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Distribution of Corrosion Fatigue Crack Lengths in Carbon Steel®

(2nd Report, The Distributed Cracks which Interact and Coalesce)

By Sotomi ISHIHARA®®, Kazuaki SHIOZAWA®*** and Kazyu MIYAQ****

It has been known that very small distributed cracks can be observed on the
surface of smooth specimen subjected to corrosion fatigue, and the fatigue crack
growth rate is accelerated by the interaction and coalescence of them.

In this report, following the previous report of the authors, the interaction
and coalescence behaviour of the distributed cracks on the specimen surface were

observed in detail.

Based on the experimental results, distribution of corrosion

fatigue crack lengths after a certain cycles can be estimated theoretically.
These estimated distributions of crack lengths coincided with those obtained ex~

perimentally.
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1. Introduction

It has been known that many small dis-
tributed cracks can be observed on the smooth
specimen surface subjected to corrosion fa-
tigue, and the crack growth is accelerated

* by the interaction and coalescence of these
cracks. It has also been known [1] that,
during fatigue in laboratory air, large
cracks are formed by the coalescence of small
distributed cracks initiated on the smooth
specimen surface, and these cracks propagate
unstably and cause the specimen to break.
Therefore, in order to estimate fatigue lives
whose fatiguing process to fracture are char-
acterized by the crack initiation stage and
its growth stage during which small cracks
coalesce, it may be important to investigate
the growth stage.

In the previous report [2], the authors
described the results of corrosion fatigue
tests of smooth specimen of carbon steel
under plane beding in salt water and inves-
tigation of the crack initiation and growth
behaviours of the distributed cracks on the
specimen surface in detail, and also exami-
nation of the difference of the distribution
of crack lengths with stress cycles.

It was made clear that the distribution of
crack lengths, F, is represented by a mixed
type distribution which is composed of a
crack group F1 in which cracks grow as a
single crack and a group F2 in which cracks
accelerate their growth by mutual interac-
tion and coalescence with other cracks.
Cracks which belong to crack group F2 are re-
markable in the region of high stress ampli-
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tude where many cracks are initiated. It
was shown that the distribution of crack
lengths for crack group Fi could be derived
theoretically from the statistical calcula-
tion which took into account the scatter in
crack growth rate and the difference of num-
ber of cracks initiated during fatigue.

In this report, following the authors
previous report [2], the growth behaviours
of the cracks belong to the crack group Fo
» and the quantitative evaluation method for
group F2 of cracks was studied. Cracks
which belong to F2 increase their lengths
not only by coalescence with each other but
also by their own growth. So, in order to
consider the two types of crack growth be-
haviours separately, it is approximated that
crack length, 2% after a certain number of
stress cycles is divided into o units of
cracks of which length is 2Q4. The differ—
ence of the distribution of unit crack
lengths, 205, with stress cycles is evalu-
ated by the same mehtod as that mentioned in
the previous study [2], and for the distri -
bution of p, a new model of crack coalescence
has been devised. It will be shown that the
distribution of crack lengths for F2 at a
certain number of stress cycles can be eval-
uated by using both models just mentioned.
It is made clear that, by superimposing the
distribution of crack lengths for F2 upon
that for F1 obtained in the previous study
[2], the distribution of crack lengths for
all of the cracks at a certain number of
stress cycles and stress amplitude can be
introduced.

2. Material and Experimental
Procedures

=

The material tested was a low-carbon
steel, JIS SS41, whose chemical composition
and mechanical properties were same as those
reported in the previous study [2]. Specimen
geometry, its dimension and specimen proce-
dures have been already reported in the pre-
vious study [2] and are omitted in this
paper. Fatigue tests were carried out using
a Schenk-type bending machine whose cye¢lic
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speed is 60 Hz. The enviromment in the pres-
ent tests was salt water (37%NaCl) kept at
298+0.5 K, which was dripped at a rate of
2030 mg per minute on the specimen surface.
Other experimental procedures were reported
[21[3], so omitted in this paper.

3. Experimental Results and
Discussion

3.1 The distribution of both unit erack
lengths and number of crack coales-
cences

As shown in a schematic illustration of
Fig. 1, a crack which belongs to Fy is com~-
posed of p unit cracks. If crack lengths
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Fig. 1 Definition of unit crack length
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for each of these unit cracks are represent—
ed by 28aj(designated as unit crack length),
crack length, 2¢, is given by the following

equation as a total sum of these unit crack

lengths.

