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ABSTRACT 

High energy particle acceleration during the current loop coalescence in solar flares is in 
vestigated by numerical simulation , based on the theoretical model derived by Sakai and Taj ima 
( 1 986) . Simulation results show that during the current loop coalescence, both electrons and 
protons can be quasi -periodically accelerated to relativistic energies within very short time 
( <:: 1 s) _ These results can give a good explanation for the prompt high energy partic le accelera
tion during the impulsive phase of solar flares. 

1. I NTRO D U CTI O N  

I 
The solar flare is the explosive release process of magnetic energy stored in corona plasma. 2 3 

After launching of the Solar Maximum Mission (SMM) and Hinotori satell ites , in particular, 4 
from the observations of solar flares with hard X-rays and y -rays, it became clear that, within 
a second, protons and electrons are accelerated up to - GeV, up to - 1 00 MeV, respectively. 
They are beyond rest-mass energy. It seems difficult that these observational results can be ex

plained by the former statistical acceleration mechanism like the Fermi-acceleration, which is 
slow acceleration process. Since the corona plasma flows along the magnetic flux tube which 
makes closed loop on the surface,  many plasma current loops are observed in the flare region. 
Consequently, the reciprocal actions among these plasma current loops as well as magnetic flux 
tubes may be a very important role for the energy release process in solar flares. One of fun -5.6 
damental rec iprocal action is the coalescence process of the two parallel plasma current loops, 
which currents flow in the same direction each other. In the coalescence process, under some 
conditions, magnetic energies of both current loops can be transformed to the kinetic energy of 

7 8  
the whole plasma current through the explosive magnetic reconnection. · At the same time, pro-
tons and electrons are accelerated rapidly to the relativistic energies. This phenomenon has 

( 
� . 1 0  

been already shown by simulation and theory current loop coalescence model) . 
In this paper, we will report the detailed simulation results, using the theoretical coalesc 

u 
ence model , and show that both electrons and protons can be promptly accelerated to relativis-
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tic energies during the current loop coalescence. 
In  section 2 we review the theoretical model of the current loop coalescence and derive 

basic equations. 
' 

In section 3 we d iscuss the normalized basic equations, initial values and parameters for 
computations. 

In section 4 we present the numerical results. 
In  section 5 we summarize our results. 

2. T H E O R ETI CAL M O D EL OF TH E COALESC E N C E  PROCESS 

10  1) 
In  this section we review the theoretical model ot current loop coalescence process, and de-

rive the basic equations. 

2.1 Definition of Theoretical Model 

This model is treated in rectangular co�rdin�te system, where X is the dir�ction of coalesc
ence, while y is the direction of poloidal magnetic field l ine and z is the direction of plasma cur
rent (See Fig. 1 ) . And we assume that a!ax"">a!oy , a;az. This means that every quantity is  
dependent only on x and time.Therefore, i t  is treated as one-dimensional problem.  The basic 
equations we start are the two-fluid model equations of plasma and the Maxwell equations. 
They read as follows, 

a 
a?i + v · (ni � ) = 0, ( 2 . 1 ) 

d 
( v. ) m ·n ·-V. = n · e · E+-1 X B - vp -1 1 dt J 1 J c J . 

411" 
'VX B = - � n · e · V. c 7 J 1 J • 

1 a v X E = -c atB, 

a . 
-;:;:P · + V. • 'VP· + YP · '\7 • V. = 0 
at ' ' ' ' ' · 

( 2 . 2 )  

( 2 . 3 )  

( 2 . 4 )  

( 2 . 5 )  

( 2 .6 )  

where j denotes the species of particles (proton or electron) and r is the ratio of heat capacity 
which is related to the degree of freedom of the system f as r = 1 + 2 /f. 

Here we neglected the displacement current in Eq. (2 . 3) , because the flow speed during the 
current loop coalescence is slow compared with the l ight velocity. In the coalescence process, 
the scale-length involved in the system is not constant but varies continuously in time. There
fore the system can keep its global structure without changing whole structure of current loops, 
even if  every quantity varies with time. 

Such a physical situation may be described by self-similar solutions in which scale factors 
vary continuously. We introduce two scale factors a (t) and b (t) for both proton and electron 
flow velocities as follows, 
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. a 
Vex = --x, a 

b vix = bx, 

(2 .7 )  

(2 .8 )  

where a dot represents the time derivative. The  l inear dependence on x for velocities implies 
that protons and electrons stream in opposite d irection around the center of current sheet (x = 
0) . These scale factors a (t) and b (t) will  be self-consistently determined from the above basic 
equations.Now, we derive the equations of various quantities ,  related to the coalescence process. 

