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Thermal Stresses in a Plate Containing Two Circular Holes

of Different Sizes under Uniform Heat Flow”

By Tosihiro Iwakr** and Kazyu Miyao***

This note deals with the thermal stresses in a plate containing two insulated circular holes of

different sizes under uniform heat flow in an arbitrary direction. Bipolar coordinates are used, and

the temperature distribution and the stress functions which are adjusted so as to satisfy the bound-

ary conditions at the edge of one hole, are expanded into Fourier’s series at the edge of another hole.

The parametric coefficients involved in them are determined {rom the given boundary conditions at

the edge of the hole and at infinity. Expression of the thermal stress along the edge of the hole is

derived and the values of it are calculated. Some limiting cases are also discussed.

1. Imntroduction

Recentily the thermal conditions for heat engine,
aircraft and chemical machine have been severe in
consequence of an increased performance of them
and the thermal stresses due to large temperature
differences are becoming very important. Concerning
the thermal stress analysis, many theoretical investiga-
tions may be mentioned, and especially with respect
to the problems on the state of two-dimensional steady
heat flow, the solution for an infinite plate with a
circular hole was given by Florence and Goodier™
and for a hole of general shape it was given by Isida(®,
Deresiewicz® or Takeuti and Noda. Goodier
and Florence also analysed the case of a semi-infinite
plate® with a circular hole using bipolar coordinates.
Muramatsu and Atsumi treated the thermal stresses
in a plate with three circular holes® or an infinite
row of equal holest” using the method of successive
approximation. These results show that the thermal
stresses in a plate with many circular holes are greater
than those in one with one circular hole.

In the present report, the thermal stresses in an
infinite plate containing two insulated circular holes
of different sizes under uniform heat flow in an arbitrary
direction are solved. The method of solution consists
in using bipolar coordinates and the expression of the

thermal stress along the edge of hole is given in a form
of Fourier’s series.
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**  Agssistant, Faculty of Engineering, Toyama Uni-
versity, Takaoka.
**x Professor, Faculty of Engineering, Toyama Uni-
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2. Temperature field

The temperature distribution in an infinite plate
with one circular hole (hole II) of radius R (see
Fig. 1) under a steady heat flow with a constant
temperature gradient 7 in a direction at an angle
¢ to the x-axis at infinity is given in the form

2
To = —cos¢<1+ Rzg )rzcosﬁz
V2

2
+rsin¢(1+f:2 )rzsinﬁz ..................... (1)

For this problem we use the bipolar coordinates
defined by

z=acoth -"é’— r=atiy, @=a—if,

ah=cosha—cosf, h(x+iy)=sinha+isinf
............ (2)

Let the boundaries of the circular holes I and II be
defined respectively by the coordinate curves a¢=5>0
and ¢ =—c¢ (¢>0). Since Ry=ga cosech ¢ and s;=a
coth ¢, we have
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r# _ cosh (@+2c)—cosf _ cosh (@+4c)—coshccos 8 o sin 3
R:2~  cosha—cosf ’ 72C0862=a sinh¢ (cosha—cos ) ’ re8in fa=a cosh a—cos 8
........................ (3)
The temperature distribution T’ is expressed as follows in bipolar coordinates
_ sinh a sinh (a@+-2¢) } . { sin 8 sin 8 }
To=azcos$ { cosh a— cos 3 cosh (a+2¢c)—cos B +arsing cosh a—cosf3 cosh (a+2c)—cosf
........................ (4)

Here the constant terms which produce no thermal dislocation are omitted. With the aid of the formulas

sinh S e

————— = - >0, —r=psrw

oy T E TR 0SB | o
sin B et J

NS} - B >0, —x<fP=x

cosh a— cos 3 2 Z ¢ sinnf (a>0 B=r)

Equation (4) is transformed 1nt0 the following Fourier’s series for ¢>0

=rcosP Z ¢~ sinh ne cos 3+ sin @ Z e coshnesinnf, (a>0), &E=a-te e (6)

44 n=1
As the auxiliary temperature distribution Ty Wthh satxsﬁes the heat conduction equation [2T;=0 and the
boundary conditions i.e. Ty=constant at infinity and §7T/gre=0 for r;=Rs, we take the following equation

