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The generalized theory belonging to the AKNS class of nonlinear evolution equations IS 

reviewed and some topics relating with dynamical natures are discussed rigorously. The 
general solvable class with a closed formula is given from directly solving its integrable 
conditions and from analysis of squared eigenstates. Conservbation laws are derived by using 
both trace method and squared eigenvalue problem. We naturally define a cannonical equation 
of course equivalent to the generalized equation and the corresponding Poisson bracket. Each 
constant of motions are prooved to commute each other, then we show an existense of infini 
tesimal cannonical transformation which allows the system an infinite dimensional abelian 
symmetry corresponding to the "half" Kac-Moody Lie algebra. This representation d irectly 
connects to the infinite conservations of integrable nonlinear systems because of using a can­
nonical frame. 

§ 1 . Introduction 

The inverse scattering transform (IST)'1 is powerful not only for solving the initial 
value problem of nonlinear evolution equations (NLEE's) but also for the analysis of that 
dynamical tstructures. The interpretation of the IST as a cannonical transformation was 
first given by Zakharov and Faddeeve21 for the KdV equation, where the sympletic form 
was used to prove the cannonical nature. The algebraic 2 X 2 -class of NLEE' s (say "AKNS 
-class" 11 ), on the other hand, was also treated by several authors, Zakharov-Manakov, 31 
Flaschka-Newell, 41 Kodama51 and Dodd-Bullough61 etc, where the Poisson bracket was also 
used. 

Si nee several years ago we have been interested in symmetries, appearing In integrable 
systems, specially relating with a new mathematical concept "Kac-Moody Lie algebras". 71 
The "half" of a Kac-Moody algebra is its subalgebra, 

for n,m=O,l,2·· = ( 1 . 1 ) 
That is, this subalgebra is Gx C (t,t-'), which is associated with a finite-parameter 
simple Lie group G. A representation of this generators(n:::::O) is M�n1 = ya X t n, where ya 
is a generator of G and t is a variable. For example the group SU(2) has three generators 
Ta=tJa/2i (a=l,2,3) and [Ta, Tb]=e:abc Tc, 

M�n I = 2
� 113 X t n 2� [ r, -

0
t n J , etc. ( 1 . 2 ) 
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where e:abe (=C-) a complete antisymmetric tensor. Of course the realization of M�n 1 
should be different as what a problem we consider. 

According to Eichenherr81 and others,91 where they based on the Riemann-Hilbert 
problem,101 we had considered the symmetric transformations of the N X N-class of NLEE's111 
relating with the Kac-Moody algebras. The matrix algebra through these gave a representa­
tion of the Kac-Mxxly algebras, but we did not find the existence of conservation laws. 

In this paper we summarize a rigorous treatment for the generalized AKNS class of 
NLEE's. In § 2, the algebraic class of AKNS solvable equations is determined from the 
integrable41 condition, while also obtained by using squared eigenfunctions in § 3. The trace 
method41 is introduced in § 4, which gives a relation between diagonal entries of scattering 
matrix S and a differential operator of the AK NS eigenvalue problem. The conservation 
laws are derived in § 5, where we use the trace formula and eigenvalue equations of 
squared eigenfunctions. In § 6, we derive a cannonical equation equivalent to the generalized 
NLEE and define a Poisson bracket naturally. It can be shown that constants of motions 
commute each other. By this fact we can find an infinitesimal cannonical transformation which 
allows an infinite dimensional Lie algebra. This is a realization of the Kac-Moody Lie al· 
gebras and it surely relates with the infinite conservation laws. 

§ 2 . AKNS Equation and Integrable Condition11 

The AKNS equation is given by 

Ux = D(A;x, t)u, u, = F(A;x, t)u, 

where D and F "are traiceless 2x2 -matices. Specially the matrix D is taken as 

( 2 0 1) 

D(A:x, t)=�i). ag+ Q(x, t), (2. 2) 

which consists of a spectral parameter A, 0"3 one of Pauli spin matrices { aj ;j=l, 2, 3 }  and 
an off-diagonal potential Q(x, t ), 

Q(x, t) =[ 0, q(x, t) J (2. 3) r(x, t), 0 
It is basic to define the ]ost functions (/J± and scattering matrix S as 

(JJ1 = D(A, x)(/J±, (/J±(A, x)-> e -iAO",x for x ->±oo, 
(/J -(A, X) = (/J +(A, X) 5 (A) , 

(2. 4 a )  
(2. 4 b ) 

where t is omitted for simplicity. We note det. (/J ± = 1 and ( (/J ±]-1 = ( (/J ±Jt, where "t" 
means adjoint. The analytical propertiy of vector Jost components rf>J and diagonal entries 
S jj of S-matrix is well-known, that is , functions {r/>!(A, x), r/>HA, x),s ll(A) } are analytic 
on the upper A-plane, while {rf> i (A, x), r/>2(A, x), S zz(A) } on the lower plane. 

For eq. ( 2 . 1 ) we must provide the integrable condition, 

D ,  �Fx + [D, F]= 0 (2. 5) 
obtained from cross-differentiation of eq. ( 2 . 1 ). If F(A; x, t) is taken as entire as to A, we 
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possibly find the coefficients of expansions determined recursively. To make clear this 
procedure, we introduce some conventional notations, 

F= [� : -�J. l w >= [ ; ] . lh>= [�] 
and a bra vector <hi=( -h2, h1 ) T adjoint to the ket I h > =( h1 , h2 ). 

