Prompt Particle Acceleration to Relativistic Energies
During Current Loop Coalescence in Solar Flares
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ABSTRACT

High energy particle acceleration during the current loop coalescence in solar flares is in-
vestigated by numerical simulation, based on the theoretical model derived by Sakai and Tajima
(1986) . Simulation results show that during the current loop coalescence, both electrons and
protons can be quasi-periodically accelerated to relativistic energies within very short time
(€ 1s). These results can give a good explanation for the prompt high energy particle accelera-
tion during the impulsive phase of solar flares.

1. INTRODUCTION

The solar flare1 is the explosive release process of magnetic energy stored in corona plasma.
After launching of the Solar Maximum Mission (SMM) 2and Hinotori satellites? in particular,
from the observations of solar flares with hard X-rays and ¥-rays, it became4clear that, within
a second, protons and electrons are accelerated up to ~ GeV, up to — 100 MeV, respectively.
They are beyond rest-mass energy. It seems difficult that these observational results can be ex-
plained by the former statistical acceleration mechanism like the Fermi-acceleration, which is
slow acceleration process. Since the corona plasma flows along the magnetic flux tube which
makes closed loop on the surface, many plasma current loops are observed in the flare region.
Consequently, the reciprocal actions among these plasma current loops as well as magnetic flux
tubes may be a very important role for the energy release process in solar flares. One of fun-
damental reciprocal action is the coalescence processsgf the two parallel plasma current loops,
which currents flow in the same direction each other. In the coalescence process, under some
conditions, magnetic energies of both current loops can be transformed to the kinetic energy of
the whole plasma current through the explosive magnetic reconnection7'8At the same time, pro-
tons and electrons are accelerated rapidly to the relativistic energies. This phenomenon has
been already shown by simulation and theory (current loop coalescence mode13 ’

In this paper, we will report the detailed simulation results, using the theoretical coalesc-
ence modell,land show that both electrons and protons can be promptly accelerated to relativis-
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tic energies during the current loop coalescence.

In section 2 we review the theoretical model of the current loop coalescence and derive
basic equations.

In section 3 we discuss the normalized basic equations, initial values and parameters for
computations.

In section 4 we present the numerical results.

In section 5 we summarize our results.

2. THEORETICAL MODEL OF THE COALESCENCE PROCESS

. . . . 10’11
In this section we review the theoretical model of current loop coalescence process, and de-
rive the basic equations. '

2.1 Definition of Theoretical Model

This model is treated in rectangular coordinate system, where x is the diréction of coalesc-
ence, while y is the direction of poloidal magnetic field line and z is the direction of plasma cur-
rent (See Fig.1). And we assume that 0/9x>>9/9y, 9/3z. This means that every quantity is
dependent only on x and time.Therefore, it is treated as one-dimensional problem. The basic
equations we start are the two-fluid model equations of plasma and the Maxwell equations.
They read as follows, '

d .\ _ v
mjnja—vj = nje; E+T>< B) —vyp;, (2.2)
VXB=4€—”12n,-e,M-, (2.3)
v-E= 4"2”1‘6’]', (24)
J v
__1.9
VXE=———"B, | (2.5)
o _
StV Ity VY =0, 2.6)

where j denotes the species of particles (proton or electron) and 7 is the ratio of heat capacity
which is related to the degree of freedom of the system f as ¥ = 1+2/1.

Here we neglected the displacement‘current in Eq. (2.3), because the flow speed during the
current loop coalescence is slow compared with the light velocity. In the coalescence process,
the scale-length involved in the system is not constant but varies continuously in time. There-
fore the system can keep its global structure without changing whole structure of current loops,
even if every quantity varies with time.

Such a physical situation may be described by self-similar solutions in which scale factors
vary continuously. We introduce two scale factors a (t) and b (t) for both proton and electron
flow velocities as follows,
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Vex (2.7)

Il
d

Viz

e-|t:- e |a.

T, (2.8)

where a dot represents the time derivative. The linear dependence on x for velocities implies
that protons and electrons stream in opposite direction around the center of current sheet (x=
0). These scale factors a (t) and b(t) will be self-consistently determined from the above basic
equations.Now, we derive the equations of various quantities, related to the coalescence process.

