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Summary 

The parametric amplification in a transmission line with nonlinear capacitors is 
analysed theoretically using the equations of three wave interactions. Since this line 
has two modes: high frequency and low frequency modes, there may occur some modecoup­
ling phenomena through the resonant interactions. We consider three waves with wave 
number kj and frequency wj in resonance with each other, that is, w, + w, = w, and k, + 
k, = k., where 0 ;;;;; w, ;;;;; w, ;;;;; w, and k, � 0. Such conditions are realized in our net­
work and there exist two states: "forward state" (each group velocity is positive) and 
"backward state" (one of the group velocities is negative). The coupled equations of 

three waves has two constant pumps: high frequency ( H F) pump and low frequency ( L F) 
pump. Using linear approximations, we examine the possible types of parametric ampli­
fication and obtain the power gains depending on the frequency deviation. For only the 
case of H F  pump we get the gain between signals with seme frequency and also get the 
gain from the low frequency signal to the high frequency signal ( "up-conversion") for the 
L F  pump. The nonlinear analysis gives the exact relation between input and output sig­

nals. For the forward state the gain is absolutely suppressed by the ratio of pumping 
power to input power, while the gain of backward state has no finite maximum and there 
may appear an "oscillating state" if the pumping power is comparatively small. 

1 . Introduction. 

The parametric effect is well-known as a mechanism of signal amplifications in a 
Ill lumped electric circuit with a nonlinear capacitor. This effect depends on the resonant 

interaction among three signals. We often encounter such a phenomenon not only in a 
(2) electrical network but also in a wide field of science: nonlinear optics, laser physics 

(3) and plasma physics etc .. 
A .  L. Cullen examined the parametric amplification in the transmission line consisting 

of segments with a seriesed inductor and a shunt nonlinear capacito�1
• The pulse satula­

tion effect of this line was also reported by A .  C. Scott et al�5
1 

This line is nondisper­
sive, then there do not occur such phenomena as "backward" interactions and "oscilla­
tions". If we want to realize the backward operation in the electrical network, it is 
necessary to make the circuit model as the two modes system which is of course disper­
sive. For such a system, however, the resonant conditions can not be always satisfied 
then it becomes important to evaluate the effect of matching loss. 
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As shown in ref. 5 and 6, we can analyse the nonlinear behaviour of the parametric 
amplification to some content by using the basic equations of three wave interactions. 
These equations were also studied in laser physic�1 

and plasma physic�1 
etc.. Recently (9-11) the initial value problem had been solved by the inverse scattering method under the ra-

pidly vanishing conditions at infinity. 
In previous pape?�;1

3i.ve analysed the wave propagation of nonlinear dispersive waves 
and derived the basic equations of three wave interactions in distributed networks with 
nonlinear capacitors. Our transmission line has two modes: high frequency mode ( H F  
mode) and low frequency mode ( L F  mode). Then we can expect the parametric ampli­
fications with both forward and backward types and are interested in the backward os­
cillations. 

In this paper we analyse the parametric amplification from the view point of three 
wave interactions. Possible types of signal amplifications and the corresponding gain 
with dependency of matching loss are derived systematically by the linear approximation. 
The nonlinear behaviour of typical cases are made clear for both forward and backward 

states. The results of this paper are summarized in the following. 
The coupled equations of three waves have two kinds of pumping states with con­

stant amplitude: high and low frequency pump ( H F  and L F  pump, respectively). Only 
the H F  · pump is unstable and decays into two low frequency waves (parametric decay 
instability). On the other hand the resonance conditions in our line allow two classes 
of mode coupling and there occur two kinds of interaction: forward and backward intera­
ctions. For the above each case we calculate two kinds of gain, the normal gain GN and 
conversion gain Gc, which are defined between signals with same frequency and with 
different frequency, respectively. Generally the both gains satisfy GN I Gc- 11. From 
the linear analysis we can get the dependency of frequency deviation (i. e., matching loss) 
and obtain the relations GN > 1 and GN < 1 for the case of H F  pump and L F  pump, res­
pectively. The nonlinear analysis explains the difference between the forward and the 
backward states more exactly. In the forward state the gain is suppressed by the ratio 
of pumping power to input power, while the gain of backward state has no finite maximum' 
if the input power is comparatively small. Furthermore there appears an "oscillating 
state'' under certain boundary conditions. 

Finally we estimate the half-power band width approximately. 