In this experiment, as shown in detail of A
of Fig. 1, crack lengths, 285i were measured
at the point P which bisected the part (11'
~22') where two cracks overlapped as crack
tips.

Fig. 2 shows the distribution of umit

crack lengths for each stress cycling plott-
ed on the Weibul probability paper.
Figs. 2(a) and 2(b) show the results for
0=127MPa and 147MPa, respectively. From
this figure, it is seen that the distribu~
tion of unit crack lengths for both stress
amplitudes shifts steadily in the right di-
rection with an increase of stress cycling,
and this experimental fact shows that the
unit cracks grow for themselves besides
being promoted by their coalescence.

Next, variations of density of unit
crack, ny, with stress cycling were investi-
gated. The results for 0=127MPa and 147MPa
are shown in Fig. 3. As seen from this fig-
ure, the increase rate of ny is large in the
early stage of fatigue, but thereafter ng
saturates and settles to a constant values.
Therefore, the relation between ng and N is

“approximated by the following equation;
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where, ny, and B3 are the
saturated unit crack density
and the crack initiation
rate for unit crack,respec-
tively. Nca is the number
of cycles when the earliest
unit crack was initiated,
that is,the number of cycles
when the first crack coales-
cence occurred. Experimen~
tally obtained naz-N equa-
tions are shown in this fig-
ure. These equations show
that the value of By for o=

P 11t
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Fig. 2 Change of the distribution of unit
crack lengths during corrosion fa-

tigue
In salt water
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Fig. 3 Change of number of unit cracks
per mm4 during stress cycling
in salt water

147MPa is larger than that
for o=127MPa. For this
reason, it may be considered
that crack coalescence of
distributed cracks occurs
remarkably in the fatigue
process of g=147MPa because
crack density initiated during corrosion fa-
tigue process for 0=147MPa is five times as
large as that for g=127MPa.

The distribution of numbers of crack
coalescences for all of the cracks which
belong to the crack group F2 was plotted on
the Weibull probability paper, and shown in
Fig. 4. In this figure, the abscissa repre-
sents p—-1. As seen from this figure, the
distribution of p, F(p), does not change
remarkably with stress cycling, but slightly
shifts in the right direction(the direction
in which number of crack coalescences in-
creases). This means that the number of
cracks which are composed of many unit
cracks increases with stress cycling. This
trend was observed independently of stress
amplitude. The solid and dotted 1lines in
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this figure will be explained later.

From the experimental results stated
above, both the growth by the coalescence
with other cracks and that based on the
growth of a unit crack must be considered
in the quantitative treatment of the crack
growth behaviour for the cracks which belong
to F2. A method which considers two types
of crack growth behaviours - at the same
time by pursuing a fixed crack successively
is desirable because this method reflects
the actuality. But, this may be difficult,
and, so, in this study,as stated in the chap-
ter 4, a method in which both the crack
growth due to the coalescence and that due
to the growth of a unit crack are treated
separately will be employed. For this pur-
pose, crack length, 2%, represented by Eq.
(1) is approximated as follows;
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Fig. 4 Variation of the distribution of numbers
of crack coalescences during corrosion
fatigue
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where, 29, denotes the mean value
crack length, 2 5. '

In order to investigate whether the
approximation represented by Eq. (3) is ap-
propriate or not, comparison between the
distribution of unit crack lengths shown in
Fig. 2 and the distribution of 2%, defined
by Eq. (3) is made in Fig. 5 for each stress
amplitude and each number of stress cycles.
The data points attached with the mark &9
represent the latter distribution. As seen
from this figure, the distribution of unit
crack lengths shown in Fig. 2 and the dis-~
tribution of 285 defined by Eq. (3) for
stress amplitude of g=127 and 147MPa coin-
cide with each other, and the approximation
represented by Eq. (3) can be called appro-~

priate.

