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By use of this equation, the stress concentration
 factor ky= (1—A) M max/M, is calculated and plotted
versus € in Fig.5. The stress concentration factor
ks is also plotted against A in Fig.6. When 2
tends to unity, the stress comcentration factor ks
may be given approximately by the results
obtained for the case of two symmetrically disposed
hyperbolic notches. These approximate values also
are shown by dotted lines in- Fig. 6. :

The distribution of the deflection at the middle
plane of the strip is now calculated and shown in
Figs. 7, 8, and 9. In these figures, the deflection
at the point 0(0,0) is assumed to be zero in every
case.
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Fig. 9 Distribution of the deflection
at the rim- of the notch

throughout the progreés of the present investigation.
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Stresses in a Circular Disk with an Eccentric Circular

Hole Fixed at its Center and under a Tangential

Force on the Outer Edge”

By Kazyu MIvao™

In a previous paper, the author has reported *Stresses in a Circular Disk with. an

Eccentric Circular Hole under Radial Forces.”

In this paper, the stresses in a circular disk

containing an eccentric circular hole fixed at its center and under the action of a té_mgential

force were analysed. The method of solution was the same as that used in the previous paper,

and the bipolar coordinates were used -in the solution. ‘T he ‘complete‘stress-function in the disk

with a hole is constructed in the form, in which the basic stress-function is added to the

auxiliary one.

From the results obtained, the solution of the problem in a semi-infinite plate

under a concentrated tangential force on its straight edge and containing an unstressed circular

hole was derived.

Symbols
In this paper the following symbols are used:
z, 9 ¢ rectangular coordinates
71, 61, 7, 8 : polar coordinates

a : real positive length
a5 [+ orthogonal curvilinear coordinates

* Received 21st April, 1958.
**  Agsistant Professor, Faculty of Engineering, Toya-
ma University, Takaoka.

1/h @ stretch ratio

a?{, [:?_[\9 : normal stress components in curvilinear
..~ coordinates
af: shearing stress in curvilinear coordinates
X : complete stress function ‘
Yo ¢ basic stress function
Ayt auxiliary stress function !

P; 05 T, a1, (i ¢ constants
F :applied force,
5 ATy

v : Poisson’s ratio; .
&1 ai—ue
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Introduction

In the railway-vehicles, the disk-wheels contain-
ing several holes are used. In the previous
paper™®, the author has reported the stresses in a
circular disk with an eccentric circular hole under
the action of the radial forces at the end of a
radius through the center of a hole. The disk-wheel
has the reaction and the frictional force by rolling
from the rail. The former acts in the radial and
the latter in the tangential direction. When the
disk-wheel is used as the driving wheel, the
frictional force for traction becomes larger.

Accordingly in this paper, the disk with an
eccentric circular hole was fixed at its center and
placed under a tangential force at the end of a
radius through the center of a hole. As earlier
investigations, we have the disk without a hole
analysed by J. H. Michell® and K. Ikeda®. Finally,
for a limiting case of our problem the semi-infinite
plate containing a hole near to straight edge was
discussed.

Fundamental equations®

In this paper, the solution followed the method
of Jeffery’s general solution of the two-dimensional
field equations referred to bipolar coordinates
defined by

@+iy=—acot é(cﬁ_,‘@ ............... (1)

Let the outer edge of a disk be defined by a=as,

0 ’ <

Fig. 1 Disk with an eccentric hole loaded
at its center and periphery

complete stress-function in the disk with a hole is

constructed in the form :

x=x0+xl ........................ ( 2 )
The basic stress-function, which is the single
valued biharmonic function and having no disloca-

/ tion, is the function in the action of a tangential
force at the edge of the disk, and a reaction and
a couple at the center of the disk. The auxiliary
stress-function to be added to the basic one has no
singular point in the region, and no resultant force

~and couple on the edge of the hole. The stress

and the inner hole by a=ay, (a1>2a2>0). The components in terms of ¥ have been given by
aoe= {(cosh ’ cos B) —ginh 9 —sin B——-}-cosh }(h)()
aa a aﬁz Y ou aﬁ @
o~ 2
aff= {(COSh a—cos ,@) pe —sinh cx%——sin ﬂﬁ—l—cos ﬁ}‘(h}{) ---------------------- (3)
ac?ﬁ: —(cosha—cos B) 5 aﬂ €8
Method of solution
The basic stress-function X, is given by®
%—10:271\01 cos #1—»8 cos f— 1=y rsinf logr— 14_;2 PESINAERA v (4)
or
2 . 1— 1 2
—-Tr—xo=(R~d+y)(201+0)—~ 2”' xlogr*%y—% .......................................... (5)

‘where d is the distance between the center of the disk and z-axis. The necessary and sufficient condltlons
for the boundary a=const. to be free from stresses are that on the boundary

