空気取り入れ口のまわりの二次元流

三 上 房 男

Two Dimensional Flow around an Air-Intake

Fusao MIKAMI

(1)

(2)

By the method of conformal transformation, the flow around an air-intake has been studied. And the stream lines, free stream lines, and the pressure distributions have been obtained for several cases of varying rate of discharge.

1. 写像

図-1に示すように、 ζ -面の上半面を、Z-面の境界ABCDEの外側に対応させ、かつ、その際に 点A、B、C、D、Eを ζ -面では実軸上の点a(- ∞)、b(-1)、c(+1)、d(+ λ)、e(+ ∞)、に対応 させる写像函数は Schwarz-Christoffel の定理、あるいは、前出の写像函数に上の各数値を代入し 変形することにより

$$Z = K_1 i \left[\left(\lambda \sin^{-1} \zeta + \left(\sqrt{1 - \zeta^2} - 1 \right) \right] \right]$$

となる。

今,取り入れ口の深さCDと取り入れ口の幅BCとの比をAとおけば、(1)式より

 $\overline{\mathrm{CD}} = \lambda \cosh^{-1} \lambda - \sqrt{\lambda^2 - 1}$

$$\overline{\mathrm{BC}} = \left(\frac{\pi\lambda}{2} - 1 \right) + \left(\frac{\pi\lambda}{2} + 1 \right) = \pi\lambda$$

となることは容易に知られるから

$$\Lambda = \frac{\overline{CD}}{\overline{BC}} = \frac{1}{\pi} \left(\cosh^{-1}\lambda - \sqrt{1 - \frac{1}{\lambda^2}} \right)$$

を得る。比Aと, & ー軸上の点 d の座標 l の関係は,表1,および,図2 に示す。

148

Ē

1

λ.	Λ	ړ	Λ	2	Λ	ړ	Λ
1.0	0.	10	0.63789	200	1.5890	480	1.8675
1.1	.00869	11	.66660	210	1.6046	490	1.8742
1.2	.02235	12	.69407	220	1.6192	500	1.8806
1.3	.03724	13	.71938	230	1.6336	520	1 .8 930
1.4	.05319	14	.74249	240	1.6469	540	1.9051
1.5	.06926	15	.76464	250	1.6600	560	1.9165
1.6	.08480	16	.78527	260	1.6724	5 8 0	1.9277
1.7	.10004	17	.80431	270	1.6845	600	1.9385
1.8	.11507	18	.82270	280	1.6960	620	1.9490
1.9	.12946	19	.84015	290	1.7071	640	1.9592
2.0	.14356	20	.85603	300	1.7179	660	1,9687
2.1	.15715	30	.98504	310	1,7284	680	1.9783
2.2	.17039	40	1.0766	320	1.7383	700	1.9875
2.3	.18284	50	1.1476	330	1.7482	720	1,9964
2.4	.19509	60	1.2054	340	1.7577	740	2.0054
2.5	.20706	70	1.2548	350	1.7669	760	2.0136
2.6	.21865	80	1.2971	360	1.7759	780	2.0219
2.7	.22953	90	1.3347	370	1.7848	800	2.0302
2.8	.24032	100	1.3681	3 8 0	1.7930		
2.9	.25092	110	1.3987	390	1.8013		
3.0	.26108	120	1.4263	400	1.8096		
4.0	.34849	130	1.4518	410	1.8172		
5.0	.41769	140	1.4754	420	1.8249		
6.0	.47492	150	1.4973	430	1.8325		
7.0	.52340	160	1.5180	440	1.8398		
8.0	.56557	170	1.5371	450	1.8468		
9.0	.60262	180	1.5556	460	1.8538		
10.0	.63789	190	1.5728	470	1.8608		
	1	1	1				1

2. 複素ポテンシャル

複素ポテンシャル,および,流函数,速度ポテンシャルは上述の写像函数(1)により容易に導き出 すことができるが、以下、(α)一様流のみの場合、(β)一様流と、Z – 面の原点の位置(図1)に吸い 込み点,あるいは、吸き出し点がある場合、(r)一様流と、Z – 面の境界BC(図1)に沿つて、吸い 込み、あるいは、吸き出しの分布がある場合、の三つの場合に別けて述べることにする。そして、 これらの場合について、複素ポテンシャルをW、流函数 Ψ、速度ポテンシャルをΦ であらわすが、 (α)の場合には添字 u を、(β)では p.s. を、(r)ではd.s. をつけて区別することにする。