Fig.1. Coordinate system and schematic picture showing loop-loop coalescence: j is current density
and F is attraction force.
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2.2 Derivation of Particle Density n
The continuity equation of particles, Eq.(2.1), becomes a simpler expression as follows, be-
cause of one-dimensional problem, 3/9dy = 0, 3/9z = 0.

o o ,
A Ty Vie =0 =y

where we assumed that the density #; depends only on time. This assumption is consistent with
Egs. (2.7) and (2.8). For electrons, We have from Eq.(2.7)
2] a
Ve = —.
or * a
Substituting above equation into Eq.(2.1)’, we obtain
i-’-i = 0
n, a
Integrating the both sides of the above equation by time, we obtain
n
Ne = _0 (29)
a
For protons, we have in a similar manner
no

m=— (2.10)

2.3 Derivation of Magnetic Field B
We assume that B = 0, and B, = constant in this model. So, we derive only the y-compo-
nent B,

At first, from the y-component of Eq.(2.5) we obtain
o o 1 o

e (25
Assuming that B, varies like B, = Bo (t) *x/A, we get
O, _ . T
arPv = Bo |
Substituting this into Eq.(2.5)" (note 9E,/3z = 0),
a _ xIr » ”
e = -2 Bo. (2.5)

Furthermore, we assume E; = E,o () + E,1 (t) *x?/A? and differentiate both sides by x. Then
we have

o . _ 2x
or E,=E.1 () 2z
Substituting this into Eq.(2.5)”, we obtain
A .
Ex (t) = —Bo. (2.11)
2¢

From the z-component of Eq.(2.2), we have
d 1
M Viz =6 [Ez+7' (foBy_ijBx)]-
Assuming a (t) = b (t) and substituting E, = E,o (t) +E,1 (t) *x%/A%, B, =0, B, = Bo (t) *z/ A,
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dV;./9z = 0, and Eq.(2.7) into above equation, we obtain .

a Bo() 2]
4. 22|
a Ac

m,-a—atvjz = [Ezo (t) +E (t) 2%/ 2%+

This equation can be re-written as

9, _ _ G [Eat) L d Bolt)] 2
miat ij ejEzO(t) ‘7[ ) +—a— c ]I.

To satisfy this equation on any x value, both sides must be zero. Hence, we get

2]
m,-a—thz—eﬂ-Ezo (t) = 0, (212)
Ea) L a Bo®) _ (2.13)
A a ¢ ‘
From Eqgs.(2.11) and (2.13), we have
Bo _ _,.i
Bo - 2 a’
which gives by integrating both sides,
B
Bo(t) = —a‘;o— (2.14)

where Bgo is a constant.
Thus, we obtain

— Boo,
By = %t (2.15)

2.4 Derivation of Electric Field E
We assume E;, = 0 in this model. So, we derive the x and z-component of E.

2.4.1 DERIVATION OF z-COMPONENT E,
From the Poisson’s equation (2.4),

8. o .o B
axEI-l-ay Ey-f—aEz = Ame* (n;—n,).

Substituting Eqs.(2.9) and (2.10) into this equation, (note: 8/0y =0 and 9/9z = 0)
9. _ .[1 _ 1]
or EI 471’6"0 b a .
Assuming E, as Er = Eo (t) *x/A, we obtain for Eo (t)
Eo(t) = dmengA+ [i——}—]
b a
Therefore, we have
1 1
E, = 4mengx* [—-———] (2.16)
b a
In this way, E; has been derived, and we try to represent E, without b(t).
From the z-component of Eq. (2.3),
o o 4

= Leo . —
ax By ay BI ¢ (nl VIZ neVez) .
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Substituting B = 0, B, = Bo (t) *x/ A, and Eqgs. (2.9), (2.10) into the above equation, we
obtain : »

