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ABSTRACT 

A model of 'disparitions brusques' (sudden disappearance of eruptive prominences) is discussed 

based on the .Kippenhahn and Schluter configuration. It is shown that Kippenhahn and Schluter's 

current sheet is very weakly unstable against magnetic reconnecting modes during the lifetime 

of quiescent prominences. Disturbances in the form of fast magnetosonic waves originating 

from nearby active regions or the changes of whole magnetic configuration due to newly emerged 

magnetic flux may trigger a rapidly growing instability associated with magnetic field reconnection. 

This instability gives rise to disruptions of quiescent prominences and also generates high energy 

particles. 

I . INTRODUCTION 

It is well known that quiescent prominences are long-lived, slowly changing phenomena with 

lifetimes ranging from days to months, and which sometimes undergo a sudden disappearance 

due to an ascending motion which is called as 'disparitions brusques' (see Tandberg-Hanssen, 

197 4). Their dimensions are generally taken to be of the order of 5 X 103 km wide, 5 X 104 km 

high, and 105 km long. The characteristic temperature is of the order of 5 X 103 K and the elec

tron number density is in the range of 1010 - 1011 cm-s. The magnetic field is not as yet directly 

measurable, but limb observations give a line of sight magnetic field Bn which is in the range 

of 0.5 to 30 or 40 gauss (Tandberg-Hanssen, 1974). 

The cause of disparitions brusques generally is a flare-induced activation and here the external 

perturbations have a profound influence on the stability of quiescent prominences. Some tempo

rary disturbances seem to trigger an instability which causes the disparition brusque. 

__ S�ylab observations have shown that the filament disruptions represent one of the most 

important mechanisms of solar activity (see Svestka, 1989). Soft X -rays pictures show a brightening 
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above the place where the filament just disappeared (Svestka, 1976, p. 230), which means that 

there occur plasma heating and particle acceleration. 

The filament activation has been discussed in connection with the two-ribbon flare. After 

the disparition brusque, X-rays pictures show that a system of growing loops has maximum 

brightness at their tops, where the temperature exceeds 107 K (Svestka, 1980). This loop system 

grows and at the same time the two ribbons drift apart at the loop foot points (Svestka, 1976, 

Fig. 6). Hyder (1967) has presented a phenomenological model for disparitions brusques based 

on the Kippenhahn and Schuh.iter model (1957) and the Dungey model (1958). For a comprehensive 

review of prominences and models the reader is referred to Tandberg-Hanssen's book (1974). 

Since the Kippenhahn and Schluter model, several attempts of explaining the structure of 

quiescent prominences have been made (Low, 1975; Lerche and Low, 1977; Heasley and Mihalas, 

1976; Milne, Priest and Roberts, 1979; Low and Wu, 1981) by the combination of magneto-statics 

and energetics. 

On the other hand, the problem of the stability of quiescent prominences has been attacked 

by several authors (Kuperus and Tandberg-Hanssen, 1967; Anzer, 1969; Nakagawa and Malville, 

1969; Nakagawa, 1970; Pustil'nik, 1974; Dolginov and Ostryakov, 1980; also see Tandberg-Hanssen's 

book, 1974). However, the triggering mechanisms causing disparitions brusques are still not clear. 

In the present paper we propose a model of disparitions brusques as an instability externally 

driven by MHD waves, based on the Kippenhahn and SchlUter equilibrium model which is 

generally accepted. Except for the Rayleigh-Taylor instability which may be important for lim

iting the size of prominence (Dolginov and Ostryakov, 1980), the Kippenhahn and Schluter con

figuration is stable against ideal MHD perturbations with k·g = 0 (Miglivalo, 1982) as well as 
kllg (Zweibel, 1982). In Sec. II, we present the stability analysis for resistive MHD perturbations, 

especially magnetic reconnecting modes which may be important for the explanation of plasma 

heating and particle acceleration processes observed after disparition brusque. It is shown that 

the Kippenhahn and Schluter's current sheet is very weakly unstable against magnetic reconnecting 

modes during the lifetime of quiescent prominences. 