Z; Z {An cosh n& cos n3+ By COSh 7E SIN MF) +eveerrrerreerurimmistit i (7)

=

In this problem, the complete temperature distribution 7 is constructed in the form T=T¢+ 7 and the para-
metric coefficients involved in Eq. (7) are adjusted so as to satisfy the bqundary: conditions at the insulated
circular hole I (§7/ga=0 at a=5). Consequently, the values of 4, and B, are determined as

An=tcosPe "1sinh nccosechné;, Ban=tsinPe ™:coshnccosechnfi,  E1=btc -roeereerssererennen (8)
From the temperature distribution 7, the complex function W having T as its real part is

—2¢
E:Tcosq&{c—H C+e +22 (er{*+e " )e ™1 smhnccosechn&}

(-1 e
c_+1+c+e-2°

-1

—iT sin¢{ —2 Z (er{r—e "L ™) e €1 cosh ne cosechn&} {=gWereeeneacninnenns (9)

3. Thermal dislocations

The temperature distribution 7" mentioned above gives rise to some discontinuities of displacement around
the holes I and II. For the hole I, if the plate is cut along the half-line (§;=0) from the edge of the hole and
is allowed to deform freely, the discontinuities are equal to the relative displacements of the points 1(r;, 0) and
2(ry, 27) on the cut line. Similarly, for the hole II, they are the relative displacements of the points 1’(rg,
0) and 2'(#s, 27). These relative displacements are given by®

(u2+ivz)“(u1+iv1)=kfz Wdz=—2ak _Wdt_ 5 1

1 =ty (C=1) L s (10)
. . 2’ wal

(uz'+zvz')—(u1'+wx')=kf1, Wdz=—2ak (a=“c)'—(~c_-_-1)—; [

In Eq. (10) u and v are the x and y-components of the displacement respectively and for plane stress k is equal
to aj, for plane strain % is equal to (1+y)a,;, where a; is the coefficient of thermal expansion and y is Poisson’s
ratio of the material. We have from Eq. (9)

o0
us—u; = —8matkrsin® 3. ne ™ cosh nc cosechné;
n=1

-]
. va—v; =87a%krcos ¢ 3, ne " sinh nc cosechné,
n=1

(-]
s —uy =—8mwa’krsin @ 3. ne ™ cosh nb cosech né;
n=1

o
ver —vy =8matkr cosP 3. ne " sinh nb cosech né;
n=1

4, Stress function

Physically, the dislocations of the displacement given in Eq. (11) are impossible. These discontinuities are
removed by superposing the components of the displacement obtained from Airy’s stress function and a displace-
ment one in an isothermal state, and this stress function is determined so as to satisfy the boundary conditions at
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both circular holes and at infinity. In the first place, for the hole II the first stress function X3 which gives
many-valued displacements and has no stress at infinity and at the edge of the hole II is

-————-2)‘:E21k =C OS¢’( \)7200562+D51n¢( )72811‘!02 ....................................... (12)
In Eq. (12), E, is equal to E for plane stress and E, is cqual to E/(1—p?) for plane strain, where E is the modulus
of longitudinal elasticity of the material. The displacement function ¢s; which is obtained from the relations
0/0r{r(6¢/06)}=F*x and V2¢—O can be represented as follows using Eq. (12)

m'—c 0845( 10g‘7‘2—'i‘COS(?2>—DSIn¢( 08 §s log 72 +-Q—s1n02) .............................. (13)

By Egs. (12) and (13), the componcnts of the displacement are

T
a’kt

= Ccos¢{(1+vg)( —-210g12——2) cos @2+4 ( cos fzlog 72— cos 2+ Gz sin 02)}

+Dsin ¢{(1+v,) ( —2) sin f2-+4 ( sinfs log ro— sin fz— @z cos 92)}

) sin §2—4 (sin fz2log 72— sinfz— @z cos 02)}

110, —Ccos¢{(1+v,)(

) cos f2—4 ( cos Gz log 72— cos B2+ 6 sinb’z)}

—Dsin¢{(1+v,)( ]:22

In Eq. (14), «,, and v, are the 7z and @e-components of the displacement respectively and y,=yp for plane stress
and y,=p/(1—y) for plane strain. We have

