-3' and 5'-GAAACAATAGGGTCTGGTTC-3'; HSV-2 UL52, 

5'-TGTCGTCCAGCGACTCTAGG-3' and 5'-CCAGAAACAACAGCGTCTGGT-3') and viral 

DNA extracted from cell-free ASP2151-resistant HSVs mutant stocks and the parent strain using 

TE-saturated phenol (Wako Pure Chemical Industries, Osaka, Japan) and chloroform (Kanto 

Chemical, Tokyo, Japan) extraction methods. In a similar way, DNA regions, including the 

full-length open reading frame of the helicase (ORF55) and primase (ORF6) genes of VZV, were 

amplified via PCR by using the corresponding primer sets (ORF55; 

5′-TGGTCATTTGGGTTACTTCCA-3′ and 5′-AGTGAAGAACCCGCCTAAC-3′, ORF6; 5′- 

CAGCGGTTAAAGCCTCTTG-3′ and 5′- CGGTCCACCATTAATCACC-3′) and viral DNAs 

extracted from cell-free stock of the C2151rm and its parent CaQu. Each PCR product was used as 

a template for direct sequencing (BigDye® Terminator v3.1 Cycle Sequencing kit; Applied 

Biosystems). Amino acid substitutions were analyzed using GENETYX® software (version 8.1.0; 

Genetyx, Tokyo, Japan). 

 

3.2.7. Plaque Reduction Assay 

Vero cells were seeded into 48-well cell culture plates and incubated until the cells formed a 

confluent monolayer. After the medium was removed, the cells were infected with HSV-1 and 
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HSV-2 strains at approximately 40 plaque-forming units (pfu)/well in maintenance medium 

followed by centrifugation at 2,000 rpm for 20 min at room temperature. After incubation for 

approximately 1 h at 37 °C, cells were washed twice with maintenance medium and treated with 

the test compound in maintenance medium containing 0.8% methylcellulose (Dow Chemical 

Company, Midland, MI, USA) until plaques appeared under a microscope. After fixing cells with 

10% formalin in phosphate-buffered saline (Wako Pure Chemical Industries) and staining them 

with 0.02% crystal violet solution (Wako Pure Chemical Industries), the number of plaques was 

counted under a microscope. 

 

3.2.8. One-step Growth Experiment 

One-step growth of ASP2151-resistant mutants of HSV-1 or HSV-2 K2151rm and 

L2151rm8#C1 was compared with that of the respective parental wild-type virus strains KOS and 

Lyon. Vero cells were infected at a multiplicity of infection (MOI) of 1 pfu/cell and incubated at 

37 °C for 26 h post-infection (pi). Infected cells and supernatant were collected at 0, 3, 6, 8, 10, 15, 

and 26 h pi and simultaneously harvested from 2 separate wells at each collection-time point, 

stored at -80 °C, and then thawed for virus titration via a plaque assay on Vero cells in 48-well 

plates. 

 

3.2.9. Multi-step Growth Experiment of HSV-1 and HSV-2 

Vero cells were seeded into a 75-cm2 culture flask at 4 × 106 cells/flask with 40 mL growth 
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medium and incubated at 37 °C in a humidified atmosphere with 5% CO2 until the cells formed a 

confluent monolayer. After medium was removed, the cells were inoculated with maintenance 

medium containing HSV-1 strains (KOS or K2151rm) or HSV-2 strains (Lyon or L2151rm8#C1) at 

1.0 × 104 pfu/flask. Cells were incubated at 37 °C for 2 h, followed by 3 washes with maintenance 

medium (defined as 0 h pi) and incubation for 8 or 6 days with 50 mL/flask of maintenance 

medium for HSV-1 or HSV-2, respectively. Supernatant (200 μL) was collected every 12 h for 5 

days and then every 24 h for 3 days for HSV-1 strains or at 4, 12, 20, 32, 48, 72, 96, and 144 h after 

inoculation for HSV-2 strains. All collected supernatants were stored at -80 °C until titration. Virus 

titers in the supernatant at each collection time point were titrated via plaque assay on Vero cells in 

48-well plates. The titration assay was performed in duplicate using 200 μL of supernatant after 

serial 10-fold dilution (10- to 108-fold). The lower limit of detection in this assay was 25 pfu/mL 

when the mean number of plaques in the samples diluted 10-fold in duplicate was 0 or 0.5. 

 

3.2.10. Replication Profile Analysis of ASP2151-resistant VZV Mutant 

Replication kinetics of wild type VZV (CaQu) strain and ASP2151-resistant VZV mutant 

(C2151rm) was analyzed by a conventional infectious center assay consisted of infecting HEF cells 

with 50 pfu of cells infected with C2151rm or CaQu that were seeded in 24-well tissue culture 

plates. After indicating hours post-inoculation, two wells of cells were collected and dispersed with 

serial dilution on fresh HEF cells for titration of infectious cell number. Since C2151rm needs 

longer incubation time than CaQu to form visible plaque, the cells for titration were then incubated 
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for 3 days or 5 days to count plaques of CaQu or C2151rm, respectively. 

 

3.2.11. In Vivo Pathogenicity Test of ASP2151-resistant HSV-1 Mutants 

Hairless mice (HOS:HR-1, female, aged 7 weeks at infection; Japan SLC, Shizuoka, Japan) 

under anesthesia were inoculated with 15 μL of virus suspension containing 5.25 × 107 pfu/mL of 

HSV-1 K2151rm or KOS parent strain on a strip of dorsolateral skin, where a grid-like pattern had 

been scratched using a needle before inoculation. Disease course was observed daily for 18 days 

and scored on a 0 to 7 composite scale based on the severity of zosteriform lesions and clinical 

symptoms according to the following criteria: 0, no sign of infection; 1, localized, barely 

perceptible small vesicles or crust; 2, a few vesicles or spreading crust; 3, large patches of vesicles 

or crust; 4, zosteriform vesicles or crust; 5, large patches of ulcers; 6, large, severe zosteriform 

ulcers; 7, hind limb paralysis or death. Lesions and neurological scores for each animal were 

combined to produce a composite score. 

 

3.2.12. Detection Frequency of ASP2151- or ACV-resistant Variants 

Vero cells were seeded into 6-well tissue culture plates at 6 × 105 cells/well and incubated at 

37 °C in a humidified atmosphere with 5% CO2 until the cells formed a monolayer. After the 

growth medium was removed, Vero cells were infected with HSV-1 strain KOS or HSV-2 strains G, 

Lyon, or Kondo in maintenance medium and then centrifuged at 2,000 rpm for 20 min at room 

temperature. After incubation for 1 to 2 h at 37 °C, the cells were washed with maintenance 
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medium and then incubated for 7 days in maintenance medium containing 0.8% methyl cellulose 

and a specified concentration of ASP2151 or ACV. 

We defined HSV variants resistant to ASP2151 or ACV as those viruses able to replicate in 

the presence of those compounds. Concentrations of ASP2151 and ACV used were 20 times the 

50% effective concentration (EC50) values as determined in advance by a plaque reduction assay in 

Vero cells (Table 7). The cells were fixed with 10% formalin in phosphate-buffered saline and then 

stained with 0.02% crystal violet. Numbers of plaques formed by infection with 

compound-resistant variants were counted, and the frequency of ASP2151-resistant HSV variants 

was determined via plaque assay as the ratio of the number of plaques formed by variants plaques 

in the presence of a compound to the total number of plaques formed in infected cells under 

no-compound conditions. Frequency of compound-resistant HSV variants was then calculated 

using the formula: Frequency of compound-resistant variants = (Number of plaques formed in the 

presence of a compound) / (Total plaques formed under no-compound conditions) 

 

3.2.13. Emergence of drug-resistant HSV Mutants under Long-term Treatment of ASP2151 and ACV 

Vero cells were seeded into 75-cm2 culture flasks at 4 × 106 cells/flask and then incubated at 

37 °C in a humidified atmosphere with 5% CO2 until a confluent monolayer was formed. After 

removal of the culture medium, the cells were infected with HSV-1 or HSV-2 strains at an MOI of 

0.01 pfu/cell (0 h pi). After incubation at 37 °C for 2 to 3 h, the cells were washed with 

maintenance medium and incubated for 7 days in the presence of a test compound or vehicle (0.1% 
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dimethylsulfoxide; Sigma-Aldrich) in maintenance medium (40 mL/flask). The concentrations of 

ASP2151 and ACV used in the study were set at 20 times the EC50 value previously reported for 

each strain and almost completely inhibited the virus growth, efficacy much greater than that 

achieved with the 90% effective concentration for each strain (Table 6). Supernatants were 

harvested at 8, 24, 48, 72, 96, 120, 144, and 168 h pi with a volume of 200 μL each. Virus titer in 

the supernatants was determined using a plaque assay in Vero cells. 

 

3.2.14. Statistical Analyses 

Statistical analyses were performed using SAS software (SAS Institute, Cary, NC, USA). The 

EC50 values for plaque reduction assay were calculated using non-linear regression analysis with a 

sigmoid-Emax model. In determining the frequency of compound-resistant variants, results were 

analyzed using Student's t-test for comparison between ASP2151-resistant HSVs variants and 

ACV-resistant HSVs variants in four strains, and P < 0.05 was considered statistically significant. 

 

3.3. Results 

3.3.1. Sequencing analysis and Susceptibility Test in ASP2151-resistant Mutants of HSV-1 

K2151rm and HSV-2 L2151rm 

DNA sequence analyses identified several single-base-pair substitutions that resulted in 

amino acid changes in helicase and primase of ASP2151-resistant mutants from parental HSV-1 

and HSV-2 strains (Table 4 and Figure 4). The UL5 helicase gene of HSV-1 K2151rm and its 
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plaque-purified isolates contained substitutions from the parent KOS strain at nucleotide 1055 to 

generate G352V (G-to-T in the second base pair of parental 352nd. glycine to valine) and nucleotide 

1065 to generate M355I (G-to-A in the third base pair of the 355th methionine to isoleucine) (Figure 

4). The UL52 primase gene of HSV-1 K2151rm and its single plaque isolates contained a 

substitution at nucleotide 1090 to create S364G (A-to-G in the first base pair of the 364th serine to 

glycine). A mixed base-pair signal (A or G) was also found at nucleotide 1100 in the UL52 primase 

gene of K2151rm, wherein the second base pair of the 367th arginine codon was substituted with 

histidine or arginine. The R367H substitution was evident in K2151rm single plaque isolates 

K2151rm#B9 and K2151rm#H10 but not in K2151rm#D9 or K2151rm#G11 (Table 4 and Figure 5).  

