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Influence of the Fluid Inertia Forces on the Dynamic Characteristics
of Externally Pressurized Thrust Bearings*
( 2nd Report, Evaluation of Various Approximate Solutions for the
Influence of Film Inertia Forces on the Dynamic Performance of

Externally Pressurized Infinitely Long Thrust Bearings )

By Yoshio HARUYAMA**, Atsunobu MORI***,

Tsuneji KAZAMAKI****  Haruo MORI' and
Tadayoshi NAKAMURA®?

Based on the Navier-Stokes equations in which the pressure is assumed
to be constant across the film thickness, wvarious approximate solutions
and an_exact one for the dynamic performance of externally pressurized in-
finiteley long thrust bearings in a laminar flow regime are presented under
the assumption of a small harmonic vibration.

From comparison of the approximate solutions with the exact one, it
i8 coneluded that some kind of averaging approach in which a part of the
time dependent term is treated exactly while the other inertia terms ave
averaged out across the film thickness gives close approzimations in a wide
range of designing conditions, and that the other kind of averaging ap-
proach in which all the inertia terms including the time dependent term
are averaged out across the film thickness gives fairly good approximations.

Key Words : Lubrication, Bearing, Externally Pressurized Thrust Bearing,
Inertia Effect, Dynamic Performance

1. Introduction

A significant influence of the fluid
inertia forces on the dynamic performance
has been noted with the externally pressur-
ized bearings([l],and there are written many
papers discussing the inertia effects in hy-
drodynamic lubrication[2~4,7]. In the
first report[7], we investigated the influ-
ence of the fluid inertia forces generated
within the supply capillary restrictors on
the dynamic characteristics of externally
pressurized thrust bearings and pointed out
that the influence must be considerable when
the low kinematic viscosity of the lubricant
is used. The present report is concerned
with the influence of the film dinertia
forces on the dynamic performance of ex-
ternally pressurized infinitely long thrust
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bearings.

It is difficult to solve exactly the
problem of the dynamic performance of bear-
ings including the fluid inertial effects
because the inertia terms in the momentum
equations are nonlinear. Then, wvarious
approximate solutions have been introduced.

In this paper, an exact solution for
the dynamic performance of externally pres-
surized infinitely long thrust bearings is
presented under the assumption of a small
harmonic vibration. Subsequently, various
approximate solutions are compared with the
above one to evaluate their accuracy.

2. Nomenclature

A=ual/(pghl)

A% =l ®p,n 2)

» B : damping coefficient

Cp : discharge coefficient

ds : diameter of supply hole

fos s Fos: dynamical bearing reaction force
per unit width

g = Andi/(2¥)
h, H : bearing clearance

hy * equilibrium clearance
k : stiffnesses

-

N
[ R

bearing width

number of supply holes per unit
width

pressures

ambient pressure

pressures at feeding section
supply pressures

g
-
Y

P, P
pn: Pn .
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Re = ﬁhf/(vl) : inertia parameter

Re* = whglv : unsteadiness parameter

time

velocity components in x direction
characteristic velocity

velocity components in 2 direction
coordinates along the film
coordinates across the film

129G 2]p ul/(VPghl) : feeding

=

o TR

n § £

-

parameter
U : viscosity
v : kinematic viscosity
p : density
o= lZuw/pa(Z/ho)z: squeeze number
T=wt
¢ =vjRe* [ 2
&= 1-¢ tanho
Y : correction factor for dispersion
effect

W : circular frequency of squeeze

" motiom

Subscripts

q : quasi-statical component
s : statical component
t : dynamical component
~ : amplitude

- In the case of two variables, the for-
mer is a dimensional quantity and the lat-
ter is a dimensionless one.

