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Mutual Interference of Two Surface Cracks
in a Semi-Infinite Body Due to Rolling
Contact with Frictional Heating
by a Rigid Roller*

Takahito GOSHIMA** and Yuuji KAMISHIMA***

This paper deals with the two-dimensional thermoelastic contact problem of a
rolling rigid cylinder of specified shape, which induces effects of friction and heat
generation in the contact region, moving with constant velocity in an elastic half-space
containing two surface cracks located close to each other. In the present temperature
analysis, the speed of the moving heat source is assumed to be much greater than the
ratio of the thermal diffusivity to the contact length. The problem is solved using
complex-variable techniques and is reduced to a pair of singular integral equations
which are solved numerically. Numerical results of stress intensity factors are
obtained for the case of two parallel cracks. The variance in interference effects on
the stress intensity factors with distance between two cracks, and the effects of the
frictional coefficient, the sliding/rolling ratio and the distribution of heat generation on

the results are considered.
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1. Introduction

Since the analysis of Keer and coworkers!™?, a
considerable amount of research®-® on fracture
mechanics has been performed in order to understand
the mechanism of the rolling contact fatigue fatlure in
railroads, gears and ball bearings. These studies,
however, dealt with a single crack. In actual rolling
contact fatigue failure, multiple cracks occur. Go-
shima and coworkers®® first analyzed the stress
intensity factors for multiple surface cracks in an
elastic half-space under rolling contact. However,
they only considered an isothermal case. Most rolling
contacts are accompanied by frictional heat genera-
tion due to the relative slip between the two contact
surfaces. Goshima and coworkersV~¢4% subsequently
dealt with the thermoelastic rolling contact problem
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for a single surface crack. For the analysis of multi-
ple cracks accompanied by frictional heating, the
authors'’® have dealt with a thermoelastic rolling
contact problem with a specified contact pressure
distribution. For isothermal rolling contact, the con-
tact pressure shows a Hertzian distribution®. How-
ever, Dow et al."® and Burton et al."” showed that the
contact pressure distribution is not always Hertzian
for the case of thermoelastic rolling contact. There-
fore, it is more realistic, for actual thermoelastic
rolling contact, to specify the shape of displacement
beneath the roller instead of specifying the contact
pressure distribution.

In this study, we analyze the stress intensity
factors for a pair of surface cracks in an elastic half-
space under rolling-sliding contact accompanied by
frictional heat having either Hertzian or parabolic
distribution. This thermoelastic contact is dealt with
as a mixed boundary value problem with a specified
displacement shape beneath the rigid roller. The
crack face friction is neglected. In the present temper-
ature analysis, it is assumed that the speed of the
moving contact region is much greater than the ratio
of the thermal diffusivity to the contact length (large
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Peclet number), and that the temperature distribution
is not disturbed by the cracks. Numerical calculations
of stress intensity factors are carried out for a pair of
parallel cracks. The effects of the distance between
cracks, the frictional coefficient, the slide/roll ratio
and the crack angle upon mutual interference of
cracks are considered numerically.

2. Problem Formulation

An elastic half-space containing a pair of surface
cracks is subjected to rolling-sliding contact by a rigid
roller with constant moving velocity V, as shown in
Fig. 1. The surface of the half-space is specified as the
displacement shape of the roller in the contact region.
We call the cracks crack 1 and crack 2 in the order of
contact. In the analysis, the dimensionless parameters
for crack 1 or 2 are represented by subscript £ (where
k=1,2) and are shown as

