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Evaluation of Various Approximate Solutions for Effects of
Fluid Inertia Forces on Performance of a Plane Inclined

Slider Pad*

By Yoshio HARUYAMA **, Tsuneji KAZAMAKI #%% ,

Atsunobu MORI *%%*, Haruo MORI+ and

Shin-ichi YosHIzAwA **

Based on the Navier-Stokes equations in whichthe pregsure is assumed
to be constant across the film thickness, various approximate solutions
for the statie and dynamic performances of an infinitely wide, plane
inelined slider pad in a laminar flow regime are presented under the as-
sumption of a small harmonic vibration.

From comparison of the approximate solutions with the mumerical one,
it is concluded that one kind of averaging approach in which some of the
time dependent terms are treated exactly while the convective inertia
terms are averaged out across the film thicknese gives close approxima-
tions in a wide range of designing conditions, and that an other kind of
averaging approach in which all the inertia terms including the time de-
pendent terms are averaged out across the film thickness is a fairly good
approximation.

Key Words : Lubrication, Bearing, Inertia Effect, Approximate Solution,
Plane Inclined Slider Pad

In this paper, based on the Navier-

1. Introduction

A significant influence of the inertia
forces on the dynamic characteristics has
been reported about externally pressurized
bearings in which the speed of fluid in~
duced by the pressure gradients is rela-
tively high and also about self-acting
bearings which are operated at high speed
[1~3]. It is difficult to solve the
problem exactly for dynamic performance of
bearings including the fluid inertial ef-
fects because the inertia terms in the mo-
mentum equations are nonlinear. Then,
various approximate solutions have beenin~-
troduced. However, their accuracies are
seldom discussed. The conventional ap-~
proximate methods may be classified roughly
into the perturbation method [2] and the
averaging approach [1].
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Stokes equations in which the pressure is
assumed to be constant across the film
thickness, a modified perturbation method
and a modified averaging approach for the
dynamic performance of an infinitely wide,
plane inclined slider pad in a laminar flow
regime are presented under the assumption
of a small harmonic vibration. These
methods may evaluate adequately the cont-

‘ribution of the time-dependent term.

Subsequently, the conventional approximate
methods and these ones will be compared
with the numerical one.

It should be noted that the static
and dynamic performances of this kind of
bearing including the fluid inertial ef-
fects have been investigated theoretically
by Mori, et al. by means of a kind of aver-
aging approach [6]. The boundary value
of the film pressure at the leading edge
is set as the ambient pressure, under the
assumption of a negligibly small ram-pres-
sure there.

2. Nomenclature

: dimensionless damping coefficient
: dimensionless drag coefficient
dimensionless dynamic stiffness
dimensionless flow rate

pVhi/u : Reynolds number

Re*= (0Vhae/u) h:efl) : inertia parameter
Re**= pwhi./u : unsteadiness parameter
dimensionless load capacity

Hi -Hz : gradient of slider
64Vi/{pahi.): bearing modulus
(122w/pa )i/ hze}* ¢ Squeeze number
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Subscripts

e : equilibrium
q : quasi-gtatical component (
t : dynamical component hes—

~ : amplitude

3. Governing Equations and
Boundary Conditions hy

The plane inclined slider pad with
infinite width analyzed here is shown sche-
matically in Fig.l, in which some symbols X
used are also noted. With the usual —_—V
assumptions of fluid film lubrication the-
ory the momentum equations and the conti- Fig.l Configuration and coordinates
nuity equation for an incompressible
Newtonian fluid are given by;

du du\__dp, du

p(w* “:i:*w&‘)— o TF o (6H)
)
s (2)

du , dw _
o Tz " 3

h;

0

where ¥ and w are the velocity component in the « direction and the one in the =z
direction, respectively, P is the pressure, p the density, U the viscosity and ¢

the time.
The boundary conditions are set as follows;
z=0 : u=V, w=0, z=h : y=0, w:%' x=0,1: P=ba 4)

where py 1is the ambient pressure and V the velocity of the moving surface.
It is difficult to obtain general exact solutions to the above equations. Then,
various approximate solutions have been introduced.

