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Stresses in a Plate Containing a Circular

Hole with a Notch*

By Kazyu Mivao**

In this paper, the problem of determining stresses in a plate containing a circular hole with a
circular notch, which has arbitrary shape, is taken up, when the plate is subjected to uniaxial
tension. The stress function concerned is constructed by three parts, which are a basic function

and two auxiliary ones. And they satisfy the boundary conditions along the rim of circular hole.
The parametric coefficients involved in the solution are determined from the given conditions along

the notch with the aid of Fourier’'s transforms.

Three fundamental stress systems are discussed.

Expressions of the stress along the rim of notch are derived, and the stress concentration factors

are calculated.

1. Introduction

The values of multiple stress concentration fac-
tor are much greater than simple ones. Hence it is
important for practical purpose that the effects of
notch on the maximum stress in the plate containing
a hole are estimated numerically. But their investi-
gations and data are very few. The theoretical
solutions concerned in an infinite plate containing a
circular hole with an orthogonal circular notch have
been discussed by Hirano® and with two symmet-
rical circular notches centered on the rim of hole by
Mitchell®, An experimental result in a strip has
been reported by Cheng®.

In this paper a theoretical solution will be
given for the two-dimensional multiple stress con-
centration in an infinite plate containing a circular
hole with a circular notch which has arbitrary size
and position. The bipolar coordinates are used, and
by using the stress functions which satisfy the
boundary conditions along the rim of circular hole,
the necessary conditions for the determination of
parametric coefficients included in the solution are
reduced to a problem of two-dimensional linear
equations. The crowded circular coordinates are
used for the plate containing two contacting circular
holes of different sizes. As special cases of this
problem, the stresses in an infinite plate containing
the hole whose rim is composed of two circular
arcs of equal size or two contacting circular holes
of equal size have been solved respectively by
Ling* and the author®.

# Received 5th November, 1968.
*% Professor, Faculty of Engineering, Toyama University,
Takaoka.

2. Hole with a circular notch

2:1 Fundamental equations

For this problem we recall easily Jeffery's
general solution of two-dimensional field equations
referred to bipolar coordinates defined by

z=a cot (5/2), z=x+1y, {=R+ia, a>0

ah=cosh &—cos 3, x+iy=(sin §+7 sinh a')/h}

......... (1)
The bipolar components of stress in terms of AX
have been given by ®

ao,= {(cosh a—cos [ 66,;2 —sinh a{a_aa;
—sinB—§§+cosh a} )
ady= {(cosh a—cos [3) ai; —sinh ab—% ;e (2)
. 0
—sin 6—B+COS [3} h%)
aT = —(cosh ac—cos B)%Z(Z—gg— J
and
a(0,—0,) = (cosh a—cos 3)
0? 0°
X(a—[))-é‘-——ﬁ‘?iz——l-l)(hx) ........................ (3)

where the stress function ¥ must satisfy the bihar-
monic equation F*X=0. Let the boundary of the
circular hole be difined by B=-—¢,(¢>0), and that
of the circular notch by $=f,>0. Since the region
occupied by the plate is simply-connected domain,
the necessary and sufficient conditions for the
boundary B=constant to be free from stress are

AX=0, QChL)/BP=0 rormemmiimimiiii (4)
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2.2 Stress function

If the notch is absent, the stress system in an
elastic infinite plate, assumed homogeneous and
isotropic, containing a circular hole of radius R,
subjected to uniaxial tension T at infinity, will be
supposed to be specified by stress function X,.
When the notch is present, the complete stress func-
tion % is constructed in the form

e e e A PN (5)
The parametric coefficients involved are adjusted to
satisfy the boundary conditions of the plate which
are given in Eq. (4). The basic stress function
X, is given by

47
0 =A(r*— 2R, log ro) +

(r—Ry2)*
2

0

cos 26,

......... (6)

where 7, and §, are polar coordinates of any point

ri=a? cosh av—cos(f7+2c)

sinc’ (cosh a—cos [)sinic’

Ry=

by

@g,c /(:r,g)

1S,
Fig. 1 Hole with a circular notch

P(x, y) on the plate, as shown in Fig. 1, and 1=2,
#=0 in an all-around tension case, J=1, g=-—1 in
an z-directional one and A=1, =1 in a y-directional
one. It is found that

sin ¢ sin®f? sin?(B+2¢)
20,=cos 2 - —
cos 26, =cos C+ in(B+c) {cosh a—cos [ cosha-— cos(8+2c)}
To keep 1%, finite throughout the domain of plate (coza=— oo, [i=f=—c) the basic stress function Eq.
(6) is shown as follows in bipolar coordinates.