(x,9)=(Flc, glc), (&, L)=(&xlc, Tulc),

Tr— .fk/(,‘, k= fif/c, o= fo/C, Yo= 1,70/(',

d=dJc, R=Rlc, li=[./c,

Po=cVixe, Sr=Vs/V, Q(x)=Q:\(F)/€,

2a0Gox 1+ v RP

Ho=> Kz(l(—u) . Pr="G,
where x: is thermal diffusivity, K: is thermal conduc-
tivity, Go is shear modulus, v is Poisson’s ratio, a is
coefficient of thermal expansion, P is the maximum
pressure, Zo and yo are the rigid displacement compo-
nents of yhe roller, Vs is the sliding velocity during
rolling contact, P is Peclet number and S- is the
slide/roll ratio. Assuming that all the work done by
the friction load is transformed into heat energy, the
frictional heat generation is given as @(x)=/VsPi(x),
Pi(x) being contact pressure and f being frictional
coefficient. However in the present study, having
specified the displacement shape of the roller, the
contact pressure distribution Pi(x) is not given, and
Q:(x) cannot be determined. In the present analysis,
we assume that the frictional heat generation @(x) is

~ y
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Fig. 1 Problem configuration and coordinate system
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given as

Ql(I):QoQ(l‘):fVSrPoQ(I), ( 1 )
where the distribution of heat generation Q(x) is
assumed to be a proper function of .

The region outside the area of contact is assumed
to be thermally insulated. Furthermore, it is assumed
that the temperature distribution 7(x,y) is not
affected by the presence of cracks. Thus, the thermal
boundary conditions can be given as follows.

(gl) :[chS,PoQ(x)/K,, x|<1 (2)

0y Jy=0 (0, |x|>1

(T)y--==0 (3)

The mechanical boundary conditions on the sur-
face and at infinity of the half-space are given as

Ozy+ fouy =0, |x|<1 (4)
Oyt 102y =0, |x|>1 (5)
Ugule=(x—x0)?/(2R)+ o, |x|<1 (6)
(0pa)y--==0, (p,q=x,9), (7)

where 0pq (9, g=x, y) are the stress components, Uyy
is a vertical displacement and i*=—1.

Assuming that crack-face friction is neglected,
the boundary condition along the cracks may be
expressed as

(Gert) e0=0, 0< E<le, k=1,2 (8)

(Cutn)tv=0=0, ExEErop, k=1,2, (9)
where &xop is the crack face opening region of crack &.

3. Stress Analysis

In general, using Muskhelishivili’s complex stress
function @(z), ¥(z) and a thermoelastic potential w,
thermal stresses and displacements are represented
aS(IS)

Guu + 0e=20(2) + B2}~ 26w (10)
O‘yy*(711722‘0‘1y:2{z®((z)+ W(Z)}
Fow  Fo . w
A2GO<W— o +21 aﬂ;y) (11)

2Go UteJc+ Uiy Jc) = x®(2) — B(2)

- - 2 2
— 2002 - ¥(2) +2Go(%;‘§—+i & g’y) (12)

1+
1 —
where primes denote differentiation with respect to
2(=x+y:) and.

7= [ox?+ 0% /0y?, x=3—4v.

First, consider the thermoelastic problem of a
rigid roller sliding with friction and arbitrarily dis-
tributed heat input on an uncracked half-space. The
quasi-stationary temperature solution in a half-space
due to a fast-moving heat source, which satisfies the
boundary conditions Eqs. (2) and (3), is given as"®

o=

,’jaoT(x, y), (13)
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0, —00<.1“<—1

Q(t) 7Pezy/4(t—t)dt
vere -1 Vx
—1< r<l1 (14)

”P f Q{ —Pazym(r tldt

1<x<oo,

where T*=2fVS,Poc/K.. Substituting Eq. (14) into
Eq. (13), we can easily get the solution of w. From the
known solution for thermoelastic stress and displace-
ment, the solution to this contact problem may be
obtained by application of the methods described
by Muskhelishvili® to the boundary conditions Egs.
(4)-(7). This procedure leads immediately to the
Hilbert problem, the solution of which is*?