Fig.l .  Coordinate system and schematic picture showing loop-loop coalescence: j is current density 
and F is attraction force. 
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2.2 Derivation of Particle Density n 
The continuity equation of particles, Eq. ( 2 . 1 ) , becomes a simpler expression as follows, be

cause of one-dimensional problem, oloy = 0 ,  oloz = 0. 

a a 
�i +ni ox Vix = 0 ( 2 . 1 ) ' 

where we assumed that the density ni depends only on time. This assumption is consistent with 
Eqs. ( 2 .7)  and ( 2 .8) . For electrons, We have from Eq. ( 2 .7) 

a a 
OX Vex = --;-· 

Substituting above equation into Eq. ( 2 . 1 )  ' , we obtain 

�+� = 0.  n, a 
Integrating the both sides of the above equation by time, we obtain 

no n, = -. a 
For protons, we have in a similar manner 

no n; = b. 

2.3 Derivati on of M ag netic Fie ld B 

(2 .9 )  

( 2 . 1 0) 

We assume that Bx = 0 ,  and Bz = constant in this model .  So , we derive only the y - compo
nent By. 

At first, from the y - component of Eq. ( 2 . 5 )  we obtain 

a a 1 a 
--::;-Ex -�-Ez = --�By. c.JZ c.JX C vt 

Assuming that By varies like By = Bo (t) ·xl ). , we get 

a . x 
atBy = BoT· 

Substituting this into Eq. ( 2 . 5 ) ' (note oExlaz = 0) , 

( 2 .5 ) ' 

a x . 
( ) ax Ez = --;;;:Eo. 2 . 5  " 

Furthermore, we assume Ex =  Ezo (t) + Ez1 (t) ·x2 
I ).  

2 and d ifferentiate both sides by x. Then 
we have 

a 2x 
ax Ez = Ez1 (t) ·y· 

Substituting this into Eq. ( 2 . 5 ) ", we obtain 

Ezl (t) = :c Eo. 

From the z-component of Eq. ( 2 . 2 ) , we have 

mi :t 
Viz = ei [Ez ++ · (VixBy- ViyBx ) ] . 

( 2 . 1 1 )  

Assuming a (t) = b (t) and substituting Ez = Ezo (t) + Ez1 (t) ·x2 
I ).  

2 , Bx = 0 ,  By = Bo (t) ·xl ). ,  
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oVjz loz = 0, and Eq. (2 .7 ) into above equation, we obtain . 

o [ ( ) ( ) 2 2 a Bo (t) 2] mratVjz = ej Ezo t +Ez1 t ·x I A. +a ·� ·x . 

This equation can be re-written as 

·�V. _ ·E ( )  = _l [Ezl (t) +i_, Bo (t) ] 2 m, Ot JZ e, zO t ). ). a C X . 

To satisfy this equation on any x value, both sides must be zero. Hence, we get 
a 

mratVjz-€jEzo (t) = 0,  

Ezl (t) +i_ · Bo (t) = O. A. a c 
From Eqs. (2 . 1 1 ) and (2 . 1 3 ) , we have 

Eo = _ 2 , i_  
Bo a '  

which gives by integrating both sides, 

( )  Boo Bo t = ---z-, 
a 

where Boo is a constant. 
Thus, we obtain 

B = �·2_ Y a�  ). 
. 

2.4 Derivati on of Electri c Field E 

We assume Ey = 0 in this model. So, we derive the x and z-component of E. 

2 .4 . 1  DERIVATION OF x-COMPONENT Ex 
From the Poisson's equation (2 .4 ) , 

a a a 
OX Ex +ayEy +t;-Ez = 4rre · (n ,-ne) .  

(2 . 1 2 ) 
(2 . 1 3 ) 

(2 . 1 4 ) 

(2 . 1 5 ) 

Substituting Eqs. (2 .9) and (2. 1 0) into this equation, (note: o/oy = 0  and o/oz = 0) 
a� Ex = 4rreno . H-- ! ]. 

Assuming Ex as Ex = Eo (t) ·x/ A. ,  we obtain for Eo (t) 

Eo (t) = 4rreno A. · [+- ! J .  

Therefore, we have 

Ex = 4rrenQX ' [+- ! ] . 

