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Mutual Interference of Multiple Surface
Cracks Due to Rolling-Sliding Contact
with Frictional Heating*

Takahito GOSHIMA** and Yuuji KAMISHIMA***

This paper deals with the two~dimensional rolling-sliding contact problem with
frictional heat generation on an elastic half-space containing multiple surface cracks.
Rolling-sliding contact is simulated as an arbitrarily distributed contact load with
normal and shear components, moving with constant velocity over the surface of the
half-space. The frictional heat generation at the region of contact is estimated by use
of sliding velocity, frictional coefficient and contact pressure. Numerical results of
stress intensity factors are obtained for the case of a set of parallel cracks due to
Hertzian- and parabolic-distributed loads. The interferential effects on the stress
intensity factors with the distance between two cracks, as well as the effects of the

slide/roll ratio, frictional coefficient and crack angle, are considered.
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1. Introduction

Since the analysis of Keer and coworkers®®,
considerable research®-® on fracture mechanics has
been performed for understanding the mechanism of
the rolling contact fatigue failure in rail loads, gears
and ball bearings. These studies, however, dealt with
a single crack. In the actual rolling contact fatigue
failure, multiple cracks occur. In the case of multiple
cracks, Goshima and coworkers®®9 analyzed the
stress intensity factors for multiple surface cracks in
an elastic half-space under rolling contact, however,
they only considered an isothermal case. Most rolling
contacts are accompanied by frictional heat genera-
tion due to the relative slip between the two contact
surfaces. Goshima and coworkers!'V-14 have dealt
with the thermoelastic rolling contact problem for a
single surface crack. However, multiple crack analy-
sis under rolling-sliding contact accompanied by fric-
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tional heating has not been performed as yet.

In this article, the stress intensity factors for
multiple surface cracks in an elastic half-space under
rolling-sliding contact loading accompanied by fric-
tional heat are analyzed. Contact loading is simulated
as a line contact pressure load with both normal and
shear components having either Hertzian or parabolic
distribution. The crack face friction is neglected. In
the present temperature analysis, the speed of the
moving contact region is assumed to be much greater
than the ratio of the thermal diffusivity and the con-
tact length (large Peclet number), and that the tem-
perature distribution is not disturbed by the cracks.
Numerical calculations of stress intensity factors are
carried out for the case of a pair of parallel cracks.
The effects of the distance between cracks, the fric-
tional coefficient, the slide/roll ratio and the crack
angle upon mutual interference of cracks are consid-
ered numerically.

2. Problem Formulation

An elastic half-space containing multiple surface
cracks is subjected to rolling-sliding contact with
constant moving velocity V as shown in Fig. 1. The
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surface of the half-space is loaded by an arbitrarily
distributed contact pressure Ps(Z) and tangential
frictional load fP(Z) in the contact region (where f
is frictional coefficient). Then, the frictional heat
generation Qs(X) is given as follows :

QS(f):stPs(f) (1)
where V5 is the sliding velocity during rolling contact.
In the analysis, the dimensionless parameters for the
crack k are represented by subscript £ (where k=1, 2,
---, m), and are shown as follows.

(x, v)=(Z/c, G/c), (&, &) =(Erlc, Tulc)

= Tilc, x¥=T¥/c, dv=dlc

Plx)=Ps(Z)/Ps, to= Tr/c, Pe=cV/x:

Sr: Vs/V, HO:ZG’OGOXt(lﬂLU)/Kz(l‘V) (2)
where x. is thermal diffusivity, K; is thermal conduc-
tivity, Go is shear modulus, v is Poisson’s ratio, a is
coefficient of thermal expansion, P is the maximum
pressure, P, is Peclet number and S; is slide/roll ratio.

The region outside the area of contact is assumed
to be thermally insulated. Furthermore, it is assumed
that the temperature distribution 7(z, y) is not
affected by the presence of cracks. The thermal
boundary conditions can now be given as follows.

oT _ fCVSrPOP(I)/Kt, |x|<1
<a—y>y=o‘{o, |z >1 (3)
(T)y—'—-ooz(] (4)

The mechanical boundary conditions on the sur-
face and at infinity of the half-space are given as
follows.