4. Various Approximate Solutions

The conventional approximate methods may be classified roughly into the perturbation
method and the averaging approach. In the former, the velocity and the pressure are
perturbed with respect to Re* as follows;

(u, w,p)=(uo,wo, Py Y+ Re* (uy, wy, py ) +=ovee (5)

Substituting Eq.(5) dinto Eqns.(l) to (4), we obtain the fundamental equations and the
boundary conditions. In general, the solutions for second and higher orders of Re* are
omitted because these are very complicated. In the latter, the solutions are analyzed
by averaging out all the inertia terms in the momentum equations across the film thickness.
Namely, Eq.(1l) i1s replaced with

L (*ou, Ou, du\, _ 3  3u
hfa(at”aﬁ“’ﬁz‘)dz‘ a Th e ®

4.1 Modified perturbation method

Since velocity and the pressure are regarded as the sums of quasi-statical components
( subscript ¢ ) and dynamical ones--(-subscript t ), we can write them as;

(u, w, ﬁ)=(uq, Waq, pq)+(ut. We, pl) (7)

Next, we assume a small harmonic vari;izion in the film thickness as follows;

h=he+hse™ (8)

Correspondingly to this, the dynamical components of velocity and pressure are given by;

(e, we, p)=(fe, @, bede’™* 9)
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Introducing the following dimensionless quantities;

X=I/1. Z=Z/h:n. th/hu. U.,=uq/V, Wq=wa/Vh2¢| Pq'—"'Pv/Pa
€=hs/hae, U=af(cwl) , W,=w/ ewhie), Bi=p/(cpa) , Ri=pVhie (ul)
R:‘::pwhg./y N A=6#Vl/ (ﬁah%d) , ‘=6ﬂw12/(pah§¢)

we can formulate the following governing differential equations and boundary conditions

( For quasi-statical components )

o( . 9Us 4 g 0Ua)_ _ 6 9Ps ) Uy
(R v a7 (10)
0= an
Pl (12)

Z=0 : Uq=1. Wq==0, Z=H Uq=W¢=0

(13)
X=0,1: P;=1
( For dynamical components )
oee 7 1 paf 10Us o 1y 80, 5 83U, 30, | & U, __ 6 9B &l
iRE Ot R 5+ Ur g+ O Gt Wl i) | =~ S B0 (14)
0=%. (15)
x5 (16)
z=0 : O=W.=0, Z=H.: U.=0, W.=j
an

X=0,1: P=0

From Eq.(8) the real parts of the complex quantities in solutions 1wy, W and p, have
physical meaning.

Since it is difficult to obtain general exact solutions to the above governing equa-

tions, we analyze by the perturbation method. Namely, the velocity and the pressure
are perturbed with respect to Re* as;

(Uq, Wq, Pq, ﬁt, W:, 15,)=(qu, an. qu, 0:0, Wm, ﬁ:n)
+R:Ua, Wa, P, Un, Wa, Pu)t-- 18)

Substituting Eq.(18) into Eqns.(10) ~ (17) , we obtain the fundamental equations and the
boundary conditions. The first-order solutions are obtained as follows;

o= —iX+C f1- cosh(2¢Z — oH., ) }
o

{ cosh(pH.) (19)

o= B —jX+Ci cosh(29Z)—1

) [/ cosh*(gH.)

+ 10+ a.GX ~ C) {1 —sech*(pH. )} [7- sinh(2¢Z—¢H,)+sinh(¢H,)} (20)

o* t 2¢ cosh(pH.)

dﬁw _ JR:*A* ]X—QL T
ax 6 ) (21)
5 __ 67 dﬁuf __cosh(2¢Z —pH.).
Un ReA ax U cosh{pH.) }+F T (22)
dPii _ jREA*( e
X~ 60 (/.: F"'Z*C') (23)

where i=v=1, ¢=/jR:*/2, ®=H.—9 " tanh(eH.) and C;,C; are integrations constants.

F is a function of X , Z which can be determined by the following partial differential
equation and the boundary condition;
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da ) 3 ~ 3 0w . = aU
L 1or=i22 sy, U“’+U,., U Wiollie 117,20 (24)
The solution can be obtained in the same manner as in the previous report [ 4,5 ]. The

pressure components pto > pt1 are obtained by Runge-Kutta-Gill method, because these are
are insoluble analytically.
This solution will be named modified perturbation method in this paper.

4.2 Modified averaging approach

In this approach, the solutions are obtained by averaging out the terms containing
the inertia parameter, Re* , in the governing equations (10) and (14) across the film

thickness. Namely, Eqns.(lO) and (14) are replaced with
R: s, y, s\ ,,_ 6 P, 8Us
H f (U" tWeoz )dz' A X Tazt (26)
R: [H( . 3U, al, U, all. U,
Ot (5 UG+ O W W) 4z
___s_a_ﬁz 90,
=T A ax oz 27

The solutions are given by;

—jX+Csf, cosh(29Z—oH.)
U= o | cosh(gH.) } (28)
W= a2e{—jX + Cs) cosh(29Z)— 1+;(D @e(— X + Ci){1—sech*(pH.)}
- 20 cosh®*(pH.) o}
sinh(2¢Z — pH.)+sinh(pH.)
X{Z 2¢ cosh(pH.) } 29)
4P _REANGX~Cy) _ RiA* [He[.3U, aU. L 77.3Us aU: + aU, iz (30)
dax 60 6He {’ o+ Urgx +Urgx+ Wz + W }n-n-
where (3 1s an integration constant. The pressure component pt 1s obtained by
Runge-Kutta-Gill method. These solutions are simple compared with these by the modi-

fied perturbation method.
This solution will be named modified averaging approach in this paper.