In the ASP2151-resistant HSV-2 mutant L2151rm#C1, DNA sequence analyses identified two 

single-base-pair substitutions that resulted in amino acid changes in the helicase gene but not the 

primase gene, distinct from the HSV-2 parental strain Lyon (Table 4 and Figure 4). The UL5 

helicase gene of L2151rm#C1 contained substitutions from the parent strain at nucleotide 1065 to 

generate K355N (G-to-T in the third base pair of parental 356th lysine to asparagine) (Figure 4) and 

nucleotide 1352 to generate K451R (A-to-G in the second base pair of the 451st lysine to arginine). 

 

3.3.2. Sequencing Analyses of the ASP2151-resistant VZV Mutant 

To confirm that the anti-VZV activity of ASP2151 was due to targeting of the VZV 

helicase-primase complex, we isolated the VZV strain CaQu-derived mutant “C2151rm”, which is 

capable of replicating in the presence of ASP2151 at higher concentrations up to 60 μmol/L. 
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Sequencing analysis of ORF55 (helicase gene) and ORF6 (primase gene) of C2151rm indicated 

three amino acid changes from the parent strain. Substitution of Asn-336 to Lys (N336K) was 

found in helicase motif IV, one of the six well-conserved sequence motifs in ORF55 (Figure 4). The 

other substitutions were Arg-446 to His (R446H) in ORF55, and Asn-939 to Asp (N939D) in 

ORF6. 

 

3.3.3. Susceptibility of ASP2151-resistant Mutants of HSV-1 and HSV-2 to ASP2151 

We conducted a plaque reduction assay to compare susceptibility to ASP2151 between the 

ASP2151-resistant mutants of HSV-1 and HSV-2 and to examine whether or not substitution of 

R367H in the HSV-1 UL52 primase affects susceptibility of mutant strains to ASP2151. 

ASP2151-resistant mutants of both HSV-1 and HSV-2 showed less susceptibility to ASP2151 than 

either parent strain (Table 4). Mean EC50 values against K2151rm#D9 and K2151rm#G11, which 

possessed the S364G substitution in UL52, were 19.6 and 28.2 μmol/L, respectively. In addition, 

the ASP2151-resistant mutants K2151rm#B9 and K2151rm#H10, with both the R367H and S364G 

substitutions in UL52 were much less susceptible to ASP2151 than mutants with only the S364G 

substitution in UL52 (105.4 and 118.0 μmol/L, respectively).  

 

3.3.4. Growth of ASP2151-resistant Mutants in One-step Growth Experiment 

Growth rates of wild-type virus and ASP2151-resistant mutants were compared in a one-step 

growth experiment (Figure 6). In the experiments with ASP2151-resistant HSV-1 mutants, 
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K2151rm showed attenuated growth in Vero cells compared with its parental strain and exhibited 

relatively low titers through the exponential phase of growth (6-10 h pi), reaching a value 

3.12 log10 (pfu/mL) lower than that of the parental strain at the final sampling point (26 h pi) 

(Figure 6A). Although the ASP2151-resistant HSV-2 mutant L2151rm8#C1 showed a growth curve 

almost identical to its parental strain in the rapid growth phase (6-10 h pi), its titer was 

1.31 log10 (pfu/mL) lower than that of its parental strain in the plateau phase (Figure 6B). 

 

3.3.5. Multi-step Growth Experiment 

A one-step growth experiment can usually be done at high MOI given the time course of 

virus replication and the virus yield per cell for a single cycle of infection. While the time from 

infection to plateau does not accurately reflect the time required for a single cycle of infection at 

low MOI, growth experiments conducted at relatively low MOI are useful for measuring both 

growth and spread of a virus in culture. 

Multi-step growth ability of ASP2151-resistant K2151rm or L2151rm mutants was examined 

and compared with that of parental strains using Vero cells. Figure 7 shows the time course of the 

virus titer during the experimental period. In the titration assay of supernatants for HSV-1, the 

viruses were initially detected above the limit of detection level at 24 and 36 h pi for KOS and 

K2151rm, respectively, with respective maximum titers of 7.03 and 5.84 log10 (pfu/mL). The virus 

titers of plaque-purified L2151rm strains were lower than those of the parental strain at all sampling 

points. The titer of HSV-2 strain Lyon was 6.11 log10 (pfu/mL) at 144 h pi, whereas those of 
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L2151rm8#C1, L2151rm8#C2, L2151rm10#B1, and L2151rm10#B3 were 4.48, 4.52, 4.54, and 4.47, 

respectively. 

Replication profile of ASP2151-resistant VZV C2151rm in comparison with parent strain 

CaQu. Replication kinetics was analysed by a conventional infectious centre assay consisted of 

infecting HEF cells with 50 pfu of cells infected with C2151rm or CaQu that were seeded in 

24-well tissue culture plates. After indicating hours post-inoculation, two wells of cells were 

collected and dispersed with serial dilution on fresh HEF cells for titration of infectious cell number. 

Since C2151rm needs longer incubation time than CaQu to form visible plaque, the cells for 

titration were then incubated for 3 days or 5 days to count plaques of CaQu or C2151rm, 

respectively. Of particular note is the fact that C2151rm shows marked defect in viral replication 

profile (Figure 8).  

 

3.3.6. Pathogenicity of ASP2151-resistant HSV-1 Mutants 

To examine whether or not the pathogenicity of K2151rm differs from its parent strain in vivo, 

hairless mice were infected with equal titers of K2151rm or KOS. Mean disease score for each 

group was plotted versus time post-infection (Figure 9). While no symptoms were observed during 

the experimental period in the K2151rm-infected group, 8 of 10 animals receiving the KOS parent 

strain developed cutaneous lesions, with 4 of the 8 symptomatic animals dying. The result indicates 

that the ASP2151-resistant HSV-1 mutant K2151rm have attenuated pathogenicity compared to the 

parent strain in hairless mice. 
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3.3.7. Activities of Existing Antivirals against ASP2151-resistant HSV-1 Mutants 

Antiviral activities of ASP2151, ACV, PCV, araA, and IDU against KOS and K2151rm strains 

were examined using the plaque reduction method. Mean EC50 values and 95% confidence 

intervals are summarized in Table 7. K2151rm used in this study showed approximately 770-fold 

less susceptibility to ASP2151 than its parent strain, based on the difference in EC50 value. In 

contrast, mean EC50 values of existing antiviral drugs against KOS and K2151rm strains were 0.31 

and 0.28 μmol/L for ACV, 1.0 and 1.0 μmol/L for PCV, 9.9 and 11 μmol/L for araA, and 0.40 and 

0.44 μmol/L for IDU, respectively, and 95% confidence intervals of those mean values against 

K2151rm and KOS were extremely similar. 

 

3.3.8. Frequency of ASP2151-resistant Variants of HSV-1 or HSV-2 

We determined the frequency of naturally existing ASP2151-resistant variants in stocks of 

wild-type HSV-1 strain KOS or HSV-2 strains G, Lyon, and Kondo in comparison with that of 

ACV-resistant variants. The frequencies of the compound-resistant variants are shown in Table 8. 

The ASP2151-resistant HSV variants in all tested strains were significantly less frequent in virus 

stocks than ACV-resistant HSV variants from 8.77 × 10-7 to 1.04 × 10-6 (P = 0.0002). The fold 

frequency between ASP2151- and ACV-resistant HSV variants was 1389 (geometric mean value of 

all tested strains), indicating that the frequency of pre-existing ASP2151-resistant HSV variants 

was lower than that of ACV-resistant ones. 
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3.3.9. Emergence of ASP2151-resistant HSV Mutants In Vitro 

Increases in the HSV-1 or HSV-2 titers in vehicle-treated samples were suppressed for a 

longer duration when treated with ASP2151 than with ACV (Figure 10). Treatment with ASP2151 

held the viral titers of seven of eight strains tested at or under the detection limit during the 

experimental period. Although the viral titers of HSV-1 strain CI-25 treated with ASP2151 

increased after 120 h pi, the level was approximately 3 log less than that noted in vehicle-treated 

cells at 168 h pi. In contrast, the titers of all strains treated with ACV increased at or after 48 h pi, 

and the yields of seven of eight strains reached a level comparable to that for vehicle treatment at 

168 h pi. 

The susceptibility test conducted using HSV-1 and HSV-2 in the supernatants of each strain 

obtained at 168 h pi revealed that the EC50 values of ACV against ACV-treated HSV strains were 

higher than values against the vehicle-treated strain. The EC50 values (μmol/L) of ACV against 

ACV- and vehicle-treated HSV-1 stains were 61 and 1.3 for KOS, 29 and 2.1 for WT51, 43 and 

0.93 for CI-25, and 12 and 0.89 for CI-116, respectively, while values against ACV- and 

vehicle-treated HSV-2 strains were 180 and 5.6 for G, >200 and 4.1 for Lyon, 170 and 3.6 for 

Kondo, and >200 and 1.0 for CI-5243, respectively. ASP2151-treated HSV-1 strain CI-25 had an 

ASP2151 EC50 value approximately six times that for the vehicle. However, ACV-treatment 

resulted in no obvious changes in susceptibility to ASP2151. 
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3.4. Discussion 

Sequencing analyses revealed several single-base-pair substitutions resulting in amino acid 

changes in helicase and primase of the ASP2151-resistant HSV mutants. Amino acid alterations in 

the helicase subunit were clustered near helicase motif IV in the UL5 helicase gene of both HSV-1 

and HSV-2, while the primase subunit substitution associated with reduced susceptibility was found 

only in ASP2151-resistant HSV-1 mutants. Interestingly, we found that R367H with S364G 

substitution in the UL52 primase gene (double mutation) enhanced resistance to ASP2151 

compared with S364G substitution alone (single mutation). ASP2151-resistant HSV mutants 

showed attenuated growth in tissue culture compared to the parent strains in both single- and 

multi-step growth experiments. In addition, ASP2151-resistant HSV-1 mutant K2151rm had 

attenuated pathogenicity compared to the parent strain in vivo. Further, ASP2151-resistant HSV-1 

mutant K2151rm was susceptible to nucleoside analog antivirals tested in this study. Taken together, 

results from the present study suggest that mutations in the helicase-primase complex found in 

ASP2151-resistant HSV mutants reduce viruses' growth capability and pathogenicity but left them 

with susceptibility to existing antiherpetic agents similar to that of parent and wild-type viruses. 