_ (—RP(x),|x|<1
(ou)eo={, e (5)
_ [fPoP(x), |x|<1
(GIy)y:O_{O’ |.Z'!>1 (6)
(JPQ)J/-“—WZOy (py q=x, y) (7)

Assuming that the crack face friction is neglected, the
boundary condition along the cracks may be expres-
sed as follows.
(O‘e,,;,,)g,,=o=0,0<$k<£k,k:l, 2, m (8)
(01t tr=0=0, Ex S Enop, £=1,2, -+, m (9)

L)

Crack k

& K X |

Fig. 1 Problem configuration and coordinate system
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where &:op is the crack face opening region of the
crack k.

3. Stress Analysis

The stress field o is represented by superposition
as:

os=04+ 0k (1, j=x,y or & ). (10)
Here oY denotes the stress in an uncracked half-space
subjected to the rolling-sliding contact loading and
heat generation in the contact region. The stress o}
denotes the disturbance induced by the crack.

The solution of the stress ¢% which satisfies the
boundary conditions Egs. (3)-(7) is represented as
follows(#-18),

[ 1P(r)FiJ~dz, r<—1
1
. / “P() Gydt + f P(t)Fudt,
o5 ) 771 -1
B —1<z=1 (an
1 1
f P(1)Gudt + f P(t)Fydt,
1 -1
x>1

Fi=Q2raP) V{(x—t)*+ y? ¥ HoS,fA
+2{y +Q2H,S,—1)(x— ) f} Bs{(x—t)?
+y%
Gi=0.51S:Dif{ nPs) ¥ — t)~52g~Pev*i4a=0)
Azz=cos 6+sin 6;—1.5 cos h(cos G+sin &)
Ayy=cos 6i+sin 61+ 1.5 cos G(cos G:+sin &)
Azy=15 cos G(cos -—sin 6:)

eg=tan-1('”—;"‘), G=15 b, =25 6o

Bre=(x—1t), Bz/y:yzy Byy= -—y(x— t)

Dor=Poy*—2x—t)—4PLx—t)*

DnyZ(I_t)"Peyz, ny:zy(x‘t)Pe (12)

To account for the disturbance oi; caused by the
crack, we consider the problem of multiple disloca-
tions present at the points z=2zx (20.=Xx + e b=
1,2,+--, m) in an infinite space. Then the dislocation
density is defined as:

— GO{[ Uékfk] + Z.[ U{k;k]}87
irc(x+1)

iBr
ar y(kzlyz)”‘ym)

(13)
where {[ Ue.e.)+i[ Uszl} represent the displacement
jumps. The solution to this problem is solved using the
following complex potential functions®?.

0= 2 {2} (14)
P e Fm as)

Then the stress representation is given by
Muskhelishvili?® as :
Oyt 02=2{ 0o 2) + Po((2)} (16)
Oyy— Ozz — 2102y =2{2 03(2) + ¥:(2)} 7

where primes denote differentiation with respect to z
(=x+1iy). An additional potential, which is required

Series A, Vol. 37, No. 3, 1994

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

218

to remove the surface tractions, is conveniently writ-
ten in terms of @, ¥ as®?:
(= D2)—203(2)— Ty(2), Im(2) <0
¢a(Z) ——{
0x(2), Im(z)>0.
Then the stress is expessed as follows®?,
Oyy— 100y = Q3(2) — Ps( Z)+(2— 2)@(‘25 19)
Replacing the constant . by distributed disloca-
tion density a«(7.)d7«, defined along the line z. of each
cracks, the stress o} can be obtained by integration
Of Nk
Substituting these results ¢} into Eq. (6) and the
boundary conditions Egs. (4) and (5 ), the following
singular integral equations for a. are obtained.

zez'ﬁ/a‘/; hwgfgﬁ;%dyik+§£ j{aj(ﬂj)clk(éky 77;)

+h7(77J5C2~( ék, ”j)}dv.i: _(Ugnth_ Z-O‘gkgh) Le=0y
(k=1,2,-, m)
(20)

(18)

where

Cin(&r, 1) =025 ; 20,)+(1— ™) OF (21 ; 20,)
O 5 )+ e 2 0F (ar s )
+(1—6u) L1s(Ex, 75) (21)

Con(Er, 1) = OF (215 20)+(1— ™) Do 20 ; 20,)
— ¥ OX(Zn; 205)+ ¥ (2— Z0) OF (24 ; 205)
+(1“' akJ)LZk(ék, 7].7') (22)