)

T{x, y)=

0(2)=2iGo(1+if Nz —27 - X(2)}/{R(x+1)}

IS HP G| Z’UJ;Q?)’S(”” S(2)

+LS7§§TZ)—/]{Q(Z4) J—Q (u)}b (2; u)du

Ss(L)
+§ﬁv’7?ef l'_Zd ] =
where
S2)= [ Qf(’[)){u——z)}dt (16)
[ X(z)

(25 u)= / X( f)(t—u)l } £,

|ul<1 (7
Si(o)= [ QU — ) dt, 15 v oo (18)
X(t)=(1+$)*5-7(1— t)0s+7 (19)
X(z):(z+1)0'5”(2*1)0'5” (20)
7:1;tan”(xx—+l)f (21)
@x(ll):Ti u( Q(Egmde (22)

The stresses and displacements in an uncracked half-
space are given as follows!®.
(Oyy_ 1'0‘1_:/)01 =0(z)— O, (Z)

. z)cp;(z)—2cu(§“§+z§rg’;) (23)
2G( Uszfc+ iUy /c) o, =xDi(2) + O Z)
—(z— Z)@1(Z)+2(Jo< 3y +z£:g)y> (24)

To account for the stress field caused by the
crack, we consider the problem of a pair of disloca-
tions present at the points z2=zox (20x=xx+ 72~ **, k
=1,2) in an infinite space. Then the dislocation
density is defined as

GU{[ L Ekh] [ Lf{hsh]} e
imc(x+1) '

(k=1,2) (25)
where {[ Ue,ea]+i[ Uss)} represents the displacement
jumps. This problem is solved using the following
complex potential functions®?.

ar=
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0.(2)= 3 (26)
2ok } 27

O S

Then the stress representatlon is given by Egs. (10)-
(12), and is w=0. An additional potential ®s, which is
required to remove the surface tractions, is conve-
niently written in terms of @, ¥; as'®

= Dx2)— 204(2)— T 2), Im(2) <
@3(2):{
@.(2), Im(z) >0.
Then the stress representation is given by Egs. (23)
and (24), and is w=0.

The superposition of the thermoelastic contact
solution (@) on the dislocation solution (@, ¥ and
®s) does not satisfy the boundary condition Eq. (6).
In order to satisfy the surface boundary conditions
Egs. (4)-(6), an additional potential must be deter-
mined in order to remove the displacement effects
beneath the roller that arise due to the dislocation.
This interaction potential @, was derived by Bryant et
al.”, and their result can be expressed as

0= ~(1+iN 22 (@t B F(z; 200
—F(z; Zo)} (20— Zoa){ @ G(2 ; Zow)
+ a/kG(Z ; Zok)}+(ak+ Ek){l/X(ZOk)
= 1/X(Zox)} + (200 — Zor){ @ X ( Zow) [ X Zow)

M}

(28)

+a/kX,(Z0k)/X2(ZOk)}]v (29)
where
F(z; 2)={1-X(2)/X(20)}/(z— 2) (30)
Glz; 20)={F(z; )
+ X (2) X (20) /X 20)} /{2 — 20). (31)

Thus, using the potentials @:;=2,3,4) and ¥,
we can obtain the stress field for a pair of dislocations
ax(k=1, 2). Replacing the constant @ with distributed
dislocation density @x(7:)d7: defined along the line &
of each crack, the stress due to the cracks can be
obtained by integration of 7.

Superposing these results with the thermoelastic
roller solution (@), the stress solution which satisfies
the boundary conditions Egs. (2)-(7), can be
obtained. With substitution of these stresses into Eqs.
(8) and (9), the following singular integral equa-
tions for ax are obtained :

20 gk(”k) dan +2f {ai(7;) Kiu(En, 7))

f aj(n,)Ku(&, n:)}dn;
= {(dlhsk laéh{k)@x}(kzoy k:l, 2, (32)

where
4 —~
Kiw( &, 77;) P [¢ (Zk; 205)
(1= e*™) 0 (24 ; 20,)— ¥ D Zs; 20))
+e?™( 2 — Z0) OF (21 ; 20,)]
+(1—6kj)Lw En i), ko j=1,2 (33)

th(tk. UJ)— [d) (Zk N Zo;)
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+(1=€*™) B, (20 ; 205) — P OFH(Zu; 20)