Sequence analyses of UL5 helicase and UL52 primase genes of ASP2151-resistant HSV 

mutants K2151rm and L2151rm have helped to characterize ASP2151-resistant HSV mutants. 

Amino acid changes in the primase of K2151rm single plaque-purified isolates were found at 

S364G, with or without similar changes at R367H. Results of susceptibility tests (Table 4) indicated 

that the R367H substitution in UL52 primase contributes to HSV-1 acquiring ASP2151-resistance, 



 

Page 47 of 108 

suggesting that ASP2151 might interact with not only helicase but also primase in the HSV-1 

helicase-primase complex. 

The amino acid sequence of the helicase and primase between HSV-1 and HSV-2 are highly 

homologous (89% and 82%, respectively). Moreover, the amino acid sequence of helicase motif IV 

and its adjacent regions are identical between HSV-1 and HSV-2 (Figure 4). The helicase motif IV 

is one of the six helicase motifs that form the functional active site; these motifs are known to be 

essential for the activity of the HSV-1 helicase-primase complex [Biswas, Kleymann, et al., 2008; 

Biswas, Tiley, et al., 2008; Field and Darby, 1980; Sukla, Biswas, Birkmann, Lischka, 

Ruebsamen-Schaeff, et al., 2010]. It has been reported that amino acid mutations were identified at 

the region close to the helicase motif IV in HSV-1 mutants resistant to BILS 179 BS and BAY 

57-1293 (Figure 4), suggesting the presence of a putative binding region of HPIs to the 

helicase-primase complex. In analyses of ASP2151-resistant HSV-1 and HSV-2 mutants selected by 

serial passage in the presence of ASP2151, amino acid mutations were noted at sites close to the 

helicase motif IV, and the ASP2151-resistant HSV also showed relatively low susceptibility to 

BILS 179BS and BAY 57-1293. Thus, it is reasonable to speculate that ASP2151 and other HPIs 

may target, at least in part, an indistinguishable binding site structurally close to the helicase motif 

IV accounting for the equipotent antiviral effects against HSV-1 and HSV-2. 

Considering the physiochemical properties of individual amino acid residues, S364G 

substitution of UL52 in K2151rm mutants is believed to cause a physiochemical change from an 

uncharged polar to a nonpolar residue at the substitution point. Similarly, K355N substitution of 
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UL5 in the L2151rm mutant is believed to induce a physiochemical change from a basic side chain 

to an uncharged polar side chain. These physiochemical changes may be the reason for the failed 

interaction between ASP2151 and helicase-primase complex resulting in emergence of 

ASP2151-resistant HSV mutants. In addition, while other amino acid substitutions in 

ASP2151-resistant mutants (G352V and M355I in UL5 of HSV-1, nonpolar to nonpolar; R367H in 

UL52 of HSV-1, basic to basic; K451R in UL5 of HSV-2, basic to basic) do not evoke marked 

changes in physiochemical property, these substitutions may induce conformational changes in the 

helicase-primase complex, thereby reducing the interaction between ASP2151 and the 

helicase-primase complex. However, conformational interactions between ASP2151 and the 

helicase-primase complex remain to be elucidated, and X-ray structural analysis and enzymatic 

activity analysis may reveal the mechanism of ASP2151 action. 

Drug-enzyme interaction between the HSV helicase-primase complex and ASP2151 with 

respect to involvement of amino acid residues of UL5 and UL52 remain unclear. While the effect of 

amino acid substitutions in the UL5 of BAY 57-1293-resistant mutants on the growth of HSV-1 in 

tissue culture and pathogenicity in a mouse model of skin infection has been investigated [Biswas 

et al., 2007; Biswas et al., 2009; Biswas, Tiley, et al., 2008; Sukla, Biswas, Birkmann, Lischka, 

Ruebsamen-Schaeff, et al., 2010], the effects of amino acid substitution in UL52 of these mutants 

have not been well elucidated. Biswas et al. previously suggested that BAY 57-1293 may interact 

with both the helicase and primase subunits of the helicase-primase complex in HSV-1 [Biswas, 

Kleymann, et al., 2008] but provided no concrete data of resistant amino acid substitutions in UL52 
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directly related to reduced susceptibility over that of wild type strains. Our present findings showed 

that positional differences of resistant substitution in UL52 existed between BAY 57-1293- and 

ASP2151-resistant HSV-1 mutants, suggesting that these two HPIs might interact differently with 

the helicase-primase complex of HSV-1. Further investigation is needed to elucidate whether or not 

particular drug-resistant HSV mutants show cross-resistance. 

Sequence analysis of the ORF55 helicase and ORF6 primase genes of the ASP2151-resistant 

VZV mutant C2151rm identified amino acid changes from the parent strain at N336K and R446H 

in the helicase gene and at N939D in the primase gene. The C2151rm was prepared as a VZV 

mutant strain by passaging the parent CaQu strain in the presence of stepwise ASP2151 

concentrations from 0.1 μmol/L to 60 μmol/L. C2151rm shows marked defect in viral replication 

profile. As a consequence, we were unable to obtain the C2151rm cell-free viral stocks with 

sufficient viral titre to characterize the mutant for in vitro test. An amino acid substitution in the 

mutant that conferred resistance to ASP2151 was speculated to result in the observed poor growth 

of C2151rm. Recently, Biswas et al. reported that the BAY 57-1293–resistant HSV-1 mutant strain 

BAY-pF-r3 contained a single amino acid substitution of Asn to Lys at position 342 (N342K) 

located in the UL5 helicase motif IV, although substitutions at amino acid positions downstream of 

the helicase motif IV had been found in all HPI-resistant HSVs previously reported [Biswas et al., 

2009]. Interestingly, based on amino acid alignment, the 342nd amino acid position in HSV-1 

corresponds to the 336th position in VZV (Figure 4). The BAY-pF-r3 mutant showed decreased 

growth property in comparison with the wild-type virus. Given the analogy with the BAY-pF-r3 
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mutation, the N336K substitution is also likely to confer resistance to ASP2151 for VZV. In 

addition to the N336K substitution, we found other amino acid changes such as R446H in the 

helicase gene and N939D in the primase gene in the C2151rm, although their importance for 

C2151rm remains to be evaluated. Genomic DNA sequence database of VZV strains revealing that 

amino acid at position 446 in helicase varies between either Arg or His has suggested that R446H 

may be a naturally occurring polymorphism. Interestingly, BAY 57-1293 has been suggested to 

interact with both the HSV helicase-primase subunits, since an amino acid mutation in the primase 

subunit, A899T in UL52, was found in a BAY 57-1293–resistant HSV-1.35 Further analyses of 

mutations in ASP2151-resistant VZV mutants will aid in determining how ASP2151 targets the 

VZV helicase-primase complex. 

Although TK-deficient HSV mutants resistant to ACV exhibit reduced virulence in animal 

models [Field and Darby, 1980], some TK-deficient HSVs cause progressive diseases in humans 

[Shimada et al., 2007], and ACV-resistant pathogenic HSV infections pose a growing problem in 

immunocompromised patients [Erlich et al., 1989], particularly among those receiving bone 

marrow transplantation [Danve-Szatanek et al., 2004; Morfin and Thouvenot, 2003; Saijo et al., 

2002; Stránská et al., 2005]. In a recent study using a mouse model of wild type and TK-deficient 

HSV-2 ear pinna inoculation, ASP2151 showed therapeutic efficacy in mice infected with both 

wild-type and TK-deficient HSV-2 [Himaki et al., 2012]. In both one- and multi-step growth 

experiments and the in vivo pathogenicity test in the present study, we observed attenuated growth 

and pathogenicity in ASP2151-resistant mutants compared with the parent strain, ostensibly due to 
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impairment of enzyme activity in the mutant helicase-primase complex. Even when 

ASP2151-resistant mutants emerged after treatment with a concentration insufficient to inhibit 

virus replication, these mutants showed attenuated growth and pathogenicity lower than or, at most, 

equivalent to that in ASP2151-susceptible strains. Because of the difference in targets between 

ASP2151 and existing antiherpes agents, existing agents will be effective against any potentially 

emerging ASP2151-resistant HSV mutants (Table 7). 

Frequencies of ACV-resistant HSV variants have been reported to range from 7.5 × 10-4 to 

1.5 × 10-3 in both clinical specimens and laboratory stock strains [Shin et al., 2001], and those 

frequencies for ACV-resistant HSV-1 and HSV-2 variants observed in the present study were 

comparable to these published results. TK-deficient HSV mutants resistant to ACV can potentially 

replicate in the presence of ACV, as the TK gene is not essential for virus replication. In contrast, 

because the protein subunits comprising the helicase-primase complex are all essential for 

replication of HSV DNA, HSV mutants deficient in helicase, primase, or cofactor and resistant to 

ASP2151 cannot exist. As such, while HSV variants with reduced susceptibility to ASP2151 might 

emerge, such ASP2151-resistant variants could not grow to occupy the majority in a virus 

population. These hypotheses are supported by the lack of observed elevation in virus titers of 

ASP2151-resistant HSV mutants in seven of eight strains during the test period (Figure 10). 

Although ACV suppressed increases in virus titers compared to the vehicle, the virus titers of all 

HSV strains treated with ACV eventually rose due to the emergence and increased proportion of 

drug-resistant viruses. In contrast, ASP2151 continuously suppressed HSV-1 replication in vitro 
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with a lower risk of emergence of viruses resistant to HSV than to ACV. 

