高等動物の視覚機能を模擬した特徴抽出モデル

八木 寛•佐々木和男

Feature Extraction Model shammed by the Visual System of the Higher Animal

Hiroshi YAGI • Kazuo SASAKI

In this paper, we describe about a feature extraction model of visual patterns. The selected features were the branching points and the number of the branches. This model responded to both straight lines and curved lines.

1. まえがき

高等動物は種々の面にわたってすぐれた知的機能をもっている。このような生体の機能,特に外界情報の8割 前後を処理するといわれる視覚系のパターン認識機能を 解明し,工学的に実現しようとすることは有意義である と思われる。

パターン認識が行なわれるには認識に必要な種々の特 徴を抽出することがまず第1に必要である。

生理学の実験によれば,¹¹²¹³⁾網膜の受容細胞に投影されたパターンは Brodmann の大脳 17, 18, 19 野にゆく につれ,より複雑な特徴抽出の対象となることが認められる。

このような生理学的事実にもとづき,種々の特徴を抽 出するモデルが研究されてきた⁴¹⁵⁾。

本論文は心理学的に情報量の多いと考えられるパター ンの分岐点⁶⁾ と分岐の数を特徴として抽出するモデル を、生体の視覚系の機能を用いて構成し、そのデジタル 計算機シミュレーションについて述べたものである。

2. モデルの概要とそのシミュレーション

図1は特徴抽出モデルのブロックダイアグラムで、6 層からなり、第3層はさらに2層にわけられる。この特 徴抽出モデルは入力として線図形と面図形を取りあつか うことができるが、線図形の線素幅は1mesh 程度とす る。また、受容野として R_2 層に on-center type を用 いるので、図形は黒地に白で画かれ、確率密度関数 fo (x, y)で表現されるとする。

 R_1 層は受容細胞層で, $f_0(x, y)$ で表現されたパタ ーンを1 or 0の2値パターンに変換する。出力は $f_1(x, y)$ で与えられ, (1)式はこの関係を表わす。

$$f_{1}(x, y) = \mathbf{1} [f_{0}(x, y) - \rho_{1}]$$
(1)
ただし、 \rho_{1}は閾値
$$\mathbf{1} [x] = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$
(2)

である。 $f_0(x, y)$ は(1)式により,2値パターンに変換 されるわけであるが、シミュレーションでは簡単さのた め $f_0(x, y)$ を入力とせず,視察により直接2値パター ン $f_1(x, y)$ を入力パターンとして与えた。

 R_2 層は contrast 成分を検出して、面図形を線図形 に変換し、線図形はそのまま保存する層である。このよ うな機能をはたす受容野の形は、興奮部 1×1 、全体の 大きさが 3×3 のものが適当である。この受容野は oncenter type であり、神経結合関数 $p_{12}(\xi, \eta)$ は

$$p_{12}(\xi, \eta) = 1.5 \exp\left(-\frac{\xi^2 + \eta^2}{0.1515}\right) - 0.5 \exp\left(-\frac{\xi^2 + \eta^2}{0.455}\right)$$
(3)

である。この神経結合関数は低域周波数を cut するため

$$\iint s_2 p_{12}(\xi, \eta) d\xi d\eta = 0 \tag{4}$$

にとってある。

モデルでは x, y, f, n は離散的な値をとるのである

図-1 特徴抽出モデルのブロークダイアグラム

<u> </u>																							
-	 	 	-		-						-					1			-	-			
	 	 					-						1	1	1	1	1	1	1	1	1	 -	
	 	 			L								1	1	1	1	1	1	1	1	1		
	 							1				1	1	1	1	1	1	1	1	1	1		
										!	1	1	1	1	1	1	1	1	1	1	1		
										1	1	1	1	1	1	1	1	1	1	1	1		
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
		 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
		 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

図-3 面 図 形 入 力

Г											1													1			
Γ											1												1	1			
Γ											1												1				
\square											1											1					
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Γ											1										1						
Γ											1										1				_		
											1									1							
											1									1							
					1	37	,		χé	DV	II/	7 -	+123		+-+	- Z	D	E	Zσ	14	i th						

