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We investigate a dynamical model of prominence formation in a current sheet at the boun­

dary between two regions of opposite magnetic polarity. Coupled nonlinear equations descri­

bing the temporal compression and condensation of plasma in the current sheet are set up as 

a natural extension of the usual equations for current sheet collapse (Imshennik and Syrova­

tskii, 1967 ) . It is shown that under certain conditions the current sheet undergoes a non­

linear oscillation during the compression. The thermal instability with cooling is driven by 

a density enhancement produced during the current sheet formation stage. 

Introduction 

Observations of quiescent prominences indicate that they can form at the boundary bet­

ween two weak magnetic regions of opposite polarity which are moving together (Martin, 1973; 
Tang, 1987) • Stimulated by the observations, various kinds of model for quiescent promi­

nences have been proposed (Tandberg-Hanssen, 1974; Priest, 1982; Hirayama, 19.85) . 
Recently Malherbe et. al. ( 1983) and Schmieder et. al. (19.84) have shown that slow up­

ward motions (v � 0.5 km/s in Ha and 5-6 km/s in C1v) can occur inside prominences and 

a fast input of material with horizontal motions (v � 5 km/s ) can occur at both edges of 

a prominence, although in general the reported flows are still puzzling. Furthermore, Priest 

(1986) has suggested that prominences form at the boundary of two giant cells or approaching 

unipolar regions and Martin et. al. (1987) have proposed that, within such a global pattern, mag­

netic flux is continually brought into contact at network junctions where it produces cancelling 

magnetic features in photospheric magnetograms and provides a site for prominence formation 

in the overlying reconnecting current sheet. 

The early models of solar prominences such as those due to Kippenhahn and SchlUter (KS ) 

(1957) and Kuperus and Raadu (KR) ( 1974) are purely magnetostatic and do not take into 
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account the plasma dynamics. Malherbe and Priest (1983) and Malherbe et. (1983) pro­

posed a qualitative dynamical model with magnetic configurations either of the KR or KS 

type to explain the observed upward motions, while Priest and Smith (1979) had previously 

suggested a dynamic arcade model with plasma dribbling through the magnetic field and be­

ing continually replaced by new plasma sucked up from the sides. Sakai and Washimi (1985) 

presented a general scheme to describe the dynamical behaviour of a current sheet. 

The problem of the dynamics of current sheets has been one of great importance in connec­
tion with magnetic reconnection (see, for example, Priest (1985) ). After the pioneering 

work of Dungey (1953) ,  Imshennik and Syrovatskii (1967) investigated the non-steady collapse 

of an X point towards a current sheet. They used the two-dimensional time-dependent MHD 

equations with the density (p) assumed constant and the pressure gradient absent. Recently, 

an extension of this work has been achieved by Bulanov et. al. ( 1984) , Sakai and Taj ima 

(1986) , and Sakai and Washimi (1985) . Furthermore, Smith and Itiest (1977) had presen­

ted a qualitative model for prominence condensation in a current sheet. 

In the present paper we investigate the nonsteady dynamics of a current sheet, which 

might form at the boundary between two weak magnetic regions of opposite polarity (Figure 

1 ), Following Imshennik and Syrovatskii (1967) and Sakai and Washimi (1985) , we con­

centrate on the local behaviour of a current sheet produced by the approach of such magnetic 

regions. 

S N 
.... 

S N 
... 

Fig. 1 Magnetic structure in the formation region of quiescent prominences. 

A current sheet may form at the boundary between two weak 

magnetic regions of oppooite polarity moving together. 
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In section 2 we present the basic MHD equations and an enerey equation. We look for 
self-similar solutions describing plasma compression near the current sheet, which may even­
tually trigger a thermal instability condensation. The result is a set of coupled nonlinear 
ordinary differential equations. 

In section 3 the nonlinear dynamics characterising the plasma condensation is investigated 
by analogy with the motions of a test particle under a given effective potential. We find in 
some cases a dynamical oscillation of the current sheet and in others a magnetic collapse 
(Sakai and Tajima, 1986; Tajima et. al., 1987). 

In Section 4 we investigate some simplified cases and estimate the period of the nonlinear 
oscillation. An up-flow motion is generated. In Section 5 we discuss the nonlinear stage of 
the thermal instability which may be triggered when the density enhancement becomes too 
large. Finally, we summarise our results. 

