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1- Introduction 
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Problems of the laminar boundary layer on a boundary with fluid injection, or suction 
(l) (2) (3),(4),(5),(6),(7) 

have been studied theoretically, or experimentally by many investigators in connection 

with the film cooling of the heated boundary, or with the problems of the boundary layer ' (1) 
control io date. Though the exact solution was obtai:.ed by R.lglisch for a flat plate, it 

(2) 
was the case of suction only. And also the brilliant results were obtained by S. W. Yuan 

for the same case, using the method of v. Kraman-Pohlhause:1 in 1949, but the presentation 

of the velocity distribution in the boundary layer with fourth degree polynomials exhibits the 

singularity when the suction Reynolds numbr R=v0il/v (v0: suction velocity and positive 

for injection) takes the value --6 for the sake of linear expression of R in the denominator. 
(:l) ,(4) 

Then,T.P.Torda has tried to improve the fault by changing the boundary conditions with 

fourth degree polynomials and succeeded in making the denominator a quadratic form with 

no real roots. Rut, taking away the one of the outer edge conditions in Torda's method 

seems to have a great influence on the velocity distribution in the boundary layer. Hence, here, 

the velocity distribution has been expressed by the fifth degree polynomials and the outer 

edge boundary condition which was taken away in Torda's method, has been added, and 

then succeeded in obtaining a more improved solution. The results thus obtained will be 
(l) . 

compared with the exact solutions by R. lglisch and the experimental results of P. A. L1bby, 
(5) 

L. Kaufman and R. P. Harrington, showing a good agreement. 

2. Fundamental equations 
Consider the two dimensional flow along-a boundary on which a uniform fluid inieclicn or 

suction of constant blowing velocity is distributed. Let x-axis be taken along the boundary 

and y-axis normal to it with origin at the stagnation point, then, the basic equations in 

the boundary layer are Prandtl's equation 

au au , dU a»u 
u- +1,- =U--+v-

ax ay dx ay» 

.and the equation of continuity 

� �-o 
ax+ ay -

with the boundary conditions 

y=O 

y=09 

U=O, v=110 

au aau u=U, ay=O, aya=O 

(1) 

(2) 

} (3) 

where u, v are the velocity components in the x- and y-directions, U the veloeity of 
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main stream, and /) the kinematic viscosity. 

The 1st integration of the momentum equation (1) is the so-called v. Karman's momentum 

equation and it takes the follwing form in this case 

'To ( au ) u• df9 ( �::� "*) dU 
U p=V 8y o= (IX+ 2.::?+u dx -Vo (3) 

The boundary condition can be taken by considering the eq. (1) as follows 

Y=O 
(4) 

y=co 

Now, assuming the velocity distribution in the boundary layer by the fifth degree polynomials 

-- u - 2 3 4 5 u - u - a1?J+a 2 '1J +a 317 +a 41J +a s ?J 

where ?]=yjo, and determining the coefficients a1, a2,-··a5, by the boundary conditions (4) 
one obtains the velocity distribution as follows : 

where 

and 

F tC?J)= 10'1]3 -15'1]4 +6'1J5 
F2('1J)='1]-6'1]3+87J4-3?J5 } 
Fa( 'I])= 30'1]11-45?]4+24'1]5 
F4('1])=9'1]-18'1]2+ 18'1]4-9'1]5 
F s('1])=601]-60'1]4+36?]5 

(5) 

(6) 

(7) 
As the denominator of the right hand side of eq. (5,) is a quadratic form with no real roots, 

the velocity distribution has no singularity on the whole range of the value of R. 
Using the velocity thus obtained one will be able to calculate the displacement thickness 

and the momentum thickness without any diifficull.y. Namely, the nondimensional displacemet 

thickness S* is 

3* = o; = J: 0-ii)d?J 

= Ra+�R+36[C � Rli+4R+12)-A-C{0
R+ �)] 

and the nondimensional momentum thickness () becomes as follows 

;J = -�- = f : ii(l-ii)d'l] 

= 1 [ (�R.t+ 475 R3+1480Rll+6450R+ 12400) (R.8+9R+36)2 231 231 77 77 77 

(8) 

+A-( _JL_R3+_!!Ra + 365 R- 150 )+J.ll( -�Rll- 139 R- 423) J (9) 231 22 462 77 3465 770 770 
Substituting the eqs. (5), (6), (7), (8) and (9) into the momentum equation (3) one obtains 

the differential equation to determine the blowing Reynolds number R. 
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3. Solution for the case of a flat plate 

When the boundary is a flat plate with uniform fluid injection, or suction distributed from 
the leading edge of the plate with constant blowing velocity, one obtains the differential 
equation in nondimensional form as follows, substituting eqs. (5), (6), (7), (8) and (9) into eq. 
(3) and putting A.=O 

where � is a nondimensional coordinate of the following form 

Hence, integrating eq. (10) with the condition R = 0, for � = 0, the solution for the case of 
a flat plate with uniform fluid injection, or suction is given as follows : 

