The Japan Soci ety of Mechanical Engineers

BULLETIN OF JSME

1958 Vol. 1 No. 3

'533.662. 3 : 621-592. 6
Stresses in a Circular Disk with an Eccentric Circular

Hole under Radial Forces*®
By Kazyu MivAo®#

This note gives a theoretical solution to a disk with an eccentric circular hole when it is
.compressed by two equal and opposite forces acting at a radius of the outer circle on the
centre of inner circle. The method of solution adds to the given stress system a suitable
‘biharmonic function, which gives no normal and tangential stress on the outer edge. The
parametric coefficients involved in the solution are adjusted so as to satisfy the boundary condi-
tions at the inner edge. Bipolar coordinates are used in the solution, by means of which
-explicit expressions are obtained for the parametric coefficients. Formulas of stress along the
-edge of circles are derived, and, in particular, the stress distributions of the inner hole are

calculated.

Symbols

In this paper the following symbols are used:
x, y :rectangular coordinates
w1,01,7,0 : polar coordinates
a : real positive length
«, [3 :orthogonal curvilinear coordinates
1/h : stretch ratio
.c;;v, Eﬁ : normal stress components in curvilinear
coordinates
aﬁ-} : shearing stress in curvilinear coordinates
A : complete stress function
%o ¢ basic stress function
X1 ¢ auxiliary stress function
P, 0, T, ay, & : constants
F :applied force
v : Poisson’s ratio
E Ft A—A2

&t ai—an
Introduction

In the railway-car, the wheel disk having one
or several holes is used. This paper gives the stresses
of disk wheel with a hole in the state of repose
and having concentrated load from its axle and
rail. A disk problem involving an eccentric
circular hole is best treated by means of bipolar
coordinates. The stress problem due to diametral
forces on a circular disk with an eccentric hole has
been solved by A. M. Sen Gupta®, but it is not
suitable to railway-wheel.

The fundamental equation(®

In this section we recall briefly Jeffery’s general
solution of the two-dimensional field equations
referred to bipolar coordinates defined by

x-}-iy: —acot —;—(a-’_iﬁ)’ (.._oo<a< co, _n-<5<7z-) ................................. C 1 )
The bipolar components in terms of X have been given by
— o . ad . o
awa= {(cosha—cos 1)) BV —sinha Eym —sin 8 BV, +cosha:]» (h)
d@: {(cosha—cosﬁ/ 0" —sinha o —sin 8 9 +COSB} (BY)  Prerererrmrrrieeeee (2D
oo’ . da ap
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where the stress function must satisfy the biharmonic equation P*X=0.
Let the outer boundary of the disk be defined by a=a», and the inner
hole by ww=uary, (a1>2wa2>0). The necessary and sufficient conditions for
the boundary a=const. to be free from stress are that on the boundary

(a/aa’)(hx>=‘o .................................... (3)

and
hY=ptanha+o(cosha cos f—1)+Tsinf «-oooveervieeene (4)

The method of solution

The complete stress function in the disk having a hole is constructed
in the form
Y=oy oo (5)
As the fundamental stress system it is considered that the equal and
opposite forces act on a radius of the disk. The basic stress function
X0 is given by®

Fig. 1 Disk with an eccentric P \
hole loaded at its centre and . . 1—y ¥
periphery Xo=— o {21’131 sin #1+r@sin ﬁ——z ¥ cos A log T_E;Js cos f— 2R, }

1+yp

Xo has the singularity on the disk, then the auxiliary stress function X; must be the biharmonic function
having no singular point on the region.” For Xi, we assume a function, which produces no stress on the:
outer boundary, that is

%Ch%l) = By {£(cosh aw—cos B) cosh crs+sinh £(cosh e cos §—cosh?ary))

+2A;sinh*&cos A
+ Z2I:An {cosh(n+1)&—cosh(n—1)&}
foges
~+ B, {(n-—]_) Sinh(n—}-l)é-(n-{—l) Sinh<n—1>,§} ] coS nﬁ .............................. (7 »
with the aid of the integrals™®,
©  cosnfidp T —na
= R 0 T -
£ cosha—cos sinha € az (8)
z .
f_psinf > - T R e 3.
j{: tan <1—pcosB sin nf3df3 op P P (9>
we have the following equations reversed by means of Fourier’s transforms.
=1 .
10gy:10g(a COth(Ig“‘d)"‘z Z —e‘”fsulhnal?.cos nﬁ, E>a2 ............................................. (10),
n=1
0:2 Z le‘né Sinhnaz sin nB’ Ega/2 ........................................................................... (11)
n=1
Gi= D Ze " {1—(—1)" %} SIN BB, QT ++rrrerrrrrrnrersrnri a2
n=1 7

Using the above equations, we expand the basic stress function removing the terms, which produce no-
stress and strain.