Lia(&x, 0)= 0F(2x; 200)+ OF(2i; 20)e*™  (23)

Law(€x, 75)= OF (26 ; 20) +{2a P (205 205)

+ W (2n; ) et (24)

(YL
O¥(z; &):{(;(ZO—ZO)/(z_ZO)Z’ iig;ig (26)
Hz; 20)=1/(z—2) 27
Pz 20)= Zo/(2— 20)° (28)
5@':{(1)1 zzj =i+ Exe” ",

4. Numerical Calculations

Equation (20) was solved numerically using the
piecewise quadratic method of Gerasoulis®’. The
singularity at the intersection of the crack and the
free surface was assumed to be on the order of less

2r(1-x2)
/ (Parabolic)

~
Vi—x2

(Hertzion)

-.0 -05 O

05 X 1.0

Fig. 2 Contact pressure distribution
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than 0.5. This behavior was approximated numeri-
cally when @x(—1)=0, where @.(7.) is defined as:

S5 (5 —iBr
ak(ﬁk):!ﬁ(ﬁ_‘zﬁ%‘_, De= 2;)]: —1. (29)

Let us divide the interval [—1, 1] into 2N, equal parts.
We define the nodal points as #x»=—1+(%—1)/Ns
(n=1~2N,+1), and use the Lagrange interpolation
formula for three nodal points in the approximation.
Setting the collocation points as &x,r= e, +1/2N. (7

Ku/PyT

O.7F
Hertzian
Crack | 0.6
_f=0.2 0.5
B=30° (k=1,2)
——d=l0 g4
----- d=0.1

L | 1

1
" 0.0 05

-0.r

.LO 1.5 2.0
Xt

Fig. 3 Interferential effects on the variation of mode II
stress intensity factors for crack 1 under Hertzian
contact pressure distribution

Kit/PeVC
O.7F
Hertzian
Crack 2 0.6
f-02 0.5
B=30° (k=1,2)
_—d=|.0 0.4

1 L
1.5 2.0
*

X2

i
.0 0.5 1O

-0.1F

Fig. 4 Interferential effects on the variation of mode II
stress intensity factors for crack 2 under Hertzian
contact pressure distribution

JSME International Journal

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

=1~2N,), Eq. (20) reduces to the simultaneous linear
algebraic system of (2§1Nk) equations for @x(7sn).

Using these solutions, the stress intensity factors for
crack k are given as:
Ki— iKu=nPo/2t:c @x(1), (k=1,2, -, m). (30)

In carrying out the numerical calculations, it was
necessary to determine iteratively the degree of crack
opening for a given set of parameters. Iteration was
performed under the condition of the absence of
overlap of the material. First, the numerical solution
was obtained for a completely open crack (&% : 0<
£,<tn in Eq. (9)). The resulting crack opening dis-
placement was checked by Eq. (13), and if overlap
was found as Ugn<0, partial crack closure was
approximated by setting Re{@w(74.)}=0 over that

Parabolic Ku/Ryic
Crack ! 0.5r
—d=1.0 0.4
----- d=0.1
B=30° (k=1,2)
f=0.2

Sr=0.1

0O 05 LO 1.5 2.0

*

X
-0.1t+

Fig. 5 Interferential effects on the variation of mode II
stress intensity factors for crack 1 under parabolic
contact pressure distribution

Parabolic Ku/PoVC
Crack 2 0.5
——d=1.0 0.4
—-—d=0.3
----- d=005
B,=30° (k=1,2)
f=0.2

! T Tk
e’ 00 05 1.LO 1.5 2.0
X3

-0k

Fig. 6 Interferential effects on the variation of mode II
stress intensity factors for crack 2 under parabolic
contact pressure distribution
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portion of the crack where overlap occurred. Then the
procedure was repeated for the partially closed crack
and results were verified. This method generally
converged within three iterations. With regard to the
number of collocation points, a good accuracy was
obtained for N,=10.