2 Basic Equations and Current Sheet Model 

2 .  1 MH D Equations and Energy equation 

We model a prominence as a vertical thin current sheet supported by the magnetic field in the 
low corona, as shown in Figure 2. The x-axis is chosen in the vertical direction, 

X 

F ig. 2 Coordinates taken. The sheet is assumed homogenous in the 

horizontal z-direction. 

the y-axis in the horizontal transverse direction, and the sheet is assumed homogenous in the 
horizontal z-direction along the prominence. 

The theory of prominence formation may include several physical processes such as plasma 
compression dynamics, thermal and gravitational effects, coronal heating, radiation pro­
cesses and magnetic reconnection. The relevant equations describing them are the MHD 

equations including gravity and an energy transport as follows: 

ap 
- + 17· (p V) = 0, at ( 1.1) 
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p ( a V + V· 17 v) =- 17 P +-1- ( 17 X B) X B- P g ex, at 411" 
a B c2 -=17X ( VxB) + -- L1B, at 411"a 
aP -+ ( V· 17 ) p + r p 17. v = ( r -1 ) CEH -Q c + 17 ( Xo T 512 17 T ) ) ' at 

(1. 2) 

( 1. 3) 

( 1.4) 

where p, V, P, B and T are the density, velocity, pressure, magnetic field and temperature, 
respectively, and r is the adiabatic constant. The gravitational acceleration is given by 

X X g(x) =GM0R;2 ( 1 +-2 )-2 =g0 ( 1 +-2 ) -2, (1.5) RG RG 
where M0, R0 and g0=GM0R;;,2 are the solar mass, solar radius and gravitational accele­
ration at the solar surface, respectively. 

E" and Qc are the mechanical heating term and radiative cooling term, respectively, The 
heating term E" due to waves or current dissipation is still not well-known. It is often 
assumed for simplicity to take the form 

E H  =hp ' (1.6) 

where h is a constant (see Priest, 1982, p 89) .  The radiative term is  simply taken as 

Qc =xp2Ta, (1.7) 

where x and a are constants; however, the temperature variation of the piecewise con­
stants x ( T) and a ( T) is given by, for example, Rosner et. al. ( 1978) and Priest ( 1982, 

PP 87 -89).  

In a magnetic field that is strong enough to make the thermal conduction perpendicular to 
the magnetic field negligible, the heat conduction term may be taken as 17 • (xlll711 T) in equation 
(1.4), where x11 has the form x11 = xo T512 (Spitzer, 1962). 

2 . 2 Current Sheet Dynamics 

We consider here a situation in which two magnetic regions of opposite polarity are appro­
aching together as in Figure 1. An X-type magnetic configuration with current flowing in the 
z-direction could be formed by a horizontal plasma inflow from both sides. The horizontal 
plasma flow v. around the X-type magnetic configuration is assumed to obey 

a 
v. =-y ' (2 .1) a 

where a(t) is a time-dependent scale factor and a =da/ dt. The scale factor a(t), which 
is determined later, characterizes a continuous change of thickness of the current sheet. 

The vertical flow vx is taken to be 
b 

Vx= Vxo (t) +bx, (2.2) 

where Vxo (t) and another scale factor b(t) are determined self-consistently later. 
The magnetic field components are assumed to take the form 
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X 
By =Bno( t) + ByO(t> A , 

Bz =Bzo( t), 

(2.3) 

(2 .4) 

(2 .5) 

where A is a characteristic scale-length of the current sheet. Unknown functions such as 
Bxo ( t), Bno ( t), Byo ( t) and Bzo ( t) are also determined self-consistently later. The role 
of Bno ( t) in Eq.  ( 2. 4) is to allow the X-point to move up or down during the current 
formation stage. 

Substituting eqs. (2.1) and (2.2) into eq. (1.1) , we find that the density p (t) is 
only a function of time and 

p a !J 
-+-+-=0 p a b 

which implies that 

(2.6) 

Po 
P (t) = a (t) b(t) ' 

(2·7) 

where Po is a constant. 
From the induction eq. (1.3) , using the expression for magnetic fields ( (2.3) -(2.5)) 

and velocities ((2.1)- (2.2)) we obtain 

Bxo ( t) Bo 
a2 ' 

Byo ( t) Bo 
b2 ' 

Bzo ( t) Boo 
ab 

dBno Vxo Bo b � + -A- [;2 + Bno b = 0 

where Bo and Boo are constants. 
We assume the pressure P (x, y, t) to be 

X X 
2 y2 

P(x ,y ,t) =Poo(t) -Po(t) ;:--Pxo(t) �-Pyo (t) �· 

(2.8) 

(2. 9) 