In this way, Ex has been derived, and we try to represent Ex without b (t) . 
From the z-component of Eq. (2 . 3 ) , 

a a 4rre 
-a By -'='-Bx = --• (ni Viz-neVez) . X oy c 

- 138 -

(2 . 1 6 ) 



Nakano • Sakai : Prompt Particle Acceleration to Relativistic Energies· During Current Loop Coalescence in Solar Flares 

Substituting Bx = 0, By = Bo (t) ·x/ A , and Eqs. (2 .9 ) , ( 2 . 1 0) into the above equation , we 
obtain 

Bo (t) = 47reno • [ Viz _:_· V.z 
J
. ( 2 . 1 7) A c b a 

From Eq. ( 2 . 1 2) ,  we have the two expressions for protons and electrons as fol lows; 

a a 
m; at Viz =  eEzo (t) , m.atV•z = -eEzo (t) . · (2 . 1 8) 

Eliminating Ezo (t) from ( 2 . 1 8 ) , we obtain 

a a m. at Vez = -mi at Viz· 
Integration both sides by time gives 

Hence we get 

From Eqs. ( 2 . 1 7) and (2 . 1 9) ,  we obtain 

Bo (t) _ 47reno • [�·_!_+_!_] . Vez· --A- - c mi b a 

Substituting Eq. (2 . 1 4) into this, we obtain for Vez 

V = _ cBoob ez 
47renoAa 2 • [!_+ me ] . 

a mi 
Neglecting the mass ratio (m.lmi = 0) , we obtain 

cBoo Vez = 47renoAa · 
Furthermore, the x-component of Eq. ( 2 . 2 )  becomes 

d _ [ + VeyBz- VezBy ] a m.n.-�U-V ex - n.e. ·  Ex c -a?•· 
Here, we define Pe as follows, 

Pe = Poe p-P': x2 
7 2a �+2 ' Y• 

where Po. is a constant. 
Then, we obtain 

a = _ Po. • x 
ax Pe � y  

And we obtain by use of Eq. (2 ,7 )  

d ii -v = -·x dt ex a 
Substituting Eqs. ( 2 . 1 5 ) , ( 2 . 1 6) , ( 2 . 20 ) , ( 2 . 2 2 ) , and ( 2 . 2 3 )  into ( 2 . 2 1 ) , we obtain 

a. - - w 2 , [.!:.- 1 ] - Boo2 + Poe - pe b 47rm.,noA 2a2 menoA 2a 7 
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where Wpe 2 = 41l"e2nolme. 
If we define p; and wp;2 for protons as follows, 

2 _ Po; Po; • x Pi - y 2b r + z -:p-· 
We can obtain the fol lowing equation for protons: 

- 2 [ b ] Po · b = wp; • 1 -- + ,'zb r a m;no" 
If we define the Alfven velocity Va as 

V 2 = Boo2 a 41l"no (m; +me) 
Then we obtain from Eq. (2 . 24 ) 

Boo2 

1 1 _ [ m; Va 2 + Poe ] / ( 2) I)--;; - -� no A za r + 1 41l"noe . 

Substituting this into Eq. (2 . 1 6) . we finally obtain 

_ [- m;Va2 Poe ] . �  Ex - �+ A r + I , · e"a e a no " 

2 .4 . 2  DERIVATION OF z-COMPONENT Ez 

(2 . 2 5 ) 

(2 . 26 ) 

Since Ez = Ezo (t) + Ez1 (t) •x2 I A 2 , we eliminate Ez0 (t) and Ez1 (t) from it, using Eqs . (2 . 1 2 ) 
and (2 . 1 3 ) . Then we have 

E = mi �V. _i_. Bo (t) ·x2 z ej at JZ a c A . 

Substitution Eq. (2 . 1 4) into the above equation gives 

Ez = ��V.z-� · 
Boo ·x2. ej at J a CA 

From Eqs. (2 . 1 9 ) and (2 . 2 0) , we  obtain 

V. = �. cBoo 
'z mi 41l"ejnoAa · 

Partially differentiation both sides by time gives 

�V. = -�· cBooti [=..!:_V. ] at J Z mj 41f"ejnoAa dt JZ 
Substituting this into Eq. (2 . 27) ', we can get the fol lowing expression for Ez; 

E _ cBoome a B00 a 2 z - - 41l"e2noA ·7-CI""·7·x · 

2.5 Eq uation of M otion for a Test Particle 

(2 . 27) I 

(2 . 27 ) 

Here we consider the equations of motion for a test particle which moves in the electro
magnetic fields given in the previous section. The relation between momentum P and velocity V 
of a test particle is given by 

where rj is 
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1 r; = v' 1 - l \1 l 21c2 . 
Eliminating \1 from the above two equations, 

Therefore, we have 
P; \1 = m; v' 1 + I P; 1 2 I (m;c) 2 

The equation of motion for a charged particle is given as follows, 

� = e; ( E+ � X B) . 