3. Governing Equations and
Boundary Conditions

An inherently compensated externally

pressurized infinitely long thrust bearing
with multiple holes admission analyzed here
is shown schematically in Fig.l, in which
some symbols used are also noted. The
thrust plate 1is assumed to be parallel to
the bearing surface. The number of sup-
ply holes is assumed to be large enough for
the line source concept to be applied.
With these assumptions and the usual assump-
tions of fluid-~film lubrication theory the
momentum equations and the continuity equa-
tion for an incompressible fluid are

du_ Odu Ou\__0p, Ju
p(‘ét—“‘ = T¥ %z )‘ T F e D
_0p 2
0= e 2)
ou , ow
g% L0 - 3
F + e 0 (3)

where ©# and w are the velocity compo-
nents in the & and 2z directions, p 1is
the pressure, p the density, uy the vis-
cosity and ¢ the time.
The boundary conditions are
dh
z=0 : u=w=0’ zZ=h:u=0, w=—‘;;-
(4)
=03 p=p, s x=l: p=pa

£ Zx Pcl

Fig.l Configuration and coordinates

where Py 1s the ambient pressure and p,
is the pressure at feeding section which is
determined from the continuity condition of
flow rate at feeding section as

j;hulnudz=gCoh‘/% (Bn—p2) 5)

where

_ ninds

and 7 1is the number of supply holes per
unit width, ds the diameter of supply hole
and Y the correction factor for the dis-
persion effect of a discrete source. In
the case of complete line source, g =1.

It is difficult to obtain general exact
solutions to the above equations. Then,
various approximate solutions have been in-
troduced.

4. Various Approximate
Solutions

4.1 Solution 1 1In this solution, the ve-
locity and the pressure are perturbed with
respect to Re= phg 7/l) as

(u,w,p)=(ug,wy,Pp)
+Re (uy, wy,p, )+ ()

Substituting Eq.(7) into Egs.(l) to (4), we
obtain the fundamental equations and the
boundary conditions. Where # is a char-
acteristic velocity which is obtained theo-
retically from the mean steady velocity in
the & direction. In general, the so-
lutions for second and higher orders of Re

are omitted because these are very compli-
cated. Mori, et al.[4] pointed out that

the high order solutions diverge when the
unsteadiness parameter, Re*, exceeds a cer-
tain value.

4.2 Solution 2 1In this approach, the so-
lutions are analyzed by averaging out all
the inertia terms in the momentum equations
across the film thickness. Namely, Eq.(1)
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is replaced with

o (du, ou Su\. ., du
hso <6t+u8 + Gz)d~ 81+ﬂaz'

(8

4.3 Solution 3 This solution has been
proposed by Murata, et al.[3] for the dy-
namic performance of externally pressurized
circular thrust bearings. In this so-
lution, a part of the time dependent term,
du,/3t , is treated exactly.

Since the velocity and the pressure are
regarded as the sums of statical components
(subscript s ) and dynamical ones ( subscript
t ), we can write them as

(u, w,p)’—‘(us, ws,Ds)"‘(ue, We, De) 9)

Next, we assume a small harmonic variation
in the film thickness as follows;

h=ho+ h e’ (10)

Corresponding to this, the dynamical compo-
nents of velocity and pressure are given by

(we, we, )=, i0r, e)e’™ (11)

Introducing the following dimensionless
quantities

Da ho’ ﬁahzy v l
s o _ @ 5_ B
Ue swl’ W ewho'P' &ba’
o pwl® o, wh} _
A=y Fe==T e=gi

we can formulate the following governing
differential equations and boundary condi-
tions

( For statical components )

U,

dUs\_ 1 3Ps  3°Us
RE(U‘ ax "Wz )' AxX T
(12)
=98 (13)
=7z
oUs , dWs _
=% T 37 =0 14)
Boundary conditions
Z'—-—-O,H : U5=Ws=0
X=0 : Ps=PFs (15)

X=1 H Pi=

where Pls= P|H=1

157
(For dynamical components )
iR Ot R 02504 9,20 g7, 20
G2 W o ‘Zfé aaéz‘ as)
0= an
%U)}‘—+%=o (18)

Boundary conditions

Z:O . Ut=Wt=0 , Z=1: Uﬁt‘zo, Wtz].
X=0: p,= Pu, X=1: B=0 a

The analytical solutions of the above
equations are obtained as follows;

Us= P“ Puzligz 72 (20)
Pszpts—(PLs_l)X (22)
T _J_ - - jpu
cosh(29Z—9)
X{I‘ cosh ¢ }
67K
——-—{Fx(Z)+Fz(Z)} (23)
sinh(2¢Z —@)+sinh ¢