Then the integrable condition (2. 5) is reduced to 

A x= < w l h> 
I h x > -2i A113l h> =I Wt > + 2AI131 W > 

We expand the vector I h >and scalar A as to A, 

I h> = 1;, An I h(n ) >. 
n =0 

Substituting these into eqs. ( 2 . 7 ), we obtain 

A�> = < wih<n> > , (O�n�N) 

11 31 h(n) >= 0 

I h�) > -2 i 11 31 h (n -1 ) > = 2 A (n) 1131 w >' (1 � n � N) 

I h<J> >=I Wt > + 2A (O) 1131 w > 

(2. 6) 

(2. 7 a )  
(2. 7 b )  

(2. 8) 

(2. 9) 

(2.10 a ) 
(2.10b) 

(2.10c) 

These can be regarded as the differetial-differece equation for unkowns A<n> and I h<n> >. 
For solving this we define the following intergral-differential operator, 

where 

W±[x, dy] =113111 ! w(x)> J
±
: dy < w(y )I 111113 . 

After that we get 

1131 h( N ) >= 0 ' 

I h <n-1 > >=AI h<n>  >+ ian l w> (1  �n�N), 

(2. 11) 

( 2. 12) 

(2. 13) 

where an is an integral constant for eq. ( 2 . 9 ). The last one of eq. ( 2.10 c ) should represent 
the solvable nonlinear equation, 

l wt>=2il13ih<- 1> > ,  

where I h< -1 > > can be obtained from generalization of the recursion relation (2.13), 

I h<-1 > >=i.Q (A>I w> , 
.Q( Z )=a N Z N +a N -1 Z N-1 + +a 1 Z +a o (2. 14) 

The solvable class of nonlinear equation can be given by 

(2. 15) 

Corresponding to A and I h >, the followings are similarly obtained, 
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N N-k JX A= .Q(...\)+i �0 Ak-l f; o aN-i -oo <wliN-k-ilw> dy , 

N N-k I h>= i  � Ak-l 2:: aN-i .JN-k-jl w> 
k=l j =0 

We specially list the case of N= 3, '> 

i 1 A= .Q(...\)- �  a3(Qrx- Qxr)+- (a2+Aa3) q r , 4 2 
. 1 B= za3(- -4 
. ( 1 

C = z a3 - -4 

1 2 i l l2 ) • (i l ) . Qxx+- q r+- II Qx +11 q +za2 - Qx+11q +za,q , 2 2 2 
1 2 i l l2 ) • ( i l ) . rxx+- q r - -llrx+ll r +za2 - - rx +ll r  +za,r 2 2 2 

i ( )1 ( 2 ) ' -Qt+-a3 Qxxx- 6 qr qx +-a2 Qxx- 2 q r - za,qx- 2ao q- O , 4 2 
i ( 1 ( " 2 ) ' rt+-a3 rxxx- 6r qrx)- �a2 rxx- 2 r q - za,rx+2aor = O 4 2 

The well-known integrable equations are found as 
(1 ) ao= a,= a2= 0, a3= - 4i. 
( 1 a ) r= -1: KdV equation, 

q t +6 QQx + Qxxx = 0 
( 1 b) r= mq( m = ±1) : M-KdV equation, 

(2. 16) 

(2. 17) 

(2.18a) 

(2.18b) 

(2.18c) 

(2.19a) 

(2.19b) 

(2. 20) 

Qt - 6mq 2 qx + Qxxx = 0 . (2. 21) 

( 2) ao= a,= a3= 0, a2= - 2i and r= mq* (m= ±l); NLS equation, 
i qt+ Qxxx - 2ml q l2 q = 0. (2. 22) 

Specially for eq. (2.22) with independent potential q and r, the matrix F is given by [ - 2iA 2- iqr, 2Aq+ iqx F=  2Ar- irx, 2i...\2+ iqr J 
§ 3 . Squared E igenstate s and S olvable Sy stem 

(2 . 23) 

The AKNS solvable system can be reformulated by the squared eigenfunctions. For this 
purpose we define 

fPu.k> =I r/> j > < r/> k I = [ - r/> u r/> 2k , rf>u r/> 'k J - r/>2j r/>2k' �j r/>Jk 
= fP\f•k)+ fP<J·k)' 

where fP n and fP0 are diagonal and off-diagonal, respectively. We easily find 

fPY.k) = [ D( A' X), fPU.k>J. 

From substitution of eq. (3. 1) into eq. (3. 2), we obtain 

iPn.x= [Q, fPo) 
fPo, X = - i A[ 0' 3, fP 0) + [ Q, fP D ) . 

We define both scalar and vector types of squared functions, 
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(/J s = (/J 11 � (/J 2 2 = < r!>J I d 31 rfik > , 

then eqs. (3. 3) can be reduced to 

(/Js,x = 2 < WI d 3d 1 I (/Jv > 
(ox+ 2i l. a3)1 (/Jv>=�(/J s all w> 

where ( q (/)21 �r(/J12 l =  < wl d3d1l (/Jv >is used. 