5. Bearing Performance

5.1 Load capacity

The dimensionless load capacity per
unit width normalized by p,/ is defined
by; .

- 1

W= [ (Po=DunidX (31)

5.2 Dynamic stiffness and damping
coefficient e PM /
The dynamic stiffness and the damping l /
coefficient are respectively defined by the < —t
component of the bearing reaction force in > "sﬁ/ﬁ“‘
the same phase as the displacement and the =
component in the same phase as the welocity 7
of the displacement. The dimensionless
dynamic stiffness and the dimensionless /
damping coefficient normalized by. Pal/hs. 0.03 /
and pal/(h:.w) are respectively given by; /

K = —Re[Fo.:] (32) T
B—-—Im[Fu] (33)

102 100 Ry ! 10

where Jos=ebalFus » and the real part of
fuse’* represents the bearing reaction Fig.2 Comparison of approximate solutions
force per unit width. for load capacity
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5.3 Flow rate
The dimensionless steady flowrate per
unit width normalized by Vi, is defined by;

Qe= [ UdendZ’ (34)

and the dimensionless dynamical flow rate
per unit normalized by ewlh:. is defined by;

Q= [ "z (35)

5.4 Drag coefficient

The dimensionless steady drag coeffi-
cient per unit width normalized by uVi/h,,
is defined by;

— la(.’q
De=- [ %7
and the dimensionless dynamical drag coef-
ficient per unit width normalized by euwi?/h,.
is defined by;
- 130
b= [20

oz

z=0 dX (36)

Huiy

zm0dX 37

The real part and the imaginary part
of Qt are respectively equivalent to the
component of the unsteady flow rate in the
same phase as the displacement and the
component in the same phase as the veloci-
ty of the displacement. The relation-
ship between D: and the unsteady drag co-
efficient is given in the same manner as
above.

It can easily be understood that
these characteristic quantities are gov-
erned by four parameters, i.e. ¢, A, ©
and Re*, The unsteadiness parameter,
Re**, is related to these parameters by the
following equations;

._ Réo
CESA (38)

6. Comparison of Various
Approximate Solutions

The 1lst order perturbation method and
the averaging approach are valid for RIK1
and also R:*<1 in priciple. The modi-
fied averaging approach are valid for R:<1
and for any value of R{*

In this chapter, these approximate
solutions will be compared with the nu-
merical one to evaluate their accuracy.

The bearing performance for A=10 1is
shown in Figs.2 to 16.
the symbols, PM , AA, MPM, MAA and NS indi-
cate the lst order perturbation method, the
averaging approach, the modified perturba-

tion method, the modified averaging approach

and the numerical solution respectively.
The broken lines indicate the results by
the classical lubrication theory.

The static performances, ¥, @qand Dgq
are shown in Figs.2 to 7. As for W ,
there is no significant difference among
the various solutions. As for Qq and
Dq, the result by PM becomes inaccurate
as the values of Re* and . increase and

In these figuers,..

Re=1
0.03 ° AS
. /%¢’;=::::\N\£E\\\
I///”.—-\\:R‘\\
< N
~J
E //\
/7 .
l/ \\
T ‘\
\‘
0.02
0 1 o 2

Fig.3 Comparison of approximate solutions
for load capacity

1
Pl ‘ ’
A=1 "
o AN
<] 1
0.5 87 T A2
‘N
PM
0
-2 -1 Ed 1 10
10 10 Re

Fig.4 Comparison of approximate solutions
steady flow rate

0.7 7 T

Qq
<
N

)
. / /
0.65 /

0.6

Fig.5 Comparison of approximate solutions
for steady flow rate
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one by AA is relatively accurate.