In Sec. III we discuss some temporary disturbances such as fast magnetosonic waves origi

nating from nearby active regions or the changes of whole magnetic configuration due to a newly 

emerged magnetic flux nearby. We show that these disturbances may trigger a rapid growing 

instability associated with magnetic field reconnection. It is shown that the ponderomotive force 

due to finite amplitude fast magnetosonic waves can induce an effective ascending motion which 

in turn causes a rapid growing instability with broad band fluctuations. In Sec. IV we discuss 

some nonlinear effects associated with reconnecting modes and suggest the plasma heating and 

particle acceleration mechanisms. 

II. STABILITY OF KIPPENHAHN AND SCHLUTER MODEL 
AGAINST RECONNECTING MODES 

II -I, Kippenhahn and Schlater Model 

We briefly review the Kippenhahn and SchlUter model, which is a most simple analytic 

model. A dense plasma sheet in the corona against gravity is supported by the magnetic tension 
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(Fig. 1). The solution can be obtained from 

the static equilibrium equation, 

'11 Po - Pogex - 4
1
:rr 

curl Bo X Bo= 0 , (2-1) 

and the equation of state, 

Po = noxTo, (2-1) 

where p0 is the density, Po the pressure, 

Eo the magnetic field, no the number density, 

T0 the temperature and x Boltzman constant. 

The magnetic field and density distribution 

are given by the following relations, 

Byo = Bn = const. , 

Po (y) = p ( 0) sech2(y/ a), 

(2-3) 

(2-4) 

(2- 5) 

where a is the characteristic width of the 

prominence, B� the magnetic field com

ponent far from the sheet, p(O) the density 

at y = 0 (Fig. 2 (a)). From the force balance 

in the x direction, we have 

(2-6) 

where c, is the sound velocity (temperature 

is assumed to be constant), and En shows 

the measure of relative strength between 

B;, and By. In the corona, En is in the range 

of 1-10, if we use a- 5.103 km, g -104 

cms-2 and T0 - 5 X 103 K. 

II -2. Reconnecting Modes 

We investigate the stability of the 

current sheet shown in Fig. 2 (a) against 

reconnecting modes, namely current fila

mentation instability in which magnetic field 

disturbances are schematically drawn in Fig. 

2 (b). This reconnecting mode has been 

treated (Nishikawa and Sakai, 1982) in con

nection with tearing modes (Furth, Killeen 

and Rosenbluth, 1963), because in the limit 

of E, -+ 0 , the Kippenhahn and Schluter 

corona 

photosphere 
Fig. 1 A schematic configuration of a quiescent promi

nence based on Kippenhahn and SchlUter model. 

X 

! gravity 

(a ) 

Y�------�---------
0 

( b )  

Fig. 2 Magnetic field configurations. (a) The equilibrium 

state. (b) Reconnecting modes and vortex motions. 
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configuration becomes an ideal neutral current sheet with completely anti-parallel magnetic field. 

We present basic MHD equations including gravity, 

� + div ( pv ) = 0 ,  

p(��+ v·vv) = -V'P+ 
4
1
7r

cur1Bx B-pge,, 

aB c2 (if = curl ( v X B)+ 41ra V' B, 

(2-7) 

(2-8) 

(2-9) 

where the pressure is p = pc� and a the conductivity. The plasma is assumed to be incom

pressible, because the prominence plasma is low (3. Introducing vector potentials ¢> and A defined 

by v= curl¢>ez and B= curl Ae" and furthermore linearizing Eqs. (2-7)-(2-9) around the equi

librium solutions of Eqs. (2-3) -(2-5) lead to the following system of equations, 

ap1 _ a¢ �/)o = 0 at ax dy 

a[a(pa¢>) +__E_( p0 aif>)] -_!_[E t:.(
aA)_d2E,o aA +E n !::. a

a�y ] (jf ax O ax ay \' ay 4Jr xO ax dy2 iJx 

+ gaP1 = 0 ay , 

(2-10) 