Substituting Eq. ( 2 . 28) into ( 2 . 29) , we have 
. _ [ P; X B  ] P; - e; E+ 

m;c v' 1 + I P; I 21 (m;c) 2 · 
Now we split this into three components as follows, 

· _ [E + P;yBz-P;zBy 
] P;x - e; x . I I 1 21 ( ) 2 ' m;c v 1 + P; m;c 

· _ [E + P;zBx-P;xBz 
] P;y - e; Y J I 1 2 I ( ) 2 ' m;c 1 + P; m;c 

· _ [ + P;xBy-P;yBx 
] P;z - e; Ez m;c v' 1 + I P; 1 2 I (m;c) 2 · 

( 2 . 28 )  

( 2 . 29)  

After substituting the electromagnetic fields in  the previous section, we get the fol lowing equa-

tions; 

p. = e · [ [- miVa2 + Poe ] . �  
,x 1 � eila 1 + 1no il 

2.6 Derivati on of Charged Particle's Positio n  x, y, z 
Since momentum P; is represented as P; = m;r; \1. it is cle(l.r that 

• _ P;x x · - --1 m;r; ' 
• - P;y 
y · - --1 m;r; ' 

• _ P;z z · - --1 m;r; . 
Therefore the position of a particle is given by integrating the above equations. 

- 14 1 -

( 2 . 30) 

( 2 . 3 1 )  

( 2 . 3 3 )  

( 2 . 34 )  

( 2 . 3 5 )  
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2.7 Derivation of Scale Factor a ( t) 
Since we have assumed n; = ne. the scale factor a (t) is equal to b (t) . Therefore we derive a 

(t) only. 
Substituting a (t) = b (t) into Eqs. ( 2 . 2 4 )  and (2 . 2 5) , we get 

a = _ __ B_o_o-::-
2 

.,.,.....,.-
4rrmenoil a 

b _ Po; 
mi no il a 

Multiplying me in the above equation and m; in the lower,  respectively, and adding the two 
equations, we obtain 

( + ) .. _ _ Boo 2 
+ Poe +Po; me m; a - 4 , 2 2 , 2 r , rrn0 A a n0 A a 

which can be written as 

where 

.. Va2 Cs2 
a = -� + �, 

2.8 Summary of Basic Equations 

( 2 . 36 )  

Here, we summarize the derived equations. We assume that particle density and pressure 
for protons are equal to ones for electrons, respectively. Therefore, we can represent ne = n; = 
n0 and Poe = Po; = p0 . The equations of various quantities are summarized as follows: 

.. Va2 C/ 
a = -� + �, ( 2 . 37)  

( 2 . 3 8 )  

( 2 . 39 )  

( 2 . 40 )  

( 2 . 4 1 )  

( 2 . 4 2 )  

( 2 . 4 3 )  

( 2 . 4 4 )  
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E __ _ cBoom, a Boo a 2 • ---:-z---- • ----r • X ' z 41l'e�n0A a cA  a 

B = �·� Y a<- A ' 
_ _ no n, - n; - -. a 

Va 2 = -,--B+oo:....
2
-:--� 41l'no (m, +m;) ' 

Cs 2 = -r--2-=-P-=-o _____ _ 
(m,+m;) no ' 

(2 .45) 

(2 .46) 

(2 .4 7 )  

(2 .48) 

(2 .49 ) 

(2 .50) 

3.  O P E RATI O N S  FO R S I M U LATI O N  O F  TH E EXPLOSIVE C OALESC E N C E  

In this section, we  will describe the method of numerical simulation and the normalization of 
physical quantities, and also determine their initial conditions for the d ifferential equations. 

3. 1 Su mmary of N o rmalized Physical Q uantities 

If the derived equations are numerically treated in a computer , it is possible to occur an 
overflow error or an underflow error. Because some variables in the equations might have an 
enormous or nearly zero numbers (for example. c = 3 .0 X 1 0 1 0cm/sec, m, = 9. 1 X 1 0 - 28g) . To 
avoid these numerical errors, every variables are used to be normalized. 

Since a (t) is a non-negative non-dimensional variable, it is not necessary to normalize it. 
Now we define the normalized variables as follows. 

- t x p P E 
E B = _!!_ n t = T' X = T· = mjC ' = mjc2/ (eA ) ' Boo ' ii = no· 

Then, we can derive the following equations: 

• da 1 da . .  d 2a 1 d 2a a = dt = y-·-;n· a = dj'Z"" = ---yz- · dt z , 
p = dP = mjc .� 

dt T d t  . 
Therefore, Eqs. (2 . 37) - (2 .47) without the suffix j for partic le species can be normalized as 
follows, 

Px = Cr · [Mr [-�1 2 + :;·�2r] ·x+  J 1 :c l p J Z • [PyBz-Pz?J ] .  