%ﬁlz)fo:,{{Z sin? ¢ cos 3 — (cosh a—cos 3) log cosl;ocsxh-;fgf’s—gc) }

+2ﬂ!’ sin?f3 sin?(8+2¢) —2 sin2¢ _ 2sin (B+¢c) sin?(f+2¢) sinc ], .
Lcosha —cos §  cosh a—cos(fS+2c) {cosh @ —cos(f3-+2¢)}? ] nec

Now, let the first auxiliary function X;, which has a singular point at the center of circular hole of radius R,

and produces no stress on the rim of hole (r,=R,), be given by

AU /T =K (702 —2RoEI0Z 74) ++++vvvrrrnrnes ettt ettt e (9)
where K is a constant. With the aid of the integrals®

10g<5in_§.>=£minn, (27> D> 0) -veerermreeantiitii ittt ere ettt et 10)

log(cosh%)= —log Z_IM%‘% .......................................................................................... an

sin p log<sm%) =—sin plog 2_ cos p+fw (zl;j{l-']l’;grnhi)iz dn, Cr>p>0) coreeerreeiiiiiiniiniiinn, (12)

cosplog(sm%)-—-—-%—cosplogZ—{— =P ¢in p— f; %‘?__T_%{g(:l_h%dn, @C>P>0) oo, (13)

and of cosh &¢—cos B=2sin —g—sm—é-=cos ¢ cos f+sin ¢ sin f—cos B=cos { cos f-+sin  sin B—cosB, it can be
shown that
© cosh (7w —f3)
1 - = - TN TR y (2> B30) ceeririiii e,
og(cosh & —cos B) log 2 Zf - sinh e cos naedn, (2w>[3>0) (14)
cosh & —cos(R+2¢) fw sinh n(w—fp—c)sinhnc
log cosh & —cos B =4 - Slnh e os naedn, (2w> B> 0) crreeririi (15)
(cosh ar—cos [log(cosh a—cos B) =a sinh &¥—cos §— (cosh ar—cos Plog 2
* cosh n(m—B3) ®n cos [3 cosh n(7r— ) —sin B sinh n(7r— )
+2cos Bf ~—rsinham 08 nadn-2fo Gt Dsinh 7w €os needn,
@r> B> 0 eeeer e e (16)
(cosh &w—cos 3) log {cosh a—cos(B+2¢)} = sinh a—cos(3+2c)
®coshn(m—f3—2¢)
—(cosh &¢—cos ) log 2+ 2 cos B‘[o' PYTYYT os naedn
@ 7 cos (3+2¢) cosh n(7r~——2¢) —sin(3+2c)sinh n(w—pf—
2](: (n*+1)sinh nrw cosnaxdn, (27> B>0)xueeree: an
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sin 3 _, ("®sinha(T—-f) .
oh G —cos B =2 . Soh cos nexdn, (2m> B> 0) e (18)
sinf3 ®n sin 3 cosh n(7—f3) +cos Bsinhn(m—f) ’
(cosh a—cos 3)2 _-Zf; sinh n7w s nadm, (ZT>[>0) crevniecerenens: 19

Using the above equations, we transform the stress function /1(¥%,+%,) into Fourier's integrals as follows.
(sin%c/aTYh(Xy+%,) =f [p1(7*+1) sin £ sinh n(w —§) —w, {n sin £ cosh n(T—£)
N 0

;E%’ é‘EB—}.c, (27‘[>B>0) ..................... (20)
¢$=(A-+ K)sin ¢ sinh nc+2un(n sin ¢ sinh ¢ +cos ¢ cosh nc)sin’c, }

W, =(A+ K) (1 sin ¢ cosh #c—cos ¢ sinh %) +2un(#®+ 1)sin3c cosh ne
Here the terms which produce no stress and strain were omitted. As the second auxiliary function A%, which
is an integral solution of biharmonic equation, has no singular point in the domain of plate and produces no
stress on the boundary B=-—c, we take the following equation