(2-11) 

aA a¢ a¢ c2 
at = E n ay + Exoax + 

41ra
t:.A , (2-12) 

where Eq. (2-11) can be derived from the z component of the curl of Eq. (2-8) and Eq. (2-12) is 

the x component of Eq. (2-9). The last term g!; in Eq. (2-11) gives rise to an effective accel

eration on disturbances which leads to strong stabilization on reconnecting modes. Taking En- 0, 

these equations reduce to those derived by Furth et aL (1963). We assume that all physical 

quantities vary like f(y)exp[i(kx-wt)] and we normalize these quantities as follows:p, if>, A, y, 

and t by p(O), vAa, aE00, a and TA, respectively, where VA = Ro! j47rp(O)f 112 and TA =alvA. 
After some manipulations, we obtain 

rP A = EA + F d¢> + G¢ 
dy2 dy ' 

dz¢ = pd¢> +Q¢ + RdA + VA 
dy2 dy dy , 

where coefficients are given by 

E = a2-iSw0, G = -iS a th ( y) , 

P = { [ 2th(y) + :: sh(2y) [ S- �0 
sech 2(y) ] } IT, 

Q=(;
o 
{sEn + iSash2(y)-2i: [1-3th2(y)] } + az)IT, 

R = SEnch2(y)IT, 

V = ash(2y) [iSI2-�
0 

sech2(y) ] IT, 
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T = 1 + iSfi;_� ch2(y), 
Wo 

a= ka, Wo= WTA. 

S = TR/ TA ( TR = 4naa2 I c2) shows the magnetic Reynolds number which is the order of 107-108 

in the prominence. Alfven trasit time TA is 20 s and the resistive diffusion time TR is about 109 

s. The eigen-value equations, (2-13) and (2-14) have been solved for the even A and odd ¢ 
mode (Fig. 3) which shows magnetic islands. The numerical procedure employed is referred to 

our previous work (Nishikawa, 1980). 

The characteristics of the reconnecting mode are summarized as follows : 

( 1 )  As shown in Fig. 4, gravity, namely the normal magnetic field Bn (see eq. (2-6)) has 

A 
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Fig. 3 Eigenmode structures of A and ¢ 
with 5=103, E.=B./&=0.01, ka= 

0.5, and WTA = 0.001806 + 0.01049 i. 
The amplitudes of A and ¢ . are 
plotted in arbitrary units. 
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strong stabilization effect against the reconnecting 

mode. The growth rate YTA is proportional to s-l 
for E,. 2: 0.1 as compared to YTA ex: 5=315 for the 

classical collisional tearing mode. It is difficult to 

compute the growth rate in the range of S :::::: 107-

108 for prominences, however, we find that the 

growth rate YTA is the order of 10-7-10-8 by the 

extrapolation of computational results. This growth 

0.020 ...------------, 

0.016 

0.012 

time is close to the diffusion time TR - 109 S, which W(A 
means that the prominences are almost stable during 0.008 
their lifetime (several months :::::: 107 s). 

( 2 )  The growth rate versus wavenumber is 

shown in Fig. 5. The maximum growth rate occurs 

near ka :::::: 0.2. The reconnecting mode has a real 

frequency, which shows that the magnetic islands 

can propagate along the vertical direction of the 

prommence. 

From these results, we conclude that the 

prominence based on Kippenhahn and SchlUter model 

is almost stable against the reconnecting mode. 

0.004 

r 
oo��-��-L--L� 0.4 0.8 1.2 

ka 
Fig. 5 Growth rate and real frequency 

as a function of ka with S = 103 

and E. = B./ Boo = 0.01. 

III. T RIGGERING MECHANISMS OF DISPARITIONS BRUSQUES 

Observations indicate that the whole prominence rises in the atmosphere at a steady increasing 

velocity and disappears. Since the prominence often reforms in the same location and basically 

with the same shape, it is thought that the supporting magnetic field is not destroyed, merely 

temporarily disturbed. This temporary disturbances seem to trigger an instability which causes 

the disparition brusques. Some disturbances may originate from nearby active region or solar 

flares. 

We propose two triggering mechanisms leading to ascending motion of prominences. One 

possibility is that if some disturbances may hit the foot magnetic field supporting the prominence, 

to increase the normal magnetic field B.. the magnetic tension may exceed the gravity force 

and in turn, give rise to ascending motion. Another possibility considered here is the interaction 

between the reconnecting mode and fast magnetosonic waves originating from other active regions 

or solar flares. 

