103

The Bending of Uniformly Loaded Segmental Plate with a Clamped

Circular Edge and a Supported Straight Edge

by Kazyu MIYAO and Yoshiaki NOZAKI

This paper gives a theoretical solution to the bending of a segmental plate, clamped on
a circular edge and supported on a straight edge, subjected to uniformly distributed load.

The parametric coefficients involved in the solution were adjusted so as to satisfy the
boundary conditions at the edges of the plate.

Bipolar coordinates were used in the solution, by means of which explicit expressions

were obtained for the parametric coefficients.

1. Symbols:

In this paper the following symbols are used :

a,y =rectangular coordinates

«,3 =orthogonal curvilinear coordinates
a=a real positive length

1/h =stretch ratio
p=applied load a unit area
y=poisson’s ratio
w=deflection
D=flexural rigidity of the plate

M,Mp =bending moments

2. Introduction

v The bending problems in the plate subjected to unifo-
‘\P - rmly distributed load were analysed in the various shapes,

but the almost all of these examples were the plate cla-

/’\ mped on the all edges. In this paper, the segmental plate
O oh=oe clamped on a circular edge and supported on a straight

\ * edge was dealt.

The bending problem of the segemental plate, clamp-

ed on the all edges under uniform load was investigated
by OKADX.) And, t(l;l)e case ?f) the semi~cir(4c)ular plate was
analysed by KUNO, NADAI, WEINSTEIN and etc,

In this paper, the bipolar coordinates were used and

Sapported |O

o

the deflection involved in the solution was determined

27T
0

i from the given conditions with the aid of Fourier integral.

Fig.1 The Segmental Plate And the bending moments on the circular edge were cal-

Lecture delivered at the Congress of J.S. M. E,, 18th Sep. 1958,
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culated from the deflection.

3. Method of solution

In this paper, a solution of this problem was induced by the Jeffery’ s method. The bi-
polar coordinates (a, @A) shall be defined by the equation of transformation

x+iy=—acotz7(a+i,8), (1)

such that the two poles of the coordinates are located on the y-axis at the points (o, =+
a), and '
2 =sinB/h, y=sinha/h, (2)
where (3)
h=(coshaa—cosB)/a.
Let the circular edge of the plate be defined by 8=28,, (#>>8.>>0), and the straight
edge by B==x.
The differential equation which must be satisfied by the flexure w, shows as follows,
D4242w=p (4)
The bending moments in the bipolar coordinates derived from (%w) are equal to eq.
(5).

aM, = —Dl(cosha cosB)( ba 5+ Vass — ) (a+ v)(smha +Sm,86'—§—cosha>}(hw)

6,8”

0*

5
My = —D{(coshar—cos®) (s + » gz +1)— (1) sinher o +siny—cos 8) o).

The method of solution for this segmental plate is to construct the required flexure w
in the form:
w=(a®p/16D) (w,+wy) (6)

4. Analysis

The particular solution w, is given by

wo =22(r2—7r,2), (7)
or hw, = —sin2Bsin(B—B1)/(cosha—cosB)2sinf, , (7)1
and the auxiliary solution w, is therefore

hw, = J :o{A,,sin(,B—B,)sinhn(n—,8)+B,,sin/83inhn(,8—,81) }cos'nadn. (8)

For this plate under consideration, the boundary conditions are as follows;
(1) along the edge B8=48,,

0
(0], =[gghd]s 1 =0, (9
(2) along the edge B=m, .
(hw)z=(Mgl= =0. (10)

In the eq. (10) the latter is

{Q+eosha) (1-+3505) ~ (1) (1+sinha 2 Je_+(1-+cosha)-Jgs(hd ) =0. )
From egs, (7) (8) and (1) we get for the condltlon (10
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() v =( g ()] =0, (2
For the equations determining the coefficients A, and B,, it requires that
o - . > sinf3y _ .
J O{A,,smnn(n—-[:h)+71B,,51n,81}cosnadn— (cosha—cos8,)? =0, 19
and
Yoo = _ ——771-“-—.— _
_/ on{Ancos,Bl—Bncoshn(n B }cosnadn (i cosha)? =0. (14
By means of the following integral formula‘
o cosnada____ wsinhn(m—B) ) .
f o COSha—cos@ sin@sinhnr ’ (O<B<2m) 15
we get
sinB _ = nsinBcoshn(x—B) +-cosBsinhn(n--B)
(cosha—cosB)® — smzﬁ f sinhnn ~cosnadn, (16)
and
12 (= n(@rP+]) -
(1+cosha)® ~ 3 J, sinhnr cosnadn. i
Consequently, A, and B, are solved as follows:
A — 2 6nsin@ycosh®n(mw—fB,)+3cos8,sinh2n(r —B;)+2n(n®+1)sin’G,
"™ 3sin?@,sinhnn sinh2n(m—B)+nsin2B, ’ n
B, = 2 _3nsin2B,coshn(n—B,)—2(n*sin?B,; —4cos?*B, +1)sinhn(r— ,81)
"~ 3sin®B,sinhnn sinh2n(r—p8, ) +nsin2G,