Numerical calculations are carried out for the
case of a pair of parallel cracks (m=2, /i=25). We
call these cracks crack 1 and crack 2 in the order of
contact, and set the distance between these cracks
as dr=d. In the present calculations, the contact
pressure P(x) in Eq. (11) is given by Hertzian and

Hertzian f=0.2
lg 0.7k 5,=0.7
o° SRR b
~ s
Z 06L 7
< ll/
0.5 »—II Sr=0.5
| — ==
[ e
/
0.4 —,/
[’ Sr=o.3
P
0.3} /
/
!
0.2 - Sr=0.1
I//"—
0.1 ~ —————Crack |
=30° (k=1,2
B30ttty Crack 2
l | ] 1 ;
0.0 0.2 0.4 0.6 0.8 d 1.0

Fig. 7 Interferential effects on the range of mode II stress
intensity factor 4Kn under Hertzian contact pres-
sure distribution for various values of slide/roll

ratio
o 06 Poro_@ohc of:o,g
@ B=30° (k=1,2)
=
% 03 Sr=0.7
—
0.4k 7
// Sr=0.5
f e
[ =
3+ 7
° 1/ Sr=0.3
/'
/ -
0.2/
r-/ Sr=0.1
._.’/,
0.1 Crack i
—————— Crack 2
i ! ] { 1

Fig. 8 Interferential effects on the range of mode II stress
intensity factor 4Ky under parabolic contact pres-
sure distribution for various values of slide/roll
ratio
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parabolic distributions as shown in Fig. 2. Results are
shown for the case of ¢=¢=0.1, P.=100 and Ho=
1.02%23 The numerical results of mode II stress inten-
sity factors Ku of each crack are plotted as functions
of the crack location over a complete loading cycle
for Hertzian and parabolic cases in Figs. 3 and 4, and
Figs. 5 and 6, respectively. These results are shown for
the case of =02, Bx=30° and S,=0.7, 0.1, as the
cracks approach each other until d=0.1 or 0.05. From
these figures, we can evaluate the stress intensity
factor range AKiu=(Ku)max—(Ku)mn, the results of

0.8 Hel"ZiGn Sr=O.I
o B, =30° (k=1,2)
C'?_» , f-0.8
E 0.7 /;-:j__.
& 7~
0.6/
/ f-0.6
t ——
osf -
04—//
M f=0.4
o3t/
/
0.2k f=0.2
I///
0.1 Crack |
——————— Crack 2
| 1 1 1 1
00 02 0.4 06 08 10

Fig. 9 Interferential effects on the range of mode II stress
intensity factor 4Ki under Hertzian contact pres-
sure distribution for various values of frictional
coefficients

o.7) Parabolic  Sr=0.1
L B,=30° (k=1,2)
a f-0.8
)2: 0.6 //_:;:._q——-——
< //
0'5_// f-0.6
f
0.4H /,/
/ f=0.4
0.3+ —==
///
//
o2 f:0.2
o1 ——Crack |
———————— Crack 2
{ | | |

L
00 0.2 0.4 06 O.8d|.0

Fig. 10 Interferential effects on the range of mode II
stress intensity factor 4Ky under parabolic con-
tact pressure distribution for various values of
frictional coefficients
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which are shown in Figs. 7-10 as functions of the
distance d between the cracks. From these figures, we
can recognize the effect of mutual interference of the
cracks; that is, the values of K and 4K decrease
with the approach of cracks, and these tendencies are
more marked in crack 2 rather than crack 1. These
interference effects become stronger for large slide/
roll ratio (until S,=0.7) and large frictional
coefficient (until f=0.8). However, interference
effects are not influenced very much by the difference
between Hertzian and parabolic contact pressure
distributions. In Figs. 3-6, the results for 4=1.0 coin-
cide with the results of the previous paper®® for a
single crack.

Figures 11 and 12 show the mode I stress intensity
factors K, of crack 1 and crack 2 as functions of the
crack location for Hertzian and parabolic distribu-
tions, respectively. These results are shown for the
case of S,=0.1, 8.=30°, f=0.2, 0.8 and 4=1.0, 0.5,
0.3. From these figures, we can see that K; for both
cracks increases with an increase of the frictional
coefficient f, and the decreases with the approach of
cracks due to mutual interference effect. The magni-
tudes of f, S» and contact pressure distribution are
not affected very much by the interference effect on
K. When crack 1 reaches the contact region (x>
—1.0), the value of K for crack 2 increases dis-
continuously at xif=—1.0; this is due to the abrupt
tractiondue to closure of crack 1.