� = 0.10823R-0. 79065 ln(0.27473R + 1)+0.2729 ln(O. 060606R• +0 .32485R + 1) 

+0.12242 ln(0.027778Rll+0.25R+1)-2.6842 tan-t 0_87797R\5 .4055 

1 R 3.8186R-10.9061 
+2·7680 tan- 1.1339R+9.0712+ Rll+9R+36 +0.3029 (11) 

When the values of R are determined for �. the velocity distiribution, the thickness and 
any other charateristic values of the boundary layer may be calculated with some suitable 
equations. But, as in actual problems the values 
of� would be given previously, the following tables 
of R-$ values will be helpful for the practical 
calculations. 

In the tabtle the negative values of R correspond 
to the case of uniform suction, and positive to 
injection. Particularly, as the right hand side of 
eq. Ul) diverges when R takes the value 

R=-3.64 

R 

one can easily see that there must present an 5 

asymptotic value for the case of suction, and 
therefore the thickness of the boundary layer tends 2 

to a finite limit on the far downstream along the 
plate. Figs. (1) and (2) show the R-� curves and as 
the values of R show the thickness of the boundary 
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R � R � R � R � 

-3. 64 00 -0. 1 0. 0003 3. 5 0. 24078 7.1 0. 62137 

-3. 6 2. 7546 0. 0 0. 00000 3. 6 0. 25083 7. 2 0. 63219 

-3. 5 1. 7950 0. 1 0. 00039 3. 7 0. 26092 7. 3 0. 64300 

-3. 4 1. 3998 0. 2 0. 00151 3. 8 0. 27109 7. 4 0. 65384 

-3. 3 1. 1546 0. 3 0. 00329 3. 9 0. 28129 7. 5 0. 66465 

-3.2 0. 9801 0. 4 0. 00568 4. {) 0. 29153 7. 6 0. 67549 

-3. 1 0. 8465 0. 5 0. 00864 4. 1  0. 30182 7. 7 0. 68631 

-3. 0 0. 7397 0. 6 0. 01214 4. 2 0. 31215 7. 8 0. 69703 

-2. 9 0. 6513 0. 7 0. 01551 4. 3 0. 32254 7. 9 0. 70799 

-2. 8 0. 5767 0. 8 0. 01999 4.4 0. 33292 8. 0 0. 71881 

-2. 7 0. 5124 0. 9 0. 02554 4. 5 0. 34338 8. 1 0. 72966 

-2. 6 0.4563 1. 0 0. 03085 4. 6  0. 35387 8. 2 0. 74050 

-2. 5 0. 4067 1. 1 0. 03657 4. 7 0. 36436 8. 3  0. 75135 

-2. 4 0. 3626 1. 2 0. 04258 4. 8  0. 37489 8. 4 0. 76502 

-2. 3 0. 3229 1. 3 0. 04902 4. 9 0. 38543 8. 5 0. 77305 

-2. 2  0. 2871 1. 4 0. 05565 5. 0 0. 39598 8. 6 0. 78390 

-2.1 0. 2546 1. 5 0. 06274 5. 1 0. 40663 8. 7 0. 79474 

-2. 0 0. 2248 1. 6 0. 07001 5. 2 0. 41643 8. 8 0. 80559 

-1.9 0. 1983 1. 7 0. 07753 5. 3 0. 42787 8. 9 0. 81646 

-1. 8 0. 1738 1. 8 0. 08551 5. 4 0. 43851 9. 0 0. 82730 

-1. 7 0. 1514 1. 9 0. 09327 5. 5 0. 44921 9. 1 0. 83751 

-1. 6 0. 1312 2. 0 0. 10144 5. 6 0. 45987 9. 2 0. 84900 

-1. 5 0. 1127 2. 1 0. 10980 5. 7 0. 47058 9. 3 0. 85984 

-1. 4 0. 0661 2. 2 0. 11833 5. 8 0. 48130 9. 4 0. 87072 

-1. 3 0. 0810 2. 3 0. 12679 5. 9 0. 49203 9. 5 0. 88156 

-1. 2  0. 0675 2. 4 0. 13589 6. 0 0. 50276 9. 6 0. 89239 

-1. 1 0. 0544 2. 5 0. 14473 6. 1 0. 51306 9. 7 0. 90306 

-1. 0 0. 0449 2. 9 0. 15403 6. 2 0. 52425 9. 8 0. 91410 

-0. 9 0. 0354 2. 7 0. 16146 6. 3 0. 53503 9. 9 0. 92495 

-0. 8 0. 0274 2. 8 0. 17212 6. 4 0. 54579 10. 0 0. 93530 

-0. 7 0. 0204 2. 9 0. 18212 6. 5 0. 55656 

-0. 6 0. 0147 3. 0 0. 19168 6. 6 0. 56736 

-0. 5 0. 0099 3. 1 0. 20135 6. 7 0. 57814 

-0. 4 0. 0061 3. 2 0. 21109 6. 8 0. 58895 

-0. 3 0. 0033 3. 3 0. 22092 6. 9 0. 59975 

-0. 2 0. 0014 3. 4 0. 23084 7. 0 0. 61054 

layer for a given value of blowing velocity Vo, the fact described above may easily be 
confirmed. 