(a) 一様流のみの場合

ζ-面の無限遠点における速度をVとすれば、この場合の複素ポテンシャルWuは

 $W_u = V\zeta$

となるが、Z-面の無限遠点における速度をUとおくとき、

 $\left|\frac{dW}{dZ}\right|_{\infty} = \left|\frac{dW}{d\zeta}\right|_{\infty} \cdot \left|\frac{d\zeta}{dZ}\right|_{\infty}$

の関係により

 $U = V/K_1$

となるから

$$W_{u} = \Phi_{u} + i\Psi_{u} = K_{1}U\zeta \tag{3}$$

を得,したがつて,

 Φ_{u}

$$= K_1 U \xi. \qquad \Psi_u = K_1 U \eta$$

となる

また、Z-面と、ζ-面との座標の間には次の関係

$$\frac{x}{\lambda} = \frac{A}{\lambda} - \frac{1}{2} \ln \left[(\xi + A)^2 + (\eta + B)^2 \right]$$

$$\frac{y}{\lambda} = \left(\frac{\pi}{2} - \frac{1}{\lambda}\right) + \frac{B}{\lambda} - \tan^{-1} \frac{\eta + B}{\xi + A}$$
(5)

但し,

$$\begin{split} \mathbf{A} &= \sqrt{\frac{1}{2}} \left\{ \sqrt{\overline{((\xi-1)^2 + \eta^2)} \ \overline{((\xi+1)^2 + \eta^2)}} + (\xi^2 - 1 - \eta^2)} \right\} \\ \mathbf{B} &= \sqrt{\frac{1}{2}} \left\{ \sqrt{\overline{((\xi-1)^2 + \eta^2)} \ \overline{((\xi+1)^2 + \eta^2)}} - (\xi^2 - 1 - \eta^2)} \right\} \end{split}$$

が成立するので、Z-面で与えられた境界に対してΛを知り、これにより、表1、または、図2、からλを得れば、(4)の第2式と(5)により流線をひくことができる。

(β) 一様流と、**Z**-面の原点の位置に吸い込み点、あるいは、吹き出し点がある場合 吸い込み、または吹き出しの強さをµとすれば

$$W_{PS} = \Phi_{PS} + i \Psi_{PS} = K_1 U \zeta + \mu \ln \zeta$$

$$\Phi_{PS} = K_1 U \xi + \mu \ln \sqrt{\xi^2 + \eta^2}$$

$$\Psi_{PS} = K_1 U \eta + \mu \tan^{-1} \frac{\eta}{\xi}$$

$$(7)$$

(7) 一様流と、Z-面の境界BCに沿つて、吸い込み、あるいは、吹き出しの分布がある場合 W_{ds} = Φ_{ds} + iΨ_{ds} =K₁Uζ+μ_[(ζ+1)ln(ζ+1)-(ζ-1)ln(ζ-1)-2)] Φ_{ds} = K₁Uξ +μ_[(ξ+1)ln $\sqrt{(\xi+1)^2+\eta^2} - (\xi-1)ln\sqrt{(\xi-1)^2+\eta^2}$ - $\eta tan^{-1}\frac{\eta}{\xi+1} + \eta tan^{-1}\frac{\eta}{\xi-1} - 2$] Ψ_{ds} = K₁U_η + $\mu \in \eta ln \sqrt{(\xi+1)^2+\eta^2} - \eta ln \sqrt{(\xi-1)^2-\eta^2}$ +(ξ+1)tan⁻¹ $\frac{\eta}{\xi+1} - (\xi-1)tan^{-1}\frac{\eta}{\xi-1}$]
(9)

3. 速度分布と圧力分布

(a) 一様流のみの場合

$$\overline{V} = \frac{dW_u}{dz} - \frac{dW_u}{d\zeta} \frac{d\zeta}{dZ} = \overline{U} / \frac{dz}{d\zeta}$$

但し、 $\overline{\mathbf{V}}$, $\overline{\mathbf{U}}$ は共軛素複速度をおらわす。したがつて、 $|\overline{\mathbf{U}}| = \text{const.} = \mathbf{U} \times \boldsymbol{\varepsilon}$ おけば $\frac{|\overline{\mathbf{V}}|}{|\mathbf{U} \times |\mathbf{v}|} = \left| \frac{\sqrt{1-\zeta^2}}{\lambda-\zeta} \right|$ (d) 149