2. Circuit Model and Basic Equations describing the Three Wave Interactions. 

Our circuit model is given by ta­
king a continuous limit of the nonline­
ar transmission line as shown in Fig. 
1 where each circuit parameter 1s 

denoted with the distributed value. 
Each section of this I ine is construc­

ted with a series inductor L, and the 
shunt circuit consisting of a seriesed 
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L,- C , element and a nonlinear capacitor C( v) where v is the line voltage. 
In the following we list some necessary matters for this paper from our earlier 

Q3) report. Taking the model of the nonlinear capacitor as C ( v)=Cw +Cu (v/v,.), the dis-
persion relation of this line can be given by 

where w is the frequency and k is the wave number. The other coefficients are related 
to the circuit parameters as 

·- Cw+C , w.- L, clO c. • 

2 1 

2 1 w, = L, C , ' 

c. = L, ( C ,. + C ,) ' 

2 1 v =---' L, C ,. 

Since eq. (2. 1) allows two modes: high frequency mode ( H F  mode) and low frequen­
cy mode ( L F  moe), we can expect several mode coupling phenomena under certain con­
ditions. The most basic process of these phenomena is three wave interaction. We 
consider three waves with characteristic frequencies w, , w,, w, and wave numbers k,, 
k,, k. satisfying the resonance conditions, 

w , + w ,= w., k, + k, = k., ( 2. 2) 

where we assume all the sign of w. to be positive and impose the conditions 0 � w, � 
w, � w. and k. � 0 without loss of generality. Following two classes of the mode coup­

ling are realized in our case. 
[class- 1] " Two high frepuency waves with ( k., w,) and ( k, w,) belong to the H F  mode, 
while the other with ( k,, w,) belongs to the L F  mode7 

In this class the following critical case is included, 

w, = 0 , (2. 3) 

where we is determined from the relation v •• = c. . Such a case has been treated in ref. • 

14. Then we set 

v •• < c. < v •• ' 0 < v., < c • .  ( 2. 4) 

We remark that the sign of v., (or k,) may be positive (called as "forward state") or 
negative ( "backward state"). 
[class-2] " Two waves with ( k., w,)  and ( k, w,) belong to the L F  mode, while the other 
to the H F  mode." To realize this case, we must impose the condition w, � 2 w,. 
Furthermore this class includes only the backward state ( v., < 0 ). 

We can derive the equations describing the three wave interactions under the con­
ditions (2. 2) by using a derivative expansion method. We take the lowest approxima­
tion of the normarised voltage· as 

3 
vi v,. = � A. ( x, t) exp [ i( k . x- w. t)] + c. c., ( 2. 5) 

n=1 
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where c. c. stands for the complex conjugate of the preceeding term. The behaviour of 
the complex amplitude A. can be well described by the following coupled equations, 

aA, + at 
aA, + at 

aA, itJM, A, A: v., ------;:;;; = 

a A, itJM, A, A� v., ------;:;;; = 

a�, + v., 
a� = itJM, A, A, , 

(2. 6a) 

(2. 6b) 

( 2. 6c) 

where () = C., I C,. and A* denotes the complex co jugate of A. The product tJM. is a 
coupling coefficient, where 

The group velocity v •• is given by 

Vgn == Ve 
( w:-w; ) + (w;-w,')' 

w: -w,2 ( w: - w,2) 2 + wi2 ( w; -w,2) 

3. Parametric Instability. 

( 2. 7) 

( 2. 8) 

The equations ( 2. 6) of three wave interactions have constant solutions. In this sec­
tion we analyse the instability of the following solutions, 

A,= A,= 0 , A,= A,. , 

A,= A,= 0, A,= A,, or A,= A, =0, A,= A,, , 

( 3. 1) 

( 3. 2) 

where these are constant solutions of eqs. (2. 6). From the fact that w, is larger than 
w, and w, we call the states eqs. ( 3. 1) and ( 3. 2) as the high frequency pump ( H F  pump) 

and the low frequency pump ( L F  pump), respectively. 
To analyse the linear stability of the H F  pump, we take the solution of eqs. (2. 6) 

as 

A, = A, ' A, = A, ' A, = A,. + A, ' 

then we get the linearised equations as 
oA, + oA, ·s-M A A* at v., ----a;; = w. • ,, , , 
aA: + ali* 
at v., a; = - ioM, A;, A, , 

aA, + aA, 0 at v., ----a;; = . 