Next, examinations about whether
correlation between 205 and p holds or
not were performed for the case, N= 5.6x
105 and 8.8x105 under stress amplitude of

of unit

147MPa. The results are shown in Fig.6.
From this figure, it is seen that the
mean values of 205 (represented by the

mark (0)) at a fixed value of p scarcely
depend on the number of crack coalescences
,p. For the case, N=5.6x105, linear re-
gression between 2%, and p was performed
and its correlation coefficient turned
out to be -0.011. Therefore, it seems
that a remarkable correlation between 29,
and p does not exist. Furthermore, ¥2
test was performed by setting a null hy-
pothesis that there was not any statisti-
cal correlation between X4 and p , and
the following results were obtained: The
hypothesis is rejected for 57 level of
significance, while it is not rejected
for 1% level of significance.

From the above, it may be concluded
that, even if a correlation between 20,
and P may exist, the degree of the

cor-
relation is so low as to be ignored. S0,
it is possible to suppose that there is

no correlation between 204 and p for the
first approximation.
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Fig. 5 An approximation of the distribution of unit crack lengths by
the distribution of 225 defined by Eq. (3)
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3.2 The growth behaviours of unit cracks

In the previous section, unit crack
length 2843 defined by Eq. (3) was intro-
duced by postulating that all of the unit

crack lengths, 2%;i, are equal to one anoth-
er. In this section, using 2%, the growth
behaviours for unit cracks will be investi-
gated. From the previous report [2], crack
growth behaviours for the crack group F2
when they grow without their coalescence,
that is, crack growth rate under constant
value of P is given by the following equa-
tion.

dQ21)/dN=2C"

Substituting Eq. (3) into Eq. (4) and using

the condition of p=constant, the following
equation is obtained.
08
In salt water .
o7l =147 MPa B
[ ta) N =56x10° . {b) N=8.8xI0°
06— -
£ :
E :
0.5 — *
g - N .
I P
=04 . e 3
=) . [
3 t ~ .
Fo3k &£ ¢ - = N
a . ..
S S b . ..
= : 5
-’—:; - " e . .
:o.z—w B .
1 Tk
Olf~ & N .
0 I I | I I N | 1

|
34 5678

N =

1
2 34 567 1011
Number of crack connection £
Fig. 6 Examination on correlation
between p and 284
1.2
In salt water o
T=127MPg
10— p: Number of crack
connection
o8
E = 24
€ ¢ 5
064
B}
o~
04 e wme
02~
o]

2 4 3 8 10 12 14
Number of cycles N X108
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d(20.)/dN=2C [p=C"

Fig. 7 shows variations of unit crack
lengths, 205, during corrosion fatigue for
the case of g=127MPa. As shown from this
figure, 205 has a nearly linear relation-
ship with stress cycles N under constant
value of g, and their slopes, C*, for each
crack are different from one another. The
correlation between growth rate, C*, and
number of crack coalescences, p, was inves-
tigated and examples of the results are
shown in Fig. 8 for the case of g =147MPa.
The marks (o) written in this figure indi-
cate the mean value of C* for a fixed value
of p, and they show the tendency of decrease
with an increasing p. But, within the range
of this experiment, the degree of its cor-
relation may be so low as to be ignored.
Approximating 2%a-N relations as linear re-
lationship, their slopes, C*, for all of the
cracks which belong to F2 were obtained.
The distribution of these C* is plotted on
the normal probability paper, and the re-

sults are shown in Fig. 9 for the case of
0=127 and 147MPa. This figure shows that,
though a scatter is somewhat observed in the

data, the distribution of C* is regarded
nearly as a normal dis&rihution. The ob~
tained mean value of C°, C*, and standard

deviation of C*, s,
figure.

are shown in this

4, Derivation of the Distribution
of Crack Lengths for the Crack
Group F2

In the previous chapter, crack growth
behaviours for the cracks which belong to
F2 were examined in detail and the following
were revealed:

(1) The cracks which belong to F2 show two
kinds of crack growth behaviours: One is

the growth by the coalescence with other
cracks. The other is the growth for them—
selves without their coalescence. (ii) The

density of unit crack increases with stress
cycles N and its change during fatigue proc-
ess can be described by Eq. (2). (iii) The
distribution of unit crack lengths, 20ai,

can be approximated by that of 205 defined

by Eq. (3). (iv) It can be assumed that
7
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Fig. 8 Examination on correlation
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number of crack coalescences p is inde-