 

Chapter 4 Synergistic Activity of ASP2151 with Acyclovir against Herpes Simplex Virus 

Type 1, 2 and Varicella-zoster Virus 

4.1. Introduction 

In evaluation of multi-drug combination therapy for infectious diseases, determining whether 

or not the therapy is more effective than either monotherapy is of great importance. While 

multi-drug therapy can potentially improve treatment efficacy, it also presents the risks of increased 

harm and resource utilization. Compounding of harms related to pharmacotherapy may be 

particularly pronounced when combining multiple drugs that act in a similar manner. One strategy 

in designing multi-drug combination therapy for increased efficacy is to select agents with different 

mechanisms of action. However, for the treatment of herpesvirus infections caused by herpes 

simplex virus (HSV) type 1 (HSV-1), HSV type 2 (HSV-2) and varicella-zoster virus (VZV), 

limited data are available on multi-drug combination therapy using antiherpes drugs with different 

mechanisms of action. 

Although nucleoside analogs used as standard monotherapy for HSV and VZV share similar 

mechanism of actions, combined antiviral treatment with a drug which has a different mechanism 

of action is expected to show synergistic antiviral activity [Safrin et al., 1994; Suzuki et al., 2006]. 

Indeed, combination administration of ACV and foscarnet showed a subadditive antiviral effect, 

which is less than the calculated additive combination effect but greater than the most effective 
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agent alone, activity against HSV-1 and additive antiviral activity against HSV-2 [Schinazi and 

Nahmias, 1982]. However, this combination of nucleoside analog antiherpes drugs may be difficult 

to administer effectively due to similar toxicity and differences in dose and route of administration 

[Brady and Bernstein, 2004]. 

Helicase-primase inhibitors (HPIs) are antiherpetic agents that may be used to supplement 

currently available antiherpes therapies [Field and Biswas, 2011; Kleymann, 2004]. The 

oxadiazolephenyl derivative ASP2151 (amenamevir) is an HPI with antiviral activity against not 

only HSV-1 and HSV-2 but also VZV, setting it apart from other HPIs reported to date—BAY 

57-1293 [Kleymann et al., 2002] and BILS 179 BS [Crute et al., 2002]—which inhibit only HSV 

replication. Due to promising preclinical profiles on antiviral activity, safety, tolerability and 

pharmacokinetics, ASP2151 was selected as a development candidate and the clinical efficacy of 

ASP2151 has been evaluated in two phase-2 clinical studies for patients with herpes zoster 

(ClinicalTrials.gov Identifier: NCT00487682) and genital herpes [Tyring et al., 2012]. Given its 

different mechanism of action compared with nucleoside analog drugs, ASP2151 is expected to 

exhibit a combination effect with existing nucleoside analog antiherpes drugs against HSVs and 

VZV strains and nucleoside analog drug-resistant mutants, as well as to avoid increased toxicity 

and complication of administration caused by the combination therapy of nucleoside analog drugs. 

However, while combination therapy of ASP2151 with nucleoside analog antiherpes drugs 

may be a promising option in cases of severe disease in which superior antiviral treatments are 

required, such as herpes encephalitis or disseminated HSV and VZV infections in patients with 
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immunosuppression [Tyler, 2004; Whitley and Lakeman, 1995], whether or not such combination 

therapy will have synergistic, additive, or antagonistic effects compared to either drug in 

monotherapy remains unclear. 

Here, to assess the combination therapy of ASP2151 and existing nucleoside analog 

antiherpes drugs, we tested the antiviral activity of ASP2151 combined with ACV and other 

nucleoside analogs, PCV and vidarabine (VDB), in vitro and a combination therapy with ASP2151 

and VACV in a mouse model of zosteriform spread. 

 

4.2. Materials and Methods 

4.2.1. Ethics Statement 

All animals were housed and handled in accordance with the Animal Ethical Committee 

guidelines of Yamanouchi Pharmaceutical Co., Ltd., which is now known as Astellas Pharma Inc., 

and the Astellas Pharma’s Institutional Animal Care and Use Committee guidelines. 

 

4.2.2. Antiviral Compounds 

ASP2151 (molecular weight, 482.55; international non-proprietary name, amenamevir) was 

synthesized by Astellas Pharma Inc. (Tokyo, Japan). ACV (Sigma-Aldrich, St. Louis, MO, USA), 

PCV (LKT Laboratories, St. Paul, MN, USA), VDB (Sigma-Aldrich, St. Louis, MO, USA), and 

VACV as Valtrex® film tablets (GlaxoSmithKline, Middlesex, UK) were purchased from 

commercial suppliers. 
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4.2.3. Cells and Viruses 

Two HSV-2 strains, "Genital isolate" and "Whitlow 2," were isolated from genital ulcer and 

recurrent whitlow clinical specimens, respectively [Shimada et al., 2007]. Five ACV-resistant VZV 

mutants (TK-deficient mutant, A2, A3, A7, and A8) were isolated in the presence of increasing 

concentrations of ACV (20, 50, or 100 µmol/L) by 3 passages at each concentration until the 

appearance of cytopathic effect (CPE) following plaque purification twice in the presence of 

100 µmol/L of ACV. 

A2, A3, A7, and A8 (ACV-resistant DNA polymerase mutants of VZV) are divided into two 

phenotype groups of resistance against other antiherpes drugs. A2 and A3 are both foscarnet- and 

VDB-resistant mutants, while A7 and A8 are both foscarnet- and VDB-hypersensitive mutants 

[Kamiyama et al., 2001; Shiraki et al., 1983]. HSV-1 strains, KOS, A4-3, and WT-51, and human 

embryonic fibroblast (HEF) cells were provided by Rational Drug Design Laboratories (Fukushima, 

Japan). HSV-2 MS strain (ATCC number: VR-540), VZV Ellen strain (ATCC number: VR-1367), 

Vero cells derived from African green monkey kidney (ATCC number: CCL-81), and MRC-5 cells 

derived from human embryonic lung fibroblast (ATCC number: CCL-171) were purchased from 

American Type Culture Collection (Manassas, VA, USA). HEF, Vero, and MRC-5 cells were grown 

in Eagle’s minimum essential medium supplemented with 10% fetal bovine serum (FBS), 

100 U/mL penicillin G, and 100 mg/mL streptomycin (Invitrogen, Carlsbad, CA, USA). HSV-1, 

HSV-2, and VZV were propagated using HEF or MRC-5 cells in maintenance medium containing 
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2% FBS. 

 

4.2.4. In Vitro Susceptibility Test. 

4.2.4.1. Plaque Reduction Assay (PRA) 

Vero cells and HEF cells were seeded into 48- or 96-well cell culture plates and incubated 

until the cells formed a monolayer. After the medium was removed, the cells were infected with 

HSV-1, HSV-2, or VZV at an inoculum of approximately 40 plaque-forming units (pfu)/well. The 

viruses were allowed to absorb onto the cells for 1 h at 37 °C, and after being washed twice with 

maintenance medium, cells were treated with the test compound in maintenance medium with 0.8% 

methylcellulose for HSV-1 and HSV-2 or without 0.8% methylcellulose for VZV until apparent 

plaques appeared. The cells were then fixed with 10% formalin in PBS and stained with 0.02% 

crystal violet solution. After gently rinsing the wells with water and allowing the plates to dry, we 

counted numbers of plaques using a microscope. 

 

4.2.4.2. Antiviral Assay of ASP2151 Combination with Acyclovir Using PRA 

A checkerboard plate format was used to test 11 concentrations of ASP2151 or ACV 

including vehicle wells. Solutions of ASP2151 and ACV were prepared by 2-fold serial dilution, 

with concentrations of ASP2151 ranging from 1.0 to 0.0001 and concentrations of ACV ranging 

from 30 to 0.003 μmol/L. We selected a range of test compounds for evaluation of combined 

antiherpes efficacy based on dose-response curve plots of ASP2151 and ACV against HSV-1 
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(KOS), HSV-2 (Genital isolate), and VZV (Kawaguchi). The combined antiherpes effect of 

ASP2151 with ACV in vitro was assessed based on graphical evaluation by isobologram and 

statistical analysis by response surface modeling. 

 

4.2.4.3. Combined Antiviral Assay of VZV Strain Ellen 

MRC-5 cells were seeded at 7.5 × 104 cells/well in 24-well plates using growth medium. The 

plates were incubated overnight at 37 °C and 5% CO2. The following day, media was aspirated and 

approximately 90 pfu of VZV strain Ellen was added to 21 wells of each plate in a volume of 

200 μL of assay medium. The remaining 3 wells of each plate served as cellular control wells and 

received 200 μL of assay medium without virus. The virus was allowed to adsorb onto the cells for 

1 h at 37 °C and 5% CO2. 

Compounds were prepared by dilution in overlay medium. After incubation, 1 mL of each 

drug dilution (or combination of two drugs) was added to the assay wells (without aspirating the 

virus inoculums). A checkerboard plate format across two 24-well plates was used to test 5 

concentrations of ASP2151 in all possible combinations with 5 concentrations of ACV, PCV, or 

VDB. Overlay medium (without drug) was added to the three cell control wells and to three virus 

control wells on each plate. The plates were incubated for five days to allow for plaque formation. 

Cultures were examined microscopically, and compound precipitation and toxicity were noted if 

present. The media was then aspirated from the wells and the cells fixed and stained using 20% 

methanol containing crystal violet. Plaques were counted via microscope. 
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4.2.4.4. MTS Assay 

After incubating plates at 37 °C and 5% CO2 for 5 days, the assay plates were stained with 

the soluble tetrazolium-based dye MTS (CellTiter 96 Aqueous One Solution; Promega, Madison, 

WI, USA) to determine cell viability and evaluate virus replication. At assay termination, 

10 μL/well of MTS reagent was added to 96-well microtiter plates that were then incubated at 

37 °C for 4 h. The MTS formazan was then measured spectrophotometrically at 490/650 nm using 

a Vmax (Molecular Devices, Sunnyvale, CA, USA) or SpectraMaxPlus plate reader (Molecular 

Devices). 

 

4.2.4.5. Combined Antiviral Assay of HSV-2 using MTS Assay 

Compounds were evaluated for antiviral activity against HSV-2 strain MS in Vero cells using 

a virus-induced CPE-inhibition assay procedure. Antiviral assays were performed at an FBS 

concentration of 2%. On the day of the assay, growth medium was removed from the pre-plated 

cells and replaced with test drugs (50 µL) and virus suspension (50 µL). A checkerboard plate 

format was used to test 8 concentrations of ASP2151 (1000, 320, 102, 32.8, 10.5, 3.38, 1.07, and 

0.34 µmol/L) in all possible combinations with five concentrations of ACV (200, 40, 8, 1.6, and 

0.32 µmol/L), PCV (200, 40, 8, 1.6, and 0.32 µmol/L), or VDB (150, 30, 6, 1.2, and 0.24 µmol/L). 