(u‘rg)agzzn (ur2>09=0—— —8ra*krDsin ¢, (vh)ﬂe=2n'— (voz)h:o:gn’azkfc COS¢ .............................. (15)
From Egs. (I11) and (15), the values of the coefficients C and D are determined to be

=— 3 ne~**sinhnbcosechné; (>0, ¢>0), D=— 3, ne™™ coshnb cosechn&; (>0, ¢>0)---(16)
n=1 n=1

Let the second stress function Xz which has a singular point at the center O, of the hole II and produces no stress
along the edge of the hole II, be given by

tanhe

PE T ;(zz—Kchos¢( ) .................................................................................... (17)
Using Egs. (2) and (3), we convert Egs. (12) and (17) into the forms of bipolar coordinates. With the aid of
Eq. (5) and

~na

log<cosh o— COSB)=a"" log2—-—2 z ¢ cosnB (a>0) ................................................... (18)
n=1
h(X 2 -+Y22) can be expanded as follows

_Slghl:‘ B Aot A22) = Ccos¢[51nh3cc053 ~2(Kz+1)e ¢ sinh  sinh?c cosh ccos B

—2sinhe 3 —
n=2

— ginh ne sinh e(# sinh E—i— cosh &))cosnf

—2(Kz— 1) coshe Z

-ng

{(n coshnc sinh ¢+ sinh nc coshe) sinh &

—————{(n*—1) sinhncsinhesinh &

(21)

— (n cosh ne sinh ¢— sinh nc cosh ¢) (nsinh £+ cosh £)}cos nﬁ}

+ Dsin QD[ -2 ginh®¢sin B—2sinh ¢ Z {(n —1) sinhnesinhesinh &

— (n cosh nc sinh c— sinh nc cosh ¢) (n sinh 4 cosh §)} sin nB} (@>0) eorreerrermenniciin, (19)

Here, the terms which produce no stress and strain are omitted. As the third stress function /)3 which has no
singular point in the domain of plate and produces no stress on the boundary a=—¢, we can take
s;z.hkc hX 23 =Bao{£ ( cosha— cos 3) cosh ¢+ sinh§ ( cosh a cos B— cosh?c)}
+A21 ( cosh 26—1) cos B+Cz ( cosh 26—1) sin B

+ Z [Az. { cosh (n+1)&— cosh (n—1)&)+ Bza{(n—1) sinh (n+1)é—(n+1) sinh (n—1)&}] cosnf

+2 [Czx{ cosh (n+1)E— cosh (n—1)§}+ Daa{(n—1) sinh (n+1)é—(n+1) sinh (n—1)&}] sinnf3
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The stress function Xg=7Xo1+¥o2+ X3 for the hole IT must satisfy the boundary conditions at the edge of the
hole I

["aa&'(’”“)} =01, [#slaws =P tanh b+ 03 ( cosh beos B 1) rasin frosnersnsrsnsnssn (21)

Consequently, the values of the coefficients in Eq. (20) are
sinh®ccoth &, sinh?¢ }
N —(Ke+1) 77—
Bao Ceos ¢{ cosh ¢ ( sinh?b+ sinh®¢) (Ka 1) sinh?b + sinh®c
sinh b sinh®¢
2 sinh &; cosh ¢ ( sinh?b-- sinh?¢)
. e~ %61 ginh ¢ sinh (b—c)—2¢ ¢1sinh &, sinh b }
2
+(Ka+1) sinh?e 2 sinh & ( sinh?b+ sinh?c)
Cz1=—Dsin $sinh3c (coth2&,—1)

Az.=Ccos ¢[sn c{ (n*—1) sinh#nc sinh e

Aa=Ccos ¢{

sinh? 51
sinh 2xn&;—n sinh 2&; > }
24
sinh? &,
An

+ (n cosh ne sinh ¢+ sinh ne cosh ¢) (1——

coshe {

+ (Kg—1)——{n{n cosh nc sinh ¢c— sinh nc cosh ¢)

sinh 2n&;—n sinh 2§, ) } ]