(3. 4 a )  
(3. 4 b ) 

There exist various squared eigenstates, lnt it is sufficient to deal with three types of 
squared functions, 

{(JJ!P , I(JJtP > }= {< rfiila3 lrfii> , lrfitxrfit>}, 

{ (/J s p ' I (/J ;/ > } = { < r/>11 d3 I ¢1 > ' I ¢1 X ¢1 > } ' 
{ (/J � p ' I (/J �p > } = { < r/>11 d3 I rfii > ' I rfii X rfii > }, 

all of which are analytic on the upper ;. -plane. 

(3. 5 a )  
(3. 5 b )  
(3. 5 c )  

Caused from boundary conditions of Jost functions, the asymptotic behaviour of scalar 
functions are made clear, 

(/Jf? (t., x)-> 0 
(/J fP (/. , x)--+�s�� 

as x -> ±oo 
as x -> ±oo 

From eqs. ( 3. 4) and ( 3. 5) the condition ( 3. 6 a ) yields 

(/J tp ( ;. ' X ) = 2 J
±
: < w ( y) I d 3d I I (/J v ( ;.  ' X ) > dy 

While the condition (3. 6 b ) similarly results in 

(/J f p ( ;.  ' X) = 2 i: < w ( y ) I d 3 d I I (/J � p ( ;. ' y ) > dy � s I I ( ;. ) 

(Jx + 2d a3)1 (/J�P (/., x)> 

=�2 all w(x)> i: < w(y)l a3 all (/J�P (l., y)>dy + a�l w(x)>sl l(t.) 

Both eqs. ( 3. 7 b ) and ( 3. 8 b ) may be regarded as eigenvalue problems, 

A ±(X) I (/J v ( ;.  ' X)> = ;.  I (/J ifP ( ;.  ' X ) > ' 
A±(x)l (/J�P (J., x)>=t.l (/J�P (I., x)>+(i/2) a3 ad w(x)>s ll( ;.), 

(3. 6 a ) 
(3. 6 b )  

(3. 7 a )  

(3. Sa ) 

(3. 8 b )  

(3. 9 a )  
(3. 9 b ) 

where A± are I. -independent integra-differential operators already defined in eq. (2. 12), 

A±(x)=(i/2){ a3Jx�2 a3 all w(x)> i: dy < w(y)l al a3 } (3. 10) 

The variation of S-matrix caused from potentials is given by 

(J s ( ;.  ) = i: ( (/J + ( ;. ' y ) ) -I (J Q ( y ) . (/J -( ;. ' y )dy 

Regarding this variation depending on t, we obtain 

� 92 � 

(3. 11) 



KA W AT A: Generalized AKNS class of the Nonlinear Evolution Equations 

(3. 12) 

We introduce a matrix H(A ), which is independent on t - x a nd still commutes with a3, 

then 
( 3. 13) 

Considering the boundary condition in eq. (2. 4 a )  and [H, a3] =0, we integrate eq.(3.13) 

and obtain 

If we impose the following t -dependence, 

St =[H, S] 

both eqs. (3.12) and (3.14) are reduced to 12> 

J: [d>-]-1{Qt -[H, Q]}d>-dy=O 

If we set H(A )= h(A )a3, 

We further note 

Qt-[H, Q]=[ 0, Qt - 2h (A) q ] 
rt +2 h(A )r, 0 

< u I { Q t -[ H, Q]} I v > = < u X vI a 1l w t + 2 h a 3 w > 
<---

= < w I a 1 Ot - 2  h a 3 a 1l u X v > 

After all eq. ( 3. 16) can be reduced to 

J: < ¢1 X ¢1 I a 1 { o t + 2 h (A ) a 3} I w > dx = 0 

(3. 14) 

(3. 15) 

(3. 16) 

(3.17 a ) 

(3.17b) 

As shown by AKNS, 1 > squared vectors spun a vector space and above relations means a vec­
tor adot +2h (A )adl w> to be zero. But this is not true since in eqs. (3.17) h = h (A) 
exists. We must eliminate this A -dependence. Considering ( a1 a3 )t = a3 a1 =-a1 a3 and 
<d>viAiw>=- <wiA�I d>v>, we use eq. (3. 9 a ) then find 

< ¢ I X ¢ !I h (A ) a 1 a 31 w > = < w I a 1 a 3 h (A ) I ¢ I X ¢ I> 
= < wl a1 a3 h (A -)1 ¢!X¢ J.> 

According to eq. (A. 4) shown in Appendix A, relating parts of eqs. (3.17) are written as 

J: < wl a1 a3 h (A ±)I d>�P >dx =- J: < d>VI h ([A ±Jt )  a3ad w >dx 

Hence we finally obtain 
{a t - 2h ([A ±)t )a3}a�l w> = 0 (3. 19) 

This is completely equivalent to eq. ( 2 .15) and represents the nonlinear equation which can 
be solved from analysis of AKNS eigenvalue problem. 
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§ 4 . Green function and T race Form ula 

The AKNS eigenvalue problem can be written as 

( 4. 1) 

For eq. ( 4. 1) we can define the Green function as 

(L -A)G(A;x ,y )=8(x -y ). ( 4. 2) 
It is well-known that the Green function corresponds to the resolvent kernel or inverse 
operator of (L - A). It is not difficult to write down the Green function, 61 ( ) { Gp (A;x,y) (Im.A>O) G A;x,y = 