Combination antiviral efficacy was evaluated in triplicate on identical assay plates that included 

cell control wells (cells only) and virus control wells (cells plus virus). Antiviral efficacy was 
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monitored via MTS staining at the experimental endpoint. 

 

4.2.5. In Vivo Evaluation of Combined Therapy of ASP2151 with Valaciclovir in HSV-1 Infected 

Mouse Model of Zosteriform Spread 

Hairless mice (HOS:HR-1, female, aged 7 weeks at virus infection; Hoshino Laboratory 

Animals, Saitama, Japan) were infected (designated as Day 0 post-infection) with HSV-1 strain 

WT51 (15 μL/body of virus suspension at a titer of 8.0 × 105 pfu/mL) on a dorsolateral strip of skin 

that had been scratched in a grid-like pattern with a 27-gauge needle under anesthesia [Nagafuchi et 

al., 1979]. ASP2151 was suspended in 0.5% methylcellulose (MC) solution to prepare 1, 3, and 

10 mg/10 mL suspensions, while VACV was suspended in 0.5% MC solution to prepare 10 and 

30 mg/10 mL suspensions. ASP2151 and VACV were then suspended together in 0.5% MC to 

make combination solutions of intended concentrations (10 mg/kg twice daily VACV with 1, 3, or 

10 mg/kg twice daily ASP2151; 30 mg/kg twice daily VACV with 1, 3, or 10 mg/kg twice daily 

ASP2151). The compounds were orally administered at 10 mL/kg body weight twice daily for 5 

days starting 3 h after virus inoculation. 

Disease course was monitored daily for 17 days and scored on a composite scale from 0 to 7 

based on the severity of zosteriform lesions and general symptoms according to the following 

criteria: 0, no sign of infection; 1, localized, barely perceptible small vesicles; 2, slight vesicle 

spread; 3, large patches of vesicles formed; 4, zosteriform vesicles; 5, large patches of ulcers 

formed; 6, large zosteriform ulcers (severe); 7, hind limb paralysis or death. The mean composite 
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disease scores of zosteriform lesions and neurological deficits for individual animals were 

determined daily after infection. The extent of disease was measured from the area under the curve 

(AUC) of the mean daily composite disease score each day after viral inoculation. 

 

4.2.6. Statistical Analyses 

The 50% effective concentration (EC50) values for PRA were calculated using non-linear 

regression analysis with a sigmoid-Emax model (GraphPad Prism 5; GraphPad Software, La Jolla, 

CA, USA). In graphical evaluation of synergy, the EC50 values of the assessed agents in their various 

concentrations were plotted using an isobologram. Synergy and antagonism were defined as 

deviations from dose-wide additivity, which results when two drugs interact as if they were the same 

drug. Curves falling below the line of additivity indicate synergy, while those on the line indicate an 

additive reaction, and those above the line indicate an antagonistic reaction [Kuramoto et al., 2010; 

Kurokawa et al., 2001; Suzuki et al., 2006]. In statistical analysis of combined antiviral activity, a 

response surface model was used [Meletiadis et al., 2003; Tallarida, 2001]. An interaction parameter, 

alpha (α) was calculated using Greco’s response surface model estimation [Greco et al., 1995; Greco 

et al., 1990]. When α and the lower 95% confidence limit are positive, synergism is indicated; when 

α and the upper 95% confidence limit are negative, antagonism is indicated; and when α is zero or 

the 95% confidence interval includes zero, no interaction or additivity is indicated. Response surface 

model analysis was performed using SAS software (SAS Institute Inc., Cary, NC, USA). 

The effect of ASP2151 or VACV monotherapy in vivo was analyzed in terms of reduction in 
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AUC of the disease score with placebo using Dunnett's multiple range test, with P<0.05 considered 

statistically significant. To assess significant differences in the VACV monotherapy group, Dunnett's 

multiple range test was used to compare AUCs between VACV alone and the combination of 

corresponding doses of VACV with every dose of ASP2151 at a significance level of P<0.05 using 

SAS software. 

 

 

4.3. Results 

4.3.1. In Vitro Susceptibility Test against Acyclovir-resistant or Acyclovir–susceptible HSV-1, 

HSV-2 and VZV Strains 

Two HSV-2 strains, "Genital isolate" and "Whitlow 2," were obtained from the genital ulcer 

and recurrent whitlow in a 40-year-old man with acute myelogenous leukemia. Genital isolate is an 

ACV-susceptible variant, and Whitlow 2 is an ACV-resistant variant [Shimada et al., 2007]. Table 9 

shows the antiviral activities of ASP2151 and ACV against ACV-resistant and ACV-susceptible 

HSV-1, HSV-2, and VZV strains tested using PRA. Although EC50 values of ACV against 

ACV-resistant HSV-1, HSV-2, and VZV strains were higher than those of ACV-susceptible strains, 

EC50 values of ASP2151 against ACV-resistant strains were similar to those for susceptible strains. 

 

4.3.2. In Vitro Antiherpes Activity of ASP2151 in Combination with Acyclovir 

Results of graphic evaluation of combined antiviral activity of ASP2151 and ACV on plaque 
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formation of the HSV-1 KOS strain, the HSV-2 Genital isolate strain, and the VZV Kawaguchi 

strain, which are all ACV-susceptible virus strains, are shown in Figure 11. In isobologram analysis, 

the curves connected with EC50 values fell on or below the line of the additive effect at all 

concentrations in HSV-1, HSV-2, and VZV, indicating that combined treatment of ASP2151 with 

ACV worked synergistically against tested virus strains. 

To statistically assess the combined antiherpes effect of ASP2151 with ACV on plaque 

formation in vitro, we analyzed the dataset plotted in the isobolograms (Figure 11) using the 

response surface model. Dose ranges against each virus and Greco’s response surface model 

interaction parameter for each virus are shown in Table 10. The interaction parameter and its lower 

95% confidence limit for ASP2151 and ACV were positive in all viruses, indicating that 

combination treatment of ASP2151 with ACV exhibited statistically significant synergy against 

tested strains of HSV-1, HSV-2, and VZV (P<0.0001, P=0.0009, P=0.0005, respectively). In 

addition to antiviral activity, we microscopically examined cytotoxicity for monotherapy and 

combination therapy. We observed no notable cytotoxicities of monotherapy and combination 

therapy of ASP2151 (highest concentration: 1.5 μmol/L) and ACV (highest concentration: 

30 μmol/L) at concentrations that substantially inhibit virus plaque formation. 

Response surface model analysis was also applied to other combination therapies of ASP2151 

with nucleoside analog antiherpes drugs using MTS assay for HSV-2 and PRA for VZV. The 

combination effect of ASP2151 with ACV, PCV, or VDB against HSV-2 strain MS and VZV strain 

Ellen on virus replication in vitro showed synergistic efficacy against all tested virus strains in each 
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drug combinations except for combination of ASP2151 with VDB against HSV-2 strain MS, which 

showed only an additive effect (Table 11). In addition, we tested cell viability and compound 

toxicity in Vero cells and MRC-5 cells using MTS assay and analyzed its synergistic toxicity. There 

was no evidence of synergistic cytotoxicity within the concentrations examined for ASP2151 

(highest concentration: 1 μmol/L) in combination with tested compounds (highest concentration: 

200 μmol/L ACV; 200 μmol/L PCV; 200 μmol/L VDB). 

 

4.3.3. Combination Therapy of ASP2151 with Valaciclovir in HSV-1-Infected Mouse Model 

The combined effect of ASP2151 with VACV was studied in an HSV-1-infected mouse model 

of zosteriform spread. The mean disease score for each treatment group was calculated and plotted 

versus the time post-infection (Figure 12). While 1 mg/kg twice-daily monotherapy of ASP2151 

appeared to have a modest but consistent effect on composite disease scores, the difference was not 

statistically significant compared with the vehicle group (P = 0.191). However, ASP2151 reduced 

composite disease scores by 68% at 3 mg/kg twice daily (P=0.0015) and 100% at 10 mg/kg twice 

daily (P<0.001) when compared to the AUC of the mean disease curve. VACV monotherapy 

significantly reduced the AUC by 42% at 10 mg/kg twice daily (P<0.05) and 52% at 30 mg/kg 

twice daily P=0.015). While combination therapy with 10 mg/kg VACV and 1 mg/kg ASP2151 

induced no significant changes compared with 10 mg/kg VACV alone, combination therapy with 

3 mg/kg ASP2151 reduced composite disease scores by 75% (P=0.014), and 10 mg/kg ASP2151 

reduced composite disease scores by 100% (P=0.0009) compared to 10 mg/kg VACV monotherapy. 
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Further, combination of 30 mg/kg VACV with 1, 3, or 10 mg/kg ASP2151 was significantly more 

effective at reducing composite disease scores by 75%, 100%, and 100%, respectively, compared to 

30 mg/kg VACV monotherapy (Figure 13). 

 

4.4. Discussion 

We demonstrated that ASP2151 exerted antiviral activity against ACV-susceptible HSV-2 

strain, ACV-susceptible VZV strain, and ACV-resistant VZV mutants, and that ASP2151 combined 

with ACV, PCV, or VDB exerted a synergistic or additive antiviral effect against HSV-1, HSV-2, 

and VZV replication in vitro. Combination therapy with ASP2151 and VACV significantly 

conferred additional antiviral benefit over VACV monotherapy in an HSV-1 infected mouse model 

of zosteriform spread. 

In the herpes virus genome DNA replication cascade, helicase unwinds double-stranded DNA 

while primase synthesizes primers prior to DNA polymerization [Liptak et al., 1996; Muylaert et al., 

2011]. Studies of HSV-1 helicase activity have shown that leading strand synthesis by DNA 

polymerase does not stimulate the rate of unwinding of a DNA duplex by the helicase-primase 

complex, and DNA polymerization by the HSV-DNA polymerase is a rate-limiting step during 

leading strand synthesis [Falkenberg et al., 1998]. Combined treatment of ASP2151 with 

nucleoside analogs can inhibit both helicase-primase activity and DNA polymerization activity in 

virus genome DNA replication. Taken together, these results suggest that inhibition of either or 

both helicase or primase activity decreases the substrate of DNA polymerase—a single-stranded 
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DNA template—thereby affecting the rate-limiting step in the course of virus genome DNA 

replication under combination therapy. 