From eqs. ( 3. 3a) and ( 3. 3b) the dispersion relation can be obtained as 

( Q - v., k) ( Q - v., k) +a' M, M,IA,.I' = 0 , 

( 3. 3a) 

( 3. 3b) 

( 3. 3c) 

( 3. 4) 

where we assumed the perturbations A, and A:' as exp [ i( Kx- Q t)]. From the criterion 
that Q becomes complex, we find that the waves with the following wave number region 
are excited, 
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IK I < K.=2o JM,M, IA,pl! lv.,- v 
•

• l. ( 3. 5) 

This means that the H F  pump is unstable and decays into two low frequency waves, then 
we call this situation as the parametric decay instability. We can easily get the maxi­
mum growth rate Q , . from eq. ( 3. 4), 

Q , . = oJ M, M, I A,p I . ( 3. 6) 

The stability of the L F  pump can be made clear in a similar way as the case of H F  
pump. Taking the perturbations of this case as 

A. = A., A, = A, , A.= A.p + A. , 

we get the linearised equations as { aX. + aA. = at v 
•• ax 

- -
aA, + aA, _ 

at v., ax -

ioM.A:p A, 

ioM, A.p A. 

where m and n are paired suffixes and are defined as 

(m, n) =(l, 2) or ( 2, 1) . 

The dispersion relation is obtained as 

( Q - v 
•• 

K) ( Q - v., K) - a' M. M,l A • .i' = 0 . 

( 3. 7a) 

( 3. 7b) 

( 3. 8) 

( 3. 9) 

On the contrary to the H F  pump it can be easily shown that the L F  pump is stable. 

4. Parametric Amplification (Small Signal Theory). 

In this section we examine the possibility of the parametric amplification by using a 
linear approximation. Using the general theory of Appendix A, we estimate the power 
gains with the dependency of the frequency deviation Q in various cases. 

For the case of H F  pump we get the gain GN (called a normal gain) between the 
signals with same carrier frequency, but do not get such a gain for the case of L F  
pump. However for the both cases it is possible to get the gain Gc (called a conver­
sion gain) between the signals with the different carrier frequencies. In the forward 
state (i. e., two group velocities are positive), the gain of all the cases is bounded on 
condition that the distance d between input terminal and output terminal is constant. On 
the other hand, if Q = 0 , the normal gain for the case of H F  pump may be infinite in 
the backward state (one of the group velocity is negative), . that is, there occurs an 
"oscillating'' state. 

4A). The case of HF pump: 

Assuming a steady state response, we take the solution of eqs. ( 3. 3a) and ( 3. 3b) as 

A- ( t)- - ( ) -''"' A-*( t)- -*( ) - ''"' , x, - a, x e , , x, - a, x e . ( 4. 1) 

- 115 -



Parametric Amplifications in the Nonlinear Transmission Line 

Tsutomu KA WAT A, Jun-ichi SAKAI and Hiroshi INOUE. 

where Q means the frequency deviation of waves with the amplitude A, and I A, I from the 
carrier frequency w, and w,, respectively. Substituting eq. (4. 1) into eqs. (3. 3a) and 
(3. 3b), we obtain the following ordinary differential equation with a vector form, 

( 4. 2) 

where suffix x denotes the differentiation as to x. The equation ( 4. 2) has the same 
form as eq. (A. 1), then we can entirely use the results of Appendix A. 

It is useful to define the following notations as shown in Appendix A, 

! e.= 21 (.R_.R), 13.= iy.=o (- M,M,)+ 
IA,.I,  

V91 V92 V91 V92 

r;. = - a;. =IT+ c e.; f3Y . ( 4. 3) 
( 1). Forward state. 

In this state both waves with the envelopes A, and A, propagate to the positive dire­
ction. Then we must regard a, ( 0) and a, ( 0) as input signals. From eq s. (A. 15) and 
(A. 16) it is sufficient to deal with the following power gains, 

GNh = Ia, ( d ) /a, ( 0 ) I' ,  Gch = la:( d ) /a, ( 0 ) I' , ( 4. 4) 

where we assumed the casa a:( o) = 0 . 

get 
Now we remark that y. is positive. From eqs. (4. 4), (A. 17b-c) and (A. 18b-c) we 

1 1 + sinh' ( r· d r;.) 
r;. 

GNh = 

1 + sin' ( �
:
d t.) 

Cr. > I e I) 
( 4. 5) 

Cr. < I e I) 

Gch = Q,. ( GNh- 1) (4. 6) 
where r;. � 1, t. > 0 and Q,. = M, v • .l M, v., 

Noting the relation (3. 5), we can express Q = ± Q ., which gives the condition y. = I() I, 
by the maxinum excited wave number K ., 

Q .  = K.  rv::;;;: ( 4. 7) 

From eq. (4. 5) we can always get the gain between signals with same carrier frequency. 
If the frequency deviation is comparatively small ( IQ I< Q .), the normal gain becomes 

sufficiently large as d-HX> . On the other hand this gain is bounded for comparatively 
large deviation ( IQ I> Q .). Examing the properties of functions (sinh x) /x and (sin x) 
/x, we conclude that GNh takes the maximum at r;. = 1 i. e., Q = 0 , 

( 4. 8) 

From eq. (4. 6) we always get the gain for the case of frequency conversion. 
(2). Backward state (only v., is negative). 