W= _{Z 2¢ cosh ¢ } (24)
P=Pu1-X)+ A B (- x) (25)

where o=yjR:/2, ®=1—¢ 'tanh ¢ and

Fi(Z), F(Z)  are functions of Z which
can be determined by the following ordinary
differential equations and the boundary con-
ditions
d*F
dz?

x {1 B coshé(f;;i— 2 }

—49*F=(Z-2%)

(26)

a’F
A

X{Z— sinh(29Z —9)+sinh ¢ }

2¢ cosh ¢ @7

Z=0,1: R=FR=0 (28)

They are solved as

) sinh(2¢Z)
4 o* cosh® ¢

ZJ Z2 _Z \sinh(20Z~¢)
+_( 8%/ cosho

_ 1 e . 2 \cosh(2pZ—9p)
16¢° 2=zt gv’) cosh ¢

+ 4;2(22—z+—2%2—) (29)
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Fo= 3 sinh(2¢Z)+2 sinh(2¢Z —¢)
2 32¢° cosh? ¢

+ Z sinh(2¢Z—p)

16¢° cosh @
1 ( 2_ __g_)cosh(quZ—go)
8o? -z @* cosh ¢
sinh(2¢Z) 1

4o sinh(2g) T §g7 2Z ~Lltanh e

—4%2(222—Z+—;—2) (30)

4.4 Solution 4 1In the solution 3, a part
of the time dependent term, dug/dt, is neg-
lected, but we have Jus/ot%0. In the
solution 4, an exact solution is obtained
including the term, dus/3t.

Since the velocity and the pressure
are regarded as the sums of quasi-statical
components ( subscript q) and of dynamical
ones ( subscript t), we can write them as

(u, w, p)=(uaq, wa, pa)+ (s, we, pe) (31)

The following fundamental equations and the
boundary conditions are obtained under the
~assumption of a small harmonic vibration.

( For quasi-statical components )

U, dUq\_ _ 1 9P, *Uq
R Us G+ We az e
: (32)
—0Ps
0= 37 (33)
aUq aWQ_
% oz =0 (34)
Boundary conditions
Z=0,H : Us=Wqe=0
X=0 : P;=P, (35)

X=1 . P;=1

where Piq is the quasi-statical pressure at
feeding section.
( For dynamical components )

aU, . 30, . 7 8Us
]Re oH -l+]ReUt+Re[Uq axX +Ut ax
au, U4
WSS,
_1 9P  3U.
AT X oz (36)
0=22
~z BN
0. | W, _
a7 =0 (38)

Boundary conditions

Z=O . (7'!=W¢=0, Z= U¢ 0 Wt

X=0: P=P, , X=1: B=0 (39)

The first term of the left-hand side of Eq.
(36) is obtained from duq/3t.

The exact solutions to the above equa-
tions are obtained as follows;

U= P“’ (HZ Z%) (40)
W.=0 (41)
Pq=PLq_(PLq—'1)X (42)

ﬁ,={—2%(1—2X)— f}‘;;}

% {1 _ cosk}:(OZSiZ; ?) }

GJR‘ 8iRe (& (7)+ Fi Z)}+6iRF5(Z)
_L@_e___dp_.t_v_

R dPa|  F(2) 43)
= 7 sinh{2pZ—¢)+sinh ¢
W'_-E{Z 2¢ cosh ¢ } (44)
B=Pu1- X1+ AR (xx— x7) 45)

where Fi(Z) and F(Z) are functions
of Z which can be determined by the fol-
lowing differential equations and the bound-
ary conditions

d*F:
d223—4¢2F3=Z (46)
d*F.
T AP R=2-Z )
Z=0,1 H Fa F~1 (48)

They are solved as

_ sinh(29Z)
Fi= 2{ sinh(29) z) (49)
cosh(2¢Z—9) 1 .
=t coshp 8¢* cosh ¢ Za )
(50)

4.5 Solution 5 1In this approach, the so-
lutions are obtained by averaging out the
terms containing the inertia parameter, Re,
in the governing equations (32) and (36) a-
cross the film thickness. Namely, Eqs.
(32) and (36) are replaced with

R

Uy U,
H o (Uq X

+ Wl )dz

1 an+ *Uq (51)