(2.10) 

(2 .11) 

(2.12) 

and next substitute equations (2.1) - (2.5) , (2.7) , (2.8) - (2.10) and (2.12) into 
the equation of motion (1. 2) • The term proportional to x 0 in the x-component gives 

dvxo 
+j_Vxo =

abPo(t) _BoBnoab ( _]__ _ _]__) 
dt b APo 41rPoA b2 a2 - g"', 

while the term proportional to x gives 
d2h 2Pxoab2 vi { .!!_ _ !__) + g"' b 
de A2Po � b2 a 

2R"' ' 
where v� = B� /41l'Po 

Similarly they-component of eq. (1.2) implies 
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d2a 
= 

2Pyoa 2b 
+ 

_!__]____ ( ]__l__) (2_15) 
dt2 A 2 p o A 2 b a 2 . 

Finally we examine the energy equation (1.4), in which the heating term and radiative loss 

term are given by (1.6) and (1. 7), respectively. From the equation of state, P = nks T = P ks T /M 

where M is the proton mass, we find 

MP Ma b x x 2 y 2 ) T (x,y,t) = -- = -- (Poo (t)-Po (t)�- Pxo (t) -2-- Pyo (t) -2 , 
ks P ks Po A A A 

after using eqs. (2. 7) and (2.12) . 

A Taylor expansion of expressions for P512 and pa gives 

p5i2 � ps12 (1-� �� -� Pxo � -� Pyo I!.!__) 00 2Poo A 2 Poo A2 2 Poo A2 ' 

a ( Po X Pxo X2 Pyo y2 ) pa � Poo 1-a--�-a ----
2 

-a- - - -
2

- . 
Poo A Poo A Poo A 

) 

(2.16) 

(2.17) 

Then the terms proportional to x 0 , x and x 2 in equation (1.4) give, respectively, 

dP oo 
- Vxo 

Po 
+ rPoo ( i_+ j_) = ( y -1) [ �-XP�-a (� )a 

(a b )a-2 pgo 
dt A a b a b  k s 

+xo ( �) 7;2 
(a b)712 PW {� 

2
P5 

ksPo 2 A Poo 
_ 2 p x 0 _ 2 p yO } J 

A 2 A 2 ' (2.18) 

dPo 6 --+�Po 
dt b 

Pxo 
+2 Vxo -

A
-+ rPo ( � + �) =- ( r-1) [ axp�-a ( 

k
�r (a b)a-2PoPgo-' 

( M ) 712 
( ) 712 512 { PoPxo PoP yo } J + Xo -- a b  Poo 15 2 + 5 2 ' ksPo PooA PooA 

dPxo { a 
( 

) 6 } 
( ) [ 2_a ( M ) a --+ y-+ y+2 - Pxo =- y-1 axpo --

ili a b k s  

+ xo -- (a b) 712 P&�2 15 
xo 

2 
( M ) 112 { p2 

ksPo PooA 
while the term proportional to y 2 implies 

PxoPyo } J + 5  2 ' PooA 

(2.19) 

(2.2o) 

d !yo
+ { (r+2) ; +r : }Pyo =- (r-1) [ axp�-a (�r (a b)a-2Pyo Pgo' (2.21) 

+xo ( --) (a b) 7/2 pg�2 15 
yo 

2 +5 xo :o J . M 7/2 { p 2 p p } 
ksPo PooA PooA 

The basic equations describing the current sheet dynamics have thus been derived, namely eqs. 

(2.11) , (2.13) , (2.14) , (2.15) , (2.18) , (2.19) and (2.21) . 

to 

If we assume in particular an adiabatic compression in eqs. (2.18) - (2.21) they reduce 

dPoo 
dt 

�: 0 + � Po + 2 V xo 
P ;o 

+ Y Po ( ; + � ) = 0 ,  

Pa 
Pxo 

a r b r+2 
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Pa (2 .25) 
a r+2 b r 

where P a is a constant 

3. Adiabatic Compression 

3. 1 Lagrangian of the System 

In the previous section we derived the basic equations for the current sheet formation. 
When the plasma compression occurs adiabatically, the reduced equations can be simplified 
since the basic equations describing the scale factors a and b ( ( 2 .14) and ( 2.15)) can be 
rewritten after using the relations (2 .24) and (2.25) as 

(3.1) 

dt 2 (3.2) 

where c� = 2 p a! p 0 

The above equations without the terms involving the effects of gravity and the plasma 
pressure were first derived by Imshennik and Syrovatskii (1967) , who investigated current 
sheet dynamics in relation to solar flares. 