� - Py y - v' 1 + I P I 2 ' 
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i 

� 1 0' 
� 

(c )  

...... :: � 
:;S 
� '" � 

,_£; ( b ) 

1 0' 

1 0' 

X, jj, Z 

10 ' Lo�.�1 --------�o�. 5--�--------���1o 

8 

10 ' 

Fig. 2 .  Relations between dimensional and non-dimensional quantities of (a ) time, (b) length, (c ) kine

tic energy. 

...... = "' � 
� '" � 
.!; .. ..... <.> '" � 

E 

:::' 
:: � 
.;:> ·o; " � "" ] ... 
� 

� = t:l '-!:> 
� 
� '" � <.> ·.;:: '" " t::l) 
� 

(c )  
1 0 1 2  

1 0 1 1  
5 . 0  

ii 

( b )  

1 0 . 0  

1 0  20 
jj 

Fig. 3 .  Relations between dimensional and non-dimensional quantities of (a )  electric field, (b )  magne
tic field, ( c )  particle density. 
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- x B = --::zY a 

ii = __!___ 
a 

(= Bo ·x) . 

Rc .p . x ] 
J 1 + I P I 2  X ? '  
(= Eo ·x) , 

( - - 2) = Ezo+Ezl "X , 

Other normalized physical quantities are summarized as fol lows, 

where 

2 M 2 _ Va a - --z-, c 

M 2 - c.2 s - ---cr· 

Ms 1 2 = ---=P-"o-..,-m,noc 

C = .!!i_ T ' e 

2 
r = 1 +

f '  

(3 . 5 ) 

(3 .6 ) 

(3 .7) 

(3 .8) 

(3 .9) 

(3 . 10 ) 

(3 . 1 1 ) 

(3 . 1 2 ) 

(3 . 1 3 ) 

(3 . 14 ) 

(3 . 1 5 ) 

(3 . 1 6) 

(3 . 1 7) 

(3 . 1 8) 

(3 . 1 9) 

(3 . 20) 

(3 . 2 1 )  

(3 . 2 2 ) 

To solve the coupled nonlinear differential equations, we used ODAM (Adams method to 
solve a simultaneous first differential equations) . To use this method, several quantities are de
fined as follows, 

Y 1 = a, Y z = a , Y 3  = x, 
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Y 5 = y ,  Y 7 = z, 

And Eqs. ( 3 . 1 )  - (3 .7 )  are transformed into the following eight simultaneous first order dif
ferential equations; 

here 

ill = Y z. 
2 2 

• Ma + Ms 
y 2 = - ---:z- --,-, 

Y 1 Y 1 

3.2 Determination of I n iti al Conditions 

( 3 . 2 3) 

( 3 . 24 )  

( 3 . 25 )  

( 3 . 27 )  

( 3 . 28) 

( 3 . 29 )  

( 3 . 30)  

Initial values of physical quantities are necessary to solve the above simultaneous equations. 
In this section we wil l  define various normalized physical quantities in the basic equations and 
determine the initial values. 

3 . 2 . 1 .  DETERMINATION OF PARAMETERS 
Before determination of initial values, we have to set the values of parameters involved in 

the basic equations. 
For simulations, we use magnetic field and density of the typical solar flare region as 

Boo = 1 4  5 Gauss, 

In Eq. ( 3 . 1 )  the first term of right hand side corresponds to the JX B term and drives the 
magnetic collapse. While the second term corresponds to the pressure gradient term and may 
eventually be able to balance with the magnetic compression term when y = 3 .  The condition y 
= 3 which we will use here means that the current loop coalescence occurs in nearly one
dimensional fashion so that the degree of freedom of the system becomes unity. The plasma f3 
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value ({3 = C/1Va2) is varied from 0. 1 to 1 .0. From the above quantities, we can calculate fol 
lowing quantities; 

eBoo (1) . = --CJ ' mic 
Boo2 Po =  � · {3, 

T _ 1 _ mic - -- - --(1) cj eBoo ' 
m ·c2 A. = cT = -1-eBoo , 

Boo 2 Boo 2 Va2 = 41l"no (m. +m;) = 41l"nom; 

Cs2 = 2Po = 2Po 
(m.+m;) no m;no 

' 

Here, we note that standard values of time T, length A , and momentum mic are changed by the 
species of particles. (For electic field, mic 2 I (e A. ) = Boo.) Fig .2  and 3 show the relation of non
dimensional quantities and dimendional quantities, based on the above values. 

3 . 2 . 2 . DETERMINATION OF THE INITIAL VALUES 
Because the basic equations numerically solved are eight-dimensions, we need eight intial 

values. For location and momentum of a charged particle, they are varied in the follwing ranges. 

i, fj, z = 0 .0 - 4 .0  

Next, we discuss about the determination of initial values of a and ci .  Eq. (3 . 1 )  can  be re
written as follows, 

a ii = --aa-V (a) , 

here V (a) is the effective (Sagdeev) potential, which is given by 

V (a) = _ Ma2 +�. a 2a 

( 3 . 3 1 )  

(3 . 3 2 ) 

The graph of the effective potential is shown in Fig.4 .  The minimum value V min is obtained 
from the condition of av (a) /aa = 0 .  