(sinﬁc/aT)lzZz,:fm{An(;z sin & cos ¢ sinh #f3+-cos 3 sinh #£ sinh #2¢)
0

+B, (7 sin £ cos ¢ cosh nf3—cos [3 sinh 25 cosh 7€)} €08 MAAN =+ -+ ovvvvvemeeniiiiiiiniiiiiin (22)
The complete stress function X must satisfy the boundary conditions Eq. (4) for the boundary B=f, or
E=[,+c=¢£,. Consequently, the values of the constants A, and B, in Eq. (22) are determined to be:
A= +1)[n(n cos ¢ sinh nc +sin ¢ cosh nc)sin?, sinh nix
— {n*sin%, cosh nwr —n sin £, cos £, sinh #w +sinh #£, sinh n(T —£&,)}cos ¢ cosh nc]
—w,[ (ncos ¢ sinh nc+-sin ¢ cosh nc) {n2sin?¢, cosh 7w +n sin £, cos & sinh #r4-sinh 7£, sinh 7n(T —£)))}
—n(n2+1)sin2, cos ¢ cosh #¢ sinh 72777 /72 (124 1)COSEC SINN HIT fyrevvvererrerrnmmeesereeinuinanneneernniinien.. (23)
B,=[¢:(m*+1)[n(n cos ¢ cosh nc+sin ¢ sinh nc)sin?¢, sinh 7w
— {n*sin®¢, cosh nr —n sin &; cos £, sinh 777 +sinh 7€, sinh n(w —£,)} cos ¢ sinh nc ]
— ;[ (7 cos ¢ cosh nc +sin ¢ sinh n¢) {s?sin?¢, cosh 17 +7 sin £, cos £, sinh 7T +sinh 7€, sinh n(7 —£,)}
—n(n?4 Dsjnzg‘ cos ¢ sinh z¢ sinh #77 1) /12 (32 + 1) COS2C SINh AT 4, 0+ veereerreeremeieininiini (24)
where g,=sinh#&,—n%sin?,, £,=pf;+c. For convenience of calculating the stresses in the vicinity of the
notch, we reach the following result without difficulty.

(sin?(:/aT)lﬁ(=fo°(;bl {nsin (§—£)) sin &, sinh #£ —sin £ sinh #(§ —£,) sinh #£;} cos nadn/ny,
0

+cos & sinhn(m—£)}]

o0
—f W, {n(nsin &, cosh nf+cos &, sinh #&)sin(§é—£,)
0

~— (7 sin § cosh #£,+4-cos £ sinh £, )sinh n(§—£,)}cos nardn/n(+1) 4, 2> BZL>0) cvvvvvvennnnn. (25)
At infinity ae=3=0, the stresses derived from the auxiliary stress functions must all vanish. This condition
requires that 2(X;4%,)=0 when a={3=0, then we have

Ksin?c+ f m{z A, sinh2nc — B, (sinh 216 —2 €in 20)}d712=0 ++evververieniiiiiiiie i (26)
Using Eq. (23) an::; (24) to (26), we find
A+ K)fw{(sinhznﬁ, —n?sin?f3,) (sinh 2nc —nsin 2¢)
-ol—(sinh"’nc ~—n%sin%c) (sinh 2nf3, —n sin 23,)) dn/n(n*+1) 4,
=(A—u)sintc+2u sinzcﬂmiz{(sinh 2nc —n sin 2¢)sin?3,

+(sinh 2nf3, —n sin 203 )sin®cYdn/4,, (2n>p,>0, T>c> ()j ............................................. @n

Equation (27) supplies the necessary condition for the determination of the constant K involved in the stress
function %,.

2-3 Principal stress aleng rim of notch
Since 0,=0, we have on the boundary =y,
[6.18,/T=2(A+ K)(cosh &—cos 3,)cosecic

o0
X f (sin (3, sinh 7, sinh nc —»n sin &, sin ¢ sinh n83;)cos nadn/ 4,
0

—4u(cosh ae—cos B])fwn{n(n sin ¢ sinh 73, —cos ¢ cosh #f3,)sin &,
0
—(nsin f3, sinh nc —cos B3, cosh nc) sinh nf\} cos nadn/4,, (2> 3;>0) covveereminiiinriiiii. (28)
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We have some limiting cases mentioned below.

