MBE による Block-by-Block 法を用いた Bi₂Sr₂CaCu₂O_y 薄膜成長

岩嶋 建治,北井 純子,栗田 法人,柴田 幹, 岡田 裕之,女川 博義,*宮下 和雄

1. はじめに

Bi 系酸化物超伝導体は、'88年に金属材料研究所の前田らによって発見され、¹⁾ 臨界温度110Kの相 を持つ材料として注目されている。本超伝導材料を用いたデバイス応用を考える際には薄膜化技術が 必須であり、手法として化学気相成長(CVD: Chemical Vapor Deposition)、スパッタリング、 ^{2,4)} 蒸着、そして分子線エピタキシー(MBE: Molecular Beam Epitaxy)^{3,5-8,12-15)}等、多数の手法 に渡り研究が進められている。その中でも MBE 法は、非平衡状態が実現可能であること、原子層オ ーダーの膜厚制御性を有すること、及び成長過程でのその場観察が可能など、他手法には無い良好な 結晶成長法として注目されている。

今回我々は、MBE 装置を用いた $Bi_2Sr_2CaCu_2O_y$ (2212)相の成長を、結晶構造の異なる BiO 面と ペロブスカイト構造を有する Sr-Ca-Cu-O 構造を分離して作製することで結晶性の改善を狙う Blockby-Block 法による検討⁴⁾ を行い、作製が容易であり、結晶自身が持つ安定な構造を材料供給バランス により得ることを目的とする共蒸着法と比較したので報告する。

2.実 験

実験に使用した MBE 装置の概略を図1に示す。 装置はアネルバ製 MBE620 特型を用いた。装置全体 は、図1の成長室,搬送室,交換室,及び XPS 分析 室(島津 ASIX-1000AX)とからなる。これらの チャンバーは,真空を破らずに試料搬送が行える。 MBE 成長室は Bi, Sr, Ca, Cu の各K セル,及び

Substrate	MgO (001),STO(001)
Oxidation Agent	O [*]
Back Pressure	2 × 10 ⁻⁸ Torr
Growth Pressure	4 × 10 ⁻⁶ Torr
Substrate Temperature	720 [°] C
Interval Time	30sec
Repetitions	30
	作製条件

図1 MBE 装置の概略

* 富山工業高等専門学校

酸化源として酸素ラジカルビーム源を持つ。成長状 態は,RHEED により観察できる。

試料の作製条件を表1に示す。基板は MgO(001), 及び STO(SrTiO₃)(001) 基板を用いた。試料の洗浄 は、アセトン、純水による超音波洗浄を各10分行っ た後に導入した。実験では、MgO 基板で共蒸着法と Block-by-Block 法の比較を行い、同一条件下で STO 基板上に Block-by-Block 法による成長を試 みた。成長条件は、共蒸着法での最適条件である圧 力4×10⁻⁶Torr,基板温度720℃で行った。¹⁴⁾各K セルの温度は、分子線強度を水晶振動子により膜厚 測定し、最適化した。今回の実験では、電気的特性 評価試料は 90nm 厚、それ以外は膜厚 45nm 一定の 条件で検討した。

シャッタシーケンスを図2に示す。まず、基板を 酸素ラジカル零囲気中750°Cで20分の清浄化を行っ た。¹⁵⁾本条件により、MgOを示すきれいなRHEED が得られること、及びXPSによりカーボンのC₁₅の ピーク、及び吸着酸素によるO₁₅のショルダーピー クが消えることを確認している。成長はSr/Ca/ Cu(以下、酸素結合を略して記述)のペロブスカイ ト構造の成長から開始し、結晶性の緩和を狙った。 共蒸着法(図2a)では、その後インターバルを設 け、(Bi+Sr+Ca+Cu)の蒸着、インターバルを繰 り返すことで成長を続けた。また、Block-by-Block 法(図2b)では、Sr/Ca/Cuのペロブスカイト 構造の成長の後、続けてBi層を形成した。そして、 30秒のインターバルを設けた後、Sr/Ca/Cuペロ

図2 成長時のシャッターシーケンス

ブスカイト構造の蒸着→Bi層の蒸着→インターバルの繰り返しにより成長を行った。両者のインタ ーバル時間は、図1での基板シャッタが閉じられた状態であり、酸素ラジカルのダイレクトビームの 入射はない。

