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On the Heat Transfer in Laminar Incompressible Boundary

Layer on a Flat Plate with Fluid Injection or Suction

Fusao MIKAMI

1. Introduction .

Previously, the author studied analytically the problems of the laminar boundary layer along a
flat plate with uniform injection or suction by the method of v.Karman-Pohlhausen using the
5th degree polynomials and obtained some interesting results on the velocity distributions, friction
coefficients, and critical suction Reynolds number etc. Now, the heat transfer problems under the
same physical conditions have been tried to solve approximately in connection with the problems
of transpiration cooling. But the energy equation has some difficult points even in the case of

‘incompressible’ problems, so attending to the analogous form of the equation with momentum
boundary layer equation he has tried to approximate the solution using the results obtained
previously in the case of momentum boundary layer problems assuming the value of Prandtl
number be nearly unity.

2. Fundamental Fquations

Consider the two dimensional flow along a flat plate on which uniform fluid injection or
suction of constant blowing velocity is distributed. As shown in fig. 1, let x-axis be taken along
the boundary and y-axis normal to it with origin at the leading edge of the plate, then the basic
equations in the boundary layer are the equation of continuity, of momentum and of energy as

follows:
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where u, v are the velocity components in the x-, and y-directions, U the velocity of main
stream, Vo the injection (positive) or suction (negative) velocity, t the temperature, tw, t, the
temperature of the wall and main flow respectively, v=p/p the kinematic viscosity and
a=k/ pcp the thermal diffusivity.

The 1st integration of the momentum equation (2) is the so-called v.Karman’s momentum
equation and it takes the following form in this case
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Moreover, the integration of the energy equation (3) becomes

where

0, O :the thickness of the momentum and thermal boundary layer.

Here, introducing the nondimensional variables
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the equations (5) and () take the following nondimensional forms:
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3. Approximate Solutions 06
Assuming the velocity and temperature distributions in the os|— =10
boundary layer take the form of 5th degree of polynomials EE;
' a=amp+a,n’+an’+an'+a:n’ (8) o4
G=b,nt +b’ +bye’ +b,ze’ + by’ (9)

o3
and determining the coefficients ai and bi by the boundary

conditions (7), we obtain the velocity and temperature distributions 62 / /
as follows: (cf.fig.2) /| /
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0= [som +30R¢ 7¢2+ 10Re*¢* — (15Re* + 45R¢ +60)7¢*

1
R% + 9R; +36
+ (6Rt2+24Rt+36)77t5j 1

In fig 2 the asymptotic solution is shown by the broken line in comparison with above distributions.
Hence, the displacement thickness 8* and momentum thickness ® become

LRt ar+12
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6= R2+9R+36[231 tog R+ R+ R+=77 ] 13

Then, substituting (10) and (13) into (5a), we obtain the following basic ordinary differential

equation of the 1st order
d& 25 5 33R°—267R*—5004R®+9180R*+ 159840R + 388800

dR T 231 231 R¥*+9R*+36R+60) (RZ+9R+36)

The solution of the above equation may be obtained easily and takes the following form under

(19

the leading edge condition R=(Q for x=0:
£=0.10823R—0.79065In(1+0. 27473R)
+0.2729In(1+0.32485R +0.060606R?) +0.12242In(1 +0.25R +0.027778R*)

R R
5.4055+0.87797R 9.0712+1.1339R

3.8186R—10.9061
R*+9R+36

And the local friction coefficient cs becomes

oo i 2a 6
EWS it

2PV

+2.7680In

—2.6842 tan—!

+0.3029 (15)

+
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Specially, for impermeable wall (R—0)

_1
Cs0=0.6475 (Rex) 2 (16a)

The coefficient 0,6475 is a desirable value in comparison with 0,664 of exact solution and 0,686
of 4th degree approximation.
The integration of energy equation (6a) is rather difficult as the integrand contains the velocity
function @ besides @, but compairing the velocity with =)

temperature polynomials it is obvious that the types of those

::l’"

=1 g

polynomials take the same form for the variables (R, %) and
(Rt , 7t ). Then, the functions @ and @ may be connected as v -5 (Rt am)
follows. As there must be an identical distribution of 8 as u for . . [0 (Re,70)
suitable value of R or Rt and in that distribution we must be TR
able to find the same value of 6 as 11 by a suitable transformation

of the ordinates, the function @ contained in the integrand of

integrated energy equation may be substituted with 6 by the
following relation (cf. fig. 3) Fig — 3

R, 7= 0( S8, Ay ) m
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Hence, eq. (a) may be rewritten

d 1 - A Re ]_ 1 (ﬁﬂ)
(R | o, wojo(s, s o 1= (o), @
For Pr :1,
0 (e, an )=0®R:, 7) i

Here, defining the heat transfer coefficient and local Nusselt number by

6_t> _ PCp Vo <tw—_m( 00 >

g =_"< ay o M R? "677? (19

and

S S (5N .
Nux = — % 20)

and substituting the temperature polynomial (11), we obtain the local Nusselt number for the case
of a flat plate with uniform injection or suction

b 60
Nux =Cq* Pr » Rex g—y=—"op 736y 2

Therefore, for impermeable wall, taking the limit of R—(), and assuming the momentum boundary
layer thickness be

8=5.oJ—”{‘T

the local Nusselt number takes the form of

(Nux dimp=—1 7/ Pr + /Rex

10
S
« C 2N
1 B
. G ¢ Cer &
< [N
< ™
7
z
N
10
3 ]
N
-~
NN [ rssion
~N N B
N TN el
~N (Z
N 289
N e
N T
10° 2
N
No;
N ~<
N N
™
\ A
10!
\
A
\
\
5
\
\
\
10% |- T J 0
10 [CAl 10 10 10 ¢ & Ra &=RE

Fig — 4



114

Thus the coefficient 0,357 for the case of 3rd degree approximation (cf. ref. 2)has been replaced
by 1/3 in this case.