Bo(t) _ 4meno [ Vie Vez]
R b = (2.17)
From Eq.(2.12), we have the two expressions for protons and electrons as follows,
o N o _ _
m; at Viz - eEzO (t), m, at Vez - eEzO (t) v (218)
Eliminating E,o (t) from (2.18), we obtain
o _ o
m, ot Vez = —my ot Via.
Integration both sides by time gives
medeez = —mideiz.
Hence we get
Ve = ——2.y,,. : (2.19)
m;
From Eqgs.(2.17) and (2.19), we obtain
Bo(t) _ _ 4meno [&.L+i] V.
A c m, b a
Substituting Eq.(2.14) into this, we obtain for V.,
— CBoob
Vez - 2 b m,] -
4rengla’. |[—+—
a m;
Neglecting the mass ratio (m./m; = 0), we obtain
_ CB()()
Ves 4rengAa’ (2.20)
Furthermore, the x-component of Eq.(2.2) becomes
d V. ,B.—V,..B 2]
Mo Ver = e [EI+H] — e (2.21)
Here, we define p, as follows,
— p e pOe . IZ
pe a%_ 2a7 :FZ 72_;
where p,, is a constant.
Then, we obtain
2] r
b= = GPOe - (2.22)
And we obtain by use of Eq.(2,7)
d _a ’
EV” = (2.23)
Substituting Eqgs. (2.15),(2.16),(2.20),(2.22), and (2.23) into (2.21), we obtain
Boo® )
q = —, 2. [i— ]— 00 Qe
¢ Pe Ly 1 ArmaoA‘a® + mmoAa’ (2.24)
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where w,,ez = 47re2n0/me.
If we define p; and wy° for protons as follows,

b= Poi _ boi . x? w02 = 41re2n0
* ?_ 2b 72—' » m; )

We can obtain the following equation for protons:
b= [1—7] +m—,-n§Qf23T (2.25)
If we define the Alfvén velocity V, as
Boo® __ Byo®
drng (m;+m,) — dmnom;
Then we obtain from Eq.(2.24)
11 _[_mV?

b 7=[ A%’ + Aza: I]/ 47m0e)

Vaz = (me/mi = O)v

Substituting this into Eq.(2.16), we finally obtain

- _miVa poe ]
E, [ b | (2.26)

2.4.2 DERIVATION OF z-COMPONENT E,
Since E; = E,o (t) +E,1 () *x?/ A%, we eliminate E,o () and E,; (t) from it, using Eqgs.(2.12)
and (2.13). Then we have

_m 9, & B .
= ¢ O Vie a A T
Substitution Eq.(2.14) into the above equation gives
_m 9, _a Boo, :
Ee= g Vi (2.27)
From Egs.(2.19) and (2.20), we obtain
me  ¢Boo

V., =
jz .
m; 4memnola

Partially differentiation both sides by time gives

iI/ = —1ni- CBOOd [=_V]
ot ¢ m; 47re,-no/1a2 dt %

Substituting this into Eq.(2.27)°’, we can get the following expression for E;;

cBoom. . a _Boo 4

T T (2.27)

E,=—
ATe’nod  a a

2.5 Equation of Motion for a Test Particle

Here we consider the equations of motion for a test particle which moves in the electro-
magnetic fields given in the previous section. The relation between momentum P and velocity V
of a test particle is given by

P=m;I;V,

where I'; is
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1
Iy=—r—em=
V1=lyle
Eliminating V; from the above two equations,

Ty = Y 1+1P["/ me)?

Therefore, we have

P.

V. = ] (2.28)
T om/ 1+ [R]? (mic)
The equation of motion for -a charged particle is given as follows,
P =e¢; (E+—‘;’f-x B) : (2.29)
Substituting Eq.(2.28) into (2.29), we have
. P.XB
B =oE+ ) I
T e V1H (B )

Now we split this into three components as follows,
P;yB:—P;:B, ]
m;ic 1/1+ |Pj|2/(m,~c)2 '
. P;.B.—P;:B.
P; =e»[E+ Chcm S R ]
iy i | By mjcx/l-i-leiz/(mjc)z
Puby—PyBe )
m]-cx/ 1+ |Pj‘2/(m,-c)2
After substituting the electromagnetic fields in the previous section, we get the following equa-
tions;

PjI = e [EI+

i)jz = ¢ [Ez+

Pj’ 4 [[_%2_-'- eAap * no ] %
b TR P (230
B, =— - ﬁj{l"f;izz/ = (2.31)
b= e e ] (232
2.6 Derivation of Charged Particle’s Position x, y, z
Since momentum P; is represented as P, = m;I';V,, it is clear that
i = 72'1,]_, ‘ (2.33)
b= ,:"Fj; (2.34)
5= m?p, (2.35)

Therefore the position of a particle is given by integrating the above equations.
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2.7 Derivation of Scale Factor a(1)

Since we have assumed n; = n,, the scale factor a ) is equal to b (). Therefore we derive a
(t) only.