実験は、XPSによる成長直後の膜の組成分析、RHEEDによる表面状態評価、AFM(原子間力顕 微鏡)による膜平坦性の評価、X線回折によるc軸配向性の評価、そして冷却下での電気的特性の評 価を行った。

3. 実験結果

3.1 XPS による組成分析

表2に、各試料の作製方法、基板の差 による XPS による組成比分析結果を示 す。⁹⁻¹¹⁾成分ずれの理由は不明であるが、

Evaporation Style	Substrate	Bi	Sr ·	Ca	Cu	0	
Co-Evaporation	MgO	2.00	1.49	1.14	1.46	4.51	
Block-by-Block	MgO	2.00	1.25	1.46	1.30	5.43	
Block-by-Block	STO	2.00	1.15	1.71	1.49	4.98	

表2 XPS による組成分析結果

- 42 -

共蒸着と比較して、Block-by-Block 法では Ca 量が多くなっている。また、Cu₂, スペクトルは、いずれもサテライトピークが確認され、これより Cu は充分に酸化されていることが確認された。

3.2 RHEED による表面解析

図3に各試料のRHEEDパターンを示す。(a)がMgO基板共蒸着法,(b)がMgO基板Block-by-Block法,(c)がSTO基板Block-by-Block法のパターンである。各々のパターンに見られるスポッ トは、基板のものと考えられる。また、リングのパターンが成長層から確認された。図より、どれも リング状のパターンが見られることより、三次元成長しているものと考えられる。また、細かなリン グが多数本発生している理由は、結晶層の長周期構造に由来するものである。但し、図(a)より図(b)の 方がはっきりしたリングパターンとなっており、また図(c)がより鮮明になっていることより、より良 好な多結晶層の成長が理解される。

<100>

<110>

(a) MgO Co-Evaporation

(b) MgO Block-by-Block

(c) STO Block-by-Block

図3 各試料の RHEED パターン

3.3 AFM による基板平坦性の評価

表3に AFM による基板平坦性の評 価結果を示す。膜状態は多結晶状態で あることが確認され、そのグレインの 大きさは 200nm 径程度の円錐状であっ た。最大高さを見ると, 共蒸着法と比 較して Block-by-Block 法の方が平坦 となっていることが解る。また、実際 の蒸着膜厚45nmと平均平坦性20nm 弱はオーダーが等しく、先ほどの RHEED の結果と 総合して考えると、基板自身を成長層が全面に覆い 尽くせていないものと考えている。

3.4 X線回折パターン

図4に試料のX線回折パターンの結果を示す。上 から, MgO 基板共蒸着法, MgO 基板 Block-bv-Block 法, STO 基板 Block-by-Block 法のパターン である。共蒸着法では2201相のピークのみしか観察 されず、2212相の存在は確認できなかった。次に MgO上 Block-by-Block 法によるパターンでは, 2201相のピーク強度は共蒸着法と同程度であったが、 2212相のピークが、特に(008)で大きく現れている。 38°付近のピークは CuO に対応するものと思われる。 基板をSTOとすることにより、2212相のピーク強 度はさらに大きくなり、かつ2201相のピークは見え なくなり、これより c 軸方向には良好に結晶成長し ていることが解った。

3.5 電気的特性の評価

45nmの膜では、膜連続性の関係から超伝導性は期 待できない。そこで、膜厚を90nmの膜を成長し超 伝導特性を評価した。結果を図5に示す。横軸が温 度,縦軸が抵抗である。温度の低下に従い抵抗は上 昇を続け、半導体的傾向を示し、残念ながら2212相 で期待される110K付近からの超伝導性は確認され なかった。

5.結 論

今回, MBE (分子線エピタキシー) 装置を用い, 結晶構造の異なる BiO 面とペロブスカイト構造を有 する Sr-Ca-Cu-O 構造を分離して作製する Blockby-Block 法による Bi₂Sr₂CaCu₂O_y (2212) 薄膜成

Evaporation Style	Substrate	Mean Roughness (nm)	Max Height (nm)
Co-E∨aporation	MgO	19.2	303
Block-by-Block	MgO	13.8	167
Block-by-Block	STO	18.4	182

抵抗の温度特性(STO 基板, 膜厚 90nm)