150

特に、境界面に沿う速度分布を考えれば

ζ = ξ おいて

$$-\frac{|\overline{V}|_{\text{bound}}}{U_{\infty}} = \left|\frac{\sqrt{1-\xi^2}}{\lambda-\xi}\right|$$
(10*a*)

但し

 $|\overline{V}|$ bound はZ-面の境界に沿う速度の絶対値をあらわす。

ここで圧力係数Cpを求めれば Bernoulliの定理により

$$Cp = \frac{\frac{p - p_{\infty}}{1}}{\frac{1}{2} p U_{\infty}^{2}} = 1 - \frac{|\overline{V}|^{2}_{bound}}{U_{\infty}^{2}} = 1 - \frac{1 - \xi^{2}}{(\lambda - \xi)^{2}}$$
(1)

(β) 一様流と、**Z**-面の原点の位置に吸い込み点、あるいは、吹き出し点がある場合 (6)式より

$$\overline{\mathbf{U}} = \frac{\mathbf{dW}_{\mathrm{ps}}}{\mathbf{d\zeta}} = \mathbf{U} \propto + \frac{\mu}{\zeta}$$

したがつて境界面に沿つては

$$(\overline{U})_{\text{bound}} = U \infty + \frac{\mu}{\xi}$$

 ζ ー面における澱み点の座標を ξ s とおけば、 $(U)_{bound} = 0$ とおいて $\mu = -\xi_s U \infty$ であるから、 ξ_s により速度分布と、圧力分布をあらわせば

$$\begin{aligned} \frac{|\overline{\mathbf{V}}|}{\mathbf{U}_{\infty}} &= \left(1 - \frac{\xi_{s}}{\xi}\right) \left| \frac{\sqrt{1 - \xi^{2}}}{\lambda - \xi} \right|^{2} \end{aligned} \tag{12}$$

$$Cp = 1 - \left(1 - \frac{1}{\xi}\right) \left| \frac{1}{\lambda - \xi} \right|$$

一様流と、Z-面の境界BCに沿つて吸い込み、あるいは、吹き出しの分布がある場合

$$\overline{V} = \frac{dW_{ds}}{dZ} = \frac{dW_{ds}}{d\zeta} \quad \frac{d\zeta}{dZ} = \left(U_{\infty} + \mu \ln \frac{\zeta + 1}{\zeta - 1}\right) \frac{\sqrt{\zeta^2 - 1}}{\lambda - \zeta}$$

ζ-面の実軸上における澱み点の座標をξs とおば

$$\mu = -\frac{U\infty}{\ln\xi \frac{\xi_s + 1}{\xi_s - 1}}$$

の関係を得る。但し、この場合 ξs の絶対値は常に1よりも大きいことに注意しなければならない。 したがつて、速度分布、圧力分布は次のようになる。

$$\frac{|\overline{\mathbf{V}}|}{|\mathbf{U}_{\infty}|} = \left(1 - \ln \frac{\zeta+1}{\zeta-1} / \ln \frac{\xi_s+1}{\xi_s-1}\right) \sqrt{\frac{\zeta^2-1}{\lambda-\zeta}}$$
(4)

$$Cp = 1 - \left(1 - \ln \frac{\xi + 1}{\xi - 1} / \ln \frac{\xi_s + \xi}{\xi_s - 1} \right)^2 \frac{\xi^2 - 1}{(\lambda - \xi)^2}$$
(5)

4. 数值計算例

(r)

 $\Lambda = 1,8806 (\lambda = 500)の場合について数値計算を行い,前述の(a), (\beta), (r)の三つの場合の流線$ $を求めて第3,4,5図に示す。尚,(<math>\beta$), (r)の場合については,吸い込みの場合を考え,澱み点が, $\xi_s = 2000$ にある場合について計算してある。この場合には,吸い込みの極く近くでのみ,点と分布 との相違が影響し,大部分の領域でその影響を無視することができる。また,ひさしの部分が,吸 い込み日の幅BCの約1.4倍以上ある場合にはBCの上におかれた吸い込みが点であるか,分布したも のであるか,あるいはまた,後の場合には,その分布状況等の相違による影響は,ひさしの外には

151

あらわれて来ないと考えることができる。尚、今の場合の吸い込み強さの分布はBCを直径とする半

 Mikami, F: A note on the Conformal Transformation of the Step having a Visor of Finite Thickness. Bulletin of Faculty of Engineering Toyama University, vo. 11, no. 12, pp.134-136, 1960.