M 4 V - a min - -
2Ms2 

[ M/ ] a = Ma2 
If plasma {3 value varies, the shape of graph is changed by it as shown in Fig.4 .  If the plas

ma {3 becomes smaller, the shapter and deeper the potential bottom is. So, when the initial con 
dition of a is c lose to V m i n .  we have oscillational behavior of a near the potential minimum. 

We assume that the initial values of a and ci are as and a5, respectively. From the rule of 
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. .... N 
0 

• OJ ' 0 
;:: a 
;( 

...... 

(a) 

\b ) 

� g +---+---��---.---,--,---,---,---.--. > 00. 0 

OJ 0 
0 I 

0 I 

o. 8 0  1 - 2 0  1 - 6 0  
a 

Fig. 4 .  Effective potential V(a) : (a )f3 = 0 . 4 ,  (b)f3 = 1 .0.  

energy conservation, we obtain 
1 · 

J
ae ?i (a.) 2 = -mj ada, as 

2 - 00 

( 3 . 33 )  

where ae i s  the edge o f  oscil lation in a -axis.We regard Eq. ( 3 . 3 3 )  as a second order equation for 
ae. and arranging it, we get 

[ ( • ) 2 Ma2 + M/ ] 2 + 2 2 _ 0 as - 2 ·-- ---z- · ae 2Ma ae-Ms - . 
as a. 

From the conditions of existance of solutions, we obtain 
p I a. I < J 2M}Ia.-M/!a} (note: a. >-z) ( 3 . 34 )  

If the start point a. is a t  the bottom of the potential (a. = p) , Eq .  ( 3 . 34) is rewritten as  fol 
lows; 

( 3 . 3 5) 

We determine the initial value of a from Eq. ( 3 . 35) , as the initial value of a is equal to the plas
ma p value. 

4. SI M U LATI O N  RESU LTS 

In this section. we will show the simulation resuits obtained by means of the basic equations 
derived in the previous section . At first in our simulations, we determine p, Bz, and the eight 
initial values of simultanious differential equations as follows; 
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(3 = 0.4,  

a =  (3, (ala = - 10-2) 

x = 1 .0, fj = z = 0.0, 

Px = Py = Pz = 10-6. 
Next we wil l  change four parameters (3 .  Ez, ala, and X, which have important effects on the 
particle accleration. 

4. 1 El ectromag n etic Fie ld and Density d u ri ng C u rrent Loop Coalescence 

In this section, we will show how the electromagnetic fields, density and coalescence period 
can change depending on (3 and ala during the current loop coalescence. These physical quanti 
ties have the periodic characteristics in time. Then, in Figs .5  - 7, both of maximum and mini 
mum values for every quantity are dotted and are connected with each other. 

Fig.5 shows the parameter dependence of Eo and n .  As shown in Figs .5 (a ) and ( c ) ,  if (3 be
comes smaller, both values of Bo and n become larger. This means that for the low (3 plasma 
strong plasma compression can occur by the Lorentz force (magnetic collapse) during the cur
rent loop coalescence. And, as (3 is  large, they are almost constant. The dependence on ala 
shown in Figs .5 (b ) and (d )  shows that both Eo and n increase with increment of ala .  This means 
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Fig. 5 . Eo depends on ( a )p, (b )ala. n depends on ( c )p, (dnla. 
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that if the initial colliding velocity ( <X a/a) becomes large, strong magnetic collapse can occur 
with strong density accumulation. 

F ig.6 shows the parameter dependence of x -component Eo of  electric field .  Fig.6 (b ) shows 
that iLia approaches to - 0. 1 ,  the maximum value of Eo suddenly can become large. This effect 
may be important for the h igh energy particle production. For z-components Ezo and Ez1 as - -
shown in Fig.7, the coefficient Ezl proportional to x is much larger than Ezo· This means that 
the amount of acceleration in z-direction depends on the location of partic les in x-direction. 

F ig.8 shows the parameter dependence of the period on f3 and a/ a . When f3 as well as a/ a is 
large, the period is long. Because the bottom of effective potential V (a) becomes shallow and 
flat. 
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I Eo 
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Fig.6 .  Eo depends on ( a )p, (b)ala. 
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Fig.7 .  Electric field components depend on j3 and ala. 
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4.2 Particle Accele.�ation to Rel�tivisti_c Energies _ 

We _w;ill $ow that both ele<;trons and . protons can be pe:r;iodically accelerated to relativistic 
energies during the current loop coalescence. Figs.9- 12 show the parameter dependences , of 
maximum value Pmax of momentum and its components Px, Py , and Pz under several conditions. 