図-5 面図形入力に対する R₂層の出力

が、簡単さのため連続値をとるとして積分で表現する。 図2の線図形、図3の面図形入力パターンに対する R2層の出力を図4、図5にそれぞれしめす。

 R_2 層は2層にわかれ,それぞれ R_{31} 層, R_{32} 層とす る。 R_{31} 層は R_4 層での直線成分検出のため線素幅を調 節する層であり, R_2 層が contrast を強調するのに対 し,ボケ変換を行なう層である。受容野は R_3 層同様, 同心円状の on-center type の受容野である。 R_4 での 直線成分検出に必要な線素幅は水平,垂直な直線に対し て1mesh, 斜線に対してはたかだか3mesh 程度であ るので,受容野興奮部の大きさは3×3,抑制部を含め た受容野全体の大きさは9×9とした。この受容野の神 経結合関数 $p_{2,31}(\xi, \eta)$ は

$$p_{2,31}(\xi, \eta) = 2.0 \exp\left(-\frac{\xi^2 + \eta^2}{1.625}\right) - \exp\left(-\frac{\xi^2 + \eta^2}{3.25}\right)$$
(5)

である。出力 f31(x, y) は

$$f_{31}(x, y) = \psi[\iint_{S_{31}} p_{2,31}(\xi, \eta) \\ \cdot f_2(x+\xi, y+\eta)d\xi d\eta - {}_{31}] \quad (6)$$

$$\psi[x] = \begin{cases} \iint_{S_{31}} p_{2,31}(\xi, \eta) \\ \cdot f_2(x+\xi, y+\eta)d\xi d\eta & x > 0 \\ 0 & x \le 0 \\ 0 & (7) \end{cases}$$

である。

 R_{32} 層は R_{31} 層の受容野興奮部の大きさが 3×3 であ るため,直線の交差した角の部分が大きな出力をだすの を抑制する層である。この受容野には off-center type の受容野が用いられ,神経結合関数としては R_2 層の神 経結合関数の正負を逆にしたものが使用される。すなわ ち

 $p_{2,32}(\xi,\eta) = -p_{1,2}(\xi,\eta)$ (8) で R_{32} 層の出力 $f_{32}(x,y)$ は

$$f_{32}(x, y) = \mathbf{1} \left[\iint_{S_{32}} p_{2,32}(\xi, y) \cdot f_2(x + \xi, y + \eta) d\xi d\eta - \rho_{32} \right]$$
(9)

である。 R_{31} 層と R_{32} 層の関係を図6にしめす。 $f_{32}(x, y)$ が1に対応する $f_{32}(x, y)$ の出力を抑制する回路結合を R_{31} 層の出力部に構成する必要がある。

*f*₃₁(*x*, *y*)の*f*₃₂(*x*, *y*)からの抑制を受けた出力を*f*₃(*x*, *y*)と表わす。

 R_4 層は方向づけられた直線成分を検出する層で,大 脳視覚領の simple cell に対応する。simple cell の直 線成分検出の機能をもつと考えられる受容野は,抑制野 をもつが本モデルでは簡単さのため抑制野を無視する。 この層の受容野は図7にしめされるような形をしてお り,15度毎,全体で24個ある。すなわちこの素子は3 次元配列をしている。神経結合関数として具体的な関数 をあげることはできないが,図7の受容野の神経結合関 数を $p_{3*4}(\xi, \eta)$ とする。出力は $f_2(x, y)$ の出力に対応 する点のみが情報をもつと考えられるので,その他の点 ではでないようにしてある。 R_4 層の出力 $f_{4i}(x, y)$ は

$$f_{4i}(x, y) = \mathbf{1} \left[\iint_{S_4} p_{3,4}(\xi, \eta, \alpha_i) \right] \cdot f_3(x + \xi, y + \eta) d\xi d\eta - \rho_{4i}$$
(9)