~+ sinh ne sinh c(1~— YA

2
n(n cosh ne sinh ¢ + sinhnecosh ¢)——— sinh?& b, (22)

An

B2n=CCOS¢]:

“
( sinh 2n£12—i-1:z sinh 2&; )}

{n(nz—- 1) sinhnesinhe

-+ sinhxnesinh e

+ (Ko 1)»—(°°fh ;')

~+ (n cosh ne sinh e— sinh ne cosh ¢) <1 —

sinh? 51
dn
sinh 2né:1+# sinh 2§, )H
24
sinh? 51

n

Czn=Dsin @ sinh c{n(n cosh n¢ sinh ¢— sinh #e cosh ¢)

<+ sinh nc sinh c(l—— sinh 2n¢: —# sinh 24, )}

24n
3 2
312 < {n(ng—-l) sinh ze sinh cﬂl-}—)—éi
—1 A'n
sinh 2né;+n sinh 2&, )}

24

D=

+ (n cosh nc sinh c— sinh ne cosh ¢) (1

= sinh?n&;—n?sinh?&;
At infinity @¢=[3=0, the stresses derived from the stress function Xs;--Xs3 must be zero and so the coefficient
K, is determined from this condition. It requires 4(Xz2-+Xe3)=0, then we have
K,C cos @ sinh? ¢ cosh ¢ — Bsg sinh3¢+2A4s; sinh?e

+2 Zz {Azn sinh ne sinh e+ B2a(n cosh ne sinh c— sinh#nc cosh ¢) =0 cerrerrererariimmine, (23)
e
Substituting Eq. (22) in (23) and using the formula
o ?
=
7?:';1 P 1
we arrive at the equation

2 sinh® b sinh®¢
(Ka—1) [ sinhé&; ( sinh?b+ sinh?c¢)

~+( sinh?nc—n®sinh?c) ( sinh 2nb — n sinh 2b)) m}

+ Z {( sinh?2b—n?sinh?b) ( sinh 2nc—n sinh 2¢)

sinh®b sinh®e . :
+tanhc{ Sinh £, ( sinh?b+ sinh?e) (3 sinh §&1—4 sinh ¢ cosh b)
+2 Zz( sinh®nb sinh? ¢ — sinh? e sinh?b) j } =0 (E30) cevrerererrniraeiei s (25)
n= n

Subsequently, we consider the hole I in the same way as mentioned above. The equations corresponding to
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Egs. (12), (15), (16), (17) and (20) become

X1t o R . Ry* .
m—; =Fcos 95( i . 2) r1cos @ +Hsin ¢< iy - 2> FLSIN G1 crrererremrrerarriienaina, (26)
(u71)01=2n_‘ (u11)01=0: —SﬁdszHSin ¢; (001),91=2,,"'(1)01)01=0=87szkTFCOS ¢ """""""""""""""" (27>
F=— i ne ™ ginhnccosechné;  (6>0, ¢>0), H=— f} ne~" cosh nc cosechné; (5>0, ¢>0)

n=1 n=1
........................ (28)

tanh b
a3E P 112__]{1Fcos¢( > .................................................................................... (29)

sinh b : 2
thm:Bm[Y] ( cosh a— cos 3) cosh b+ sinh 77 ( cosh & cos 3— cosh?b)}

+ Ay (cosh29—1) cos 34-Ci1 ( cosh 27—1) sin 3
+ Z [A1n{cosh (n+1)7— cosh (n—1)7}+ Bia{(n—1) sinh (n-+1)7—(n+1) sinh (n— 1)7}] cosnf3

+ Z_]Z [Cix{cosh (n+1)7— cosh (n—1)%}+ D1a{(n—1) sinh (n+1)7—(n+1) sinh (n—1)7)1sinnp

ﬁEa—b ........................................................................................................................ (30)
Using Egs. (5) and (18), we write A(X11+X12) in the form of Fourier’s series for ¢ <0 and the stress function for

the hole I is constructed in the form Xi=2X11+X12+X1s. The parametric coefficients included in Eq. (30) are
determined so as to satisfy the boundary conditions at the edge of the hole II, and we find

_ sinh®bcoth & . sinh?b }
Buo= Fcos¢{ cosh b ( sinh?b+ sinh®¢) +EK-D sinh?b+ sinh?%¢
sinh®bsinh ¢