長を行った。その結果,基板をSrTiOとすることにより,良好な c 軸配向性を有する2212相の成長を 確認した。超伝導性は確認されなかったが,RHEED,AFM の結果を総合すると,平面内での膜の成 長方向が確定しない点が問題と言える。今回は15ユニットの成長結果について示したが,より少ない ユニット数の成長段階から,核成長が起こるという結果を確認している。これより,成長初期過程で の配向が問題であることが理解される。基板自身ではきれいな RHEED,及び XPS 信号が得られてい るため,初期成長時のバッファ層,及び成長膜の二次元平坦性が課題である。

参考文献

- 1) H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano: Jpn. J. Appl. Phys. 27, L209 (1988).
- 2) K. Nakamura, J. Sato and K. Ogawa: Jpn. J. Appl. Phys. 29, L77 (1990).
- 3) M. Kanai, T. Kawai and S. Kawai: Appl. Phys. Lett. 54, 1802 (1989).
- 4) J. Fujita, T. Tatsumi, T. Yoshitake and H. Igarashi: Appl. Phys. Lett. 54, 2364(1989).
- 5) Y. Nakayama, H. Ochimizu, A. Maeda, A. Kawazu, K. Uchinokura and S. Tanaka: Jpn. J. Appl. Phys. 28, L1217 (1989).
- 6) Y. Nakayama, I. Tsukada, A. Maeda and K. Uchinokura: Jpn. J. Appl. Phys. 28, L1809 (1989).
- 7) S. Watanabe, M. Kawai and T. Hanada: Jpn. J. Appl. Phys. 29, L1111 (1990).
- 8) I. Tsukada and K. Uchinokura: Jpn. J. Appl. Phys. 30, L1468 (1991).
- 9) D. Majumdar and M. Lelental: Physica, C161, 145 (1989).
- P. Kulkarni, S. Mahamini, M. Chandrachood, I. S. Mulla, A. S. Nigavekar, A. P. B. Sinha and S. K. Kulkarni: Appl. Phys. Lett., 54, 2262 (1989).
- 11) A. Fukui, H. Enomoto, H. Natsume, Y. Takano, N. Mori and H. Ozaki: Jpn. J. Appl. Phys., 28, L233 (1989).
- 12) K. Suzuki, T. Karaki, K. Iwashima, M. Shibata, H. Okada, H. Onnagawa and K. Miyashita : Jpn. J. Appl. Phys. 31, L1339 (1992).
- 13) 岩嶋, 鈴木, 唐木, 柴田, 岡田, 女川, 宮下: 富山大学工学部紀要, vol. 45, 37 (1994).
- 14) 唐木:富山大学修士論文 (1993).
- 15) 中村:富山大学修士論文 (1993).

The Bi₂Sr₂CaCu₂O_y Thin Films prepared by Block-by-Block Method with Molecular Beam Epitaxy

Kenji Iwashima, Jyunko Kitai, Norihito Kurita, Miki Shibata, Hiroyuki Okada, Hiroyoshi Onnagawa and *Kazuo Miyashita *Toyama National College of Technology

The epitaxial film of $Bi_2Sr_2CaCu_2O_y$ have been successively grown with molecular beam epitaxy (MBE) by block-by-block method; BiO bi-plane and Sr-Ca-Cu-O perovskite structure have been separately evaporated. As a result of optimization, superior $Bi_2Sr_2CaCu_2O_y$ film could be obtained compared to film by co-evaporation method at same growth temperature and oxidation condition on MgO substrate. Single phase of $Bi_2Sr_2CaCu_2O_y$ films was also obtained using $SrTiO_3$ substrate.

〔英文和訳〕

MBE による Block-by-Block 法を用いた Bi₂Sr₂CaCu₂O_v 薄膜成長

岩嶋 建治,北井 純子,栗田 法人,柴田 幹, 岡田 裕之,女川 博義,*宮下 和雄 *富山工業高等専門学校

MBE (分子線エピタキシー) 装置を用い,結晶構造の異なる BiO 面とペロブスカイト構造を有する Sr-Ca-Cu-O 構造を分離して作製する Block-by-Block 法による $Bi_2Sr_2CaCu_2O_y$ (2212) 薄膜成長 を行った。その結果,共蒸着では Ca を含まない2201相が成長した MgO 基板上の基板温度,酸化条件で,2212相の成長が確認された。また,基板を SrTiO₃ とすることにより,単相状態の2212相を得た。