+ ezlvﬁk(zh — Z1) @r(z; 7; Z:)J)]

+(1‘($kj)L2k(§k, 7]J)v k,j=1,2 (34)
Linl&r, 7)=0F (20 ; 20)+ OF(2n; 205) ™

k,j=1,2 (35)
Lax(&r, Uj):oﬁz*(tzk ;7;1')‘*'{2): OF (2 ; ZOJ)

Wz 20, etk j=1,2 (36)

Oiz; 2)=—(1+if)/2{F(z; 2)—F(z; Zo)
—(20— 20)G(2; 20)+1/X(20)—1/X(Z0)
+ (20— 20) X (20) /X *(20)} (37
OHz; 2)=—(+if)/2{F(z; 2)— F(z; Zo)
‘(Z(i*ZO)G(Z; Zo)+]/X(Zo)—1/X(§0)
+(Zn*20)X’(20)/X2(Zo)} (38)

Biz; )= L2 a0 (39)
O (z; zo):‘;(;;;jg/;)(z—zo){ Im(2)<0" 40
0¥(z; 2)=1/(2—2) (41)
Ur(z; 20)= 2o/(z2— 2)° (42)
Sw=1(k=7), 0(k=+}), (43)

Zr=Xr+t Sk(z"’ﬁh.

4. Numerical Calculations and Stress
Intensity Factors

Equation (32) was solved numerically using the
piecewise quadratic method of Gerasoulis®?’. The
singularity at the intersection of the crack and the
free surface was assumed to be on the order of less
than 0.5. This behavior was approximated numeri-
cally when @x(—1)=0, where @«(7x) is defined as
(:'@&ﬁk)eim

R(1- 79"

s _ 27 _
=", "L

a’k(’]k):
(44)

Let us divide the interval [ —1, 1] into 2N, equal parts.
We define the nodal points as fxn=—1+(n—1)/Nx (n
=1~2N.+1), and use the Lagrange interpolation
formula for three nodal points in the approximation.
Setting the collocation points as Enr=Tnr+1/2Nu (¥
=1~2N,), Eq. (32) reduces to the simultaneous linear
algebraic system of (2N, +2N,) equations for @x( 7).
Using these solutions, the stress intensity factors for
crack k are given as

K}“T‘KXIZ*C;‘; 7Tv2('/k ﬁk(l), k:1,2 (45)

In carrying out the numerical calculations, it was
necessary to determine iteratively the degree of crack
opening for a given set of parameters. Iteration was
performed under the condition of the absence of
overlap of the material. First, the numerical solution
was obtained for a completely open crack (&% : 0<&x
<l in Eq. (9)). The resulting crack opening dis-
placement was checked by Eq. (25), and if overlap
was found as Ut <0, partial crack closure was
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approximated by setting Re{ax(7x..)} =0 for that por-
tion of the crack where overlap occurred. Then the
procedure was repeated for the partially closed crack
and results were verified. This method generally
converged within three iterations. For the number of
collocation points, a good accuracy was obtained for
N:.=10.

Numerical calculations were carried out for par-
allel cracks (&1=p8.) with equal length (/=54=0.1),
P.=100 and Ho=1.0. All of the results are shown as
the dimensionless stress intensity factors K* and Kif
as follows.

K — ikt :E%{K' — K (46)

In Eq. (1), the heat input distribution Q(x) is equal to
the contact pressure distribution P(x)=(0u)y=0/Fo.
However, in the present analysis P(x) is not given.
Therefore, Q(r) is assumed to have either a Hertzian
or a parabolic distribution, as shown in Fig. 2.
Figure 3 shows the contact pressure distribution
calculated using @i(z) under the condition of Q(x)
being Hertzian and parabolic distributions for the
case of frictional coefficient f=0.2, for three slide/roll
ratios: Sr=0,0.1,0.7. The contact pressure has an
approximately Hertzian distribution for small slide/
roll ratio and an approximately parabolic distribution
for large slide/roll ratio (for great heat generation).