G N ( A ; x , y ) (I m. A < 0 ) 
( 4. 3) 

where Gp (A) and GN (A) are analytic on the upper and lower A-plane , respectively, 
ei A (X-Y) 

-ii<P! (A,x)> ( ) s 11 A 
ei A (y-x) 

-i I <P J.( A ' X ) > ( ) Sl! A 

< <P J.( A ' y ) I 0' 3 

ei A (Y -X) 
ii<Pt(A,x)> ( ) <¢2(A,y)I0'3 s22 A 

e" (x-y 1 
i I <P 2( A ' X)>--(�) - < <P t( A' y) I 0' 3 s22 A 

( y<x ), 

(y>x), ( 4. 4 a )  

CZJ < x ), 

(y>x), (4. 4 b )  

and <P 1 = ¢1 exp( i A x ) , <P2 = ¢2 exp( -i Ax). 
If we denote a trivia! potential as Q0( = 0 ) and the corresponding operator L 0, the trace 

formula R(A) and its kernel g(x, y) are defined by'1 

where 

R(A )= Tr. D'(A )= J: Tr.g(x,x) dx , (4. 5) 

D'(A )=(L -A )-1 -(L0 -A )-1 , (4. 6) 
g(x,y)=G(A;x,y) - G0(A;x ,y) (4. 7) 

From eqs. ( 4. 4 a ) we can obtain 
1 

Gp (A;x,x)= -il¢ t (A,x)> ( ) <¢J.(A,x)1 0'3 , s 11 A 

G�(A;x,x)=i [ �: �J 
and note the relation 

By these relations the function R(A) is given by 

R(A)= -i foo11])2P (A,X) +1 } dx . 
-oo S1!(A) 

We specially take the following components of AKNS equation, 
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< ¢1, x I=� <¢ 11 ( � iA 0"3 + Q) 
I tM, x >=(�iA a 3+Q)I ¢i>�ia31 ¢!>, 

where� = d¢ / dl.. Adding above relations, we get 

(4. 9a) 

(4. 9b) 

a . 
- < ¢11 ¢i>=�i fP2p (4. 10) 
a x 

We want to integrate eq. (4.10), but there remains a trouble, that is, the integral diver-
ges. To remove this, we first take a sufficiently larege but finite region (�a, a). After 
that we make a limit of a-> oo and impose the boundary condition, then obtain 

x =a 
< ¢11 # > I =�s11 +Zias11 

x =�a 
After all we obtain 

d
d 

log s11(/..) = if� { fP�Pis��+l} dx 
;. -� 

Comparing both eqs. (4. 8 )  and (4.11) , we obtain 
d 

R (A ) = � d/.. log s 11 (A ) , 

(4. 11) 

( 4. 12) 

which is the well-known relation R= �LJ' /Ll, that is, L1 (=s11) is the Fredholm deter­
minant. From eqs. (4.5) and (4.6) we also get 

and 

d 
� 

d/.. log S 11( ;. )= Tr.{(L�/.. )-1�(L0�/.. )-1} 

d 
= d/.. Tr.{log(L�/.. )�]og(L0�/.. )} , 

log S 11(/.. )=�Tr.{log(L� ;.)�!og(L0�/.. )} 

§ 5 . Conservation Law s 

We substituste eq. (3. 8 a ) into eq. (4. 11) , 

d
d
/.. I og s 1 1 = 2 i j_�

� 
dx J±

x
� < w ( y ) I a 3 a 1 I Q P (A , x ) > dy , 

where 

( 4. 13) 

( 5. 1) 

As well-known the conservation laws are derived from s11(/.. ) expanding into 1/1.-series. 
Instead for the derivation of eq. (5. 1) we use eq. (3. 8 b ), that is, 

(5. 2) 

The inverse operator in eq. (5. 2) can be expanded into13l 
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by which the relation (5. 1) is reduced to 

:).. 1 og s I I = - f_: dx f
±

x

oo 
< w ( y ) I 0" 3 0" I ( A ± -).. ) -I 0" 3 0" I I w ( . ) > dy 

00 1 !00 
= � � c� P ( x ,  t ) dx , 

n�l A -oo 

where conserved density dP { vanishing for n =  0 }  is given by 

c�P (x , t )= i: < w(y ll 0" 10" 3(A ±) n 0" 30" 11 w(· )>dy (5. 4) 

Because of eq. (3.19) this surely results in a polinomial of potentials and its derivatives. 
If we set the expansion as 

00 
log s11(;..)=� ;._ - n c� ( 5. 5) 

n =l 

the conserved quantity c� (constant of motion) shoud result in an integral related with the 
density. , 

1 !00 
c� = -- c� (x , t) d dx n -oo 

(5. 6) 

We examine eq. ( 5. 1) in a different manner. Because of the relation d>-= d>+ S the cross 
type of suared eigenstates are related to 

ld>�P>=s��l¢ix¢ t >+s211 d>tp > ,  
I d>�N >=s12l d>tN >+s2 2l ¢ix¢t > 

Then we get 
1 1 

-- I (j)�p > --- I (j)�N >=ppl d>tp> -pN I d>tN > , 
S II S 2 2 

wherepP =s21/s11 andpN =s12/s22 . From Plemelj' s formula, we obtain 

.Q P ().. )=-1-. foo _ii_ {PP I d>tP > -pN I d>tN> } (Im.).. >O). 
2 7r z -oo � -).. 