pendent statistically of wunit crack % In solt water °
length 225 defined by Eq. (3). (v) The ¢ 95| -
crack growth law of 2%; 1is represented 904 -
by the following equation, d(28,)/dN=C*, % sol N
and the distribution of C* in this equa- & ;o[ _
tion is nearly normal. 60} -
In this chapter, the calculation 3 50 —
method of the distribution of crack 3 g9l -
lengths for crack group F2 at a certain 3-20,
number of cycles will be studied on the o oLk o C%748:07 73 t42.5x07
basis of the facts obtained from the ex- 3 5 S*=308x%57 S S*=2.05x1077
perimental observations. We assign fi(p) & | . .
and £2(2%a) as the probabilistic demsity O i ] [‘mor'27ﬂpu | fﬁ ﬁb)oiﬂq Mru |
functions for p and 2%;, respectively. 0 2 4 6 8 10 120 2 4 6 .8
As investigated in section 3.1, the cal- c* mm/cycle xio
culation shown below will be performed Fig. 9 Distribution of C* plotted on the
considering that there is no correlation “normal probability paper
statistically between p and 2%3. In the
first place, the probabilistic density ‘
function for 2% when P is constant, ¢(22|p), tions, the change of both the probabilistic
is represented by using Eq. (3) as follows; density function for number of crack coales-
cences, £f1(p), and that for unit crack
#(2llp)=£(212) d(2La) =if:-'(2[a)""(6) lengths, £2(22a), with stress cycling will
d(2!) e be examined.
Therefore, the probabilistic demsity func-
tion, p(2%), for all of the values of p is 4.1 The distribution of unit crack lengths
given by the following equation,
L] 4,1.1 Calculation method of the distribu-
p(2l)=§z¢(211p)fx(p) tion of unit crack lengths
‘;f —l—fz(ZIG)ﬁ(p)dp eraresces cresnrenes (7) The method in this section is basically
: e the same as the one stated in the previous
. And, distribution function, F2(20), will be study[2]. The change of unit crack length,
obtained by integrating Eq. (7) about 2% as 284, with stress cycling is represented by
follows: 2 e Eq. (5) as stated in section 3.2, Therefore,
1:‘2(21)_—.‘[ f Lﬁ(p)ﬁ(ﬂ)dpd(w —(8) by integrating Eq. (5) about N from No to
° 2 0 o N with the initial condition that 2a=2a,
If the variations.of f1(p) and £2(2%,) with at N=N;, the following equation is obtained;
stress cycling can be known, the distribu- .
tion of crack lengths for crack group F2, 2la= CT(N = No)2lgg reoseesssessmesseonseee: (9)
F2(2%), at a certain number of stress cycles The probabilistic density function of C¥,
can be calculated by substituting £ (p) and £(C*), is considered to have the following
£2(2%3) into Eq. (8). 1In the following sec- normal distribution from experimental re-

sults of Fig. 9

(2782%.) 1% exp[—(C*~ C*)}/ 25%.]
[ (2xS%y 2 expl~(C*~ C* P/ 25 )dC™
where C* and Scx are the mean value and standard deviation of C*, respectively. As the prob-

abilistic density function of 283, h(2%;,N), is given by the following equation,h(2%,,N)=f (C*)
ldC*/d(Zﬁa)l, its final form is given by considering Eqs. (9) and (10) as follows:

1(2la, N )= (2ESEe) " ex0( = (2a = CUN = No)=2ao}?/2S8] ... ay

L 2258 expl— (21a— C*(N — No)—2lao}*/ 2531 (2La)

f(C)=

Hereupon, the following relationships hold between C*, Sex and EE;, SZza from Eq. (9)

o 2la=2la0 el G e ettt anes

C=TNTN, ¢+ STTN=N, e (12)
Function h(2%,,N) given by Eq. (11) represents the probabilistic density function for the
length of a crack which is initiated at a number of cycles Ng and observed at a number of
cycles N. Because the relationship between the density of cracks, ngy, and number ' of cycles
N is approximated by Eq. (2) as shown in Fig. 3, the probabilistic density functionm, £2(28 4,
N), for all of the cracks that have been initiated until stress cycles N is given as follows:

=1 m dna e eteerereeseerestesiasenteteeareehetont e et e et eneaaensanereeereraneans
f(2la, N)=— [ net, NYoRdNo (13)

And, therefore, the distribution function F(2,,N) is obtained by integrating Eq. (13):

F(Zla,N)=jz‘::ﬁ(ZIa, INDA(215) worervemrsosisessessssesssivnsensentensasessessssessensosrssssssseessesensemsenens (14)

where, 2%, is the smallest half unit crack length measured.