It is sufficient to deal with the case that only v., IS negative. Since A, propagates 
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to the negative direction, we must regard a, ( 0) and a;( d )  as the input signals. This 
situation corresponds to the two-points boundary value problem and the uniqueness of the 
solution is lost when there appears an eigen solution. 

We define the power gains for the backward state, 

( 4. 9) 

where a:C d )= 0 . 

Now we remark that /3. is positive. Using the relations (A. 16), (A. 17a) and (A 18 
a), we get 

{;Nh = [ 1 _ 
sin' ( �. dr;.) 

r;. 

" 

Gch = Q, ( GNh - 1) 

r ( 4. 10) 

( 4. 1 1) 

where r;. � 1. The normal gain is always larger than unit and may be sufficiently large 
as /3.d � ( n  + 1/2)7T and r;.� 1. If r;. = 1( Q = 0) and /3.d =( n + 1/2)7T, there appears 
an eigen solution i. e., an "oscillating'' state, 

{ Ia, ( x) I' = h IM ,/v. , lsin '( 2�; 1 7Tx) , 
I a, ( x) I' = h I M , / v., l cos' ( 2�d 1 7Tx) , 

( 4. 12) 

where h is an arbitrary constant and n = 0, ± 1, .... It is remarkable that the oscilla­
ting state can not be obtained when the frequency deviation is nonzero. 

We can also get the gain for the case of frequency conversion. When r;. = 1 and 
/3. d = n7T, each gain becomes minimum, GNh = 1 and Gch = 0 . 

48). The case of LF pump. 

To seek the amplification mechanism in the case of L F  pump, we analyse eqs. ( 3. 7 
a) and ( 3. 7b) in the same as the case of H F  pump. 
Taking the solutions as 

X, ex, t)= a,( x)e-iQ', X.cx. t)=a.Cx)e-'.Q', 

we get 

= i 
( Q/ v .. , oM, A •• ! v., ) 

BM. A:. I v •• , Q/ v •• 

The following notations are introduced, 

8,= �(� , --t-). /3, = 5 ( M, M. )+ 
I A •• I , 

V9a Vgm 

TJ, =- it, =h+( 8,//3,) '  
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( 1). Forward state. ( v., and v.m are positive) 
Assuming a, (0) =0, we define the gains, 

Paying attention to that (3. is positive, we obtain 

G _ 1_ sin' ((3, dr; ,) Nl- 2 , r;, 

where r;, � 1 and Q,m = M, Vgm I Mm v., 

(4. 16) 

( 4. 17) 

( 4. 18) 

we remark that the gain can not be obtained between the signals with the same fre­
quency. 

Now from eqs. (2. 7) and (2. 8) we obtain 

Qmn = I Mm v •• l M. Vgm I 

( 4. 19) 

The quantity Q,m is estimated as follows m each class of the mode coupling, 

{ Q, < w, / W2 , 

Q,m > w, / Wm . 

Q" > w, / w,, (in class-1) 

(in class-2) (4. 20) 

When the wave with middle carrier frequency W2 are pumped in the state of class-1, we 
can expect the amplification as frequency conversion i. e., "up-conversion''. 
(2). Backward state. ( v.m is negative) 

In this case the input signals are a, ( 0) and am (d). Assuming a, ( 0) = 0, we define 

Because )\ becomes positive, we obtain 

A r;, 
1 [ 1 + sinh 2 � Yt d r;, ) r , ( Yt > I e, I) 

GNI = [ 1 + s in 2 i? d.;-, ) r , ( Yt < I e, I ) 

Get= Q,m (1- GNI) · 

A 

We also remark that GNL< 1 

5. Parametric Amplification ( Large Signal Theory) 

(4. 21) 

( 4. 22) 

( 4. 2 3) 

It is desirable to analyse the nonlinear behaviour of eqs. (2. 6). In this section we 
give a nonlinear analysis for the case of H F  pump especially. However we impose a 
cetain assumption; each envelope A. is independent of the time. This corresponds to the 
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important case Q = 0 for the linear analysis. 
The basic equations are given as 

oA, -. A A 0x la, I 2 ' 

( 5 .  la) 

( 5 .  lb) 

( 5 .  lc) 

where we changed the notations as A.--> A. , A,.--> A. and a. 1s a real constant, 

( 5 .  2) 

Introducing functions a. ( x) = I A. ( x) I', we get the following equations with closed foms 
(see Appendix B), 

� �x�' = -3a, a, a: + 2 [ c, a, - a, ( a, a"' -a, aw ) ] a, 

+ cl ( al azo - a2 aw ) ' 