Once the scale factors a(t) and b(t) are known, it is easy to see the time behaviour of 
physical quantities such as the magnetic field and velocity, So we first investigate the above 
equations (3.1) and (3.2) from a general point of view. They can be derived from the 
Euler-Lagrange equations 

��) dt a a 
d ( aL ) dt a6 

aL 
a a 
aL 

a b 
where the Lagrangian L (a, a, b, b) is given by 

. • _ a 2 b2 V1 ( b a ) g G 2 d L(a,a,b,b) - z- +z-+ T2 -;;+---;; +R"' b- (y-l)A2(ab)H 

(3.3) 

(3.4) 

(3.5) 

The first two terms correspond to kinetic energy TK, by analogy with the mechanical system 
of a test particle in a potential well 

a 2 "h 2 
TK =--+--2 2 ' (3.6) 

and the remaining terms correspond to an effective potential 
_ v l ( b a ) g "' 2 c� v ef f - -A2\ -;;+ b - RG 

b +-( r- -
-1-).::..:A'-:-2 --:-(a_b_ ) r---,--1- (3.7) 

It is clear that the above system has a first integral, which is constant and corresponds to 
the total energy ET of the mechanical system 

=constant. 

·b2 �l b a) + - - - + -
2 A 2 a b 
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3.2 E ffective potential surface 

By analogy with the motion of a test particle under the effective potential V eff (Eq. (3. 7 
(3. 7) ) , we can easily understand the dynamical behaviour of the scale factors a( t) and b 

( t) if we draw the effective potential. Here we consider the following normalized poten­

tial F(a, b), and examine its behaviour. 

).2 
F( a,b) = -2 -Veff 

VA 

where 

Go 

=- ( 
a
b 

+ 
a
b
) - Go b2 +--{3 

__ 
r (a b) r ' 

d 
P= -2 -, r=r - 1. 

VA 

(3.9) 

The second term in Eq. ( 3. 9), which represents the effect of gravity, is negligible when 

the coefficient Go is taken to be 4 Xl0-3 as a representative value in the solar corona. 

Then the function F(a, b) is almost symmetric with respect to the plane a =b, On the 

plane a =b the curve F(a =b) decreases monotonically from oo at a =b = 0 to -oo, because 

and 

{3 
F(a=b) = - 2 -Goa 2 + 2 r , 

r a 

d F(a=b) 

da 

2 {3 - 2Goa -
2 r_1 < 0 . 

a 
We have studied two examples of the potential F(a, b): 

( a ) Go =4Xl0-3, {3=0.01, F=2 ( y =3 )  

(b) Go = 4 xl0-3, {3 =0 .0 1, r= 2/3 ( y= 5/3) 

where we have set .A./vA=102 sec, g0 =2.71X104 cm/sec2 , 
and R0 =6.96X1010 cm . 

50 -1 00 
a 

Fig 3. Effective Potential surface; F(a, b) when 

Go=4X10-3, ,8=0.01, F=2 (r=3) 
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5 -100 
a 

Fig. 4 Effective potenti al surface, as in Figure 3, with extended view 

F 

around the origin. 

0 2 4 14 16 18 20 a 

-1 

-2 

-3 

-4 
5(a) -6 

-6 

-7 

-8 

-9 

-10 2 
b = 1 

Fig. 5 Cross-sections of the potential: (a) F(a) for given b = 1-10, 

and (b) F (b) for given a = 1 -10; same parameters as Fig. 3. 
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-1 

-2 

-3 

--4 
F 

-5 

-6 

-7 

-8 

-9 

a = 1 

10 

6 
5 

4 

3 

5(b) 

Figures 3, 4 and 5 show the case (a), while Figures 6 and 7 show the case (b). As 

seen in Figures 3-5, there are deep potential wells (a potential minimum exists) near the 

planes a = 0  and b = 0  in case (a). On the other hand, in case (b) there is no potential 

well, but there exists a high wall near the origin (a = b = 0 ). Further, there is a deep 

potential drop reaching to -oo near the planes a = 0 and b = 0. 

Fig 6. Effective potential surface; F(a, b) when 

Go=4x1o�•, ,8=0.01, F=2/3(r=5/3) 
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a 

-1 

F 

b = 1 

o-rr---�-+--�--+---�-+--�--+---�� 2 4 6 8 10 12 14 16 18 20 b 

-1 

-4 
F 

-5 

2 a = 1 

10 

7 
6 
5 

4 

3 

Fig 7. Cross-sections of the potential: (a) F(a) for given b = 1 -10, 

and (b) F(b) for given a = 1 -10; same parameters as Fig. 6. 
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The case (a) corresponds to the occurrence of a simple nonlinear oscillation, which will be 
investigated further in the next section. 