BB (W) =0 +ervrerermreseienne.
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and hx:ptanha+o-<cosha coS B’_]—)"I"T Sinﬁ ......... DL R TELE C 7 )
We assume a function, which produces no stresses on the outer boundary, that is
2 .
——(h
7 M)

= A (cosh 26—1) sin B+ 22 [An (cosh(n+1)&—cosh(n—1)E}

+B, {(n—1)sinh(n+1)E— (n+1Dsinh(n—1)E) TsinmBrerreeemreeemrrmeeeee (8)
In the previous paper, the following expanded equations were introduced, namely

"~ Jogr=log(acothws—a)—2 2, *};e""fsinhnagcosnﬁ, E>ae
n=1

(-3 1 . . . .
=22 ;e"”f sinhnassinnf, E=ae PN (9)

n=l
21 :

0.= Zl ;e“”“ {I—(=1"e"*}sinnf, a=as
n=

Applying them to Eq.(5), we can expand the basic stress-function into the following Fourier series
removing the terms, which produce no stress and strain, : ‘

-—2;,—<th>

=¢~¢ {(1+v)sinh? ay—2(1+cosha)} sinh & sinff+sinh & }:,2 %e"“Kn sinnf3
= .
had 1 - . c AT D e (10)
_ ng
) =D e "¢ (nsinh&-+cosh&) L, sinnf3,
K,=2{(—1)"—coshnaz} + (1+v)nsinh nae sinh a;
L,=2{(—1)"—coshna,} (coshap—1)cosechar,
+-2n sinh nae+ (1) % (s cosh nar sinh ars—sinh nars cosh az), (a>2as)

Determination of coefficients

The boundary conditions at the rim of the hole are satisfied, provided that the coefficients involved in
Eq. (8) take the following values on the edge of the hole,

A= f—;—e'zfl {(1+2)sinh® wp—2(1+cosh ap)} cosech 254,

A= K, <1__ sinthEl-nsinh2$1>+ Lasinh?&,

2 on 24, 24n ? L TE TTTTTTII 11
B,= Knsinh®&; Ln (1_ sinh 2n&,+nsinh 28, >

" 24n 2n(n*—1) 24 ,

dw=sinh?n&;—n?sinh?&, ;
To facilitate the computation of the stress-equation at the rim of the hole, we can reach the following
result without difficulty. ~

~ 2ty |
=sinh £ sinh(2&;—&) {(1+v)sinh? a;—2(1+coshan)} cosech 25 sin B
-+ éz 7(72‘1:5‘[("2—4) (sinh € sinh n&, sinh n(€,—&) —n sinh& ; sinhné sinh (&, —&)} Kn
+ {n?sinh &; coshn sinh(§;—§) +nsinh & sinhnf cosh(E,—&)
—nsinh &sinh &, cosh n({-‘#-—é) —cosh & sinh#n&; sinh n(&,—&)} L] jj%%ﬁ— ----------------------- (12)

a2 2a0

From this equation, the stresses and strains can be calculated in the region w;=a>2ws, but in the other
region Eds. (4), (5), and (8) have to be used.

Principal stress along the rim of hole

Now, it is. of the greatest importance for practical purposes that the principal stresses along the rim.
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of the hole are estimated numerically. By subtracting the first two equations in Eq. (3) we have
2

a(BR—aw) = (eosha{—cosﬁ)<a -— 8,82—1><hx> et e e e e eeenas (13)

and consequently we have for ari>2as,

2 (Bl

= (cosh a1 —cos A L{(1+)sinh? wa—2(1-+cosh a)}cosech 25, sin B+ Z (Mn/An) sinnf],

M=2nsinh &1sinhné; sinhnas+ (14+v)n (nsinh & sinh n(&,—as) sinh as
—sinhn&;sinh (§;—a)sinh na) +2 {(—1)"—cosh nars)
X {(sinh ary—sinh &) sinh #E;—n sinh &, cosh n&, sinh s} cosech s
And from Egs. (4) and (8) the stress equation along the outer circular boundary is obtained as foilows :

"—[Wﬂﬁ‘—‘{ﬂ— +1+COSZ}s1n0+2(coshaz cos ) <A1 sin 8+ Z nAnsmnB> ............ 15)

(243 20
cos ¢ and sinf are connected to the bipolar coordinates (a, f) by
cos @= (1—cosh a cos B)/(cosh ay—cos ), }
sin @ = sinh a; sin B/ (cosh az—cos §)
Applying Eq.(16) to (15), we have the following equation in bipolar coordinates

oma o~ 1 o (3 2_ﬁ_> sinh® ws sin 8
F [Bﬁ]“”z <2+u+coth g tan 2/ coshasz—cos ff

+2(cosh ars—cos B} <A1 sin B—I— i nAqzsin nﬁ), @0 e an

The limiting case corresponds to the semi-infinite plate with a hole in the vicinity of the straight
edge (Fig.2). The case in which a normal force acts at the straight edge has been investigated already®.
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Fig. 2 Semi-infinite plate with a hole Fig. 3 Stress curves along hole when
loaded at its straight edge A=0.2, where F1=4F/Ta cosech a2
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Fig. 4 Maximum stress curves in
very small hole
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Fig. 5 Stress curves along hole
in semi-infinite plate

In our case, the stress-equations along the rim of the hole and the straight edge are given respectively

in Egs.(18) and 19).