Substituting a (t) = b(t) into Eqgs.(2.24) and (2.25), we get
. Boo® 4+ P

drmmorZa®  mmoAa’’

5 — Poi

minoA‘a

a =

Multiplying m, in the above equation and m; in the lower, respectively, and adding the two
equations, we obtain

Boo® 4 poetPo;
drngAa®  mgA%a’’

m,+m)da = —

which can be written as

U A o (2.36)
a /120,2 A2a7 s .
where
V= Boo® 2 _  poetpy;
“ Arng (m,+m;) s (me+m;)no”

2.8 Summary of Basic Equations

Here, we summarize the derived equations. We assume that particle density and pressure
for protons are equal to ones for electrons, respectively. Therefore, we can represent n, = n; =
no and p,, = po; = po- The equations of various quantities are summarized as follows:

a= _71/257 7%‘2’" (2.37)
% = rf},—' (2.38)
Bz e,[[— W;AZ; T P T

! mic ¥/ 1+ |1F'j[2/ (mjc) * .[Pijz_sz%)z()_'%]]’ (2.39)
yi — mfj;"j ’ (2.40)
: P;.B,
b = me \/13 |]Pj|2/(mj7)2' (2.41)
5 = m}j]fj' (2.42)
b= ej[_ :71;020:;; .;df_ }-230 .Edrx?-l_ a*Amye \/?f(l)(;lz/ (mje) * 1" (2.43)
Ex= [_%+ e/\apo no]’% (2.44)
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(,‘B()o‘me . a _Boo a 2

B 4me’noA PP ?—'x ’ (2.45)
_ Boo , =
By=" g (2.46)
m=m=cr | (2.47)
a .
And
2___ Boo®
Ve 4mng (m,+m;) (2.48)
2p
2_ 4o
Cs (m,+m;)no’ (2.49)
L= 1+ [P 1%/ (me)®. A (2.50)

3. OPERATIONS FOR SIMULATION OF THE EXPLOSIVE COALESCENCE

In this section, we will describe the method of numerical simulation and the normalization of
physical quantities, and also determine their initial conditions for the differential equations.

3.1 Summary of Normalized Physical Quantities
If the derived equations are numerically treated in a computer, it is possible to occur an
overflow error or an underflow error. Because some variables in the equations might have an
enormous or nearly zero numbers (for example. ¢ = 3.0 X 10 %m/sec, m, = 9.1 X10 %8g). To
avoid these numerical errors, every variables are used to be normalized.
Since a(t) is a non-negative non-dimensional variable, it is not necessary to normalize it.
Now we define the normalized variables as follows.
~ t x = P = E ~
b= = P mic’ Ezm_jcm’ b= Boo' " mo’
Then, we can derive the following equations:

d:d_azi-d_a a=d20= l.dza __dﬂszC dzp
dt T dt’ > T 4>’ dt T diz
Therefore, Eqgs. (2.37) ~ (2.47) without the suffix j for particle species can be normalized as

follows,

o= M ME (3.1)
a ) a

4= li—IP (3.2)

j= 1iy|i>| , (3.4)
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*P.B., (35)

s _ . P ,
dastar i T

R. a a R - I
P, =c, [——T‘ —R, 72 £ . ] 3.7
R,2 a* ¢ d% JI1+I[PIZ * a% 37
= May® | Mo”7 CBoa
E, =M, '——as_+;7—+_1— I (= Eo-x), (3.8)
Bo=—Re . @ _p.% .32 (=EotB.-zd), (3.9)
Ry a a
- x _—
By =—» (= Boz). (3.10)
a
Other normalized physical quantities are summarized as follows,
2
M2 = —Zz— ' (3.12)
2
M2 = %2— (3.13)
2
M, %= ‘Z“ (3.14)
My % = 20 (3.15)
mmoc
R. = wch, (316)
R, = 0,212, ' (3.17)
c, =2 (3.18)
e
M, =1 (3.19)
mj
_ 2
Y=1+— (3.20)
where f
w, = £Boo (3.21)
m;c
2
w2 = ATnoe” (3.22)
me