Fig.9 (a )  shows f1 dependence of Pmax which has a peak around f1 = 0.4 ., The peak value is 
2.4, which corresponds to about 2 GeV for protons, about 1 . 2 2  MeV for electrons. Since the 
bottom of the effective potetial V (a) becomes shallower with increasing {1. particle's oscillatory 
behavior is transformed into non-oscillatory behavior. In. Fig.9 ( a ) , non-osci llatory behayior 
occurs at {3> 0.5 .  

Fig.9 (b )  shows Bz dependence. When Bz = 0, ch11rged particles are hardly i!-CCelerated. But 
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when Bz is beyond 1 .0 ( = 1 4 5  Gauss) , their kinetic energies are larger than rest-mass energies 
and seem to saturate. Therefore, the relativistic particle acceleration needs the existance of Bz 
essential ly. 

F ig.9 ( c) shows the dependence on a/ a .  When I a/ a I increases , p max increases . The explosive 
coalescence of plasma current loops is also important to get the relativistic energies for both 
electrons and protons. 

Fig,9 (d ) shows the dependence on the initial particle location :t. Fmax increases l inearly with 
:t. Partic les located far from the center of current loop coalescence, can be well accelerated. 

F igs. 1 0  (a ) � (d ) show the various parameter dependence of :t-component Px. As seen in 
Fig. 10 ,  the acceleration to :t-direction is weak.  (Here, for protons, 0 for electrons.) 

Figs. l l  and 12 show the parameter dependence of PY and Pz, respectively. From these 
graphs, it is clear that protons and electrons can be accelerated to the opposite d irection each 
other. PY and Pz are 1 0  to 100  time as large as Px after the current loop coalescence .  

4.3 Time Evolution of Electromagnetic Fields and Density 

The time evolution of electromagnetic fields and density is shown as a typical example, us
ing standard values as they are determined at the beginning of this chapter .  

Figs. 1 3 �  15 show the t ime evolution of scale factor, electric field, magnetic field, and densi
ty. The oscillatory behavior of the scale factor a leads to similar oscillations in other physical 
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quantities. The period of a is about 1 . 7  X 1 03, which corresponds to about 1 . 2  msec for protons, 
about 0.68 fL sec for electrons. Other physical quantities have the same period. If {3 becomes 
smaller, double-peak structure (Fig. 1 3 (b )) on Eo which occurs . during the magnetic collapse 
phase disappears and Eo changes like a sine wave. 

4.4 Time Evolution of M omentu m  of Charged Particles 

In this section, we will show the momentum and the orbit of proton when Bz and x are 4.0 
and 1 .0 ,  respectively. 

As seen in Fig. 1 6 (a ) ,  the momentum Px varies with a very small time scale compared with 
Py and Pz (see Figs. 1 6 (b )  and Fig. 1 7 (a )) . Futhermore, Px has a _  h igh periodic behavior .which 
corresponds to the period of the scale factor a.  Fig. 1 7  (b) shows th,e time evolution of total 
momentum of proton. Fig. 1 8  shows the orbit of proton which moves from large z to small z. 
(Many symbols in the orbit mean the time intervals. One interval is about 180 psec.) 

Figs. 1 9 - 2 1 show the behavior of proton when Bz = 1.0 and .,r = 0.0 .  This is an example 
that a proton is hardly accelerated . Indeed , in x-fl plane, the proton . shows Larmor motion 
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around Bz. As seen in Fig.l 9 (b ) , the change of 

total momentum during · magnetic collapse is 

very small. Fig. 2 0 (a ) and (b ) show the orbit of 

the proton in X·Y plane and y -z plane, respec 

tively. Fig. 2 1 shows its 3 -D orbit. Figs . 2 2 -

2 4  show the behavior of e lectron when Bz = 
1 . 0  and x = 1 . 5 .  In x-direction, the electron 

behaves with the same manner of proton, be· 

cause of the coalescence direction. But in y 
and z-directions (Figs. 2 2 (b) , 2 3 (a )) , the elec

tron can be accelerated in opposite directions 

compared with protons (see Figs. 1 6 (b) , 1 7(a )) . 

Fig. 2 4  shows orbit of the electron which 

moves from small z to large z. The oscillatory 

acceleration period of the electron is the same 

with one of the scale factor a.  Therefore we 
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may conclude that both electrons and protons 

can be quasi-periodically accelerated to relati 

vistic energies during current loop coalesc

ence. 