ただし α_i は receptive field axis の角度 $i = 1 \sim 24$

である。 $R_4 \ \mbox{Pd} i \ \alpha_i \ i \ 0^\circ$, 30°, 60°, 90°······ に対応す る出力が1のときは $f_{4(i+1)}$, $f_{4(i-1)}$ の出力が抑制される 回路結合をもつ。これは1つの直線に対し $f_{4i}(x, y)$, $f_{4(i+1)}(x, y)$, $f_{4(i-1)}(x, y)$ の内, 2つが同時に応答す るような誤動作を抑えるためである。 $R_4 \ \mbox{Po}$ 優の機能を図 8にしめす。図8 a) は $R_3 \ \mbox{Po}$ 昭の出力のある場所をAで しめしたものであり, 図8 b) は $R_2 \ \mbox{Po}$ 昭の出力のある場 所をBでしめしたものである。図8 b) の*の部分での 抑制前の $R_4 \ \mbox{Po}$ 田力を図8 c) に、抑制後の出力を図 8 d) にしめしてある。

 R_s 層は大脳視覚領の complex cell に対応するもので あるが、大脳視覚領における complex cell が同じ receptive field axis をもつ simple cell を統合するのに 対し、本モデルでの R_s 層は異った receptive field axis をもつ R_4 層の素子の統合にあたる。この層は受容野に 相当するものをもたず、 R_4 層の対応する点の $f_{4i}(x, y)$

											А												А	А	А		
											А												А	А			
Γ											А												А				
		А									А											Α	Α				
Γ	A	А	А	А	Α	А	A	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	Α	А	А	A	Α	Α
Γ		А									А										А						
											А										А						
											А									А							
											A								А	А							

a) R₃₁層の出力のある mesh

					1	1							1		
					1	1					1				
									_						
							L				L				

b) R ₃₂層の出力

																						А	А	Α		
																						А	А			
																						А				
	A																				А	*				
А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А
	А																			А						
																				А						
																			Д							
																		А	А							
					_																	*	÷ 7.	arr.	~	

 $-c)R_{3}$ 層の R_{32} 層による抑制 $*^{\text{output}}_{\text{interval}}$

係

図-6 R31 層 の 関

図—7 R₄層の受容野

の加算を行なう。すなわち、 R_5 層の出力 $f_5(x, y)$ は

$$f_5(x, y) = \sum_{i=1}^{24} f_4(x, y) \tag{10}$$

ただし、 $f_5(x, y) = 2$ のときは $\alpha_{i1} < \alpha_{i2}$ として 14 $\ge i_2 - i_1 \ge 11$ 以外において $f_5(x, y) = 9$ (1)

である。 R_5 層の出力を図9にしめす。

 R_6 層は hyper complex cell に対応し、パターンの 分岐点 (パターンの角の部分) で出力をだす。受容野は 4×4で,その形は神経結合関数が汎関数で表現されるので定まらない。

 $p_{56}\{f_5(x, y), f_5(x + \xi, y + q)\}$ の値は,着目して いる場所の分岐の数がその場所を中心とする受容野内の 各々の場所での分岐の数より大きいときは $f_6(x, y)$ に 出力がでるように,そうでない場合には出力がでないよ うに決定する必要がある。 R_5 層の出力が $f_5(x, y) = 2$ はほぼ直線であり,パターンの角の部分とはみなさず出 力を出さない。 R_6 層の出力 $f_6(x, y)$ は

$$\begin{split} f_6(x, \ y) &= \varPhi [\iint_{S_6} \dot{p}_{5,6} \{ f_5(x, \ y) \\ &\cdot f_5(x + \xi, \ y + \eta) \} \cdot f_5(x + \xi, \\ & y + \eta) d\xi d\eta \end{split}$$

$$\varphi[x] = \begin{cases} f_5(x, y) & x > 0\\ 0 & x \le 0 \end{cases}$$
(3)