A X = ozZ*

iR: O+ R, [ [ 152+

30, aUq]

aU, ;.30
Uax

Uq

+ W.,—az + W, EYA
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1 6P, 30,
_ e 2
A" ox oz G2)
The solutions are given by
Up= P“' Puzligz_ 7 (53)
We=0 (54)
P, =P¢q"(qu—'1)X (55)
~ ]Pu _
Oo={50-2x)- Yo c}
_cosh(2¢Z—9)
x{l cosh ¢ } G6)
5 _ 7 sinh(2¢Z —¢)+sinh @ 7
W‘_?{Z 2¢ cosh ¢ } 57)
B=P.-x)+A K x_x2) (58)
where
Re(6(/1 1 1
C=%: {E<_2 o° tanh @ 3)+3
1 dPgq
T a8 o) (59)

These solutions are simple compared with
the solution 4.

N

Solution 1

1 '// 102
Z
K Tk Ao E
— K 2 (4 - 1 1
4,5 3 P2
1
45
14" LIt [ | HIZ Ll 10
1 10 g 10
[ i 1 J
16" 1 Rx 10 10

Fig.2 Comparison of approximate solutions,
dynamic stiffness

O 4T TTTT
Po= 4 A
CD\b T F = 2 Solution 3
gCo=0. 2 | 2+
0.3 H4H (Re:0.48) o
/‘//
B A
{.‘ 1%
d 1
0. 2 FHH—— = ==
1 10 g 10
e 1 1 J
107 1 Rx 10 10?

Fig.3 Comparison of approximate solutions,
damping coefficient

5. Dynamic Stiffness and
Damping Coefficient

The dynamic stiffness and the damping
coefficient are respectively defined as the
component of the bearing reaction force in
the same phase as the displacement and the
component in the same phase as the velocity
of the displacement. The dimensionless
dynamic stiffness and the dimensionless
damping coefficient normalized by 2Pzl /h,
and 2P;1 /(hyw) are respectively given by

K=“RE[F03] (60)
B=—Im[F] (61)

where Fy,= fos/ (2epal ) 5 and the real

part of /fus€™  represents the bearing
reaction force per unit width.

K and B can be derived wusing the
three conventional dimensionless designing
parameters: Pn=Pn/pa ( the dimensionless
supply pressure ), [=12gCyv/2/pul /(/_
(the feeding parameter ) and o =12 um
(Pahz) ( the squeeze number ) and a new
dimen51onless parameter: g Cp.

The inertia parameter, Re , and the un-
steadiness parameter, Re* , are related to
those parameters by the following equations

.

10 T T 10°
= po= 4 Tt
— =2 Solution 1. A
< Facomos -NA
— (Re=17.68) (
. y
// ™~
‘ Sesihie==y el
fF— K =15 Al
N = 2 |
| - — -k [ T Ry 3 N
gl T
l [,4.5"
10'L 3,
10 1 10 102
1 1 d IZ
1 10 gx 10

Fig.4 Comparison of approximate solutions,
dynamic stiffness

0.8 T l
L [T ]
P.= 4 Salution 3
06— [ =2 '
gCp=0.8
[s\o L (Re=7.68)
\\ ”’ﬂ
0.4 S
L1
“y e
0. 2= A=t = e e o o b L
10" 1 g 10 10°
i 1 L
1 10 g* 10?

Fig.5 Comparison of approximate solutions,
damping coefficient
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Re=Z(/TFUB—D-I)4Car  (62)

R:=%(gco)w (63)

6. Comparison of Various
Approximate Solutions
With Exact One

The soltion 4 is analyzed exactly
under the assumption of a small harmonic
vibration, therefore it is wvalid fore any
values of Re and Re*. This shall re-
present an exact solution in the present
work. The solution 3 also is valid for
any values of Re and Re*. In this
solution, however, the term, du /3%t , is not
treated exactly. The solution 1 and the
the solution 2 are valid for Re<<l and for
Re*<<1 in principle. The solution 5
is valid for Re<<1l and for any value of
Re*, In this chapter, those approximate
solutions will be compared with the solution
4, an exact one, to evaluate their accuracy.