We may imagine that the finite amplitude fast magnetosonic disturbances propagate vertically 

along the prominence, because in the prominence the main magnetic field is horizontal, i.e., ( En 

)> Bxo). If we consider fast modes with wavelengths, A .L' which is smaller than the width, a, of 

the prominence (A j_ ::S a), it is a good approximation to neglect the diffraction effect due to 

inhomogeneity and also to treat fast modes propagating almost perpendicular to the normal 

magnetic field B •. 
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Ill:-1. Ponderomotive Force due to Fast Magnetosonic Waves 

We consider nonlinear fast magnetosonic waves propagating upward in the prominence. 

Recently, the ponderomotive force due to fast waves has received much attention, because it 

can produce plasma vortex motions and excite forced tearing modes and ballooning modes (Sakai 

and Washimi, 1982; Sakai, 1982 (a)) .  The ponderomotive force due to fast waves (sakai and 

Washimi, 1982) is given by 

F - 2 ai 
y- PoVA dy

'' 

(3-1 ) 

(3-2 ) 

where I denotes the wave intensity of the fast waves, I= 1 cjJ 12 = (!::,. B! Bol The sign of the y 
component of the force means that it acts as a negative pressure, while the x component acts 

as an usual pressure. From the fact that curl F =F 0, we can conclude that the ponderomotive 

force creates plasma vortex motions which may enhance the weakly unstable reconnecting modes 

in the prominence. If we take into account the ponderomotive force due to fast magnetosonic 

waves, Eq. (2-11) takes the form as 

� [�(Po��)+� (Po��)]- 4
1
7r[ Bxo/::,. (��)- d;�xO �� 

+ Bn /::,. �A
y 
] + dpl + 2 2 _?!1_ - 0 

u 
g dy 

PoV A dxdy -
, (3-3) 

where the last term represents the effect of the ponderomotive force, which comes from the z

component of curl F 

III -2. Wave Kinetic Equation for Fast Magnetosonic Waves 

In order to make dicussions self-consistent, we have to consider the wave kinetic equation 

for fast magnetosonic waves, which describes the wave intensity I, interacting with the reconnecting 

modes. The wave kinetic equation (Sakai and Washimi, 1982) is given by 

ai + v ()I+ _g_ 
I+ _l_ [_l_ ap- � ()2A 

at g 
dx vg vg Po dx 2np0 dr 

rf¢ ()2¢] -+ vg 
dxdy 

+ 
dtdy 

I- 0' (3-4) 

where vg is the group velocity of the fast waves and p the pressure perturbation associated with 

the reconnecting mode, which is given by 

(3-5) 

The basic equations describing the coupling between the fast magnetosonic waves and the 

reconnecting modes are Eq. (2-10), (2-12), (3-3) and (3-4). 

III-4. Forced Reconnecting Modes due to Fast Waves 

If we assume that the external fast magnetosonic waves persist long enough ( > 102 s) during 

the interaction with reconnecting modes, we can divide the wave intensity I into two parts, 

I (x, y, t) = Io (x) + I1 (x, y,t) ,  (3-6) 
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where 10 is determined from the equation 

vg aio + __ff_ 10 = 0 ,  ax vg 
which gives a solution 

fo(x) = J(O) exp (-gx/v�). 

(3-7) 

(3-8) 

II represents the perturbation due to the coupling with reconnecting modes. From Eq. (3-8), we 

find that the wave intensity gradually decreases in the vertical direction, where its characteristic 

scalelength !:::.. is given by !:::.. = v�/ g. If we use vg :::::: vA =2.107 em s-1, g� 104 em s-2, !:::.. becomes 

!:::.. :::::: 4 X 1010 em, which means that the wave intensity !0 is nearly constant in the prominence, 

because !:::.. is larger than the characteristic height (5.104 km) of the prominence. Assuming all 

perturbed quantities as / (y) exp[i (kx-wt)] and linearizing Eq.(3-4) around !0, we find 

(3-9) 

where we used Eq. (3-5). As shown later, the real frequency part is approximately given by 

w :::::: kvg = kvA, which shows that the dominant terms in Eq. (3-9) are the first and the second 

terms and also the dominant term in the denominator in Eq. (3-9) is the last term. From these 

considerations and elimination of II in Eq. (3-3), we obtain 

d2¢- k2A· + P� d¢ + _k_ [ B ( d2 - k2) A- B" A] dy2 'f' Po dy 47rpow 
xO dy2 xO 

+ -� d3A _ Bnk2 (1-4Ml) 
dA 

47rp0Iw dy3 47rp0Iw 0 dy 

+� 1- s A 0 
- (P',f.,) =O, 

k ( 2 e2 v2 k21 .) d 
lpow2 lf2 dy O'f' (3-10) 

where the last two terms shows the modification due to the ponderomotive force of the fast 

waves. 