4.1.2 Comparison between numerical results and experimental results

NI | -El ectronic Library Service



The Japan Soci ety of Mechanica

Engi neers

Using both the na-N relation shown in
Fig. 3 and the mean value, C*, and standard
deviation, Scx, of C* shown in Fig. 9, Eq.
(14) was calculated numerically and the re-
sults are shown in Fig. 2 by a solid line.
As seen from this figure, the calculated
distribution of unit crack lengths coincides
well with the experimental results.

4.2 The distribution of numbers of
crack coalescences

4.2.1 Calculation method of the distribu-
tion of numbers of crack coalescences

Lindborg [4] has already studied the
behaviours of crack coalescence for micro
cracks. In his paper [4], the behaviours
of crack coalescences for micro cracks whose
lengths were nearly equal to the dimensions
of crystal grains were studied, and so,
crack coalescences in not only the direction
perpendicular to loading direction but also
the direction parallel to loading direction
were taken into consideration. But, in this
study, the behaviours of crack coalescences
for cracks whose lengths are 5~10 times as
long as the dimensions of crystal grains
will be considered, and so, it is postulated
that cracks can coalesce only in the direc-
tion perpendicular to loading direction.

The specimen region where cracks will
be initiated is divided into mt cells whose
size are equal to one another and whose
shape is a regular square of dimension, 2%,
as shown in Fig. 10. The following three
hypotheses will be used for analysis of the
distribution of crack coalescences:

(1) Distribution of locatioms of cracks is
uniformly random. (ii) Cracks increase their
lengths only by crack coalescences. (iii)
Crack coalescence can occur only in the di-
rection which is perpendicular to loading
direction.

If the probability that unit crack ex-
ists in a certain cell is denoted as ), the
probability that unit crack does not ex-

— ' .
-y -
o—| |1 -0
- { [ —_
- 1! Sins
[2ia]
Fig. 10 Coalescence model
P=2 T pP=3 7
paa ;

11 Various combination methods
of unit cracks

Fig.

" equal to or larger than 2.
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ist in a certain cell is written as 15 .
Therefore, the probability, q(1), that a
single crack exists in an observed cell is

considered q(1)=A(1-)A)2., In the same manner,
referring to Fig. 11, the probability, q(r)
(r=1,2,-+-+), that unit crack in an observed
cell is a part of the crack whose number of
crack coalescences is r is given by the fol-
lowing equations:

a(1)=A(1—A)?
q(2)=21(1—-A)

Considgringizkkr = A/(1-))2, summation of
a(r), Zq(r) = (1-A)*IrAr, yields

g}a(r):,‘ .......................................... (16)

and this coincides with the probability of

crack existence,A. Next,number of coalesced
cracks, v(p), which each consist of p unit
cracks is given by the following equation.

v(e)=q(o)x(mdo)
And, substituting Eq. (15) into Eq. (17),the
following equation is obtained.

V(0)=me(1—=A)2AP woveer creseeseresensasenreses
In Eq. (18), replacing p=1, number of cracks
which grow as a single crack is obtained.

U(1)=mg(1—/‘)2/1 ceserenaneas eetttsetenscnncans (19)

Number of cracks, v (p32), which grow accompa-
nied by crack coalescence is given by the
following equation.

Y(022)= 5 m (1= AVPA"= md2(1-2) ~(20)

Accordingly, the distribution of numbers
crack coalescences, F(p), is given by
following equation.

F(p)= 3 (m(1=1A"/v(o 22))}

=1 =271 (0 22) cerecenerresanes eeeerenes

Hereupon, transforming Eq. (21), the follow-
ing equation is obtained.

of
the

Inin =In(p— 1)+1nln—l-

1

1-F(o) A
As seen from this equation, the distribution
function, F(p), is a three parameters Welbull
distribution whose shape, scale and location
parameters are 1, -1/In)\ and 1, respectively.
Therefore,the probabilistic density function,
£f1(0), is given by the following equation.

filp)=———1ndexp{in A(o—1)}

_/:n[—-ln Aexp{ln A(e—1)}]do

A denominator in the above equation is needed
because number of crack coalescences, ps 1s
Calculating and
simplifying Eq. (23), the following equation
can be obtained finally.

filp)=—InAA*% (p22)

Next, in order to obtain the probability
of crack existence, )\, Eq. (19) was divided
by Eq. (20) and the following equation is
obtained;

v/ v(e=2)=(1-21)/A

............ (22)
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From this equation, A is obtained as follows;

v(e=2)  _v(p=z2)
v(D+vle=22) " w(e)

where, v(t) is number of total cracks and p3
is the rate of existence for F2 when the dis-
tribution of crack lengths is regarded as a
mixed type distribution which consists of Fj
and Fj.