1 d a, , [ ( ) J 2 ax' = -3a, a, a, + 2 c, a, -a, a, aiO -a, a,o a, 

+ c2 ( a2 ato -at aw) , 

where c, and c, are constants, 
C, =a, a,o + a, a,o + 2a, Xo + a,IA.I' ' 

C, =a, a,o +a, a,o + 2a, Xo + a,IA.I' ' 

and a.o = a. ( 0), Xo = X (  0) where 

( 5 .  3a) 

( 5 .  3b ) 

( 5 .  4a ) 

( 5 .  4b ) 

2X ( x)=A.A: ( x)+ A;A, ( x).  (5 .5) 

It is rather difficult to solve eqs. (5 . 3) generally. Then we take the simple but impor­
tant case, 

A, (0) = 0 (and a,0 = 0), ( 5 .  6) 

which corresponds to limit the input signals at x = 0 to only a, (0). 
From eqs. (B . 2) of Appendix B, the following functions, 

b, = oa) ax' b, = oa, / o x  ' ( 5 .  7) 

vanish at x = 0 under the condition (5 . 6). Then equations (5 . 3) can be reduced to 

� b: =-a, a, a, ( a,- a,0) ( a,- �:) , (5 . Sa) 

� b; = -a, a, a, (a, + :: aw) (a, -�: ) ( 5 .  Sb) 

From eqs. (5 . 4), (5 . 5) and (5 . 6), we obtain 
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c, - + 
a, I A + A I' 

C' - a, I A + A I' - - a1o - so p , - - - so p , a, a, a, a, 

where Aao = A, ( 0) . 

( 5. 9) 

The behaviour of eqs. (5. 8) depends on the sign of the coupling coefficient a,. In 
the following we discuss the forward and backward case, respectively. 
(1). Forward case (each a" is positive). 

We can integrate eqs. (5. 8) using elliptic functions. 
(5. 8) and integrating as to a, and a,, respectively, we get 

Substituting eq. ( 5. 7) into eqs. 

fa, d a 2 ra:a:· x  = ± /- ( _ ) (  _ I ) = ± J, (a, ), a a a,0 a c, a, 
a,. 

fa, da 2 ;a:a:· x  = ± ) = ± J, (a, ) 
0 J- a( a+ a, awl a. ) (a- c,/ a, 

From eqs. (5 . 9) the next estimations are obtained, 

o < a'" < c, I a, , - ( a, / a. ) aw < 0 < c,/ a, 

Accordingly the range of a, and a, becomes 

aw < a, < c./ a, ' 0 < a, < c,/ a, . 

( 5. lOa) 

( 5. lOb) 

( 5. 11) 

From the integrel formulae of elliptic functions, we can calaulate J, and J, as 

J, (a,)= 2 ra;a, /3F [arcsin � (a,:, a'"f, k] , 

J, (a,)= 2 ;a:a: /3F [ . 1 ( a, )+ k] arcsm- I , k a,+ aw a, a, 
where F( 8, k) is the first kind elliptic function with modulus k and 

/3 = [ a, ( a, aw + a, I A,o + A. I' ) ] + , 

k _ ( a, I Aao + A. I' ) 
+ < 1 -

a, a,o + a, I A,o + A. I' 

( 5. 12) 

( 5. 1 3) 

Introducing the normal gain GN(= a,(d)la,(O))and 

as well as linear analysis, we finally obtain 
the conversion gain Gc(=a,(d)la,(O)) 

( 5. 14a) 

( 5. 14b) 
where dn ( ·) is Jacobi 's elliptic function and the other functions sn ( ·) and en (·) will be 
also used in the later discriptions. 

If input signal aw is sufficiently small, our results (5. 14) must coincide with the 
results of linear analysis. Making the approximation, 

/3----> /3o = ;a:a: I Aao + A. I , k----> 1 as aw----> 0 , 

we get 
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Gc=( a ./a.) sinh' (f].d) . ( 5. 15) 

These coincide with the results of linear analysis. If we make the size· d sufficiently 
large in the linear approximation, the gain becomes as large as we want. But by the 
exact theory we can remark that the gain has a finite maximum at d = K( k) I fl where K 
( k) is the first kind complete elliptic integral. 
(2). Backward case (only a, is negative). 

We set only the coefficient a, to be negative. Then the quantity a,. is regarded as 
output signal. If we assume the existence of unique solution, the treatment of this case 
can be brought out as same as the forward case. 

Corresponding to eqs. (5. 10), we get 

fa, da zra:a.x= ± .; ( )( 1 ) - a  a- a,. a- c , a, a., 

.;=a,a. fa, da 2 - a, a, x = ± 0 ./a(a- c ,la.Ha+a,. a ./a.) 