Comparing the equations (16) with (1), it may easily be known that the nondimensional friction
parameter Cs /Cq and heat transfer parameter 2Nux /CqP: take the same functional dependence
on the variables R and R, respectively. Fig. 4 shows their form indicating the deviation from the
case of well known impermeable flat plate. Friction coefficient Cs and Nusselt number Nux
depend on Reynolds number Rex with injection or suction coefficient Cq as a parameter and
these families of curves may easily be derived from above two curves. Fig. 5 shows Cy - Rex
family as an example.
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Fig — 5

4. The Thickness Ratio of the Thermal Boundary Layer to the Momentum Boundary Layer

As has been shown above Rt (§;) exhibits the nondimensional thickness of the thermal

boundary layer at the point &:, but by the relation

R¢ (gt )=Rt (Pr ¢ E>:R(Pr ° E)
we know that as a matter of fact R¢ (5t )=R(Pr+ &) is the nondimensional thickness of the
thermal boundary layer at the point £. Because Ry and R take the same numerical values for
the same numerical values of independent variables & and &; by their analogous form of defining
equations and boundary conditions when Pr =—1. Hence the thickness ratio A of the thermal to the
momentum boundary layer at point £ may be calculated by

A=l Rt 1 RE D

=P R~ P RO 2
Again, for the impermeable wall R—0, by eq. (15
(®)r«1=0.03701R?
Hence,

1 RE:D 1
A= P, R —»l/—ﬁ when R—0
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This ratio takes a different form in contrast
with 3rd degree approximation (cf. ref. 2)

14

0.977 "z
A="9p .
Fig. 6 shows the calculated value of A for C— 71 3 = 2
air taking P=0.71 in the case of injection. D:‘ - 1. L l, .E?
It is an interesting fact that the thickness " Fig — 6

ratio decreases towards the down stream sides of the plate.

5. Approximate Solution of Eq. (6a)

As shown in fig. 7 the variation of @(Rt, #¢) is very small with respect to R¢, then, it is
considered reasonable to retain the variation by #: . only, or

9‘(%, An )=0Re, 70> +80 .

s E=z )i
Rt =Rt +6R¢ ~ I~ :i — . .
Therefore, substituting them into eq. (6a) :r‘ ™ B \
we obtain NN R °
d [Reo+8R )jl 1—0) (+50) f N S~ A
dE. to t - ! 2 ]
d&¢ o | < < S o
N
d77t ]_1 I“: 3.64 ° = r‘-’- 10 :l
__,,L<_8‘£) _&(_aﬂi> Fig — 7
B Rto aﬂt o Rto a"]t o

Hence, neglecting the higher order term with respect to 8R: and 80, and taking into consideration
the relation (6a) this equation may be simplified as foilows
1 . _
[ [1-0Re, 7:)]80(Rw0, e ddm:
8Rt - RtO’ ;’ — —
J' [1_0(Rto, 7t )Je(Rto, 7t Ddae

o

@23

where

T—0 - 00
BT=0(Ria, An) =0, 70)=B=Dme ()
And the integration contained in numerator may be deformed in following way

L1~ R, 7> )00,

=(A—1)J: [1—9 (Rto, Ut)] 7t (g:t )d"7t =A-1 -1

and
1 - 00
I= Jo [1—0(Rt01 Nt )]'771: (’anT)dm

1 . . 1 00
=— Jo [I—H(Rm, ur )]9 Rto, ¢ )dmt + foe Rio, 7t It e dne

where
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1 00 - 1o
J 6(Rio, 7t )»an—tm dye = [ 7t O(Reo, 7t )]0 09(Rto, 7t )dye —1

1

1=~ : [1 —0Reo, 7t )]2d77t

Therefore, substituting into eq. (23)
At | [1-0 Ree o) [
2 J [l_p(Rto, Nt )]9 (Rto, 7t )dne

R :Rto+3Rt -1
Rto Rto

1
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Substituting the temperature polynomial (11) into eq. (24) we obtain the following expression for
R

281 5, 9633, ., 441725 o 29651 5. 45396
R: ( 1 _1) g4 Rto” + g7 Reo' +—mn=Reo’ + == Reo™+ =7~ Reo

H-=1+
Rto AP %5 .. 4755 5, 14805 5, 6450 12400 .
(231 Rio*+ 231 Rio’+ 77 Rio®+ 77’Rto +“T)(Rto +9Rto +36)
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Fig — 8
By eq. (25 and above thickness ratio A\ the corrected value of R¢ may be obtained using Rto
which relates to & by the same expression as R to & (5. In fig.8 the curve of the corrected R
by Pr=0,71 are compared with one of the uncorrected R¢, which corresponds to Pr=1.

6. Conclusion

The heat transfer in a boundary layer along a flat plate with uniform injection or suction has
been studied approximately, and (1) the behavior of the nondimensional heat transfer number
2Nux /Cq *Pr with & =P; «& are the same as that of the nondimensional friction number Cs /
Cq with £=Cq@?+Rex, (2) in the case of uniform suction these numbers tend to an asymptotic
value 2,0, (3) in the case of uniform injection these numbers decrease rapidly for £>0,1 and in

real flowgthe separation will occur at some value of £ which must be an asymptotic value in
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the numerical operation but in this case even with 5th degree polynomials this value has not
been able to find out, (4) with the behavior of 1 (R, %)in mind the approximate solution of the
energy equation has been obtained and the first order approximation has been compared with
the zeroth order approximation which is the same as the solution of momentum boundary layer
equation.
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