An=—Fcos ¢{2 sinh &; cosh b( sinh?b+ sinh®c)

. ~2¢1 ginh b sinh (b—¢) +2¢ f1 sinh &; sinh ¢

K —_— 2 z.e - - }
+(Ki— 1) sinh®h 2 sinh &; ( sinh?b+ sinh?¢)
Ci.=—Hsin $sinh3b (coth2£,—1)

A, =-—-Fcos¢[smhb{

sinh? &,
An

)} (Ki+1)——

sirj:2 & s1nh2n€12—;11z sinh 2§, >H

1 2 ---------------
{n(n cosh nb sinh b+ sinh nb cosh b)—s—lrj}il——l— sinh #b sinh b (D)

{n(nz——l)sinhnb sinh b

(n?—1) sinh#nb sinhp————

sinh 2n&;—n sinh 2§
24n

+ sinh b sinh b(l——

+ (ncosh nbsinh b

n(n cosh nbsinh b

+ sinh nb cosh 5) (1— cosh b h

— sinh nb cosh b)

Bin=Fcos 9’)[ S";h b

sinh?§&;
Aa

___sinh 2né1+4-nsinh 2& cosh b
x(1 2 J-wD

+ (n cosh nb sinh b— sinh nb cosh b) <1 _ Sinh 2”5127 sinh 2§, )H

sinh? 51
dx

[ 3

Cin=Hsin ¢ sinh b{n<n cosh b sinh b — sinh nb cosh b)

+ sinhnbsinh b (1~_ sinh 2n&,—n sinh 2§, )}

2A1’,
3 2
Din=—Hsi ¢ { (n*— 1) sinh b sinh b sm; &
sinh 2n€1+n sinh 2€, )}

24
The value of the coefficient K; is obtained from the condition A(Xi2+X13)=0 for a=p=0.

gy s
(Ki+1) [ pency ?;S(H;?n}??s;fsfnhz ) -+ Z {( sinh?nb—n?sinh?b) ( sinh 2nc—n sinh 2¢) 4 ( sinh?sc

+ (n cosh b sinh b— sinh nb cosh b) (1—

. 1 sinh?bsinh?c¢
_— 2 2 4 —_— 3 [ U
?sinh? c) (sinh 2nb—n sinh20)}— An]+ tanh b{— . (snb g s
% (4 sinh b cosh c—3 sinh &) +2 3, ( sinh?nbsinhc — sinh®nc sinhzb)—j } =0 (B>0) weeeeen (32)
n=2 n

Now, we can derive the thermal stresses in a plate from the complete stress function X=2X1+Xz. In particular,
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the thermal stress [gg]; along the edge of the hole I is given by

alagls=(cosh b—cosB)[(%— Baﬁ; _1>(hx)}b .................................................................. (33)

and so we have

EE;{;]}; =4 (coshb— cos3) [C cosPsinh bsinhe

-+ Fcos @ sinh? b{ sinh b

sinh?b+ sinh (b—c) sinh ccos 5
sinh &; ( sinh? b+ sinh?c)
sinh ¢— sinh (b—c) cos 8
sinh & ( sinh?b+ sinh®¢)

+ (KC sinh b cosh c+ K1 F cosh b sinh ¢) cos @ sinh bsinh ¢

-+ 2 cosh ¢ cosech &; cos B}

sinh &;42sinh ceos B
sinh &; ( sinh25+- sinh®c)
—2D sin ¢ sinh bsinh?c cosech 2&; sin 8+ 2H sin ¢ sinh? b sinh (&;4¢) cosech 2€; sin