—EF—“Z_[@]M =4(coshay—cos ) <c0sech 2a;8in 8

= . ginhnaicoshay—nsinh oy coshnay . ) ‘
t n=§5... sinh? nay—n?sinh? ary sinnf), - ai>0 (18>
———T%l- [@]%:o =2(1—cos B) <cosec [—2¢7%@: cosech 2ar; sin 3
. bad nsinnf
2 h2 . = - ) .......................................... 1
+ sm & n=%:5m sinh?nar;—n? sinh? oy 19

Numerieal results and discussions

The foregoing stress-equations shall be worked
out in some cases numerically. The summation
terms in the solution converge slole for small
values of &;, and to make them rapidly convergent
the slow convergent terms were separated from
the summation terms with theaid of the following
equation (20). :

2 rgnpgolSRB

nz=1€ PsinnB= 2 coshp—cos 8 (20)
In consequence, the calculations of summation
terms suited sufficiently until #=3. The numeri-
cal computations were carried out to determine the
stress-distributions along the rim of the hole for
three position ratios. In accordance with the
previous paper, the points on the rim of the hole
were given by ¢ which was the angle between the

radius of the hole and the positive direction of

y-axis, the sizes of hole by A=

R
—RL’ and the positions

by p:%. Fig. 3 shows the stress-distributions
along the hole. From these curves it is observed
that the stresses in the mneighbourhood of @=0
increase suddenly when the hole locates near the
center of the disk. ‘This is the contrary result to
that of the previous problem. In Fig. 4, the maxi-
mum stresses in the very small hole and the stress-
curve along the radius A—C of the disk without a .
hole as Fig. 1, were shown graphically by full
lines, and the maximum stresses in the very small
hole under radial forces were added as broken line.
It is obvious that even a small hole has the larger
stresses than a disk without a hole, and as we
compare this case with the previous one, the
inclination of stress concentration changes at u>
0.4. Finally the stress-curves along the rim of the
hole in the semi-infinite plate were shown in Fig.5,
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where F; equal to F/2amcosecha;. The positions Table 1 Max. values of B8 on boundary

of the hole were specified by {=I/R;. In this a=a1 under radial forces
graph, we can see that the small tensile stresses Z 1.54 2.15 2.58 3.11
occur in the mneighbourhood of ¢=180° and when Y
the position of the hole is near the straight edge the BBea/F2 19.748 6.5704 | 4.2260 | 2.8539
value of the maximum compressive stress increases.
And the values of the maximum stress along the advices and strong encouragements throughout the
rim of the hole under radial forces were shown in progress of this investigation.
Table 1. Comparing the both cases, the values in
: References
the case of radial forces are found larger than - :
" those in this case. (1) K. Miyao : Bulletin of JSME, Vol. 1, No. 3(1958),
. . p. 195. ’
In the above numerical computations we took (2) J.H. Michell : Proc. London Math. Soc., Vol. 32
v=0.3. (1900), p. 44.
. (8) K. Ikeda: Trans. Japan Soc. Mech. Engrs., Vol. 4,
Acknowledgement No. 16(1940), p. 190.
kn g (4) G.B. Jeffery : Phil. Tmns Roy. Soc. London, Vol.
o es ~ 221(1921), p. 265.
-App.rematmn goes to Prof. O. Tamate, Tohoku (5) A.M. Sen Gupta : Jour.Appl. Mech., Vol. 22(1955),
University, who gave the author the personal : p. 263.
Errata
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Author Page Column Line For Read
S. Iida : 4 4 - examplesareshown examples are shown
T. Ando ' 27 Right 5 the lift tangent ks
28 | Figs. 9, 10 are arc
Y. Sawaragi and . |7 from — - 1 1T,
Y. Yonezawa 40 Right bottom Fi=712.6 X117 [i=716.2x1.117
5f _ —
2 z botign”;l Be=712.6 X117 - B2=716.2x1.117---
‘T. Nishihara, S. Taira,
K. Tanaka, and K. Ohji| 103 7 3 pre sent . present
12 from
105 Left bottom is are
H. Takahashi and : ' 4 form o 1 the perfect
T. Sanpei 147 4 bottom the 45° line combustion line
148 Fig. 6 [J:7000 rp.m. [1:700 r.p.m.
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