Here we consider the physical mechanism, why the slowly growing reconnecting modes can 

be enahnced by the ponderomotive force of the fast waves. We imagine the situation where 

there occurs weakly unstable reconnecting modes, as shown in Fig. 2 (b). Near the X type

points region the plasma exhibits inflow into the X-point, while near the G-type region, the 

outflow occurs. Equation (2-10) shows that density enhancement appears near the G-type region, 

on the other hand the density decreases near the X-point. The coupling eq. (3-9) between the 

reconnecting modes and fast modes indicates that the density increment gives rise to the decre

ment of II and vice-versa, because the dominant term of Eq. (3-9) should be read as II :::::: 

i ( kf0e;; gp0) PI• which shows that PI and II are out of phase with each other. These interactions 

cause the inhomogeneous distribution of the intensity of the fast mode, which was nearly constant 

in the prominence. The wave intensity can be enhanced near the X -point region. Eventually, 

the ponderomotive force of the fast mode can drive the plasma vortex motions near the X -point 

shown in Fig. 6. 

We have confirmed by numerical calculations that the main term contributing to the stability 

is the last one in Eq. (3-10), which represents the acceleration effect due to gravity, if the 
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ponderomotive force does not exist, and furthermore 

the term including aA; ay is not essential for the 

stability problem ; it only modifyies the real fre

quency part. 

If we take into account the ponderomotive 

force, and the intensity 10 exceeds a critical value 

Ic given by 

g2 I = (3-11) c 2 c; v�k2 
the sign of the last term in Eq. (3-10) can change, 

which means that the effective gravity due to the 

ponderomotive force exceeds the gravity, g. It is 

easily understood that if the net gravity changes 

sign by the lifting force due to fast waves, the 

system will be unstable. In order to confirm the 

above idea, we have changed the sign of gravity 

in Eq. (3-10) and calculated the growth rate. The 

growth rate and real frequency versus B.! Boo are 

shown in Fig. 7, with parameters, S = 103, a= ka 
= 0.5. From the numerical calculations, we find 

that the forced reconnecting mode does not depend 

on S, which means that the instability can be driven 

by the effective accelerating term due to the pon

deromotive force. The growth rate yr A is about 

0.3 in the region of En :::::: 0 ( 1 ), which means that 

the typical growing time r is about 100 s, i.e. very 

rapid. 

Another interesting characteristic of this insta

bility appears in its eigenfunction of velocity shown 

in Fig. 8. The eigenfunction ¢ oscillates across the 

current sheet, which means that the instability 

creates multiple plasma vortexes across the prom

inence. Furthermore, fairly broad band waves with 

--plasma 
v vortex 

motion 

enhancement 
of I1 

ponderomotive 
force 

Fig. 6 The plasma vortex motions due to 

the ponderomotive force of the fast 

magnetosonic waves. 

2.0.------------, 

1.6 

1.2 

08 

0.4 

- o. 4 ;,-0 ---'---;:;.0.4-;--�Q::':B,----J-,�. 2--,
L

6 __j 
Bn/Bco 

Fig. 7 Growth rate and real frequency 

of the forced reconnecting mode 

as a function of E, = B,/ Boo with 

ka = 0.5 and S = 103. 

shorter wavelength than the width of the prominence can be excited. By making use of quasi-

linear approximation, we can estimate the diffusion coefficient Dj_ across the prommence. 

yk2 
Dj_= � 2(w; + yz)l¢kl2. 