The bearing performances for Pn = 4,

~ X Ty rTroT T I
\l\x/ Solution 1 I _' ITH
1 A Pa= ¢ o
e g =5 1
< 3 ¥ 2,30 . QCD=02'Z"|‘
a 45021 T
ary T4,5 — k]
\ —-— -K
X
AN
10" 1 r 10 102
1 1 l-’ 12 1‘3
10 1 Re 10° 10° 10
l] |2 1 [l l_‘ 1-2 |_3
i0 10 10 1 R: 10 16 16

Fig.6 Comparison of approximate solutions,
dynamic stiffness

TTHIT T 1T
T T
Pa= 4
Solution 3 _
10 Bedebluhite g =5
L2 4 gCo=0.2
I
m RN N
_1>\
5 NN
b — [ N
1 N
13’ 1 ro10 10°
1 1 1 1 1
10 1 g, 10" 162 1¢°
| T— ] 1 le L 1 1
10> 10% 10 1«10 167 16°.

Re

Fig.7 Comparison of approximate solutions,
damping coefficient

gCp=0.2 and 0.8 are shown in Figs.2 to
9. In this figuers, the broken lines
represent the results obtained by neglect-
ing the inertia effect.

The results by the solution 3 and the
solution 4 must approach the result by the
solution 1 when Re*—0 (o —0). In
Figs.3 and 5, the result of B by the solu-
tion 4 approaches the result of B by the
solution 1, but the result by the solutiomn
3 does not. This may be owing to an in-
complete treatment of the time dependent
term, ou /3%, in the solution 3. When
the value of Re* tends to zero, there is
some difference between the results by the
perturbation method ( the solution 1 and
the solution 4 ) and the averaging approach
( the solution 2 and the solution 5 ), but
the difference is insignificant. Figs.6
to 9 show the results for the feeding pa-
rameter, ' . In these figures, the solu-
tion 5 gives close approximations in a wide
range of designing conditions and the solu-
tion 2 gives fairly good approximations ex-
cept for high unsteadiness. The solution
1 becomes remarkably inaccurate as the un-
steadiness becomes high.

i]Iﬂlll T T T 17 { ! E!g
Sotution 3 UL P,= 4 i
g =1 i
gCo=0.8
4
Ny k1 0
\f/ DNgEt s A <
x \ [
n A K 4 |
2 —_————K
A 5
s{7 1
AR |
10 e %
N AN AN
MR A%
107 1 r 10 102
] 1 1 1 3
10? 10 Re ! 16" 107
1 1 1 i 1 1
100 108 10 1 4 100 107

Fig.8 Comparison of approximate solutions,
dynamic stiffness

10 FTTIE E
LT
> ! CIT i
| o
oo _i’s'z, \H Solution 3
l
A
1 : X =
: i
-l *\A Pn = & H
= N 9 =0 ]
= — i\ gCop = 0.8 |
Ny
o N
10 —=
—t i ,
1d" 1 r 10 10
! ! 1 1 ]
10? 10 Re ! 16t 107
i 1 ] i ! 1
100 10 10 1 Rr10' 107

Fig.9 Comparison of approximate solutions,
damping coefficient
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The above discussions show that the
solution 2 is useful for analyses of the
dynamic stiffness and the damping coeffi-
cient if the values of Re and o are not
too large. The solution 5 is much more
useful. This is accurate for any value
of Re*,

7. Conclusions

An exact solution was presented for the
dynamic performance of externally pressur-
ized infinitely long thrust bearings includ-
ing the fluid inertia effects. The so-
lution was obtained under the assumption of
a small harmonic vibratiom. From compar-
ison of various approximate solutions with
the above one, the following conclusions
have been obtained:

(1) The solution 5 in which a part of the
time dependent term is treated exactly while
the other inertia terms are averaged out a-
cross the film thickness gives close approx-
imations in a wide range of designing con-
ditiomns.

(2) The solution 2 in which all the inertia
terms including the time dependent term are
averaged out across the film thickness gives
fairly good approximations except high un-
steadiness.

(3) The solution 1 which is the lst-order
solution of the perturbation method becomes

remarkably inaccurate as the unsteadiness
becomes high.

(4) The solution 3 does not give good ap-~
proximations except high unsteadiness be-
cause the time dependent term, du/3%, is
treated incompletely.
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