A:

g reeceeres (25)

4.2.2 Comparison between calculated re-
sults and experimental results

crack
stress

The distribution of numbers of
coalescences at a certain number of
cycles can be calculated by obtaining the
probability for crack existence, ), from
Eq. (25) and substituting this into Eq. (21).
The calculated results are shown in Fig. 4
by a solid line. As seen from this figure,
for the case of g=147MPa shown in Fig. 4(b),
calculated results coincide well with exper-
imental results. For the case of g =127MPa
shown in Fig. 4(a), the tendency that exper-
imentally obtained distribution of numbers
of crack coalescences becomes a three param
eters Weibull distribution is examined qual-
itatively, but the calculated results come
on the upper side of experimental results
and they don't coincide with each other.
As the reasons why calculated and experimen-
tal results for the distribution of numbers
of crack coalescences do not coincide well
with each other in the region of low stress
amplitudes (0=127MPa), it can be stated that
the distribution of locations of cracks is
not uniformly random in the region of low
stress amplitudes:. So, in the next section,
the distribution of locations of cracks will
be investigated.

4.2.3 Investigation about whether distri-
bution of locations of cracks is
uniformly random or not

The distribution of locations of cracks
initiated in the area of 130.6mm2 is shown
in Fig. 12 by the points for the case of g=
127MPa, N=9.29x105. The locations of cracks
are represented by the central points of the
crack length. In order to perform a statis-
tical test, the area was divided into small

parts of 1.61lmm2(whose size is different
- —
.
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Fig.12 Distribution of locations of cracks
in corrosion fatigue for the case
of g=127 MPa, N=9.29x105

from that of cell shown in Fig. 10).
If the distribution of locations of

cracks is uniformly random and many  unit
cracks are initiated, the probability that
j unit cracks are contained in the observed
part can be approximated by the following
Poisson distribution;
p(j;p)=(u’e"‘)/j! tesesssceencessrsriccnanens (25)

where,  is the mean value of j. Therefore,
the number of parts, Mj, in which j unit

cracks are contained is given by the follow-
ing equation;

My=Mp(j; )=M(e™*)[j 1 sereermreserens 21

where, M is* the total number of small parts.
Xz test was performed by setting a null hy-
pothesis that the values of My obtained ex-
perimentally fit those expected from Poisson
distribution, and the following results were
obtained: For the case of 127MPa, the hy-
pothesis was rejected for 5% level of signif-
icance, and, for the case of 147MPa, it was
not rejected for 5% level of significance.
From the results stated above, as one of the
reasons why calculated and experimental re-
sults for distribution of numbers of crack
coalescences do not coincide with each other,
it can be stated that the distribution of
locations of cracks for g=127MPa is differ-
ent from random distribution. In the case
of g=127MPa, as seen from Fig. 12,cracks are
initiated closely in the local region, and
so, it may be expected that the probability
of crack existence in the local regionm, Ag,
is larger than that calculated from Eq. (25).
Therefore, when cracks are initiated closely
in the local region, another method to eval-
uate the value of AZ must be devised beside
the method in which Eq. (25) is used. For
the calculation method of Ay, let us use the
following equation for a while;

As220/ 221,

where, % 20c and Z2%+ are summation of
lengths for cracks which belong to Fp and
summation of crack lengths for all of the
cracks, respectively. Function F(p) was cal-
culated by substituting Eq. (28) into Eq.
(21), and the results are shown in Fig. 4(a)
by a dotted line. As seen from this figure,
calculated and experimental results coincide
well with each other. The reason why Eq.
(28) may be used to obtain Ay is considered
as follows: Denoting the mean value of num-
ber of coalescences by 6> p 1s given by the
following equation.

crack

p:ﬁz{pxu(p)}/ézu(p)z% ......... (29)

Hereupon, if Eq. (29) is applied to the lim-
ited local region in the specimen, A in Eq.