On the other hand, we find only magnetic collapse driven by magnetic forces in case (b). 
Because of the high potential wall near the origin, the scale factors a and b may not dec­
rease along the line a = b, but the scale factor a can decrease more rapidly than b during 
magnetic collapse. This implies that magnetic collapse may show a quasi-one-dimensional 
behaviour; i.e. a---> 0 and b is almost constant in time. We will investigate such a one­
dimensional collapse in detail in section 5. 

4. Current sheet oscillation and upflow motion 

In the previous section we investigated in general the time-dependent behaviour of plasma 
compression by using the analogy of motion of a test particle in an effectiuve potential. We 
here study a special case, where the horizontal magnetic field BY is a constant; BY= Bn = 
constant in Eq. (2 .4 ) . This magnetic configuration may be approximately realized in the 
X-type magnetic structure shown in Figure 2. It is also similar to the central part of the 
KS model, where the forces between magnetic tension (up) and gravity (down) balance. 
We can generalise the static KS model to a dynamic model including horizontal plasma flow 
as well as plasma up-flow. 

The basic equation for the scale factor a( t ), neglecting the inhomogeneous flow term in 
the x-direction in Eq. ( 2. 2), and assuming an adiabatic compression, is then 

c� vi 

The density, velocity and magnetic field follow form 
Po p =-a 

a Vy - y a 

Bx B o y 
az A ' 

By Bn = constant, 

Bo 
Bz = a 

The up-flow velocity Vxo ( t) is determined by 
dvxo 
dt 

vi Bn 
A Boa 

- g ' 

(4.1) 

(4.2) 

(4.3) 

( 4.4) 

(4.5) 

(4.6) 

(4. 7) 

where the gravitational acceleration g is assumed to be constant in the current sheet. If 
the first term on the right-hand side of equation (4.7) is larger than the second gravity term, 

v2B an up-flow motion ( v x o >O) can occur, If a(t) becomes smaller than ao= A� o
n , plasma 

compression can lead to such an up-flow motion. Otherwise, if there does not o�cur enough 
compression (a>ao), down-flow may exist in the prominence current sheet. We may thus 
have the possibility of a transition from up-flow to down-flow during the formation stage of 
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a prominence. 

4. 1 Nonlinear oscillation 

In Eq. (4.1 ) with r >  2, we find (Sakai and Tajima, 1986 ) a nonJinear oscillation with 

respect to a(t ) .  It impies that the in-flow plasma velocity, Vy = � y as well as other 

physical quantities can undergo an oscillation in time. The Period T of the oscillation is 

given by (Sakai and Tajima, 1986 ) 

(4.8) 

where 

Eo is related to the initial inflow velocity. The minimum period, when the amplitude 

of the oscillation is very small, is given by 

Tmln = 211" j3 312 1"A, ( 4. 9) 

where rA=A/ vA, f3=d/d,. 

If we take A -109 em, VA -107 cm/s and j3 =0.01 we obtain Tm1n -0.6 second. The non­

linear period T of the oscillation becoms longer than T min by an amount that depends on the 

initial condition Ea. 

4.2 Up-flow motion 

When r < 2 and cs < VA , Eq. (4. 1 )  only gives a collapse solution without oscillation. 

The approximate solution in the case when r = 2  and Eo is close to zero is given by ( 9 ) 1/3 
a (t ) = 2 ( vi-d) 113 A-� (t0-t )  2 13 , 

which gives the solution of Eq. (4.7) as ( 2 ) 113 vi Bn (to-t ) 113 
V xo ( t )  = 3 -9 -;J/3 -

B ( 2 2 ) 113 
-g (to -t ) , 

1\ o VA-Cs 
where to is the time when Vxo =0 , to is roughly given by 

(4.10) 

(4.11) 

which may be explained by the life-time of the up-flow motion. If we take, for example, 

v A/ c s -10, r A -102sec, we find to ;:-:::: 0 .84 X 105 s. 