+2(C+F)cos @ sinh b Zm] {n(n cosh nb sinh ¢— sinh #b cosh ¢) sinh&; 4 (n cosh ne sinh b
n=2

cosnfl

Y

X i (n sinh nb sinh &, sinh ¢— sinh n&; sinh nc sinh b)
e

2{(K»—1)C sinh beoth ¢+ (Ki+1) F cosh b) cos §

— sinh nc cosh b) sinh n&,}

0818 _ o (D+H) sin psinh b

n

% 3% n(n sinh nbsinh & sinhc— sinh #&; sinh nc sinh b) sin nf3 } (50, ¢3>0) wrerereeneerensanns (34)
n=2

pags

5. Limiting cases

We can consider some limiting cases.
(1) Taking ¢—oo0, we have the case that the hole II is infinitesimal at the pole P; (Fig. 1). From Egs.
{16), (28) and (34), we find
E—L—-———eaki]];l 5= QOB (P 1) +veereeeeeee et s (35)
Equation (35) is equal to the thermal stress along the edge of the hole for a plate with one circular hole®,
(2) Taking b—co, we have the case that the hole I is infinitesimal at the pole P; (Fig. 1). The thermal stress
along the edge of the infinitesimal hole I becomes
_M; e cos P+2¢73¢ cos B cos 2B+2(e 0 —e %) SINPSIN 2B wevvrreerersrrveereniniin (36)
E.kTR
‘When a plate with one hole of radius R, is under a heat flow of gradient 7, the thermal stress components near
the pole P, are given by the forms,

. Ua =l -c__ p,~83¢ __ 0y ___1_ —c -3¢

Bk 2 & Ekcks 2 ¢ L (37)
—j”—:——-—l—(e“”—-e““) sin @ J

E.kTR: 2

Equation (36) is equal to the stress equation along the edge of the hole for a plate which has one circular hole
and is under a uniform stress state shown in Eq. (37).

(3) Taking $=90° and ¢—0 or $=90° and 5—0, we have the case that a small hole is extremely near
to an infinitely large hole. When ¢—0, we have from Egs. (16), (28) and (34)

C=D=F= 0, = — ﬁ ne“"'b COSECR 7D vvrrerrree ittt ittt e (38)
A=l
M:z}]{s]nhbmh b( cosh b— COSB) sin,B ........................................................................ (39)
EngRl
‘When 5—0, we can write similarly
C:F:H:O, D:—i ne_ﬂc cosechnc ................................................................................. (40)
n=1
Losls = —4Dsinh ctanh c(1— oS B) SIM Br+r++r++rerrerserrermemirtriat ittt ettt (41)
EekTRz

Equations (39) and (41) give the thermal stress equations along the edge of a small hole and along the edge of
an infinitely large hole respectively. The gradient of the heat flow near the small hole is 27 from Eq. (1).
Then Egs. (39) and (41) are equal to the thermal stress equations along the edge of a hole and along the straight
edge when a semi-infinite plate with a circular hole is under a heat flow of gradient 27 and is parallel to the
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straight edge®.

(4) Taking Ry/R; as a constant value and b—0, we have the case of two contacted circular holes

of different sizes. In this case, Rj/Re=p=c/b and taking nb=u, Egs. (I

Csinh®b= —f ue~** sinh u cosech u(1+p) du=C’
0

Dsinh®b= —f ue~** cosh ucosech u(1+p0) du=D’
0

Fsinh?p= ——f ue~* sinh up cosechu(1+0)du=F’
0

Hsinh?b= ——fw ue™* cosh up cosech u(1+4+0)du=H'
0

6), (25), (28) and (32) become

P £ 7 TR TR PR PP PR} 42
(K1'+1)f {( sinh?u—u2) ( sinh 2up—2upP) + ( sinh?up—u?0?)( sinh 2u~2u)}*u7d;—7— (42)
0 u
+2fm(P2 sinh?«4— sinh?
(K. ——l)f {( sinh?u—u?)( sinh 2up— 2uP)+(smh2uP %°0%)( sinh 2u—2u)}- 341 y
+2,0f (p?sinh?u— sinh?
0
A= sinh?u(14p0)—u?(1+p)?
Moreover we have
_coshbeos fi+1 _SImhBSING s
cos f= cosh b+ cos 41 b= coshb+eosgy T (43)
and taking 5—0 in Eq. (43), we obtain the following limit values.
_coshb—cosB 1 ,(0s LY oo
sinh?b 2 sec ( 2 )’ np= utan( 2 ) """ (44)
Then the stress equation (34) along the edge of the hole I is
[osls N 'y f"" o
EiR, =4sec ( 5 )[(C +F)cos @ . {u(1+0) (up cosh u— sinh )
14
+ (u cosh up— sinh up) sinh #(1+0)} cos (utanﬁ)—j-,—-{(Kz’——l)—%-+ (Ki'+1) F’} cos @
f {u0(14-p) sinh u— sinh 40 sinh u(140)} cos (utan 0') 4 —(D'+H")sin¢
Xﬂ {up(1-+-p) sinh #— sinh up Slnhu(l_l_p)}srn <utanﬁ)—21———} .................................... (4 5)