Substituting this into eq. (5. 1), we get 
d 
d).. log s 11 ().. ) = - R().. ) 

( 5. 7) 

(5. 8) 

= -_1__ Joo 
dxjoo _if__ {pP < wl a3 a1ld>V > -pN < wl a 3 alld>�N > }(�,?J)dy 

7[ -00 -00 � -).. 

=_]__ foo
dxfoo _iL {pP (}),iP -pN(}),iN }(� ,X ) , 

2 7[ -00 -00 � -).. 
where eq. ( 3. 7 a ) is used. We further note 

<¢!l a3l¢ 1> <¢il a31 ¢2> P +P N ------ - =p d>s -p (}) 
S11 S22 

from which the following relation is derived. 
(}) v ( ,.\ , X) 1 !00 M { p . p v + 1 =-- --- p d>; -p' (}) 

S I I (A ) 2 7[ i -oo � - A 

(5. 9) 

} . (Im.).. >O) (5. 10) 

If we substitute eq. (5.10) into eq. (5. 9), eq. (4.11) is again obtained . Expanding eq.(5. 9) 
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as to t1. �I and comparig it wi th eq. ( 5. 3), we can obtain 
1 !00 

c� =- - � n {ppfPtP -pN fPtN }M 
211' �oo 

This represents the density by the scattering data. 

(5. 11) 

As shown by Flaschka, we can show another type of conservation laws. 
and [,p+jt =S[fP�)t we obtbain 

From eq. (3.14) 

a s11 =-sl l j_: <¢ 21 a Ql ¢ l>dx +s12 f: <¢ 11 a Ql ¢ !>dx 

Because of s 11¢ 2=¢ t+s 12¢ I, the term of the first integral is written as 
- s 1 1 < ¢ 21 a Ql ¢ 1 > = - < ¢ tl a Ql ¢ 1 > -s 1 2 < ¢ 11 a Ql ¢ 1 > 

Hence eq. (5.12) is reduced to 
1 !00 

a (log s11l=- -- <¢ tl a Ql ¢ !>dy 
S 1 1 -oo 

This can be again expanded into 1/tl. -seriese as eq. (5. 3) , 

1 !00 
a (log S11) =--- <awl 0'11 fP�P >dx 

s 11 -oo 00 1 
p = 

n�o Tn+l a c n 

which gives the variation a c� as 

a C� =(i /2) f: <awl a1[A ±) n a3a1l w>dx 

(50 12) 

(5. 13) 

(5. 14) 

(5. 15) 

The trace formula is again useful for derivation of eq. (5.15). By means of eq. (4.13) we 
can also evaluate the variation of log (sl l ) , 

a(log sl l )�Tr. {(L-t1.)�1aL} (5. 16) 

Because L = i 0' 3 ( a X - Q) and 

Tr. {(L- t1.)�1aL}=-(l/sl l ) f: Tr. {1¢!><¢;-laQ}dx , 

Tr. (I ¢ t > < ¢ 11 a Q) = < a w I a �I ¢ 1 x ¢ t > 

the relation (5.15) is reduced to 

a (log s 11) =-f: <a w I a 1l fP �p Is 11 > dx (50 17) 

This is just eq. (5.14). 

§ 6. Hamiltonian Structure s 

In this secstion we consider functional derivatives and make clear the dynamical 
struc ture of problems. First we give the folowing Proposition. 
Prop. 1 : "For the scalar variations, 

aa = f: <a u(x)lal v(x)>dx, ab = f: <u(x)laB(x)lv(x)>dx , 

its functional derivatives are given by 
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a a a b 
-

1
- =a31v(x)> -(x)=[lv(x)><u(xliF , 

a u> a B 
respectively. The alginment of RHS in the former sholud be same as the ket I u>, while 
the one in the later as the matrix B of LHS." 

By this Prop. 1 we can take the varliation of eq. ( 5. 17),  
a 

- I p I log s ,, - - 0"3 Q > 
a w> 

which can be expanded into ).-'-series via eqs. (5. 2) and (5. 5). That is, we obtain 

( 6. 1) 

. a 
p [ +J n I ( l -2za3 I Cn+t = A- 0"30"1 w> 6. 2 

a w> 
This is also derived from eq. ( 5. 15) and suggests a clsose connection with the generalized 
NLEE formula (3.19). Considering [A +J t =A - and [At ]t =A shown in eq. (A. 8), we 
can regard [A ±jt ::::=:A±. 
Then both eqs. (3.19) and (6. 2) result in 

N a 
O"t0tlw>=- 4ia3 � a n--- c�+l 

n�o a I w > 
by which the Hamiltonian HP { = HP(x, t) }  may be introduced, 

N 
Hp=- 4i � an C;;+, 

n=O 

( 6. 3) 

( 6. 4) 

We remark that eq. ( 6. 4) can be derived from the variational formula ( 5. 17) connected with 
the analysis of trace formula. In the following, however, we show another way giving the 
same result. The ( 1-1) entry of eq. ( 3. 11) 

as"(n=-J: <¢t ($, x)laQ(x)l¢1($, x)>dx (6. 5) 

defines a functional derivative, and from Prop. 1 we obtain ( as" )r ( ) 
"' Q

- (x) =- l¢1(x)><¢t(x)l =(E'P(x)]off, 
u off 

and dividing both sides by s" 

where 

( a ) r ( g P (.l., x) ) 
--log s ,, = 
a Q s , , ( .l. ) off, 

E' p = -I ¢ 1 > < ¢ tl , E' N = I ¢ 2 > < ¢ il 

( 6. 6) 

( 6. 7) 

We must note that eq. (6. 1) corresponds to a vector relation of eq. (6. 7), because off-diago­
nal parts of E'P are directly connected with (]>�P . On the other words, the trace formula 
not only gives the conservation laws but also contributs on the Hamiltonian structure. 