(29) may be replaced by Ag. When the distri-
bution of locations of cracks in the limited

local region is uniformly random, Eq. (28)
can be transformed as follows.

L 22l - 120/ 2la - ov(o=2)

TR2nL Z20/2l. v+ av(e=2)

=AL(2_AI) sevserestersrererrsassarrtenviantnan (30)
From Eq. (30), the value of Ay can be obtain-
ed as A\g&1. Considering that many small
cracks are initiated closely in the local

region, this value may be nearly appropriate.
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Fig. 13 Comparison between numerical re-
sults and experimental results
about the distribution of crack
lengths

However, when the distribution of locations
of cracks is not known and the value of A
is not evaluated, it is necessary to study
experimentally whether Eq. (28) should be
used to obtain the value of Ag or not.

4.3 Comparison between calculated and ex-
perimental results for the distribu-
tion of crack lengths F
Substituting both the distribution of
unit crack lengths and the distribution of
number of crack coalescences obtained by
using the method stated in section 4.1 and
4.2 into Eq. (8), the distribution of crack
lengths, F2(28), can be calculated numerical-
ly. An example of the results is shown in
Fig. 13 for each stress amplitude. The solid
line in this figure indicates the calculated
results of the distribution of crack lengths
for crack group F1 obtained in the previous
report[2]. The distribution of crack lengths
for all of the cracks, F(22), is obtained as
the following mixed type distribution, which
is composed of F1(20) and F2(22);

F(2D)=piFu(20)+ paFa(21) wovesseeenssseees (31

where, pj and py are the rates of existence
for F; and Fy, respectively, and their values
have been already given in the previous re-

port{2]. The calculated results for F(22)
obtained from Eq. (31) are shown in Fig.l3
together with experimental results. As seen

from this figure, the calculated and experi-
mental results of the distribution of crack
lengths, F(20), coincide well with each other.

Therefore, it is clear that the distribution _
ampIi-"""

of crack lengths at a certain stress
tude and number of stress cycles could be
evaluated by the method which took into ac-
count both crack initiation and growth behav-
iours of the distributed cracks.

5. Conclusions

Using smooth specimens of carbon steel,

201

JIS 8541, plane bending fatigue tests were
conducted in salt water(37% NaCl). Crack ini-
tiation and growth behaviours for crack group
F2 which grew accompanied with interaction
and coalescences with other cracks were in-
vestigated in detail and studied to see how
they are related to the distribution of crack
lengths, F2. The results obtained are sum~
marized as follows:

(1) For the crack group Fy which grows ac-
companied with interaction and coalescence
with other cracks, approximating that crack
length 22 is composed of p unit cracks whose
length is 2Qa, the change of the distribution
of 22a with stress cycles can be explained
theoretically by the method which takes both
the scatter in growth rate of 205 and the
variation of unit crack density during fa-
tigue into comsideration. In this case,
crack growth law for unit crack 20, is repre-
sented by d(28a)/dN=C*, and C* in this equa-
tion is a probabilistic variable. The dis-
tribution of C* is a normal distribution.
And, the change of density of unit crack with
stress cycles is given by the following equa-
tion, #a=ng{l— g FalN=Neal}

(2) Postulating that the distribution of
locations of cracks is uniformly random and
dividing the specimen region into mt cells
whose sizes are equal, the distribution of
numbers of crack coalescences, F(p), can be
explained by a model which defines that crack
coalescence occurs when unit cracks exist in
the neighbouring cells. From this model,F(p)
yields a three parameters Weibull distribu-
tion whose shape, scale and location parame-—
ter are 1, -1/1ln) and 1, respectively, where,
A 1s the probability that unit cracks exist
in the observed cell. For the case of g=127
MPa, as the distribution of locations of
cracks may not be uniformly random and cracks
are initiated closely in the local region,
the value of X\ for ¢g=127MPa must be detemmin-
ed by considering this experimental fact.

(3) The distribution of crack lengths for
all of the cracks, F(2¢), at a certain number
of stress cycles is obtained as a mixed type
distribution, that is composed of both crack
group F]l which grows as a single crack and
crack group F2 which grows accompanied with
interaction and coalescence with other cracks.
And, the calculated results of F(2) obtained
by taking both crack initiation and growth
behaviours of the distributed cracks into
consideration coincided well with experimen-
tal results.
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