( 5. 16a) 

(5. 16b) 

To calculate the right hand sides of eqs. (5. 16), we prepare the following two cases. 
( 2A) ( - a.! a,) I A •• + A. I' < a,. (large signal case). 

The . followings are ,obtained, 

a, ( x) = a .. dn ' ( ./a, a,a,. x, k) ,  

a, ( x) = - ( a,la,) a,. k' sn' ( ./a, a, a, .  x, k) , 

where 

k =./- ( a./a. a,.) lA .. + A.l < 1 . 

(5. 17a) 

(5. 17b) 

( 5. 18) 

From eq. ( 5. 17a) we remark that the normal gain GN ( = a, ( 0) I a, (d) ) has a finite maxi-
mum, 

( 5. 19) 

(2B) a,.<( - a.! a.) lA •• + A.l' (small signal case) . 
In this case the power of signals is smallsr than the pumping power, then this si­

tuation includes the case of linear analysis. 
We get the followings, 

a, ( x) = a,. en' ({lx, k) , 

a, ( x) = ( - a ./ a,) a .. sn' ({lx, k) , 
where 

fl = ./- a,a,I A  .. + A.l, k = ./( - a.la,) a,. I lA •• + A.l. 

From eq. ( 5. 20a) the normal gain, 
GN = en -• ( {ld, k) , 
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has no finite maximum against the case ( 2A) . In other words there appears an eigen 
solution when k satisfies the relation, 

d =(2m+1)k( k) ( m=O, 1, . . .  ). ( 5 .  2 3 ) 

If a, and a" are sufficiently small, equations (5 . 20) can be approximated as 

a, ( x) =a, cos' /3, x, a, ( x) =( - a,/ a,) a, sin' /3, x, ( 5 .  24) 

where /3, = I- a, a, . These also co inc ide with the results of lin ear analysis . 
Finally we remark thet for the case of a, = - ( a,/ a,) I Aso + A.l' there appear soli­

tary pulse �1 by solving eq . (B . 7). 

6. Concluding Remarks. 

In this section we give some remarks for the case of H F  pump . 
We examine the physical meaning of the quantities defined in eq . (4. 3). Taking Q 

to be real, we write the solution K of eq . ( 3. 4) as K(.Q) = Kr (.Q) + iK. (.Q). That is, we 
get K ( .Q) = I y� - e: . If K( .Q) is complex, we note that K ( .Q) represents the spatial 
growth rate of waves . Furthermore the function K (.Q) has a maximum K.m = y. at Q = 0 
and vanishes at Q = Qm, where .Qm is defined in eq . ( 4. 7). We also get 

( 6. 1) 

Using the results of linear analysis, we can estimate the half-power band width .Q, 
as follows . 
(1) Forward state . 

If we assume that the normal gain GNh of eq . (4. 5) is sufficiently large ( y. d :> 1) 1. 

e ., 

we can estimate the half-power band width approximately . Setting the relation GNh ( r;J 
= GNh(l) /2, we get rJB. = /y. /2d from eq . (4. 3). Using eq . (6. 1), we obtain 

.. ( 6. 2) 

(2) Backward state . 
Assuming GNh :> 1 m eq . (4. 10), we also get 

where we regard GNh as GNh ( r;J 
Now, changing the group velocities as I v., I-+ v., and I v., l-+ v., , we can define a cer­

tain forward state . Then we introduce the spatial growth rate K ( .Q) which vanishes at 
Q = Qm, where Qm =I Qm I . Accordingly we can express the band width .Q, as 

( 6. 3) 
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Appendix A. Linear boundary value problems. 

We consider the following equations with a vector form, 

(A. 1) 

where z,, z, and a product z., z, are real. At the boundaries x = 0 and x = d we 
assume two paired values [u,(O), u,(O)] and [u,(d), u,(d)] to be specified. In this 
appendix we derive the following relations, 

(u, (d)) 
u, (d) 

(j,,,j,,) (u,(O)) 
j,, j, u, ( 0) 

(u, (d)) 
= 

(b", b,) (u, ( 0) ) 
. u, ( 0) b,, b, u, (d) 

The characteristic equation of matrix [z,J is 

(A. 2) 

(A. 3) 

A2 -(z, + z,)A +( z,z, -z.,z,) = 0 , (A. 4) 

where two roots A, and A, are assumed to be different each other. The matrix [z,J 
can be expressed as 

(z, , z.,) 
= 

( 1, P, ) (A, , 0) ( 1, P, )-
'

' 
z, , z, P, , 1 0, A, P, , 1 

If we introduce the transformation, 
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(u) 
= 