The dynamic stiffness, X, and the damp- 10_ *f —
ing coefficient, B, are shown in Figs.8 to :Re =1
10. As for K, there is no significant — (.= 1
difference among the various solutions. <« € NS } Z x
As for B, there is either no significant A =10 ::: 1
difference between MPM, MAA and NS. /C\M
However, the results by AA and PM become 1 10
inaccurate as the value of Re** increases.
The result by AA is relatively accurate === NS
when the value of Re** ig comparatively AA L
small, for example smaller than 10, MAA om L

R 102

—— _K_

LI,

—t———.
IS Y

The unsteady flow rate, @i, is shown MPM
in Figs.ll to 13. The result by PM be-~ | l
comes remarkably inaccurate as the value of 10? _
Re** increases and those by MPM, MAA and 0.05 ”
AA are fairly accurate. . /

The unsteady drag coefficient, Dy, is MPM. //
shown in Figs.l4 to 16. The result by !\7/ 1
PM becomes remarkably inaccurate as the
value of Re** increases. The results 0.04
by MPM and MAA are fairly accurate.
However, one by AA gradually becomes in-— Lo
accurate with an increase in the value of o
Re#* | The analysis of AA is based on =

LT I
Xg=1 "J/ /A{“l

o i 0.02
NS ! al A bbbt L . el i

// 10t 1 Rg' 10 50

74 Fig.8 Comparison of approximate solutions
for dynamic stiffness and damping
% coefficient

0.9

AN
"y

//

. NS + l
102 107 RE 1 10 0.6 PT

e [

—~—
Fig.6 Comparison of approximate solutions %NL"\
for steady drag coefficient . 05— 0 =10 HH

q
e | Xe=1 a7 LN
—A =10 | 1 M

0.9 I . MAIA|||I \
\\\\ Re= . M[PHV’\
{

\\ \\ 0.3

0.85 \‘ \ \

0 1 ) 2 -2 -1
(CN 10 10 RS 1 10
Fig.9 Comparison of approximate solutions
Fig.7 Comparison of approximate solutions for dynamic stiffness and damping
for steady drag coefficient coefficient -
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Fig.1l Comparison of approximate solutions

for dynamical flow rate

Fig.13 Comparison of approximate solutions
for dynamical flow rate
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the assumption of a parabolic velocity
profile, and this would, therefore, be in-—
valid when the value of Re*+* becomes
large. 0.1 T T7 T
The above discussions show that the = og=10 MPM
averaging approach is useful for analyses Ty _O(e= 1 AA MAA L
of the dynamic stiffness and damping abil~ c /\ =10 NS PM
ity except under the condition of Re**> 10, !
though it is faulty in the analysis of the 0.05 7
velocity field. The modified averaging /
approach is found much more useful.
This holds for any value of Re**, ’//’
=
7. Conclusions 0 ||t
A modified perturbation method and a T T
modified averaging approach were presented 0.4 PSR HPH
for investigation of the dynamic perform- =} T
ance of an infinitely wide, plane inclined £ NS
slider pad including the fluid inertial T /L\AA
effects. The solution was obtained I MAA
under the assumption of a small harmonic 0.3
vibration. From comparison of various M
approximate solutions with the numerical 4/
solutions, the following conclusions have //1
been obtained: /
(1) As for the static performance of load 0.2 /4
capacity, flow rate and drag coefficient, : /'
there is no significant difference between | 1T] L
10-2 10-1 Ref 1 . 10
T T
x Fig.1l5 Comparison of approximate solutions
Re =1 PM for dynamical drag coefficient
yn
A= 1 ’k\ AR
~10 Al
0.2— /\ / /’ MPM
¥
= /) k: \
o g \
o / // NS 0.04 I
]
11 —_
0.1 = ~A
MAA (Q
/9 \ N — s R MPM
. N x z l %——-——
// f N ' MAA
|_Leer 0.02 PN
o et Mo TN
e _— 1
| / 0 =10—
A=10
0.4 PM
NS 0 —— ]
§<_€/m>n
\\Q\\’ 0.4 T I
0.2 NS
- — LN — L T~ MPM
=3 — — P
£ MAA N — - & / IS
| (% E R
0 l' ! nlw T MAA \\
AA A
~ 0.2
N 21 10 10? 10° /’//-———~\\\\N
— L i P | d L H /
107 1 R 10 50 0 1 A 2
Fig.1l4 Comparison of approximate solutions Fig.16 Comparison of approximate solutions
for dynamical drag coefficient for dynamical drag coefficient
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the perturbation method and the averaging
approach.

(2) The modified averaging approach, which
is proposed in this paper, is simple and
accurate.

(3) The averaging approach is relatively
accurate except for high unsteadiness.

(4) The 1lst order solution by the pertur-
bation method becomes remarkably inaccu-
rate as the unsteadiness becomes high.
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