5 C ondensation and C ooling 

In the previous sections we found that the current sheet can undergo a magnetic collapse (a 

--> 0 ) driven by the j X B force. When r < 2, the plasma compression can be suppressed by 

the build-up of an internal plasma pressure; while, for r < 2, the plasma compression may 

still continue (i. e. we have a magnetic collapse ) .  During the magnetic collapse (a, b -->0) 

the plasma density p =po /a b  in the current sheet is greatly enhanced. Then the radiative 

loss term which was neglected in the previous sections may become important in a phase 
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when the radiative cooling term in Eq. (1.7) proportional to P2 dominates the heating and con­

duction terms in Eq. (1.4). 

In the following we investigate one-dimensional condensation dynamics. The analysis is 

simpler than a fully 2-D situation, and in any case the 1-D dynamics themselves can often 

be a good approximation to the 2-D dynamics when the magnetic collapse occurs almost one­

dimensionally as a ->0 and b � constant. 

5. 1 Basic equations for 1- D condensation 

From the basic equations (1.1) - (1. 7), we find the following relations and reduced non­

linear equations by a similar method to that used in the previous section: 

Po p (y, t) =- ' a 

Vy (y,t) 

Bx (y,t) 

a 
=-y ' a 

Bo Y 
a 2 A ' 

Bz(t) 
Bo 

a 
y2 

P(y, t) =Po(t) -P�(t) 2T"2 '  
where a(t), Po(t) and P1(t) are determined by 

d2a a2 vi 
dt2 p 0 A 2 

p I ( t) - � ' 
dP1 a ax P � 
-- +(r+2) P�-=-(r-1) aa-2p�-1P1, 
dt a n� 

dPo p a-( 1) 
[ hPo x p �aa-2p� X T512..:1T J --+r o-- r- --- + 

0 
• 

dt a a ng A � 1 

(5.1) 

(5.2) 

(5.3) 

( 5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

In Eq. (5.8) we have introduced an order of magnitude term representing the effect of 

heat conduction parallel to the magnetic field Bu , Such a term gives a stabilizing effect 

against thermal instability and may be important when we are discussing the approach to 

and onset of thermal instability. 

The plasma temperature T(y, t) is determined by use of p=nksT as 

where 

y2 
T(y, t) =To (t) -T�(t) � ·  

T o(t) =aPo(t) /(noks) , 

5. 2 Radiative Cooling 

(5. 9) 

(5.10) 

(5.11) 

We here consider a phase in which the radiative cooling term in Eq. (5.8) becomes dominant, 
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when magnetic collapse (a---+ 0) may lead to the relations 

Xp�aa-2pao hp X T 512LIT :;}> __ 
o

_ and _
o

_,----__ 
77� a A L 

We find then the following asymptotic solutions for the physical quantities from Eqs. 

(5.6) - (5.8) : 
a(r)ocd ' 

p(r)oc ,-�, 

Vy ( ' ) oc ' -1 ' 

Bx(<) oc ,-4/3 ' 

Po(r)ocrk, 

PI(<) oc '-8/3 

To(doc 'l ' 

Tt ( <) oc -2 ' 

where 

k= 
2 a- 1 

3 (1-a) 

1 

3 (1-a) 

< =to-t 

(5.12) 
(5.13) 
(5.14) 
(5.15) 
(5.16) 
(5.17) 
(5.18) 
(5.19) 

(5.20) 

(5.21) 

(5.22) 

From Eq. (5.18), we find that plasma compression (a ---+ 0 as , ---+ 0 )  can produce pl asma 

cooling (To oc <1 ---+ 0 )  near the centre of the current sheet, provided l > 0. The condition 

l > 0 for cooling to occur can be realized in the case 

a< 1, (5.23) 

from Eq. (5.21) 
We may conclude from the above discussion that the current sheet becomes dense and cool 

due to the effect of radiative loss, following the magnetic collapse of the current sheet. Of 

course, eventually w hen the temperature becomes much cooler than 1 0 5 K and a exceeds unity, 

we expect the fall in temperature to be slowed and to cease as a new cool equilibrium at 

prominence temperatures is attained. 

6 Conclusions 
We have investigated a dynamical model for prominence formation in a current sheet at the 

boundary between regions of opposite magnetic polarity. We have derived a set of coupled non­

linear equations describing the temporal compression and condensation of plasma in the 

current sheet with gravity, heating, radiative cooling and heat conduction included. 

The dynamics of magnetic collapse has been investigated and shown to produce a nonlinear 

oscillation of the current sheet and up-flow motion. Also, an asymptotic solution ·describing 

radiative cooling and plasma compression in a 1 -D current sheet configuration was presen­

ted. In future it is hoped to study the problem further by solving both the 1 -D and 2 -D 

equations numerically. 
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