To solve the coupled nonlinear differential equations, we used ODAM (Adams method to
solve a simultaneous first differential equations). To use this method, several quantities are de-
fined as. follows,

Y1 =a, Y2 = a, Yys =21, y4=f’x,
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y5=g’ y6=Py! y7=§' y8=P21

And Eqgs. (3.1) ~ (3.7) are transformed into the following eight simultaneous first order dif-
ferential equations;

U1 = Y2 ' , (3.23)

. Ma2 Msz

j2= =T +_,_y1 , : (3.24)
— Ya

;= __ - 3.25
vs 1+ Pl (3.25)
. RL‘ - y3

=0(, Mr' - 3 7F1|° +— = “'[ z—Ys— 21|, 3.26
Ya=C [ [[ Y1 Y1 ] vs m‘m’z yeb y8y1 ]] ( )
Ys — /1+|-P|21 (327)

R - .
Jg = C,——=—"y4B,, ) (3.28)
Ye 1T | P| Ya

j7 = ————=r, 3.29
SARVATRT (8.29)
.« R, Y2 Y2 2 R, Y3 ]

= C, [— 2 —R—rystt “Yar : 3.30
v R y” R VATS ) T AT (3.30)

here

|P|? =y 2 +ye®+ys®

3.2 Determination of Initial Conditions

Initial values of physical quantities are necessary to solve the above simultaneous equations.
In this section we will define various normalized physical quantities in the basic equations and
determine the initial values.

3.2.1. DETERMINATION OF PARAMETERS

Before determination of initial values, we have to set the values of parameters involved in
the basic equations.

For simulations, we use magnetic field and density of the typical solar flare region as

Bo() = 145 Gauss,

no = 10 /cm?®.

In Eq.(3.1) the first term of right hand side corresponds to the JX B term and drives the
magnetic collapse. While the second term corresponds to the pressure gradient term and may
eventually be able to balance with the magnetic compression term when ¥ = 3. The condition ¥
= 3 which we will use here means that the current loop coalescence occurs in nearly one-
dimensional fashion so that the degree of freedom of the system becomes unity. The plasma 3
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value (8 = C,%/V,?) is varied from 0.1 to 1.0. From the above quantities, we can calculate fol-
lowing quantities;

2
w 2 = 47nee

Sl
wcj — eBoo '
m,-c
_ Boo®
PO 87'.' IB’
T = 1 — ij
wc; eBOO
2
mic
A=cT="
cT Bog
V2= Boo® ___Boo®
¢ dang(m,+m;) — 4dmngm;’
C.2 2po 2po
S

— metm)no = mng

Here, we note that standard values of time T, length A, and momentum m,c are changed by the
species of particles. (For electic field, mjcz/ (eA) = Boo.) Fig.2 and 3 show the relation of non-
dimensional quantities and dimendional quantities, based on the above values.

3.2.2. DETERMINATION OF THE INITIAL VALUES
Because the basic equations numerically solved are eight-dimensions, we need eight intial
values. For location and momentum of a charged particle, they are varied in the follwing ranges.

%,9,2=0.0—~4.0

P, P, P,=+10"%~10""*

Next, we discuss about the determination of initial values of a and a. Eq. (3.1) can be re-
written as follows,

o
a=—7 V(a), (3.31)
: a : ,
here V (a) is the effective (Sagdeev) potential, which is given by
M2 M2
V(a) = — 4 +2—;2— (332)

The graph of the effective potential is shown in Fig.4. The minimum value Vy;, is obtained
from the condition of 8V (a)/3a = 0.
oo M, [ _ M2
min Z—MSZ— a W
If plasma B value varies, the shape of graph is changed by it as shown in Fig.4. If the plas-
ma f3 becomes smaller, the shapter and deeper the potential bottom is. So, when the initial con-
dition of ais close to Vpnin, we have oscillational behavior of a near the -potential minimum.
We assume that the initial values of a and @ are as and a, respectively. From the rule of
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(a)

16

x107*
0.08

Va)
.00

. po

-0.08
L

-0.16

Fig.4. Effective potential V(a): (a)3 = 0.4, (b)g = 1.0.

energy conservation, we obtain
1 . - Qe :
- (@)% = —m;| dda, - (3.33)
Qs
where a, is the edge of oscillation in a-axis.We regard Eq.(3.33) as a second order equation for

a., and arranging it, we get

2 2
[(i;s)z—z- M. +1;4—r] a2+ 2M,%a.— M2 = 0.

s s

From the conditions of existance of solutions, we obtain

las| < v/ 2M,%/a;—M%/a? (note: as>-§—) (3.34)

If the start point as is at the bottom of the potential (a; = ,8) Eq.(3.34) is rewritten as fol-
lows; :

las| < v (M2 %/MZ = v/ M2/B. (3.35)

We determine the initial value of @ from Eq.(3.35), as the initial value of a is equal to the plas-
ma (3 value.