である。 R₆層の出力を図10にしめす。

3. 特徴抽出モデルの検討

この特徴抽出モデルの R_4 層の出力に適当な回路を組

											А												A	А	А		
											А												А	Α			
											А												Α		1		
		А									А											A					
	A	А	А	А	A	А	А	A	Α	А	А	А	A	А	А	A	А	А	А	А	А	Α	A	А	А	A	A
		А									А										А						
											А										А						
Γ											А									А							
											А								А	А							

a) R₃層の出力 $f_3(x, y)$ のあるmesh

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
f'a (x.y.)																								

c)抑制前のR₄層の出力 $f_4(x, y)$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
f4 (x,y)]																			
		1	~			,	_			-		4.11												

d) *f*₄₁₇による*f*₄₁₆の抑制

図—8 R₄ 層 の 機 能

 $\boxtimes -11 \quad R_7$ 層 n 出

み込むことにより, パターンの直線検出を行なうことが 可能である。図2の右上がり直線を特徴として抽出する ことを考える。直線の傾きは水平方向に対し60°なので R_4 層で出力のでる可能性のあるものは $f_{4,2}$, $f_{4,3}$, $f_{4,4,4}$ *f*_{4,14}, *f*_{4,15}, *f*_{4,16} である。これらを OR 回路で結合し、 仮想的な出力層 R_7 層にその出力をだす。すなわち

$$f_7(x, y) = f_{4,2}(x, y) \cup f_{4,3}(x, y) \cup f_{4,4}(x, y)$$

 $\cup f_{4,5}(x, y) \cup f_{4,14}(x, y)$
 $\cup f_{4,15}(x, y) \cup f_{4,16}(x, y)$ (4)
である。図 11に R_7 層の出力をしめす。

この特徴抽出モデルはまた、曲線パターンの特徴を抽 出することができる。なぜならば R₄ 層の直線成分検出 層が線分検出を行なっているゆえんである。これは曲線 を直線近似したことに対応する。

本モデルはこのように直線パターン、曲線パターンを 問わず、その特徴を抽出する。しかし、鋭い角をもつよ うなパターンに対しては誤動作を伴うことがある。これ は R₄ 層の受容野に抑制野を含めなかったこと, 受容野 の形を遠いほど大きい結果をもつようにしたことなどに 起因すると思われる。

4. 結 論

本論文は、心理学的に情報量の多いと思われるパター ンの分岐点と分岐の数を特徴として抽出するため、生体 の視覚機能、特に網膜と大脳視覚領における情報処理機 能を特徴抽出図として用いた特徴抽出モデルの構成とそ のシミュレーションについて述べたものである。

本モデルは,図形に鋭い角がなければそれが線図形で あれ面図形であれ入力としてとりうることができる。さ らに線分検出受容野を用いたことにより、直線図形のみ ならず曲線図形もとりあつかうことができる。

このモデルの素子数を増し,素子を連続分布に近づけ るとともに、R4 層の線分検出受容野により適切なもの を用いることにより,かなり良い特徴抽出モデルの実現 が期待される。

参考文献

- 1) Hubel, D.H. and Wiesl, T.N.; Receptive Fields of Single Neurons in the Cat's Striate Cortex. J, Physiol, (1959) 148, 574-591
- 2) Hubel, D.H. and Wiesel, T.N.; Receptive Fields Binoculav Interaction and Fuuctional Architecture in the Cat's Visual Cortex. J. Physiol, (1962) 160, 100-151
- 3) Hubel, D. H. and Wiesel, T. N. ; Receptive Fields and Functional Architecture in Two Non-Striate Visual Areas (18 and 19) of the Cat. J. Neurophysiol, 28, 229-289 (1965)
- 4) K, Fukushima; Visual Extraction by a Multilayered Network of Analog Threshold Elements. IEEE, Trans, scc-5, 4, (1969) 323-333
- 5) 福島邦彦;多層回路網による曲線図形の特徴抽出. 電子通 信学会 Information 研資(1970)1月
- 6) 樋渡他;画像と注視点の分布. NHK 技術研究 (1695) 17, 1, 4-20