Finally, in order to investigate the effects of the
crack angle B. on the stress intensity factors and on

Hertzian Sr=0.1 K1/Ry¢
———Crack | Lo
R Crack 2 f_:j%s 4=1.0
Bi=30° (k=1,2) 0.5 L
d:o-sfk / ‘-O.l
d=1.0,0.5 /X /) /
/ /
! / toos
/// /
/ /1
// ,;
/ -+ 0.06
/I
//
d=1.0 f:02 T0O04
f.—.o_a\d;o\.:s l d:1.0,0.5 1.0

Fig. 11 Interferential effects on the variation of mode I
stress intensity factors under Hertzian contact
pressure distribution
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their mutual interference, the numerical results of Ki _ Kut/Pe/C
and 4Ky are shown for various values of & for the He”i‘“” e
case of Sr=0.1, /=0.2 and Hertzian contact pressure Crack ! 03
d=1.0

distribution. Figures 13 and 14 show the variations of
K as functions of crack location for cracks 1 and 2,
respectively. The results are shown for 8.=20° and
60°. The maximum value of Ky for the shallow crack
(B:=20°) is always larger than that for the deep
crack (8.=60°), the former being affected signifi-

cantly by contact load. Figure 15 shows 4K as a Jz;?%\(/ |
function of the distance of cracks d at four values of 05 10 15 * 20

Bx. The interference effects for crack 2 are marked o b i
compared with crack 1, the latter being independent '
of Bk Figure 16 shows 4Ky as a function of crack Fig. 13 Variation of mode II stress intensity factors for
angle 8. at d=1.0, 0.1 and 0.05. From this figure, we crack 1 under Hertzian contact pressure distribu-
can see that 4Ky attains a maximum at 8.=30°~40° tion for various crack inclination angles
independent of the crack distance d.
. Hertzian Kn/PsVT
5. Conclusions Crack 2 o3l

This work has analyzed the stress intensity fac-
tors for multiple surface cracks due to rolling-sliding —_———d=03
contact with frictional heat generation. From numeri-
cal examples of the stress intensity factors for a pair
of parallel cracks, the following conclusions can be

0.2

made. g
(1) In the present numerical examples, magni- ] 1 -
tudes of mode I and mode II stress intensity N
factors decrease with decreasing distance
between the two cracks due to the mutual -o!
interference by the cracks. Fig. 14 Variation of mode II stress intensity factors for
(2) The mode II stress intensity factors of crack crack 2 under Hertzian contact pressure distribu-
tion for various crack inclination angles
Parabolic ~ Sr=0.1 Ku/Rve 0.2f A =30°
———Crack | toiz %, = —B=30
——————— Crack 2 fzo.8 d=1.0 S S —— ]
B, =30° (k=1,2) d=1.0  d=0.5 ><C1 7/ P
d d=0.3 T ol / 3.=45°
0.15 —/ === k
[ 7=
,II/ ————————————— o) 60°
-0, ' /o B
08 Ii’////
i
0.0
+ 0.06
-0.04 Hertzian
0.051 Sr=0.1, f=0.2
Crack |
- 0.02
SR Crack 2
! 1 L | |

00 02 04 06 08 IO
0.0 d

Fig. 15 Interferential effects on the range of mode II

Fig. 12 Interferential effects on the variation of mode I stress intensity factor 4Ky under Hertzian con-
stress intensity factors under parabolic contact tact pressure distribution for various crack incli-
pressure distribution nation angles
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Fig. 16

(3)

Engi neers

0.2+
O.15—
0.l
0.05F Hertzian
R —
! | l ! | ! 1

0 10° 20° 30° 40° 50° 60° 70°

B

Variation of the range of mode II stress intensity
factor 4Ku as a function of crack inclination
angle under Hertzian contact pressure for vari-
ous values of distance between the cracks

2 show a marked interference effect compar-
ed with crack 1, and these interference effects
become stronger with the increase in the
magnitude of slide/roll ratio or frictional
coefficient ; however, these effects are not
influenced very much by the difference of
contact pressure distribution and the crack
inclination angle. On the other hand, the inter-
ference effects on mode I stress intensity
factors are not influenced by the frictional
coefficient and the contact pressure distribu-
tions.

In the present numerical examples, when the
crack inclination angle is 30°~40° the ampli-
tude of the mode II stress intensity factor
range attains a maximum independent of the
crackdistance.
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