4. SIMULATION RESULTS

In this section. we will show the simulation resuits obtained by means of the basic equations
derived in the previous section. At first in our simulations, we determine G, BZ, and the eight
initial values of simultanious differential equations as follows; '
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P,=P,=P,=10""°

Next we will change four parameters (3, B., d/a, and & which have important ‘effects on the
particle accleration.

4.1 Electromagnetic Field and Density during Current Loop Coalescence

In this section, we will show how the electromagnetic fields, density and coalescence period
can change depending on 8 and a/a during the current loop coalescence. These physical quanti-
ties have the periodic characteristics in time. Then, in Figs.5~ 7, both of maximum and mini-
mum values for every quantity are dotted and are connected with each other.

Fig.5 shows the parameter dependence of By and #. As shown in Figs.5(2) and (c), if B be-
comes smaller, both values of Bo and # become larger. This means that for the low 3 plasma
strong plasma compression can occur by the Lorentz force (magnetic collapse) during the cur-
rent loop coalescence. And, as B3 is large, they are almost constant. The dependence on a/a
shown in Figs.5(b) and (d) shows that both Bo and 7 increase with increment of a/a. This means

© (a) (b) e

B, B, w0}—
20 : o
- 1
0 ' l——eo—o l 0.1 L—L L. -
0 0.2 04 0.6 0.8 1.0 —10 —10 0
B d/a
(¢) (d)
6.0
| 20 [ ]
4.0
n it
10t
2.0
- . I
0 ] I 'L J_- 5 0 L : ¢
0 0.2 04 06 0.8 1.0 —-10° ETE -0

B ) di/a

Fig.5. Bo depends on (2)B, (bJi/a. # depends on (c)B, (d}i/a.
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that if the initial colliding velocity (oca/a) becomes large, strong magnetic collapse can occur
with strong density accumulation. ‘

Fig.6 shows the parameter dependence of Z-component Eq of electric field. Fig.6(b) shows
that a/a approaches to —0.1, the maximum value of Eo suddenly can become large. This effect
may be important for the high energy particle production. For z-components E,o and E,; as
shown in Fig.7, the coefficient Ezl proportional to & is much larger than Ezo. This means that
the amount of acceleration in z-direction depends on the location of particles in &-direction.

Fig.8 shows the parameter dependence of the period on 8 and a/a. When 8 as well as a/a is
large, the period ‘is long. Because the bottom of effective potential V(@) becomes shallow and
flat.
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E, o
—1.0f— I
1
0 0.2 04 0.6 08 1.0 L 10 10~
B d/a
Fig.6. Eo depends on (2)B, (bli/a.
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Fig.7. Electric field components depend on 3 and a/a.
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4.2 Particle Acceleration to Relativistic Energies
- We will show that both electrons and. protons can be perlodlcally accelerated to relat1v1st1c
energies during the current loop coalescence. Figs.9~12 show the parameter dependences of
maximum value Py, of momentum and its components P, P,, and P, under several conditions.
Fig.9(a) shows 3 dependence of Pmax which has a peak around B = 0.4, The peak value is
2.4, which corresponds to about 2 GeV for protons, about 1.22 MeV for electrons. Since the
bottom of the effective potetial V (a) becomes shallower with increasing @, particle’s oscillatory

behavior is transformed into non-oscillatory behavior. In. Fig.9(a), non-oscillatory behayior
occurs at 3>0.5.

Fig.9(b) shows B, dependence. When B, = 0, charged particles are hardly accelerated. But
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Fig.9. Puax depends on (8)8, (b)B,, (c)i/a, ().
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when BZ is beyond 1.0 (=145 Gauss), their kinetic energies are larger than rest-mass enérgies
and seem to saturate. Therefore, the relativistic particle acceleration needs the existance of B,
essentially.