Under this hypothesis, partial inhibition of helicase-primase activity could enhance the 

inhibitory effect of ACV against HSV DNA polymerization, even at concentrations of ASP2151 

much lower than the EC50 value. Our isobologram analysis showed the synergistic antiviral effect 

of ASP2151 at concentrations of 0.0039 (HSV-1), 0.0078 (HSV-2), and 0.023 µmol/L (VZV) or 

less. In contrast, the synergistic antiviral effect of ACV was relatively weak at low concentrations 

compared to ASP2151 (Figure 11). Further, in the response surface model analysis, ASP2151 in 

combination with ACV showed significant synergistic antiviral effects (Table 10 and Table 11). 

Taken together, these findings suggest that combination therapy of ASP2151 with a nucleoside 

analog antiherpes drug may more effectively inhibit herpes viral DNA replication than therapy with 

either agent alone. 

However, unlike ACV and PCV, VDB exhibited only additive interaction for antiviral 

efficacy in combination with ASP2151 against HSV-2 strain MS (Table 11), a result which did not 

reflect any antagonistic or non-synergistic interaction and was instead attributable to the mild 

cytotoxicity observed at high concentrations of VDB in MTS assays used to determine the number 

of viable cells in proliferation. VDB is phosphorylated to its active VDB-triphosphate form by 

cellular kinases without viral TK and is able to inhibit the DNA synthesis of 

ACV-resistant/TK-deficient mutants of HSV and VZV [Schwartz et al., 1984]. The differences in 

antiviral activity of ASP2151 in combination with VDB between HSV-2 (additive) and VZV 
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(synergistic) may reflect the characteristics and proposed mechanisms of antiviral activity of VDB 

[Suzuki et al., 2006]. One of the proposed mechanisms of antiviral activity of VDB is inhibition of 

viral DNA polymerase [Muller et al., 1977]. The differences in viral DNA polymerase cause the 

alteration of susceptibility of each virus to VDB. VZV was most susceptible to VDB, followed by 

HSV-1 and HSV-2 [Gephart and Lerner, 1981]. These indicate that VDB inhibits the DNA 

polymerase of HSV-2 less sufficiently than that of VZV. In the combination test against VZV, the 

contribution of VDB to antiviral activity was higher than that of ACV [Miwa et al., 2005]. Even if 

ASP2151 inhibits helicase-primase activity, the weak inhibitory effect of VDB on the viral DNA 

polymerase may not enhance the antiviral activity in the course of virus genome DNA replication 

under combination therapy. As a consequence, ASP2151 with VDB may show a synergistic 

antiviral effect on VZV that is not observed in HSV-2. 

There was no evidence of synergistic cytotoxicity within the concentrations examined for 

ASP2151 (highest concentration:1 μmol/L). This is not unexpected because none of the compounds 

are cytotoxic within the concentration ranges evaluated (highest concentration: 200 μmol/L ACV; 

200 μmol/L PCV; 200 μmol/L VDB). Much higher concentrations of all compounds would be 

required to correctly examine potential synergistic cytotoxicity interactions. However, there are no 

notable synergistic cytotoxicities among the test compounds observed at concentrations used in this 

study. 

Evaluating efficacy in combination therapy of multi-drug administration using not only 

isobologram analysis but also response surface model analysis typically requires a large 
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checkerboard format to perform the assay in all possible combinations with tested concentrations of 

each drug. In the present study, we used PRA and MTS assays in testing against HSV-2. The PRA 

requires more labor intensive and well-trained skills than a colorimetric method using a plate reader, 

such as MTS assay. While endpoints differ between the PRA, which evaluates inhibitory effect on 

plaque formation, and the MTS assay, which determines the number of viable cells in proliferation, 

the obtained results were similar between the two methods in evaluating two-drug combination 

therapy. The high-throughput colorimetric method is efficient and useful in multi-drug therapy 

testing in vitro, which typically requires a larger number of combinations than PRA, particularly 

against HSV-1 and HSV-2, which can grow rapidly and effectively in cell culture. 

Here, using a zosteriform spread model, we demonstrated that combination therapy with 

ASP2151 and VACV more effectively inhibited disease progression than monotherapy with either 

agent. However, the number of doses of each drug during therapy and combinations of treatment 

regimens were limited by resource considerations. Evaluation of multi-drug combination therapies 

is commonly restricted to in vitro testing, as evaluating efficacy of two-drug combination therapies 

in vivo would require a huge number of animals. Therefore, we were not able to statistically 

determine whether or not the combination therapy was additive or synergistic in the zosteriform 

spread model in a manner similar to in vitro study. While the HSV-1-infected mouse model of 

zosteriform spread is a well-characterized test system, the host-specific property of viruses, 

particularly VZV, limits our use of animal challenge models in evaluation, except for already 

established models. Identifying the optimum combination therapy regimen (frequency, dosing 
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period, dosage of each compound, and route) of ASP2151 with other antiherpes drugs will require 

further study. 

 

Chapter 5 Conclusion 

The novel oxadiazolyl-phenyl type herpesvirus helicase-primase inhibitor ASP2151 

(amenamevir) possesses potent antiviral activity against not only HSV-1 and HSV-2 but also 

against VZV. 

Characterization studies of HSV-1, HSV-2, and VZV strains resistant to ASP2151 showed that 

important amino acid substitutions associated with the susceptibilities of HSV-1, HSV-2, and VZV 

to ASP2151 exists in not only the helicase subunit but also the primase subunit of the 

helicase-primase complex and that mutations in the helicase-primase complex against ASP2151 

have little influence on susceptibility to existing antiherpetic agents. In addition, we observed 

reduced frequencies and growth rates of ASP2151-resistant HSV-1, HSV-2, and VZV variants in 

laboratory stocks. Taken together, these results indicate that ASP2151 targeting the essential virus 

proteins of HSV and VZV is effective in preventing resistant mutants from emerging and becoming 

the majority in a virus population. 

To assess the combination therapy of ASP2151 and existing nucleoside analog antiherpes 

drugs, we tested the antiviral activity of ASP2151 combined with ACV and other nucleoside analog 

antiherpes drugs. Combined therapy of ASP2151 with ACV and other nucleoside analogs 

demonstrated a synergistic/additive antiherpes effect against HSV and VZV infections. Such 
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combination therapy may be a useful approach for treating herpes infections suspected to be caused 

by nucleoside analog drug-resistant virus variants and represent more effective therapeutic options 

than monotherapy with either of the involved drugs, particularly for severe diseases conditions, 

such as herpes encephalitis or in patients with immunosuppression. 

ASP2151 is a novel viral helicase-primase inhibitor with potent activity against not only 

HSV-1, HSV-2 but also VZV. Based on our results, ASP2151 warrants further investigation for the 

treatment of VZV, HSV-1, and HSV-2 infections. 
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Figures 

 

 

 

Figure 1 (A) Molecular structure of ASP2151. (B) ASP2151 inhibits the DNA helicase activity of herpes simplex 

virus type 1 (HSV-1) helicase-primase complex. Heat-denatured, forked DNA helicase substrate was heated at 

95 °C for 3 min and then cooled immediately on ice to denature; Enzyme, the recombinant HSV-1 strain KOS 

helicase-primase complex containing (+) or not (-) in reaction mixture. The upper and lower schematic symbol at 

the side of the gel indicates the position of the forked duplex DNA helicase substrate with fluorescence-label and 
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the unwound labeled single-stranded DNA, respectively. (C) ASP2151 inhibits the primase activity of HSV-1 

helicase-primase complex. Arrows show the position of 10- and 20-mer fluorescence-labeled oligonucleotide 

markers in the leftmost lane. Enzyme, the recombinant HSV-1 strain KOS helicase-primase complex containing 

(+) or not (-) in reaction mixture. 
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Figure 2 Effect of ASP2151 on the DNA replication of varicella-zoster virus (VZV), herpes simplex virus type 1 

(HSV-1), herpes simplex virus type 2 (HSV-2) and human cytomegalovirus (HCMV). (A) Polyacrylamide gel 

electrophoresis was performed with amplified virus-specific PCR fragments from the total DNA extracted from 

virus-infected cells after incubation with ASP2151. Arrowheads and asterisks indicate the PCR fragments of each 

virus-specific region and human β-actin gene-specific region, respectively. (B) Effects of ASP2151 (closed circle) 

and acyclovir (closed square) on VZV DNA replication in virus-infected human embryonic fibroblast (HEF) cells 

assessed by real-time PCR. Data were calculated from the percent of control viral DNA extracted from 

vehicle-treated, virus-infected HEF cells, and are shown as mean ± standard error from four independent 

experiments. 