(1) Taking ¢—0 in Eq. (27) and (28), we have the case of a circular hole with an infinitesimal cir-

cular notch. In this case K=0 and
[0.]8,/(A+24)T =2(cosh a—cos 3;)

X fwn(n sin (3, cosh #f3,—cos (3; sinh #3,) cos nadn/(sinh?nf; —n2%sin?B), (2> B;>0)- reeeerenennnc(29)
0

Equation (29) is equal to the stress equation, which was reported by Ling® or Udoguchi®, along the rim of
a circular notch in the semi-infinite plate under tension of (A+2u)7.

(2) Taking c=f,=7/2, we have the case of a notchless circular hole of radius @ with center at the
point O in an infinite plate. In this case K=0 and with the aid of some such integralst®

f‘*’ cosnadn 1 fw n?cosnaedn _ l—sinh?e 30
o cosh(m/2) cosha' Jo cosh(umj2) | coshoa I 30)
and of secha=cos();, tanha=—sin(@;, we have

[o.0s, ® (A42un?) cos navdn )

—F=cosha . cosh (7 /2) = A 2L COS 2y +verernreessrtneesinnntinie ettt e 3D

Moreover by putting c=7—[3;, we have the case of a notchless circular hole of radius R, centered at the

point 0,.

Then we obtain the same equation as Eq. (31) without difficulty.

(3) Taking c=p;, we have the case of a hole bounded by two equal circular arcs in an infinite plate.
In this case, Egs. (27) and (28) become the following equations.

(sinh®B, —n*sin?3,)dn A=

A+ K

sin?3, _fo n(nt+1)(sinh 2nf3,+7nsin 2(3,)

(9.8 A+ K
T

They are equal to the Ling’s results®.

3. Contacted circular holes

3.1 Fundamental equations®

The boundary conditions are considerably simpli-
fied when the crowded circular coordinates (e, 3)
are introduced as defined by the mapping

z=a/f, z=z+1y, {=f+ia, a>0

ah=a’+ 32 x+iy=(B+ia)/h }
The curves of aw=constant are tangential circles to
x-axis at (0, 0), and those of [=constant are tan-
gential circles to y-axis, being a family of coaxial
circles having (0, 0) as limiting point. And we
have =0 on the z-axis and [3=0 on the y-axis.

X,
g
o

Fig. 2 Two contacted holes

(e}
=4(cosh a’—cos 3,)sin B,ﬁ {mﬁ—l

in? o UL
+2usin B’ﬁ sinh 213, +n sin 23, G2
sinh nf3 cos nardn
+un(n—cot f3; coth 7131)} SR, asngg, T (33)

In this coordinates system, the stress components in
terms of stress function hX are given by

2 2 a — ._Q__
.= {(@+49 aB aa 26 % 20
aaf,={(a2+ g 363 —{—2}(/17()
_ 6"(110
aT = — (W + ) ———=- 505
......... (35)
and
a(0,—0,) = (af2+g2)< 032 S )(lzX) ......... (36)

The biharmonic equation [*X=0, which must be
satisfied by the stress function %, transforms to
( o +2 o 0 )(]Zx) 0 ceererereenenns @37
Hat o’ 632 FYeE g
It can be readily shown that an integral solution of
this equation. which is even in «, may be obtained
in the following form.

hX= fw(AnB sinh nj3+ B, 3 cosh 13
0

+C, sinh nf3+4-D, cosh nf3) cos naxdn ... (38)
The necessary and sufficient conditions that a bound-
ary {3=constant is stress-free, are

L) /)0B=0, hX=pR+0(a?—[)+Tq -rere (39
where 0, ¢ and T are constants of the boundary.