To {find the bending moment along the circular edge, we have in the virture of eq. (9)

02 .
by Mg ) g1 = (cosha—cosBy) gz (b)) 19

Namely, we have

_ coshacosB,—1
T (MgJg, = (cosha—cos@, )*

sin®@, + Ag-—(cosha— cosB3;) f °N nCOSndn, 20)
o

where
N, =n{nsinB,coshn(r—B;)+cosBsinhn(r—BG,)} \
X {3cosh?n(7—3;)+n?sin?B; —4cos*B,+1}/ A ,sinhnr, l 1)
Ap=sinh2n(r—B ) +nsin28;. j

5. Numerical-results

The most important is the maximum bendmg moment along the clamped edge of the
plate, From 0(MpJg,/0ax=0, we get a«=0,and from the  earlier paper in which “The Bend-
ing of a Plate Shaped by Two Circular Arcs” was analysed by one of the authers, the
beﬁding moment at the poles O; or O, becomes null.

Therefore the bending moment at a =0 along the edge may well be taken as the maxi
mum one without any appreciable error

For numerical integration, Nn converges slowly for large values of 3,.

To make it rapid convergence, we put
Q. Apsinhnm =n2sin®8,{sinB,coshn(r—B,)—ncos@,sinhn(r—B,)}, )
and
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R, Apsinhnr =n(n2sin®B8,—4c0s2B,; +1){nsinB,coshn(r—B,) +cosB;sinhn(z—B,)}. 3
Noting that

w o sinhn(z—B) , sin@
2.[ ' sinkmw dn= (1—cosB)® * (0B 2n), 04
and
o coshn(n—B) , 1 ‘
2,[,,” sinhnz dn = 1—cosB ’ (o B<2m). ©95)
we have
- 8 - a= =1— — *® . ,,]L d
2p EMBJH=21—1 4(1--cosB,) J ) (Qn+ 3 R,)dn, o4

In Fig. 2 and 3 the numerical curves of the coefficients Q. and R, respectively, for the

different values of 3,, are showan,
In these graphs ihe numerical integrations were carried oul by Simpson’ s rule for the

approximate quadrature,
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Fig.2 Curves of Coefficients Qn Fig.3 Curves of Coefficients Rn
For the check of these values the theoretical integrations were computed to Blz—i;‘.
Namely, we have
) . cosh ™. .
[CNg-zdn=1 [Tnl et —— 2 e 1 dn. o
0 2 4 Jo . nwT nw
sinh: cosh——
2 2
From the integral equation®
o Sinnadn T o
_Slaradn T T (
» sinhgn ~ — g PR 28
we have
- coshllzn— 4 - cosh% 16
f N dp=-=, and n# dn=——, (29
°  ginh2 T T °  sinh? " T
2

And from the integral equation®



fw cosnadn _ 1 o
o . mm  cosha’ 3
cosh——
2
we have
0o ,— [S) 40
PNy, and [oo i, )
° cosh — ° cosh-¥*
2 2
Therefore we have
[ TN =z dn=1.08645. @

On the other hand, by the numerical integration we got 1.05368, therefore the error in the
numerical integration is (0.691%.
The curves of bending moment at o« =0, 8=, for the different values of 3, were shown in

( D ‘-AD ( Fig.4.
e } In this graph, the axis of ordinates shows the ratio 1o
"o the bending moment in the circular plate clamped on the
\ JnThs Puten edge under uniform load,
® Cronpes At ogs_| It is the remarkable resull that the curve rises above
o8 \\ 1-0-line in the range of 0°~45° in the values of 3,.
04
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a=0, B=p in this investigation.
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