We estimate the total mass loss Mz as 

(3-12) 

(3-13) 

where !:::.tis the typical growth time, which is taken as !:::. t ::::::102 s, and ap;ax :::::: m;n0/a = m; 
1010/5 X 108 =20m;. S0 is the total area, S0:::::: 5·104kmx 105km = 5 X 1019 cm2. On the 
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other hand, the diffusion coefficient Dj_ is approxi-
mately given by 6 

D � y 
v2 j_ --2 2 k • wr 

(3-14) 

where we used Wr � y in the of E, � 0 ( 1 )  and 

Vk is typical random velocity. As y � 0.3 rA1 and 

Wr � <.4\ we find 

(3-15) 

Observations (Tandberg-Hanssen, 1974) show that 

prior to a dispersion brusque, the prominence ma

terial exhibits increased random motions with 

velocities vk � 30-50 km s-1. If we use this value 

as Vk in Eq.(2-30), we obtain Dj_ � 101 5 cm2s-1. 

The total mass loss M1 is about 1038 mig, which is 

about 20 % of original total prominence mass. Due 

to the mass loss leading to the unbalance of forces 

along the vertical direction [p0g < (B./ 4n') ( aBxol ay)], 

the prominence may exhibit the observed ascending 

motion. 

N. DISCUSSIONS AND CONCLUSIONS 

We have shown that the current-sheet prom

inence of Kippenhahn and SchlUter is almost stable 

against reconnecting modes, however, it becomes 

suddenly unstable with the time scale of r � 102 s 

A 

4 
2 
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Re'P 
\ 

¢ o�--,�HlliffiH�mtr������� 
-2 
-4 
-6 

� � � � � 0 2 4 6 8 w 
Y/a 

Fig. 8 Eigenmode structures of A and ¢ with 
S = 103, E.= B.! B� = 0.1, ka = 0.5 and 
w rA = 0.02078 + 0.1427i. The oscillating 
structure of ¢ makes a series of vortexes 
in the magnetic island. The amplitudes 
of A and ¢ are plotted in arbitrary units. 

by the externally driven nonlinear fast magnetosonic waves. The threshold of fast waves causing 

forced reconnecting instability is given by Eq.(3-ll), which can be estimated as Ic = 0.5(vA/c,)2 

(k!:lr2. If we take vAles � 10, and (kt:,) � 10 2 , Ic is about 0.5· 10-2, which means that if the 

wave amplitude </J =t:,B/Bo of fast waves exceeds </Jc = 0.07, the forced reconnecting mode can 

be excited by the ponderomotive force of the fast waves. 

The first magnetosonic waves with relatively high amplitude </J - 0.1 may be excited from 

other active regions or solar flares. It is interesting to note that such finite amplitude fast 

magnetosonic waves that excite reconnecting modes are modulational unstable (Sakai, 1983(b )) ,  

and decay into slow magnetosonic modes associated with local enhancement of  the amplitude. 

The modulational instability which threshold </Jm is given by </Jm = c.lvA � 0.1 gives rise to more 

effective interaction between fast waves and reconnecting modes. 

Besides the role of fast magnetosonic waves causing the effective acceleration, the increase 

of supporting magnetic field B. due to hitting of the foot or whole magnetic field change by a 

newly emerging magnetic flux nearby may give rise to the ascending acceleration, and in turn 

there appear forced reconnecting modes. 

It is important to consider the nonlinear stage of the forced reconnecting modes, in connection 
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with plasma heating and particle acceleration mechanism, because as mentioned before soft X-rays 

pictures (Svestka, 1976) show a brightening above the place where the filament just disappeared. 

In the early stage of the reconnecting instability, many current filaments are produced with 

currents all in the same direction Such a system will be unstable against nonlinear coalescence 

instability (Wu et al, 1980; Leboeuf et aL, 1981), which leads to intense plasma heating and 

particle acceleration. It is important to keep in mind that about 10 % of the magnetic field 

energy sustaining current filaments can be converted to plasma thermal energy as well as high 

energy particle acceleration. The nonlinear coalescence instability is thought to an important 

mechanism for plasma heating after disparition brusque as well as solar flares and X-rays bright

ening in the corona (Tajima et aL, 1982) 

We have investigated the triggering mechanism of disparitions brusques by fast magnetosonic 

waves which leads to forced excitation of the reconnecting mode. The reconnecting mode can 

also be externally driven by finite amplitude shear Alfven waves which may originate from the 

foot of the magnetic field sustaining the prommence. The details of this mechanism will be 

published elsewhere (Sakai, 1983 (c ) 
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