3.2 Stress function
Let the boundary of a large circular hole be

defined by fB=—c¢ (¢>0) and that of a contacted
small circular hole by §=/,>0, as shown Fig. 2.
It is found that
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9 o @R (G200t _14 2% { B _ _ (B+2c)t } ................................. 4
Re=gr W=y N @i T @ @i 0
Then Eqs (6) and (9) are represented in the following equation.
a2+ (B+20)*
et )= G O [ae? = o+ fotog T LB
s <3+20>2‘202_4<3+C><3+26>20} 2 et 41
+8ﬂ[ a2+32 + a?+(8+2c)2 {a2+(8+26>2}2 ¢ ( )
With the aid of the integrals®?
logp=fm(e"‘—e‘"”)ﬂ, ®>0)
0 n
o 1 dn
plog p:p-*—ﬂ {pe‘n_’_z(l_e-ﬂﬂ)}_—’ (p>0) ......................................................... (42)
3 oo 2p 2 }
—_—n2 20N e —pn
p”logp—szrﬂ {pe i PR C D—, @>0)
and of the formulas a?+32={{=—¢2+2(B+2c)C,—4c(B+c), ¢, =P+2c+ic, it can be shown that
log(a2+32)=fm(26‘"—-e-"¢—e‘"f) in (B>0) ........................................................................... (43)
0
® B ~ 1 . _dn
(ar+Dlog(ar+fD=3ar++2 [ {(@r+ e+ L (et oty - a—ei—e | X, (>0)
P (44)
(a2+32)10g{a2+(6+26)2}=3a2+(3+20>2+2£ {(a2+32)e‘"+20(8+0)(e—"Cx-{-e-"C—:)
2 =~ 1 - d
+_@':_1_C_(e-nc,+e—ncx)_;;(z_e—nc,_e-ncl)}.n_’.’., (B>0) cevererrinieninns (45)
_@%_E:fmg‘nﬁ cos nxdn, (B>0) ............................................................................................. (46)
0
-np (B 0)  ceeeei e e b 47
_&2__1_—375? f (I4+nf)e " cos naedn, (f>0) €]

Using above equations, we transform the stress function 2(X,+%,), which is shown in Eq. (41), into Fourier’s
integrals, omitting the terms which produce no stress and strain.

(=]
Cc2/aTHYh(Xo+ %)) =f; (P —w,(1+nE)} (e7™¢/n®) cos naedn, E=L4c, (F>0)cmerecrericinniinineann. (48)
=0+ K)c¢ sinh ¢ +2unc?(nc sinh nc +cosh nc) }
W,=(A+ K) (nc cosh nc —sinh nc) +2undc? cosh ne
Now, let an auxiliary function A%, which produces no stress on the boundary J=—c be given by

(2c2/aT)lz752=fm{An(n§ sinh #3+sinh #£ sinh nc)
0

+ B, (n£ cosh nf3—sinh 7€ COSh 7€) }COS MUAR +++vvveesmririiiiiiiiiii i (50)
For B=p(,, the complete stress function X=2X,+42,+%, must also satisfy the boundary conditions §(/#1)/9S=0
and /%Z=0 which are obtained from Eqg. (39). From these, the values of the constants involved in Eq. (50)
are determined to be
Ap=[ —nehp{n&;(n€,e7"—cosh nc) +e=%: sinh n£, cosh ne}
+ Wy {n&, (nf,e7¢ —sinh nc) —e~"é sinh #£, sinh nec}/#3 4,
B,=[ngh{nE,(nf,e " +sinh nc) —e-mérsinh nf sinh nc} ) coeeemnirsn (51
—Wy{nE,(nE e~ +cosh nc) +e=74 sinh n€, cosh ne} /734,
d.=sinh¥f,—n2£2, £=f+c
Consequently, we reach the following result.

(2et/aT = [Tyt (6, sinh n—¢ sinh n(6—£,) sinh 7g,)

—Wy{n(§—§&,) (€, cosh n€ +sinh ng) — (n€ cosh nf£,+sinh n€)) sinh n(é—£,)}]

X cos nadn/n 4, (8126>0) ................................................................................................ (52)
The necessary condition for the determination of K is shown in the following equation from the condition at
infinity (a=p=0).

Ker4 fm{ 2A,5inh2nc — B, (Sinh 2126 —20) }AN=0 +ccverrrererirrimiiiniiiiiiiiiie e e (53)
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Accordingly
A+ K)fw{ (sinhnf3—#23,%) (sinh 2nc —2nc) + (sinh?ic —n*c?) (sinh 213, —21R3,) Ydn/n 4,
0

= (/l—ﬂ)c'f’+2ﬂczj;mn{ﬁl2(sinh 2nc—2nc)+c*(sinh 2183, — 213, ) Ydn/ by (5120, €>0) »veeeeninininns (54

3.3 Principal stress along rim of hole
Since g,=0, we have on the boundary 3=4,

[0.06,/T=Q+K)(a?+£,*)(1/c?) fom(& sinh s, sinh 7c —nc§, sinh #3;) cos nadn/ 4,

—-2#(042+312)fwn{n§1(nc sinh nf3, —cosh 5nf3,) — (»3, sinh nc —cosh n¢) sinh n€,} cos naedn/ 4,
0