6. Numerical results

Let us represent the ratio of the radius of two
holes by p=R;/R; and the distance between them
by p=(Ri+Rp)/d. Hence, p=1 shows a case of
two equal circular holes, p=co shows also a case of
one hole as mentioned in the limiting case (1) and
0=0 (then p=¢"¢) shows the limiting case (2).
Further, p=1 shows a case of two contacted circular
holes as mentioned in the limiting case (5 ) and p=0
shows a case of two holes which are infinitely distant
from each other. The terms of series in Egs. (25),
(32) and (34) were reformed to converge rapidly and
the integrals (42) and (45) were evaluated by means
of Simpson’s rule.

When the heat flow is parallel to the center line
of two holes, the extreme values of the thermal stress
occur at the points A, B, A” and B’. Figure 2 shows
the thermal ‘stresses at the points A and B of the hole
I (Ri<R;, Ri=R; or Ri>R,).

(1) When the hole I is small and the hole II
is large (Ry<Rp;, p<1), the values of the thermal
stresses at the points A and B are obtained from the
curves for the cases of 0=0.1, 0.2 and 0.5, while
the negative values of them at the points A’ and B’
are obtained for the cases of =10, 5 and 2. When
the two holes are distant from each other, |6|max
occurs at the point A’ of a large hole and when p
exceeds 0.65,0.70 and 0.85 for p=0.1, 0.2 and 0.5
respectively, |o|max occurs at the point B’ of it.
Moreover, as the two holes approach more and
more (g—1), |0|max occurs at the point B of a small
hole and the value of it becomes great remarkably.
These values are larger than that of a plate with one
hole (p=0).

(2) When the hole I is large in comparison
with the hole II, the thermal stresses are obtained
by changing the direction of heat flow.

Figure 3 shows the maximum compressive thermal
stresses of the holes (R; <Ry, Ry=R; or Ri>R;) for
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the case of heat flow perpendicular to the center line
of two holes and the extreme values of them occur
near the points shown in Table 1. From this graph,
|6lmax occurs always at the edge of a large hole and
the larger the ratio of radius @ is, the greater the
values of |¢|max are. When ©>10, they tend to
be constant independently of the distance between
two holes. When 10>p0>1, they are greater than
those of a plate with one hole.

Figures 4 and 5 show the thermal stress distribu-
tions along the edge of the hole I in a plate having
two equal circular holes (9=1, p=0.4) and being
under a heat flow parallel or perpendicular to the
center line of two holes respectively. The figures
also show comparisons with the cases of one hole™®,
three equal holes®® and an infinite row of equal
holes(™. The stress distribution along the periphery
of two holes is similar to that of outer hole in the
case of three holes.

The thermal stresses in an infinite plate contain-
ing two insulated circular holes under uniform heat
flow were analysed and the influences of the size and
distance of two holes upon the thermal stresses were
discusses concretely. Consequently, it is noted that

Table 1 Locations of extreme values ($=90°)

0 01° 0 | o
0 45 2 82
0.1 48 5 89
0.2 52 10 90
0.5 61 oo 90
1 72
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Fig. 2 Thermal stresses at edge of hole I ($=0°)

a high thermal stress occurs at the edge of a large
hole when the two holes are distant. It occurs at
the edge of a small hole when the holes approach cach
other in the case of heat flow parallel to the center
line of two holes, but it occurs at the edge of a large
hole for a perpendicular heat flow. In any case, it
is larger than that of a plate with one circular hole.
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Fig. 3 Thermal stresses at edge of hole I ($=90°)
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Fig. 4 Thermal stress distributions around equal
holes ($=0°)
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Fig. 5 Thermal stress distributions around equal
holes ($=90°)
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