Fig.9(c) shows the dependence on d/a. When |d/a | increases, Pmax increases. The explosive
coalescence of plasma current loops is also important to get the relativistic energies for both
electrons and protons.

Fig.9(d) shows the dependence on the initial particle location Z. Pmax increases linearly with
I. Particles located far from the center of current loop coalescence, can be well accelerated.

Figs.10(a) ~ (d) show the various parameter dependence of #-component P,. As seen in
Fig.10, the acceleration to Z-direction is weak. (Here, for protons, O for electrons.)

Figs.11 and 12 show the parameter dependence of 13y and P,, respectively. From these
graphs, it is clear that protons and electrons can be accelerated to the opposite direction each
other. Py and P, are 10 to 100 time as large as P, after the current loop coalescence.

4.3 Time Evolution of Electromagnetic Fields and Density

The time evolution of electromagnetic fields and density is shown as a typical example, us-
ing standard values as they are determined at the beginning of this chapter.

Figs.13~ 15 show the time evolution of scale factor, electric field, magnetic field, and densi-
ty. The oscillatory behavior of the scale factor a leads to similar oscillations in other physical
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Fig.10. P, depends on (2)g, (b)B,, (c)i/a, (d)z.

— 152 —



Nakano * Sakai: Prompt Particle Acceleration to Relativistic Energies During Current Loop Coalescence in Solar Flares

20— (@) 2.0 ()
1.0 10—
ﬁy o Ii II II P’V o0&
—1.0(— =1.0—
- 2.0 L ! 1
20T o os 03 10 1.0 2~l°~ 3.0 40
B B.
2.0~ (o) = @
a0
1.0—
P, o8 II P oo 8 II
—1.0}— —iob
- ! _ | 1 1 1
20 —llo ; =T =10 0 1o 2.0
d/a » x
Fig.11. P, depends on (2)g, (b)B,, (c)i/a, (d)r.
2.0 (a) — (b)
2.0}
1.0p—-
Fz of— .8 II Ii ﬁz oe-
—1.0— —2.0—
- | i { A 1 Il I 1 1
2 e 06 05 1.0 0 10 20 30 40
B BZ
@ @
2.0/ 1.0
p, e 8B P, O‘S‘ II
—-1.01—
—-2.0f—
-2.0 | |
_:0 3 _1'0 2 —10 ' 0 1.0 . 2.0
d/a X
Fig.12. P, depends on (2)B, (b)B,, (c)ki/a, (d)r.

— 153 —



Bulletin of Faculty of Engineering Toyama University 1989

g1 (a) g, (b)

T T T T T T T 1 A T

o
o4 - T T T

. 00 100. 00 200. 00 300. 00 400. 00 500. o8 . 00 100. 00 200. 00 300. 00
TIME =10"' ' TIME x=10'

T T T T 1

T
400. 00 500. 00

-Fig.13. Time history of (2) scale factor g, (b) electric field Eo.

. .
b 21 (b)
s] (a) S
. -
~ =1
S o

i -4
,,

. 8] :

oo

x

' . S
4 —_— ';' B
w
o

EZD
-0.08
'
0
L

0.

- @
] s
pt 3
> >
° .‘.
< e e e, e p——
. 0o 100. 00 200. 00 300. 00 400. 00 500. 00 %A o0 100. 00 200. 00 300. 00 - 400.00 - S00.00
TIME x10' . TIME x10'
Fig.14. Time history of electric field; (2)E,q, (b)E;1.
8 - 2
g7 (a) : ) ()
o
E o
> | 3 |
2 ©
o
] o
> | 3 |
a 5
& <
m@ J ® 4
3 | s .
) ~
o
S | 8.
o o
8 —_— < —
%. 00 100. 00 ‘200. 00 300. 00 400. 00 500. 00 . 00 100.- 00 200. 00 300. 00 400. 00 S$00. 00
TIME =10 TIME =10

Fig.15. Time history of (2) magnetic field By, (b) particle density #.

— 154 —



Nakano * Sakai: Prompt Particle Acceleration to Relativistic Energies During Current Loop Coalescence in Solar Flares

quantities. The period of a is about 1.7X 103, which corresponds to about 1.2 msec for protons,
about 0.68 #sec for electrons. Other physical quantities have the same period. If 8 becomes
smaller, double-peak structure (Fig.13(b)) on Eo which occurs during the magnetic collapse
phase disappears and E¢ changes like a sine wave.