 

Page 74 of 108 

 

 

Figure 3 The antiviral activity of ASP2151 and valaciclovir in a herpes simplex virus type 1 (HSV-1)-infected 

hairless mouse zosteriform model. (A) and (B) The mean disease scores for each ASP2151 or valaciclovir 

administration group were calculated and plotted versus the days post-infection. (C) and (D) Area under the 

disease score-time curve for the period from post-infection day 0 to day 17 post-infection (AUCday 0–17 [score × 

day]) in HSV-1-infected hairless mice. *, Significantly different (P<0.05, Dunnett’s multiple comparison test) 

from the vehicle group. Data are expressed as the mean + standard error of ten mice per group. 
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Virus Strain ∗ ∗ ∗ ∗ ∗ ∗ ∗  ∗   ∗ ∗ ∗ ∗ ∗  ∗ ∗ ∗ ∗
KOS 340 F I N N K R C V E H E F G N L M K V L E Y G

K2151rm SIs 340 · · · · · · · · · · · · V · · I · · · · · ·
BILS 179 BSr 340 · · · · · · · · · · · · · · · · N · · · · ·

BAY 57-1293ra 340 · · · · · · · · · · · · V · · · · · · · · ·
BAY 57-1293rb 340 · · · · · · · · · · · · · · · T · · · · · ·
BAY 57-1293rc 340 · · · · · · · · · · · · · · · · Q · · · · ·

BAYr2 340 · · · · · · · · · · · · R · · · · · · · · ·
BAY-Pr2 340 · · · · · · · · · · · · · · · · T · · · · ·

BAY-pF-r3 340 K · · · · · · · · · · · · · · · · · · ·
HG52 339 F I N N K R C V E H E F G N L M K V L E Y G
Lyon 339 · · · · · · · · · · · · · · · · · · · · · ·

L2151rm8#C1 339 · · · · · · · · · · · · · · · · N · · · · ·
CaQu 334 F I N N K R C Q E D D F G N L L K T L E Y G

C2151rm 334 · · K · · · · · · · · · · · · · · · · · · ·

Motif Ⅳ

HSV-1

HSV-2

VZV

 

 

Figure 4 Comparison of amino acid sequences near helicase motif IV in helicase-primase inhibitor-resistant HSV 

mutants. Amino-acid sequences adjacent to helicase motif IV in the helicase subunit of the helicase-primase 

complex of HPI-resistant mutants are shown here. Amino-acid sequences were aligned, and consensus residues 

are denoted using asterisks between HSV-1 (KOS strain), HSV-2 (HG52 and Lyon strains), and VZV (CaQu 

strain). BILS 179 BSr, BAY 57-1293ra, BAY 57-1293rb, BAY 57-1293rc, BAYr2, BAY-Pr2, and BAY-pF-r3 are 

previously reported BILS 179 BS- or BAY 57-1293-resistant HSV-1 mutants. K2151rm single-plaque isolates 

(SIs) are single plaque purified ASP2151-resistant HSV-1 mutants derived from the parent strain KOS 

(K2151rm#B9, K2151rm#D9, K2151rm#G11and K2151rm #H10). L2151rm8#C1 is an ASP2151-resistant HSV-2 

mutant derived from the parent strain Lyon. C2151rm is an ASP2151-resistant VZV mutant derived from the 
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parent strain CaQu. Motif IV is one of six well-conserved helicase motifs in the helicase subunit of the 

helicase-primase complex in Herpesviridae viruses. HSV-2 strain HG52 amino acid sequence data were derived 

from the RefSeq (RefSeq ID: NP_044523). HSV-1, herpes simplex type 1; HSV-2, herpes simplex type 2; VZV, 

varicella-zoster virus. 
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Virus Strain
KOS 358 A H F E C F S P P R L A T H L R A V
K2151rm 358 · · · · · · G · · X · · · · · · · ·
K2151rm#B9 358 · · · · · · G · · H · · · · · · · ·
K2151rm#D9 358 · · · · · · G · · · · · · · · · ·
K2151rm#G11 358 · · · · · · G · · · · · · · · · ·
K2151rm#H10 358 · · · · · · G · · H · · · · · · · ·

HSV-1

 

 

Figure 5 Comparison of amino acid sequences of primase gene products. Amino acid substitutions found in 

UL52 of ASP2151-resistant HSV-1 are indicated by filled boxes. UL52 is composed of 1058 amino acids. ‘X’ 

represents Arg (R) or His (H), given detection of a mixed-base signal at the 367th Arg codon. K2151rm was an 

ASP2151-resistant HSV-1 mutant derived from HSV-1 strain KOS. K2151rm#B9, K2151rm#D9, K2151rm#G11, 

and K2151rm#H10 were derived from K2151rm by single plaque isolation. 
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Figure 6 One-step growth experiment of virus in culture supernatant of Vero cells infected with 

ASP2151-resistant HSV-1 or HSV-2 mutants compared with parental strains. One-step growth curves of 

ASP2151-resistant mutants HSV-1 K2151rm (A) and HSV-2 L2151rm8#C1 (B) in Vero cells. Each symbol 

represents the log-transformed mean ± standard error of four independent experiments. LLOD, lower limit of 

detection (1.40 log [pfu/mL]); pfu, plaque-forming unit. 
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Figure 7 Multi-step growth experiment of virus in culture supernatant of Vero cells infected with 

ASP2151-resistant HSV-1 or HSV-2 mutants compared with parental strains. Virus titers of ASP2151-resistant 

mutants and respective parental strains in tissue culture supernatants were measured using a plaque assay in Vero 

cells. The dashed line represents the lower limit of detection (LLOD, 1.4 log10 [plaque-forming unit (pfu)/mL]) of 

virus titer for the assay. Each symbol represents the log-transformed mean ± standard error of four independent 

experiments (A) and the value of one independent experiment performed in duplicate (B). 
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Figure 8 Replication profile of ASP2151-resistant VZV C2151rm in comparison with parent strain CaQu. The 

dashed line represents the lower limit of detection (LLOD, 10 [plaque-forming unit (pfu)/well]) of virus titer for 

the assay. The number of plaques from each day was averaged to generate a growth curve. 
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Figure 9 Pathogenicity of HSV-1 KOS strain and ASP2151-resistant HSV-1 mutant K2151rm. Hairless mice 

(HOS:HR-1, female, aged 7 weeks at infection) were infected intradermally with 5.25 × 107 pfu/mL of HSV-1 

strain KOS or ASP2151-resistant HSV-1 mutant (K2151rm). Disease scores for each animal were combined to 

produce a composite score. Each symbol represents the mean composite score ± standard error of 10 mice per 

group.  
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Figure 10 Emergence of drug-resistant HSV-1 or HSV-2 mutants in Vero cells under long-term 
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treatment with ASP2151 or acyclovir. Vero cells were infected with herpes simplex virus type 1 (HSV-1) strains 

(A)-(D) (KOS, WT51, CI-25, or CI-116, respectively) or herpes simplex virus type 2 (HSV-2) strains (E)-(H) (G, 

Lyon, Kondo, or CI-5243, respectively) and incubated in the presence of vehicle (0.1% dimethylsulfoxide), 

acyclovir (ACV), or ASP2151. Virus titer expressed as log10 (plaque-forming unit [pfu]/mL) in culture 

supernatants was determined by plaque assay using Vero cells. Data represent values at each time point of one 

experiment. The dotted line indicates the lower limit of detection (LLOD; 1.7 log10 [pfu/mL]) for the titration. 
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Figure 11 Isobolograms for combination treatment of ASP2151 with ACV against HSV-1 KOS strain 

(A) and HSV-2 Genital isolate strain (B), and VZV Kawaguchi strain (C). The solid straight line (gray) indicates 

the theoretical additive antiviral activity in combination with ASP2151 and ACV. Each points show EC50 values 

of ACV corresponding to concentrations of ASP2151 analyzed by PRA in HEF cells and are shown as 

mean ± standard error from four independent experiments. 
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Figure 12 Effects of combination of ASP2151 and valaciclovir (VACV) in HSV-1-infected hairless 

mouse model of zosteriform spread. Hairless mice infected with HSV-1 were orally administered vehicle only, or, 

1, 3, or 10 mg/kg twice daily ASP2151 with vehicle (A); 10 mg/kg twice daily VACV (B); 30 mg/kg twice daily 

VACV (C) from Days 0 (infection day) to 4 post-infection. The mean disease score for each treatment group was 

calculated at different times post-infection and plotted versus the time post-infection. Data are expressed as the 

mean + standard error of 10 animals per group. Vehicle, 0.5% MC solution. 
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Figure 13 Combination effect of ASP2151 with valaciclovir (VACV) in mouse model of zosteriform 

spread. The figure represents area under the disease score-time curve from Days 0 to 17 post-infection 

(AUCDay0-17 score × day). Data are expressed as the mean + standard error of 10 mice per group. Results were 

significantly different (P<0.05, Dunnett’s multiple comparison test) from the vehicle group (*), 10 mg/kg VACV 

monotherapy group (§), or 30 mg/kg VACV monotherapy group (#). Vehicle, 0.5% methylcellulose solution; bid, 

twice daily. 
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Tables 

Table 1 Polymerase chain reaction primer sequences 

Virus Gene Primer Namea Sequence (5'-NNN-3') Positionb 
VZV ORF31 VZV-gB-F GGGATGGTGCATACAGAGAAC 929 - 949 
  VZV-gB-R GTGCATACTCATCGCGAACT 1140 - 1159 
HSV-1 US4 HHV1-gG-F CATTATCGGGCCGCTGGCAA 447 - 466 
  HHV1-gG-R AACCGCCACACAGGTGTGTC 649 - 630 
HSV-2 US4 HHV2-gG-F TCCGAACCCCAACAAACC 1758 - 1775 
  HHV2-gG-R GGCGACCAGACAAACGAA 2007 - 1990 
HCMV UL83 HCMV-UL83-F GTCAGCGTTCGTGTTTCCCA 549 - 568 
  HCMV-UL83-R GGGACACAACACCGTAAAGC 831 - 812 

VZV, varicella-zoster virus; HSV-1, herpes simplex virus type 1; HSV-2, herpes simplex virus type 2; HCMV, 

human cytomegalovirus. 

a All primer sets were designed using HSV-1 complete genome sequence (accession, NC_001806), HSV-2 

complete genome sequence (accession, NC_001798), VZV complete genome sequence (accession, NC_001348) 

and HCMV complete genome sequence (accession, NC_001347) acquired from the Nucleotide database of NCBI 

Entrez. The primer sets were designed using GENETYX software (version 8.2.2, Genetyx, Tokyo, Japan) 

b ‘Position’ indicates nucleotide number targeted by each primer when A of the 1st Met codon (ATG) in each gene 

is designated one. 
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Table 2 Antiviral activities of herpes helicase-primase inhibitors 
 Upper: EC50 ± SE (μmol/L)a 

Lower: EC90 ± SE (μmol/L) 
Virus (Strain) ASP2151 BILS 179 BS BAY 57-1293 

HSV-1 (KOS) 0.036 ± 0.0047 
0.23 ± 0.037 

0.060 ± 0.016 
0.63 ± 0.13 

0.014 ± 0.0018 
0.082 ± 0.013 

HSV-2 (G) 0.028 ± 0.0013 
0.46 ± 0.30 

0.046 ± 0.016 
2.4 ± 0.99 

0.023 ± 0.0018 
0.91 ± 0.71 

VZV (Ellen) 0.047 ± 0.013 
0.46 ± 0.11 

4.1 ± 0.56 
23 ± 7.2 

11 ± 0.92 
>100 

CC50 (μmol/L)b  >30 >30 >30 

Selectivity index:  
CC50 /EC50

 c 
>638 >7.3 >2.7 

a Data represent the mean 50% effective concentration (EC50) and 90% effective concentration (EC90) values and 

standard error (SE) of three independent experiments. 