%Z—Chxo) =2(1—p)(cosh&—cos ) cosech ars log (acoth as—a)—4(coshE—p cos B)

4+ (1+p) {cosh & cosech avs—2 cosh(E—arz)
+(4¢e ¢ sinh £ sinh as—2 cosh ap—cosech ars) cosh ar; cos B

+4sinhEsinhaz ) e ™ coshnuw cos nf3}
n=2

co

—4 Z -———-—e‘"’f(n SinhE_I_coshE)Rn cos nﬁ, a>2a2 .............................. (13)
noz n(n?—1)
where R.=(1+v)n(nsinhnassinh as—cosh naz cosh as)
—(1—) SINh 7005 COSECR Qg 2(— 1) ++v+-veermeemrteiteetiet et (14)
Consequently from boundary conditions (3) and (4), the parametric functions of # in Eq. (7) are solved.

as follows :
P{sinh&;sinh a;; +cosh&; sinh(a; +az)sinh arp) sinh 284
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= (1+y) {sinh(€1—az)—2 cosh £, sinh arz} sinh ara—2(1 4 coshary) COSREy «rvvrrrrrerreernserieeenns as)
A =SINhZ B —HESINNZE] e errermror et (16)
By=4Pcosh 51 ............................................................................................................ (17)
A= —(1+p)e %1 cosech 28, Sinh 2ars—2PSINR @y ++vrerrerrrrmrmrrmrrmrtrrere et (18)
A,=2(1+p) coshna,sinha,
— {(A+v) (sinh 2n§; —nsinh 25,) coshnay sinh a,— 2R, SInh2 &1} [dp -oorerreeermeerrrrereennnes a9
B,=2(1+v)n coshnw,sinh? &, sinh aco/ d»
+ (2—(Sinh 208, + 0 SINh 281) [ du} Raf(HE—1) +eveeemmmeenmenmiiiiiiiiiit e (20)

For convenience’ sake to calculate the stresses in the neighbourhood of the hole, we reach the following
result without difficulty.

%’}(h){) =4P[£(cosha—cos ) cosh&;

— {cosh &; cosh ar;—cosh(ay;—ar) cos (£} sinh &]cosh ars
—4(cosh&—y cos B)+2(1—p)(cosh £—cos B) cosech as log (acoth azwa)
+(14y) {cosh & cosech e — 2 cosh(E—az) — (1 +sinh 2a5)eoth ary cos 3
+2sinh & sinh (25, —&) cosech 25 sinh 2ar; cos (5}

{nsinh & coshn(ay—a) +cosh & sinh n(a;—a)} sinh n&;
4 i [ —n {n coshné sinh(a;—a) +sinh n€ cosh(ay—a)} sinh & :\

n=2 n(n2-1)An
[ sinh&sinh #n(a;—a) sinh #€; ]

F4(1+) sinh g 7§2 —nsinhné sinj;sai—af)sinh &

Rncosnf3

coshna; cosnj3,
LA 2 e ( 2 1)
Principal stress along the boundary

The principal stress along the hole is the most important in this problem. To find it, we have, by
subtracting the first two equations in (2) and by virtue of [aa]e.=0.

7T ——
"/Fa‘ [83)a, = (cosha;—eos 3) [-— Uéiyfcosech 2&,sinh 2w, cosfd

-+ P(cosh &, sinh a; +sinh &, cos f)cosh ap+ Zz M, cos nﬂJ,
. n=

Q1> 20y e 22
where Mudn=1+v)n (nsinh & sinh a; cosh n(E;—arz)
+sinh n&; cosh na; sinh (&1 —ary)}
+ {2(—1)"n+(1—y) sinh na; cosechars) SINh 8 SINRE] oevvrerererrarmeiii 23

For convenience’ sake, the points on the circular boundary shall be specified by ¢, as shown in Fig. 1.
They are connected to bipolar coordinates («, ) by

Ccos ﬁ: (coshwcos SD"i“].)/(COSh a+COS ?) ............................................. (24)

By adding the equation (25) to the equation (26), the stress along the outer circular boundary is obtained.
_1 [ sin®p }

—— reRy= = e e 25

[%0] == [1+cos90 (2+v)cos —1 (25)

14y [ coshascos S—1 cosh(2&,—a) } '
o e h
2 { (cosh aws—cos B sinh 2&; cos Btsinh arp

?[ﬂﬁ]w2 =(cosh az—cos 3) [

+ P{cosh&; sinh ws—sinh &, cos §)coshas— Zz nN, cos nBJ,
n=

W0 eveneeennns (26)
where Nodn=14+v) {nsin &; cosh nas sinh(§;—acz)
+sinh # & sinh ary cosh n(&;—as)}
+ 2(—1)"n+(1—p)sinh na, cosech arp} sinh? 51 ...................................................... @0
For the very small hole, the stress along the hole becomes
_/I;T [@]r=n,= 12 QOS2 correeree e (28)

It is equal to the equation of stress-distribution along a hole in the infinite plate,
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Fig. 2 Stress curves along hole, under radial
or diametral forces, when A=0.176 0 30 80 90 120 150 180
and n=0.525 (qu
Fig. 4 Stress curves along hole when ©=0.5
A=0.2 where F’=F/(}/4nR2)
16 v=0.3.
The points on the hole were given by ¢, the
1 size of the hole by A=R;/R,, and the position by
S #=s/R,. Fig. 2 shows the stress distributions
i along the hole, for /=0.176 and #=0.525, in the
(@] 8 case of this problem and the diametral forces.
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Fig. 3 Stress curves along hole when A=0.2,
where F'=F/(/42R2)

Numerical results-discussion

Numerical computations were carried out to
determine the stress distributions along the hole for
four size ratios and three position ratios. We take

Fig. 3 and 4 show the stress-distributions along
the hole in the several cases. It is mentioned that
the maximum stress becomes larger in the case of
the large hole or of the hole in the neighbourhood
of outer edge.

We observe also that this problem can be
applied to the disk containing several holes when
they are not close to one another, and have the
practical applications for disk-wheel except the
parts which are very near to the centre.
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