5. S U M MARY AN D D I S C U SSI O N  

-o .  t s  o. oo 0- 1 6  X M 1 0 '5 Q .  32 Q .  48  

In  this paper ,  we investigated the explosive 

acceleration of charged particles (protons and 

electrons) , using the plasma current loop 

coalescence model. We found that both elec

trons and protons can be quasi-periodically 

accelerated to the relativistic energies under 

several conditions. The important parameters 

for relativistic particle acceleration are ( 1 ) the 

plasma f3 ratio, (2) the m agnetic field along the Fig.2 1 .  3 -D representation of proton's orbit. 
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two current loops, (3) high coll iding velocity of 
the current loops and (4 ) the particle 's initial 
location x from the center of loop coalescence. 
Both electrons and protons can be simulta
nously accelerated within much less than one 
second. 

Recent observations for high energy parti 
cle acceleration during the impulsive phase in 
solar flares are summarized by de Jager 1 2  
( 1 9 89)  as fol lows: 
( 1 )  The acceleration times of electrons and 

protons to energies of some tens of MeV 
can be shorter than -2 sec . 

(2 )  Although MeV protons are accelerated 
nearly simultanously with MeV electrons, 
observations with high time resolution 

0 
. 

0 0 
:il 
0 0 
� 
0 
0 

0 0 
� 

1 . so z . so �. so -4 - SO s. so 

Fig.24 .  3 -D representation of electron's orbit. 

show that the ionic emission can occur one to two seconds later. 
(3) Primary electrons are accelerated to energies of roughly - 1 00 MeV. 1 2  
De Jager ( 1 989) explained these observations by  the explosive current loop coalescence model 
proposed by Tajima et al. ( 1 9 8 2� 1987J (see for review of the current loop coalescence model; 
Sakai and Ohsawa, 1987J0. The electron acceleration up to the obser�ed energies (- 1 0 0  MeV) 
is possible by the explosive current loop coalescence, if  many current loop coalescence can 
occur successively within one second. Quasi-periodic relativistic electron acceleration during 

1 3  
the current loop coalescence may cause observed short-l ived micro-wave bursts with l ifetimes 
down to - 0 . 1  sec . The quasi-periodic magnetic collapse can produce multiple strong fast mag-14 10 
netosonic shock wave , which can also produce high energy protons and electrons . 

Acknowledge ment 

We acknowledge for use of Computer Center, Toyama University. 

References 

1. Svestka, 1 976, Solar Flares, D. Reidel, Publ. Co, Holland. 
Sturrock, P.A. et al. eds. 1 986 ,  Physics of the Sun, D. Reidel. Publ. Co, Holland. 

2 .  Kundu, M.R. and Woodgate, B .  1 986 ,  Energetic Phenomena on the Sun, NASA Conf. Publ . ,  
No. 2439 .  

3 .  Tanaka, K .  1 987 ,  Publ. Astron. Soc . Japan. 39 ,  1 .  
4 .  Chupp, E.L. 1 984 ,  Ann. Rev. Astron. Astrophys. 2 2 ,  3 59 .  
5. Gold, T. and Hoyle, F .  1 960,  Monthly Notices Roy . Astron. Soc .  1 20, 89 .  
6 .  Taj ima, T. ,  Brunei, F. ,  and Sakai, J .  1 982 ,  Ap .  J. 2 4 5 ,  L 4 5 .  

7. Tajima, T. and Sakai, ] . 1 989a, Sov. J .  Plasma Phys. in press 

- 1 58 -



Nakano • Sakai : Prompt Particle Acceleration to Relativistic Energies During Current Loop Coalescence in Solar Flares 

8. Taj ima, T. and Sakai, J. 1 989b, Sov. J. Plasma Phys. in press 
9 .  Taj ima, T. ,  Sakai , J -l . ,  Nakaj ima, H. ,  Kosugi, T. ,  Brunei, F. , and Kundu, M.R. 1 987 ,  Ap. J .  3 2 1 ,  

1 0 3 1 .  
1 0 .  Sakai , J -l . ,  and Ohsawa, Y .  1 987 ,  Space Sci .  Rev. ,  46, 1 1 3 .  
1 1 .  Sakai, J .  and Taj ima, T. · 1 986 ,  Proc. Joint Varenna-Abastumani International School and 

Workshop on Plasma Astrophysics, ESA SP- 2 5 1 ,  p .77 .  
1 2 .  De Jager, C. 1 989 ,  Advances in Space Research, in press 
1 3 .  De Jager, C., Kuypers, J.. Correia, E. and Kaufmann, P. 1987 ,  Solar Phys. 1 1 0 ,  3 1 7 .  
1 4 .  Sakai, J .  1 989 ,  in preparation 

(Received October, 3 1  1 988)  

- 159 -