Qtx)
| 5_ ’i"“-xz)
37 { Parabolic)
8 o -({
\“—Xz

{Hertzian)

/

1 1
-0 -05 0 05 X 1.0

Fig. 2 Heat input distribution
(ROyy/Goly- o
heat input |
Hertzian Sr=0.7

Parabolic

Fig. 3 Contact pressure distribution
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Fig. 4 Interference effects on the variation of mode I

stress intensity factors under Hertzian heat input
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Crack | K;
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Crack | -
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/f i
§0.02
i
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Fig. 5 Interference effects on the variation of mode I
stress intensity factors under parabolic heat input

The results are not greatly affected by the difference
in Q(x).

Figures 4 and 5 show the numerical results of
mode [ stress intensity factors K of each crack as
functions of the crack location over a complete load-
ing cycle for Hertzian and parabolic cases. These
results are shown for the cases of f=0.2, 3,=30°, S,
=0.7,0.1 and 4=1.0,0.5, 0.3. Contrary to the previous
results®- 4% K, for both cracks increases with an
increase of Sr. This tendency is considered to be a
result of the large contact thermal stresses occurring
beneath the roller due to the increasing thermal effect
(large S;), and the large crack opening traction
arising with those thermal stresses. The values of K
decrease with the approach of cracks due to the
mutual interference effect. The interference effects
are not greatly influenced by the value of S, or by the
difference between Hertzian and parabolic heat distri-
butions.

Figures 6 and 7 show the mode II stress intensity

Series A, Vol. 39, No. 1, 1996

Ki
Hertzian heat input I
0.7 k
Crack | A
f=0.2 0.6F a
By=30° (k=1,2)
— d=10 0.5
————d=0. /
------------- Previous Paper"® 0-4[7¢
(d=1.0) /

~or=0.7

Sr=0.1

1 1 1
10 15 20

Xi

Fig. 6 Interference effects on the variation of mode II
stress intensity factors for crack 1 under Hertzian
heat input

*
Hertzian heat input Ku
Crack 2 .71~
f=0.2 .:;’\‘;
~ 0.6 i
By=30° (k=1,2) A
——d=1.0 0.5
—-—d=03
————— d=0.05 0.4
~Previous Paper''s!
(d=1.0)

Interference effects on the variation of mode II
stress intensity factors for crack 2 under Hertzian
heat input

Fig. 7

factors Ku of crack 1 and crack 2, respectively, as
functions of the crack location under Hertzian heat
distribution. Figures 8 and 9 show the variation of K
for crack 1 and crack 2, respectively, under parabolic
heat distribution. These results are for the cases of f
=0.2, 8,=30° S,=0.7,0.1 and d=1.0,0.1. From these
figures, we can see that K attains a positive maxi-
mum at about x*=1 and x¥=1 (x¥=1 corresponds
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Parabolic heat input K;I
Crack | 0.7
f=0.2

B-30° k=, O0®
—d=1.0 0.5
————d=0.
wemee-Previous P(]perlls,

(d=1.0)

-0.2+
Fig. 8 Interference effects on the variation of mode II
stress intensity factors for crack 1 under parabolic
heat input
Kl
Parabolic heat input ”
Crack 2 0.7
f=0.2
B-30" (k=120 O
—d=1.0
d 0.5
—-—d=03 i /
————d=0.05 ,
"""""""" Previous Paper"® /]
(d=1.0)

.\- == Sr=0.1
| P
1.0 15 20

X2

1
.0 0S5

—o.z&—

Interference effects on the variation of mode II
stress intensity factors for crack 2 under parabolic
heat input