(Bi>0) e (55)
We have some limiting cases in Eq. (54) and (55).
(1) The case ¢ —0 corresponds to a circular hole with a contacted infinitesimal circular hole. Then we

have K=0 and
[o.08./(A+2u)T=(a*+3,%) f mn(nﬁl cosh 13, —sinh #3,)cos nadn/(SINh#B —n2F2) <rovvveeeersinrersnines (56)
Q

This equation agrees with the stress equation, which has been reported by the author®®, along the rim of a
hole contacted to the straight edge in semi-infinite plate under uniaxial tension (A+2u)7.
(2) The case ¢=p3; corresponds to two contacted circular holes of equal size, then we have
A+ K (e (sinh®*nf,—n23,2)dn _ —u f‘“’ ndn
= 2 2 A 57
ek [) ni(sinh 2nB3,+2n03,) 2 +2up o sinh 213,423, GD
L0 i, IS OB SRR
T =2(a*+F1"p o | 2B3° +I,un " B sinh 223, +2nj3, 8

They are in agreement with the author’s solutions®.

4. Numerical results computer.
. (1) Figure 3 shows the case of all-around
Numerical ccmputations were carried out to de- tension. The maximum stress occurs at the bottom

termine the stress concentration factors for various
shapes of notch. Let us represent the size of notch
by p=R,/R, and the depth by %=s,/R,, as shown
in Fig. 1. Hence, ¢=0 is an infinitesimal circular
notch, p=1 is two equal circular arcs, p=-—1 is a
notchless circle, and 7=1 is two contacted circles.
The stress equations were integrated numerically
by means of Simpson’s formula using an electronic

-10 -0.5 0 0.5 1.0

7
Fig. 3 Stresses at point A under all-around tension

on the notch, and the smaller or deeper the notch
is, the greater are the values of maximum stress.
(2) In the z-directional tension case, for the
sake of simplicity, the stress at §,=7/2 on the rim
of hole may well be taken as the maximum stress
without any appreciable errors. Figure 4 shows the
values of stress at this point. From this graph, we

pP=04
p=0.2
/P= 04
P=0.05
i 3‘0 s
£k
ol
&QS
29—
2.8 |
a0,
1 1 !
-1.0 -0.5 0 05 1.0,

U
Fig. 4 Stresses at point B under x-directional tension
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note that the effects of notch appear remarkably in
0>0.6. Figure 5 shows the maximum compressive
stress at the point A in Fig. 1. In the case of con-
tacted infinitesimal hole, we have o, /T=-—3.966.

(3) Figure 6 shows the maximum stress at
the bottom of notch (point A) in y-directional ten-
sion. The smaller or deeper the notch is, the great-
er are the values of maximum stress.

(4) From Figs. 3~6, we observe that the
stress concentrations are remarkably great at the
bottom of notch in all-around and y-directional ten-
sion, and that the maximum values occur in the
case of contacted holes for a certain ratio of radius
of two arcs. For various values of p, they are

-1
£l
©
-2
-3
-4
! 1 !

-1.0 -05 0 0.5 1.0

7
Fig. 5 Stresses at point A under x-directional tension

“pP=08
\£= 1.0

7
Fig. 6 Stresses at point A under y-directional tension

given in Table 1.

(5) When the center of notch is on the rim
of hole, we have comparisons with Mitchell’s
results® in Fig. 7. The curves 0, show the stress-
es at point A subjected to y-directional tension and
the curves oz at point B subjected to zx-directional
one. And the full-lines show the case of a circular
notch and the broken lines that of doubly symmet-
rical circular notches.

5. Conclusions

Two-dimensional stress concentrations in an in-
finite plate which had a circular hole with a circular
notch, were discussed. It is noted that the values
of maximum stress in this plate are much greater
than those in the case of notchless hole.
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Table 1 Maximum stress concentration factors at point A
on contacted circular hole

0 All-around tension | s-directional tension
Omax/ | Omax/
0 7.992 11.989
0.05 6.862 9.489
0.1 6.073 7.942
0.2 5.048 6.232
0.4 3.982 4.871
0.6 3.439 4.335
0.8 3.11 4.050
1.0 2.894 3.869

——Acircular notch ( Author)
— —-—Two circular notches (Mitchell)
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Fig. 7 Comparisons with two circular notches
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