Another case of Im. ). <0 is similarly treated. The squared eigenstates are given by 
@2N =Tr. (631 ¢ 2> <¢ il )=<¢ 21 a31 ¢ i> and I (]>�N >=I ¢2 X ¢ i>, which satisfy 

( 6. 8) 

Because of boundary condition, @2N (.l.,x)--> -s22().) for x-->±oo, we get the functional 
form as eq. (3. 9 b ) , 
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(6. 9) 

where I Q N > =I tP�N Is 22 >. This is  same as  eq. (5. 2), while eq. ( 6.  1) must be  replaced with 

Again taking the expansion 

log(s22)=� ,.\-nc� 

we can reduce eq. ( 3.19) to 
n=l 

N a 
l1j a ,lw>=+4il13 � an ---:--

a I w> n=D 
Both relations (6. 3) and (6.12) can be reduced to 

where the Hamiltonian is given by 
N H(x,t)=Hp =� HN =�4i � an c�+l 

n=D 

The components of eqs. ( 6.13) shows the cannonical form, 
aH aH 

a ,  r =�-� a ,q =-� 
a q ' a r 

We define the Poisson's bracket as follows !00 a A {AB}=� ' -oo a< wl 

aB 
dx 

a I w> !00 a A a B a A a B 
= (-·- �-·-) dx =�{B, A} 

-oo a q a r a r a q 
which of course satisfies the Jacobi identity, 

{A,{B,C}}+{B, {C,A}} + {C, {A,B}} = 0  . 
Since aq/ar=O, aqjaq=a(x�y )  etc., eqs. (6.15) are reduced to 

a , r = { r, H} , a , q = { q, H} 

( 6. 10) 

(6. 11) 

(6. 12) 

(6. 13) 

( 6. 14) 

( 6. 15) 

(6. 16) 

( 6. 17) 

( 6. 18) 
The quantity C�·N were of course conserved because Sjj (,.\) is independent of t via eq. 

(3.15). However, it is still possible to show this by using Hamiltonian structures. We 
consider the bracket for both c;;, and C� , 

{Ct:., C�}=(i_)2 foo <(A±]m-111311!wi(A±]n11311!W > dx. 
2 -00 

From eqs. (A.l ), (A. 1 1) and (A. 12) we obtain 

{Ct:. , C� }=(� )2 foo <wi111113(A ±jm+n-2 113111l w>dx = 0. 
2 -00 

Since each C� commutes with the Hamiltonian, we find C� , , =0. 

. (6. 19) 

Now we can discuss the cannonical transformation for our class and the basic points 
are shown in Appendix B. First we comment on the action-angle variables developed by 
Zakharov and his co-workers originally. We can list eqs. (6. 1), (6.10) and 
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� 1
¢tX¢2 ��153 >, s 12 

l
tf;iX¢1 

= 153 > . s 21 
(6.20) 

On the real axis � = Re. }. , it is not difficult to calculate various brackets as {log s iJ, 

log s mn }. For example we show 
1 

{ logs ll, log s21 } <n =
2

.
( ') z � � � 

(6 .21) 

To eliminate the first term in R.H.S., we must take complex conjugate quantities. The 
action'angle variables are defined by 

P(n=2·logls ll(�)l , Q(n=(2/rr)arg s21 , etc. 
Details for this had been reported by Kodama.5' 
As a new topic, we refer to the infinitesimal cannonical transformation,6.1 •> 

l. C. T: lw>->IW>=Iw>+el5!153 
a 

C� 
al w> 

(6.22) 

where I W> =I R, Q> and 0 < e �1. Denoting the infinitesimal term as I L1 r, L1 q >, one 
of the Poisson brackets is given by 

{ Q, R} = { q, r} + { L1 q, r} + { q, L1 r} + 0 ( e 2) 
, a a a a 

=a(x�x ) +d-· -�-- -) C� +O(e2)::o:a(x�x'). (6.23) 
aq ar a r aq 

From discussions in Appendix B, the transformation ( 6. 22) is surely cannonical and both 
Hamiltonians should be related as H[w] =H'[W], where H' means the transformed one. 
We substitute eq. (6.22) into this invariance, 

H '[ W] = H [ W � L1 w J = H[ W] � a H[ w, L1 w J + 0 ( e 2 ) • ( 6 . 24) 
From eqs. (B. 1 ) and ( 6 .19) we obtain a symmetry, H'[W] :=o: H[W]. This fact means 
that the Hamiltonian system has an infinite abelian group of symmetry transformations. 