4. Comparison with the previous results. 

(a) Suction 
For the case of uniform suction with constant blowing velocity distributed along a flat plate 

there has been given an asymptotic solution obtained by putting 8uj8x=O in eqs. (1) and (2) 
directly. As its velocity distribution is given in the present notaions as follows 

ii=I-eRv CR<O) 
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then, the displacement thickness and momentum thickness becomes 

o*--v_ t?-l _v_ (uo<O) 
- -v0' - 2 -vo 

Meanwhile, putting A.=O in eqs. (8) and (9), and substituting the value R= -3,64, the 
corresponding thickness may be obtained respectively 

v v (o*)R--3,64=0.897-v , Ct?)R�-3,64=0.41-
- o -Vo 

These values show satisfactory agreement. 
Next, R.Iglisch has obtained an exact solution by means of the v. Mises' transformation, 

hence the displacement thickness and the velocity distribution will be compared with his 
results in Figs. (3) and (4). In the neighbourhood of the leading edge of the plate the both 
results are in good agreement but in far down stream region, though Iglisch's results coincide 
with the asymptotic solutions described above the present results give some lower values. 
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The coefficient of friction drag c1 is given by the following expression and the results are 
shown in Fig. 5. 

(12) 
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The experiments of this problem have been studied, for example, by P. A. Libby etc., 

replacing a part of the side wall of wind tunnel by a porous wall. They measured the velocity 
distribution in the boundary layer with a hot wire anemometer by the constant temperature 
method, compareing the results with the theoretical distributions calculated by the Yuan's 
method of fourth degree polynomials. In Fig.6 these results are also compared with the 
calculated results by the present method. In the case of suction these two calculated results 
seem to give nearly eaqual distribution. 

(b) Injection 
ln Fig. 7 the experimental, calculated by the fourth degree polynomials and the present 

results are compared with each other. In the case of injection, as the effect of the boundary 
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layer along the up stream range of the side wall without injection becomes remarkable, then, 
on the present calculations the following corrections have been made. 

Namely, let the injection initiate from the point lying at x; downstream of the leading 
edge of the plate and the thickness of the boundary layer be o0 which would be taken if the 
injection were distributed from the leading edge (cj. Fig. 8). Here, we assume that as the 
wall without injection lies ahead of the porous wall the boundary layer along this wall takes 
the form of a usual laminar layer with thickness of 31 and then, it becomes the layer of thickness 
32 along the porous wall from tpe point at which the condition of the wall changes. Thus, 
determining the velocity distributions in the layer 32 the wanted correction may be obtained. 



Meanwhile, the boundary layer o2 may be determined 

by obtaining the equivalent length of the wall with 

uniform injection for which the thickne>s of both layers, 

without injection and with injection have the same value 
<:- Fig, .8 
Oi at Xi • 

Therefore, at first, calculating o, (x; ) by Blasius' solution as follows 

o; = 5.oj v�; 
one obtain the blowing Reynolds number R; by 

R; = v:o• = 5.oj(fj-)" U:; =5.0y�; 
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By the interpolation, the value of �; 0 may be obtained in the R-e= table corre>ponding to 

R; , and the corrected velocity distribution will be able to calculate by the value of R which 

is interpolated by 

�,. =�-�; +� io 

As in the paper of P. A. Libby etc. the equivalent length �; of the curved inlet bell is given, 

the corrected distributions calculated by above method are also shown in Fig. 7. 
In the vicinity of the wall the velocity gradients are qreater by fifth degree polynomials 

than those by the fourth degree. By the present method the separation cannot also be 
determined, but in practice, there exists the separation at the point given by the following 

critical blowing parameter 

� jRex =0.619 

obtained experimentally by H. W. Emmons and D. C. Leigh.<•) Thus, the pre>ent solution may 

be regarded as one considerably improved. 

5. Concluding Remarks 

The laminar boundary layer along a flat plate with uniform injection, or suction of constant 

blowingvelocity has been studied and a considerably improved sloution has been obtained. 

The velocity gradients near the wall become larger by the pre>ent method than by the 

method of fourth degree polynomials, but the separation that must exist in the case of 

uniform injection cannot be obtained. Hence, :his problem is to be left for more advanced 

investigations. As the blowing Reynolds number R doe> not exceed the value -3,64, the 

anxiety that the velocity d�stribution diverges at R= -6, occurred in the solution by the 

fourth degree polynomials has vanished. 
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