(1 , P,) (v') 
n 

u P, ,1 v, 

equation (A. 1) is reduced to the diagonal form, 
(V,.r) 

= 
( iA '.' 0 ) (v') 

. 
V,.r 0, lA, v, 

General solutions of this equation are given as 

(v,) (e ''···
.
�) (c') 

v, 0, e c, 

where c, and c, are arbitrary constants. 
After all we get the general solutions of eq. (A. 1) as 

(u,) 
= 

(1,P,) (e"···
.
�) ( c')

' 
u, P, , 1 0, e c, 

From eq. (A. 5) we get 

P = ;.,-z, 
' ' z, P,= )..,-z, z, 

At this stage, we define the following quantities, 

)..,=a+/3 , )..,=a-(3 

where 

(3= Jp; + (/ = (3. TJ ' TJ = JI + ( f)/ (3.) 2 

a= � (z, + z,), (3. = � 1 f) = 2 (z,-z,) 

(A. 6) 

(A. 7) 

(A. 8a) 

(A. 8b) 

(A. 8c) 

Three quantities (3, (3. and r; may be real or pure imaginary. Then it is useful to intro­
duce the following three cases. 
(1) . 1 � r;' < ; three quantities /3, (3. and TJ are real. 
(2). 0 < r;' � 1: (3 and /3. are pure imaginary. Then introducing the notations y = -i/3 

and y. = - i/3., we may discuss with real numders, 

y = J y; -B' = Yo TJ' TJ = J 1-( fJ/ y.)' (A. 8d) 

( 3) . - = < r;' < 0 ; (3 is real but fl. and TJ are pure imaginary. If w e  also define r = 
ir;, we may use the real numbers, 

fl = J r! - i. = r. r. r = J< e; rY - 1 (A. 8e) 

From eqs. (A. 2) and (A. 6) we can obtain 

[j,j] 
= 

(1, P, ) (e"·d· 
.
. �J (1, P,)-• ' 

P., 1 0, e ) P., 1 
(A. 9a) 
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j J, = _l ( e ••.d _ p p e i!.,d) J, = P, ( ,�.,d_ "·d) 11 !l, 1 2 ' u  4 e e ' 

J, = P' (e"·d_ e' .. d) J, = _l( ,�.,d_ p p "·d) .. D. , ,. A e , ,e . 
• Llp 

where D..= 1- P, P, ( i= 0). 

Substituting eqs. (A. 7) and (A. 8a-c) into eq. (A. 9b) 
we obtain 

J,,=e··•(cos/3d+ i; sinfld) , J,,= ie' 
.. �'sinfld , 

j., = ie ••
• p' sin/3d , j., = e ••

• ( cosf]d - i ; s infld) , 

[! ] .... det 'i = e . 

We can express the matrix [b,J of eq. (A. 3) by the elements fii, 

(bll, b .. ) 
= 

_l_ (det [J,i], J,,) 
' 

b,, ' b,, j., - j., ' 1 

where we must assume the condition, 

(A. 9b) 

(A. 10) 

(A. 1 1) 

j., i= 0 ' (A. 12) 

whicn is equivalent to j,, i=O. Using eq. (A. 10), we obtain 

bll I b,. = e .... , b .. I b,. = - z,, I z,. , 

••
• e b,, = e , 

cosfld - ifi sin/3d 

We obtain the following relations, 

IJ,JJ..I=Iblll b  •• l= 1 ,  

IJ,. I J., l =I d,, I d .. I= I z,, I z ,, l , 

lblli=IJ,.I-'. lb .. I=IJ,.I J,.l. 

b .. = �·· sinfld 
cosfjd- i ; sinfld 

(A. 1 3) 

(A. 14) 

(A. 15a) 

(A. 15b) 

(A. 16) 

Especially we calculate the quantities IJ,.I' and IJ,.I' in the following cases. 
( 1) 1 � TJ <=; 

0 � IJ,.I' = 1 - sin' ( �. dr;) � 1. 
TJ 

IJ,.I' =l z,, lsin' �fl.dr;) 
z,, TJ 

( 2) 0 < TJ � 1 ; 

1 � IJ,.I' = 1 + sinh' ( 'fo dr;) �cosh' ( y. d) . 
TJ 
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IJ,,I' = lz"l sinh'\ r. dr;) z,. r; 
( 3) 0 < s <oo; 

1 < IJ,.I' = 1 + sin' i/· ds) 
IJ,, I , = I ;::1· sin' (2' d s) 

We remark that the condition (A. 12) holds except for the conditions, 

()= 0, (i.d =( n + 1/2)rr, ( n= O , ±1, .... ) 

where (1. is of course real. 