b Values for the cytotoxic concentration causing 50% reduction in the number of viable cells (CC50) were 

determined using MTT assay in confluent monolayer culture of HEF cells. 

c Selectivity index represents the smallest value among viruses tested. 
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Table 3 Anti-varicella-zoster virus and cytotoxic activities of ASP2151 and acyclovir 

  EC50 ± SE (μmol/L)a 

 Strain ASP2151 Acyclovir 

Laboratory-stocked 
 CaQu 0.10±0.00 4.1±0.2 

Clinical isolates from Japan 

 Saitou 0.065±0.12 4.4±0.6 

 
Takahashi 0.078±0.013 5.9±2.0 
Housen 0.10±0.03 5.2±0.8 
Tokumaru 0.055±0.011 3.0±0.2 

Clinical isolates from the United States 
 Hunter 0.042±0.010 1.3±0.3 

 
Klein 0.050±0.006 1.6±0.2 
Mazzola 0.038±0.005 1.8±0.4 
Negg 0.043±0.008 1.7±0.4 

Acyclovir-resistant mutant 
 Kanno-Br 0.082±0.016 27±5 
Cytotoxicity: CC50 (μmol/L)b >200 >200 

Selectivity index: CC50 /EC50
c >2000 >33.9 

a Antiviral activity (EC50, 50% effective concentration) was determined using plaque reduction assay. The data 

represent the mean of four independent experiments using each strain. 

b Data represent the mean of three independent experiments. Values for the cytotoxic concentration causing 50% 

reduction in the number of viable cells (CC50) were determined using neutral red assay in proliferating HEF cells. 

c Selectivity index represents the smallest value among strains tested. 
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Table 4 Amino acid substitutions in helicase and primase for ASP2151-resistant HSV-1 and HSV-2 

mutants, and susceptibility to ASP2151 

Virus 
Strains or 
Mutantsa 

Helicase gene 
(UL5) 

Primase gene 
(UL52) 

EC50 
(µmol/L)b 

Fold 
increase 

HSV-1 

KOS -c - 0.037 - 
K2151rm G352V, M355I S364G, R367Xd 131.8 3562 

K2151rm#B9 G352V, M355I S364G, R367H 105.4 2849 
K2151rm#D9 G352V, M355I S364G 19.6 530 

K2151rm#G11 G352V, M355I S364G 28.2 762 
K2151rm#H10 G352V, M355I S364G, R367H 118.0 3189 

HSV-2 
Lyon - - 0.12 - 

L2151rm8#C1 K355N, K451R - >150 >1250 

a K2151rm#B9, K2151rm#D9, K2151rm#G11, and K2151rm#H10 were derived from K2151rm and 

L2151rm8#C1 from L2151rm by single plaque isolation. 

b The 50% effective concentration (EC50) was calculated via nonlinear regression analysis using a sigmoid-Emax 

model from one (HSV-2) or three (HSV-1) independent experiments performed in triplicate. 

c Same as parental sequence, or no substitutions were observed. 

d ‘X’ means Arg (R) or His (H) due to detection of mixed-base signal at the 367th Arg codon. 
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Table 5 Effect of ASP2151 and valaciclovir on the mortality in zosteriform-spread model. 

Treatment 
Dose 

(mg/kg twice daily) 
Survival on day 17 post-infection 

(no. surviving/no. tested) 
Vehiclea - 1/10 
ASP2151 0.3 4/10 
 1 8/10 
 3 8/10 
 10 8/10 
 30 9/10 
Valaciclovir 3 4/10 
 10 6/10 
 30 7/10 
 100 8/10 

a 0.5% methyl cellulose solution. 
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Table 6 ASP2151- or acyclovir-concentrations assayed to detect compound-resistant mutants in 

herpes simplex virus types 1 and 2 strains 

Virus Strain 
20EC50 (µmol/L)a EC90 (µmol/L)b 

ASP2151 Acyclovir ASP2151 Acyclovir 

HSV-1 

KOS 0.52 42 0.062 7.0 
WT51 0.60 15 0.075 1.4 
CI-25 0.18 16 0.035 5.6 
CI-116 0.20 19 0.034 4.0 

HSV-2 

G 0.50 32 0.075 7.3 
Lyon 0.68 52 0.12 8.0 
Kondo 0.46 28 0.064 4.3 
CI-5243 0.28 22 0.057 6.0 

Data are calculated from four independent experiments performed in triplicate. 

a Twenty times the 50% effective concentrations (20EC50) of ASP2151 or acyclovir determined by plaque 

reduction assay in Vero cells. 

b Ninety percent effective concentrations (EC90) of ASP2151 or acyclovir determined by plaque reduction assay 

in Vero cells. 



 

Page 93 of 108 

 

Table 7 Antiviral activity of ASP2151 and existing antivirals against HSV-1 KOS and K2151rm 

Virus Strain 
EC50 (µmol/L; mean [95% confidence interval])a 

ASP2151 ACV PCV araA IDU 

KOS 
0.0097 

(0.0064-0.015) 
0.31 

(0.21-0.46) 
1.0 

(0.54-1.9) 
9.9 

(6.9-14) 
0.40 

(0.32-0.52) 

K2151rm 
7.5 

(4.2-13) 
0.28 

(0.24-0.33) 
1.0 

(0.65-1.6) 
11 

(7.4-17) 
0.44 

(0.35-0.55) 

a Plaque reduction assays were performed to determine EC50 values and 95% confidence intervals of ASP2151, 

acyclovir (ACV), penciclovir (PCV), vidarabine (araA), and idoxuridine (IDU) against HSV-1 KOS strain and 

ASP2151-resistant HSV-1 (K2151rm). Data are calculated from four independent experiments performed in 

triplicate. 
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Table 8 Frequency of ASP2151- or Acyclovir-resistant variants in herpes simplex virus types 1 and 

2 

Viruses Strains 
Frequency of compound-resistant variantsa Fold of frequency 

(ACVr/ASP2151r) ASP2151r ACVr 
HSV-1 KOS 1.3 × 10-6 0.86 × 10-3 662 

HSV-2 
G 1.04 × 10-6 2.11 × 10-2 20288 
Lyon 1.67 × 10-6 1.56 × 10-3 934 
Kondo 8.77 × 10-7 2.60 × 10-4 296 

Geometric mean value 1.19 × 10-6* 1.65 × 10-3 1389 

a Values were determined for four independent experiment sets, and the result represents the mean value. 

ASP2151- or acyclovir-concentrations were 20 times the 50% effective concentration determined by plaque 

reduction assay against indicated strains in Vero cells (Table 2). 

* Comparison with common logarithm of the frequency values of ACV-resistant HSVs variants was statistically 

analyzed using Student’s t-test (P = 0.002). 

ACVr, ACV-resistant HSV-1, or HSV-2 variants; ASP2151r, ASP2151-resistant HSV-1, or HSV-2 variants 
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Table 9 EC50 values of ASP2151 and ACV against ACV-resistant or ACV-susceptible HSV-1, 

HSV-2, and VZV strains (plaque reduction assay) 

Virus Strain EC50 (95% confidence interval) (μmol/L)a Susceptibility 
(ASP2151/Acyclovir)d ASP2151 Acyclovir 

HSV-1 KOS 0.010 (0.0082-0.012) 0.400 (0.32-0.50) + / + 
 A4-3 0.067 (0.049-0.091) 115 (98.8-133) + / - 
HSV-2 Genital isolate 0.012 (0.006-0.023) 1.34 (0.51-3.56) + / + 
 Whitlow 2 0.012 (0.006-0.022) 65.9 (31.9-136) + / - 
VZV Kawaguchib 0.064 (0.043-0.094) 1.61 (0.99-2.63) + / + 
 TK-deficient 

mutant 
0.068 (0.052-0.088) 12.8 (9.5-17.3) + / - 

 A2c 0.11 (0.078-0.16) 11.5 (6.5-20.3) + / - 
 A3c 0.11 (0.049-0.26) 19.2 (11.1-33.1) + / - 
 A7c 0.065 (0.045-0.093) 41.4 (21.6-79.2) + / - 
 A8c 0.10 (0.062-0.162) 82.2 (72.7-92.9) + / - 

a Means of four independent experiments. 

b Parental strain of TK-deficient mutant, A2, A3, A7, and A8. 

c DNA polymerase mutant. 

d Susceptibility of virus strains to each compound: +, susceptible; -, resistant 
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Table 10 Analysis of antiviral efficacy of ASP2151 in combination with ACV (plaque 

reduction assay) 

Virus (Strain) 
Test dose range (μmol/L) 

α (95% CI)a P value 
Antiviral 
efficacy ASP2151 Acyclovir 

HSV-1 (KOS) 0.001-1 0.03-30 0.56 (0.32-0.79) < 0.0001 Synergistic 
HSV-2 (Genital isolate) 0.001-1 0.03-30 0.62 (0.26-0.98) 0.0009 Synergistic 
VZV (Kawaguchi) 0.0015-1.5 0.03-30 0.56 (0.24-0.87) 0.0005 Synergistic 

a Means of four independent experiments. 
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Table 11 Combination effects of ASP2151 and antiviral drugs on replication of HSV-2 in 

Vero cells (MTS assay) and VZV in MRC-5 cells (plaque reduction assay) 

Virus (Strain) Test compounds combined 
with ASP2151 (range, μmol/L) 

α (95% CI)a P value Antiviral 
efficacy 

HSV-2 (MS) 
Acyclovir (0.32-200) 14.6 (10.2-19.1) < 0.01 Synergistic 
Penciclovir (0.32-200) 8.9 (6.9-11.0) < 0.01 Synergistic 
Vidarabine (0.24-150) 0.67 (−0.66-1.99) 0.320 Additive 

VZV (Ellen) 
Acyclovir (0.32-200) 11.4 (7.7-15.0) < 0.01 Synergistic 
Penciclovir (0.32-200) 11.7 (5.9-17.5) < 0.01 Synergistic 
Vidarabine (0.32 - 200) 13.2 (6.8-19.6) < 0.01 Synergistic 

a Means of two independent experiments. 
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