4.4 Time Evolution of Momentum of Charged Particles _

In this section, we will show the momentum and the orbit of proton when B, and # are 4.0
and 1.0, respectively. } : ,

As seen in Fig.16(a), the momentum P, varies with a very small time scale compared with
13y and }32 (see Figs.16(b) and Fig.17(2)) . Futhermore, 131 has a high periodic behavior which
corresponds to the period of the scale factor a. Fig.17 (b) shows the time evolution of total
momentum of proton. Fig.18 shows the orbit of proton which moves from large z to small z.
(Many symbols in the orbit mean the time intervals. One interval is about 180 #sec.)

Figs.19~ 21 show the behavior of proton when B, = 1.0 and £ = 0.0. This is an example
that a proton is hardly accelerated. Indeed, in Z-§. plane, the proton-shows Larmor motion
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around B,.-As seen in Fig.19(b), the change of
total momentum during magnetic collapse is
very small. Fig.20(2) and (b) show the orbit of
the proton in x-y plane and y-z plane, respec-

tively. Fig.21 shows its 3-D orbit. Figs.22 —
24 show the behavior of electron when B, =
1.0 and & = 1.5. In Z-direction, the electron
behaves with the same manner of proton, be-
cause of the coalescence direction. But in g}

»x10 "'

50. 00
2

-50. 00
\

-150. 00
"

n

and z-directions (Figs.22(b), 23(2)), the elec- "2 o>

tron can be accelerated in opposite directions $_ 5 )

compared with protons (see Figs.16(b), 17(a)). 2 R &

Fig.24 shows orbit of the electron -which Z'» £

moves from small z to large z. The oscillatory g-‘?vﬁ e — \
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acceleration period of the electron is the same

with one of the scale factor a. Therefore we  Fig.18. 3-D representation of proton’s orbit.
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may conclude that both electrons and protons
can be quasi-periodically accelerated to relati-
vistic energies during current loop coalesc-

ence. N
5. SUMMARY AND DISCUSSION o
In this paper, we investigated the explosive g |
acceleration of charged particles (protons and 2°
electrons) , using the plasma current loop S
coalescence model. We found that both elec- 1
trons and protons can be quasi-periodically S N
accelerated to the relativistic energies under ] g
several conditions. The important parameters f{m T | o o om ot
X =107

for relativistic particle acceleration are (1) the
plasma @ ratio, (2) the magnetic field along the Fig.21. 3-D representation of proton’s orbit.
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two current loops, (3) high colliding velocity of
the current loops and (4) the particle’s initial
location & from the center of loop coalescence.
Both electrons and protons can be simulta-

180.00
J

nously accelerated within much less than one
second.

140. 00
L

Recent observations for high energy parti-

100. 00
s

cle acceleration during the impulsive phase in

x10"'

solar flares are summarized by de Jager
12 .

(1989) s follows: - ~

(1) The acceleration times of electrons and

80. 00
s
%

20.00
s

protons to energies of some tens of MeV - o
can be shorter than —2 sec.

. ?,ZU‘/QU

T T T T "
S0 1.50 2.50 3.50 4.50 S.S0

(2) Although MeV protons are accelerated
nearly simultanously with MeV  electrons, Fig.24. 3-D representation of electron’s orbit.
observations ‘with high time resolution
show that the ionic emission can occur one to two seconds later.

(3) Primary electrons are accelerated to energies of roughly — 100 MeV.
De Jager (1989) 12explained these observations by the explosive current loop coalescence model
proposed by Tajima et al. (1982 19873 (see for review of the current loop coalescence model;
Sakai and Ohsawa, 19871) The electron acceleration up to the observed energies (=100 MeV)
is possible by the explosive current loop coalescence, if many current loop coalescence can
occur successively within one second. Quasi-periodic. relat1v1st1c electron acceleratlon during
the current loop coalescence may cause observed short-lived micro-wave bursts w1th lifetimes
down to — 0.1 sec. The quasi-periodic magnetic collapse can produce multiple strong fast mag-
netosonic shock wavel,4which can also produce high energy protons and electronsl.0
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