§ 7 . C oncl udi ngs and D i scussi ons 

The generalized AKNS class of NLEE's were given with a closed formula still con­
taining integral differential operators A±, from both the integrable condition (2. 5) and the 
given S-matrix relation (3.15). Constants of motions (=Cn) are derived by using the trace 
formula and we also saw that ;.-� �expansions of (A±�.I.)IQP,N>=(i/2)15315!1w> give 
the conservation laws. We obtained such a canonical system 61 l w, > =153(a H/1 a w>) 

equivalent to the generalized formula, from which the Poisson bracket was defined naturally. 
Considering the property of L1 ±, we found that C �,N commutes each other as to the Poisson 
bracket. This fact enables us to find an infinitesimal cannonical transformation which 
gives the system an infinite dimensional abelian symmetry already mentioned in § 1. This 
can be regarded not only as the Lie-Backlund transformation but also as the Kac-Moody Lie 
algebra of the system. 

References 

(1) M.]. Ablowitz, D.].Kaup, A.C. Newell and H. Segur:"The inverse Scattering Trans-

� 100 � 



KA WAT A: Generalized AKNS class of the Nonlinear Evolution Equations 

form-Fourier Analysis for Nonlinear Problems", Stud. Appl. Math. 53(1974)249-314 
(2) V. E. Zakharov and L. D. Faddeev: " Korteweg-de Vries equation: a completely integrable 

Hamiltonian system". Func. Anal. Appl., 5 (1971)  280-287 
(3) V. E. Zakharov and S. V. Manakov : "on the completely integrability of a nonlinear SchrOd­

inger equation", Theor. Math. Phys., 19(1974) 332-343 
(4) H. Flaschka and A. C. Newell :"integrable systems of nonlinear evoulution equations", 

Lecture Notes in Physics in 38: "Dynamical Systems and Applications", Springer 1974, 
p. p. 355-440 

(5) Y. Kodama : "complete integrability of nonlinear evolution equations", Prog. Theor. Phys., 
Vol. 59 ( 1975) 669 -686 

(6) R. K. Dodd and R. K. Bullough : "The generalized Marchenko equation and the cannon­
ical structure of the AKNS-ZS inverse method", Physica Scripta, Vol. 20(1979)514 -530 

(7) L. Dolan :"Why Kac-Moody Subalgebras are interesting in Physics". Lectures in Appl. 
Math. Vol. 21 (1985)307 -324, Providence 

(8) H. E ichenherr :"symmetry algebras of the Heisenberg model and the nonlinear Schad­
inger equation". Phys. Lett., 1 15 B  (1982)385 -388 

(9) L. L. Chaw and T. Koikawa :"understanding of the symmetric space a -models through 
the soliton connection ", private commnication 

(10) T. Kawata : "2 X2-matrix Riemann-Hibert transform and its connction to the contin­
uous scattering data", ]. Phys. Soc. Jpn., 53 (1984) 2879-2884 

(11) T. Kawata :"some transformation property and its algebraic structure relating with the 
soliton equation", Bultain of Faculty of Engingeering in Toyama Univ., 37 (1986)49-59 

(12) A. C. Newell :"the general structure of integrable evolution equation", Proc. R. Soc. 
Lond. A, 365 ( 1979) 283 -31 1  

(13) V. S .  Gerdjikov and E. Kh Kritov :Bulg. J. Phys. 7( 1980) 1 19-133 
(14) ]. M. Alberty, T. Koikawa and R. Sasaki :"canonical structure of soliton equations. I", 

Phisica 5 D ( 1982) 43- 65 

Appendix A: Adjoint Operator 

We define an adjoint operator At for A given by eq. (2 .12 a ), 

J: <Po (x)l A±(· )l d>�P(x)>dx =- J: <d>�P(x)I(A±(· )]t IPo(x)>dx , 

where qo(x) is a rapidly decreasig function. Once the adjoint At is determined, 
possiblo to generalize eq. (A . 1). For tlhis purpose we introduce 

p n (X)= { [A ±( · ) )t } n I Po (X ) > ( n = 0, 1 .  . 

which also vanishes rapidly. For example 

J: <pol [A ±) 21 d>�P >dx =- J: < d>�P I A [A ±]t I Po >dx 

(A . 1) 

it is 

(A .2) 

= -J: < d> � P I A I P 1 > dx = J: < P 1l A ±I d> V > dx = -J: < d> V I [A ±] t I P 1 > dx. 
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Then we obtain 

i: <Poi[A±FI d>V>dx = - J:oo <d>�P I {A±)t } > IPo>dx. (A . 3) 

Repeating this, we get 

(A .4) 

It is not so easy to give the explicite formula of At , that is, we prepare the formula 
exchaging integrations, 

(A . 5) 

By this formula both integral operators in eq. (2.12 b )  are relating with each adjoint as 

W![x,dy] =W+[x ,dy] , W1 [x,dy]=W�[x,dy] 

It is reasonable to define the operators A ± as 

(A . 6) 

(A . 7) 

For example we show the first one of eq. (A . 6). Taking a rapidely vanishing func­
tion p ( x), we calculate 

00 
j_oo <p(x)IW+[x,dy]l d>;_;P (A,x)>dx 

= J: < P ( x ) I ,. 3 ,. 1 I w ( x ) > 1: dy < w ( y ) I ,. 1 ,. 31 d> ;_; P ( A , y ) > dx 

= -J: dx J: dy < P ( Y ) I ,. 3 ,. 1 I w ( y ) > < w ( x ) I ,. 1 ,. 31 d> ;_; P ( x ) > 