(A. 18b) 

(A. 17c) 

(A. 18c) 

(A. 19) 

Furthermore we supplement the following discussions. When [ u, (0), u, ( d)] are speci­
fied, equation (A. 1) can be treated from the viewpoint of two point boundary value pro­
blem. 

Using eq. (A. 6), we construct two solutions E. and Ed which satisfy the boundary 
conditions at x = 0 and x = d, respectively, 

E. ( x)= 
(
1
, P,l (e

'"
·x,o) (u , ( O) - P, h,l

' ?,
1 

0, e'"x h, 

(1, P,l (e '"· lx .-dl, o·l ( h 

l 
Ed ( x)= ' 

?,1 O,e'A,Ix-dl u,(d)-P,h, 

where h, and h, are constants. 
Connecting these solutions at a point x = f, we get 

(A. 20) 

To determine h, and h, uniquely from eq. (A. 20), we must impose the condition, 
6. = e'1A.-A,Id_ P, P, =I= 0 , 

which is just equivalent to eq. (A. 12). If eq. (A. 19) holds, there appears an eigen sol­
ution, 

(iiZ::, 0 l 
E.n ( x)cx 

0,� 

(sin[ ( n+1/2)rrx] l
· 

cos[n+ 1/2) rrx] 
(A. 2 1) 

Appendix B. Analytical treatment of the time independent coupling eqvations. 

The time independent coupling equations with a constant pumping can be reduced to 
the solvable forms ( 5. 3). 

Equations (5. 1) are altered to the various forms, 
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A, A: a a; = ia, ( I A, A,l ' + A. A: I A, I ' ) ' 

A: A, a� = ia, ( lA, A, I'+ A. A: lA, I' ) , 

A*A* a A, - · lA A I' 1 2 ----a;;- - 1-Gs 1 2 , 

al :; I ' = ia, ( A:" A; A, - A, A, A;)+ ia, ( A. A; A;- A: A, A, ) , 

(B. 1) 

al:; l' = ia,( A;A;A,- A, A,A,*)+ ia,( APA;"A;- A:A, A,) , ( B . 2) 

a iA,I' - . ( A*A*A A A A*) � - - z,as 1 2 3- t 2 s 

For the briefness, we define the notations, { a.( x)=IA.(� I' ,  2X ( x)=APA� ( x)+A:A,( x) ,  

F( a, , a, , a, ) - a, a, a, + a, a, a, a ,  a, a, 

fi a, , a, ) = a, a, + a, a, . 

Using eqs. (5.la), (5.lb) and (B.l), we get 

!cAP A; A:- A: A, A,)= - 2i ( X+ I API' )j( a, a,) ' 

!c A; A; A, - A, A, A:)= - 2iF( a, a, a, ) - 2iXj( a, a,) 

(B. 3a) 

(B. 3b) 

Differetiating eqs. (B. 2) with relations (B. 3), we obtain the coupled equations with real 
variables, 

� �J, = a, [ F( a, a, a, ) + 2Xj( a, a, ) + I Ap I' f( a, , a, ) ] , 

� (/;:: = a,[F( a, a,a,)+2Xj( a, a,)+IAPI'J( a, a,)] , (B. 4) 

� �J' = - a, [ F( a, , a, , a, ) + Xj( a, , a, ) ] , 

The conservation laws can be obtained from eqs. (B. 2) , 

where 

a,- a,.= - �( a,- a,.)+J( x)= - �( a,- a,.)+J( x) , a, � 

J( x)= ia , Jx ( APA;A;� A:A, A,)dy= - 2( x- x.), 
0 

are obtained from eq. (5. lc). 
From eq. (B. 5b) the function a, ( x) can be expressed as 
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a, = - ( a , I a, ) ( a, - a tO ) - 2( X-X .) + a,. , 

=- ( a ,/a,) ( a,- a,.)- 2( X-X .)+ a,. . ( B. 6) 

We remark that the functions a, ( x) and X( x) can be excluded from the term, 

F( a,, a,, a,)+ 2Xj( a,, a, )+ lA. I' f( a,, a,) , 

by substituting eq. ( B. 6). That is, the first two equations of eqs. ( B . 4) are closed as 
to a, and a, . Furthermore using eq. ( B. Sa), we can get eqs. (5. 3). 

On the other hand the function X( x) satisfy 

a'x , ax' +a ,  ( X+ IA.I )j( a" a,)= 0 .  ( B. 7) 

If a, and a, are determined from eqs. (5. 3), the function X( x) can be first obtained from 
eq. ( B. 7). Then the function a, ( x) is also obtained from eq. ( B. 6). 

( Received October 3 1, 1979) 
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