= -i: dx < d> v P ( X ) I 0' 3 0' 1 I W ( X ) > f�
x

oo dy < W ( Y ) I 0' 1 0' 31 P ( Y ) > 

= -J: < d> v P ( x ) I W �[ x , dy J I p ( y ) > dx 

which is just the first one of eq. (A . 6). 
Since [<13ox ]t =<13ox, the adjoints are given by 

[A +(x))t =(i /2)(,.3ox -2W +[x,dy])=A � 
[A � ( x ) P = ( i /2) (,. 3 ax - zw �[ x, dy J) =A + 

Both relations (A .8) consistently satisfy 
({(A �Jt } t =(i /2)(0'3ox -2W+(x,dy])t 

=(i/ 2)(<13 0x -2W�(x,dy])=A-

(A . Sa) 
(A. Sb) 

(A .9) 
Some specific properties are found in these operators. Relating these we list directly a few 
of the first terms of [A �]n 0'30'11 w>, 
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(A-Pa311Jiw>=(� )3adl Wxxx>+2a3lw><wl Wx>+[lw><wla3w>] x}, (A.10) 

It also becomes 

From eqs. ( A .1 ) , ( A . 8) and ( A .9) we can see 

�-�� <wla1a3[A -]n 0"3ad w>d .x  =- J: <wla1113((A -)n)t 113111l w>d x 
=-J: < wlal a3[A +]na3al lw>d .x . 

That is , from eq. ( A .11 ) we obtain 

J: < W lo-1 0"3 (A ±] n 0"3 111 I w > d .x = 0 . 

Appendix B. C annonical T ransforrnation 

(A.ll ) 

(A.12 ) 

We start from the cannonical ffJ.Uations, a!lwt>=a3(8H/I8w>). The variation of 
an arbitrary functional ](w] is given by 

8 J ( w ' 8 w) = �� 
< 8 w I 8 11! 113 ___!__

I 

J 
d .x  ( B . 1 ) -� 8 w> 

and all of variations are regarded as 
8F=Ftf1t, 8q=qtf1t , 8r=rtf1t. 

Then eq. ( B .1) is written as 

f� 8] 
]t =  <wtl11!113 

I 
d x  -� 8 w> 

f� 8] 8 H = -
I 

. 
I 

d X =- {]' H} (X) -� <8 w 8w> 

This reduce the cannonical sytem to 
{q,r}<x> =8(x-x') , {q,q}<x>={r,r}<x> =0, 

The cannonical equation can be reduced to 
q t = { q , H} <x>. r t = { r, H} <x> . 

( B .2 ) 

( B . 3) 

(B .4) 
We next consider another cannoni cal system, ad W t > = 0"3 ( 8 H' /I 8 W > ) , and assume 

that w is a functional of W, w=w[W] . 
The variation in eq. ( B .1 ) is repretented by 

8]= j� dxj� {(8]_ 8q + �- 8r ) 8 Q+(�- 8q + �- 8r ) 8 R} M -� -� 8 q 8 Q 8 r 8 Q 8 q 8 R 8 r 8 R 
Again we reduce this to the form as eq. (B. 2), 

]t=j� dxf� {(§_J__· 8q + �·�) 8H_(8]_8q + 8]·�) 8H}d� -� -� 8 q 8 Q 8 r 8 Q 8 R 8 q 8 R 8 r 8 R 8 Q 

=f� d xf� {8] (8q. 8 H _8q . 8H )+ 8] ( 8r. 8H -�- 8H )} M -� -� 8q 8Q 8R 8R 8Q 8r 8Q 8R 8 R  8Q 
Another Poisson bracket is naturally introduced, 
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!00 (5 J {j ' Hb) = - �oo < {5 WI 
by which above relation is reduced to 

J H 
I 

d� ' JW> 

!00 (5 J (5 J J t = �oo (a;;· {q ,Hb) +a;-· {r,H}<o)dx 

Instead for eq. ( B. 4 ) we obtain the one in the �-space, 

From eq. ( B . 4) we get 

{q,H}<xl = {q,H}<�l { r, HLx) = { r, H}w 

Of course we obtain 
Q, = {Q,H}<�l R, = {R,H}<�) 

1 Q, R}(�) = J ( � - e ), { Q, Q}<�l = {  R, R}<�l = 0 . 

( B. 5) 

( B . 6) 

( B .  7) 

( B . 8) 

( B . 9) 
( B .10) 

If we introduce an arbitrary functional K[ Q, R] defined in the � -space, above consider­
ations are repeated similarly. The results are exactly symmetric, 

Q, = {Q,HLx) , R, = {R,H}<x) ( B . ll) 

Both relations ( B . 9) and ( B . 11) result in 

( B . 12) 

Relations ( B. 3) and ( B . 8) as to ( q,r) exactly correspond to both eqs. ( B .1 0) and ( B .12). 
For these set of equations we can choose the Hamiltonian as arbitrary functionals of ( q, r) 
and ( Q, R), then it can be writen as 

{q,r}<xl = {q,r}w , {q,q}<x ) = {q,q}w ,  
{ r, r}<x) = { r, r }w , 
{Q,R}(x) = {Q,R}w, {Q,Q}(x) = {Q,Q}(�), 
{R, R}<x) = {R ,R}w, 
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(B .13) 

( B .14) 
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