Fig. 9

to the crack tip being directly beneath the right
edge of the contact region) for Hertzian heat distribu-
tion. For the parabolic case, when S,=0.7, Ki; attains
a positive maximum at about x¥=0.5 and x5 =0.5 (the
crack tip being in the contact region). In these figures
(Figs. 6 - 9), the results from a previous paper®
(under the same contact pressure distribution as that
of Q(x) in Fig. 2) are also shown by the dotted line for
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OKn ——  Hertzian heat input
ogk -———----——- Parabolic heat input

f=02, B,= B,= 30°

0.7
0.6
0.5
0.4
0.3

Crack1

Sr=0.1

0.2+,

Crack2
O.l
0.0 1 1 { ! 1
00 02 04 06 08 1.0

Fig. 10 Interference effects on the range of mode Il stress
intensity factor 4Ky under Hertzian and para-
bolic heat inputs for various values of slide/roll

ratio
AKn
0.7
0.6
0.5
04
0.3
0.2
Crack2  ____ Hertzian heat input
oM - —Parabolic heat input
S'=0'er| =BZ= 30°
0.0 | | 1 | 1
0.0 0.2 04 06 08 d 1.0
Fig. 11 Interference effects on the range of mode Il stress
intensity factor 4Ku under Hertzian and para-
bolic heat inputs for various values of frictional
coefficients
reference. In the case of Hertzian distribution (in

Figs. 6 and 7), the present results for Sr=0.1 almost
agree with the previous results ; however, for S-=0.7,
the two results are not in agreement with each other.
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005 Crack | (k=1)
- === Crack 2 (k=2)
Sr=0.1, f=0.2
0. | 1 I 1 1
%.O 0.2 04 06 08 d 1.0
Fig. 12 Interference effects on the range of mode II stress

intensity factor 4Ku under Hertzian heat input
for various crack inclination angles

OKn

0.25[-

O Hertzion heat input
Crack |
005+ @ ——m———=—= Crack 2
Sr=0.1, f=0.2
0.0 | 1 | 1 | | | 1
0° 10° 20 30° 40° 50° 60° 70° 80°
Bk y k=1,2

Fig. 13 Variation of the range of mode II stress intensity
factor 4Ku as a function of crack inclination
angle under Hertzian heat input for various val-
ues of distance between the cracks

In the case of parabolic distribution (in Figs. 8 and 9),
the present results for S,=0.7 are qualitatively simi-
lar to the previous results. Moreover, from these
figures, we can evaluate the stress intensity factor
range 4Ku={(Ku)max —(Ki1)mn, the results of which are
shown in Figs. 10 and 11 as functions of the distance
d between the cracks. From these figures, we can
recognize the effect of mutual interference of the
cracks; that is, the values of Ku and 4K decrease
with decreasing distance between the cracks, and this

Series A, Vol. 39, No. 1, 1996

tendency is more marked for a large slide/roll ratio
(up to Sr=0.7) and large frictional coefficient (up to
f=0.8). However, interference effects are not greatly
influenced by the difference between Hertzian and
parabolic heat distributions. The values of 4Ku for
crack 1 are always larger than the value for crack 2.
The values of 4Ku for crack 1 are not influenced by
the difference between Hertzian and parabolic heat
distributions. However, for the case of crack 2, the
results for the parabolic case are always larger than
those for the Hertzian case, and this tendency is more
marked for large slide/roll ratio and large frictional
coefficient.

Finally, in order to investigate the effects of the
crack angle B on the stress intensity factors and on
their mutual interference, the numerical results of
4Ky are shown in Fig. 12 as functions of the distance
d between the cracks at four values of 8« for the case
of S;=0.1, /=02 and Hertzian heat distribution.
From this figure, we can see that the interference
effects for crack 1 become more marked with increas-
ing £, and the interference effects for crack 2 become
more marked with decreasing B.. Figure 13 shows
4Ky as a function of crack angle 8« at d=1.0, 0.1 and
0.05. From this figure, we can see that 4K attains a
maximum at about 8»=40° independent of the crack
distance d.

5. Conclusions

We analyzed the stress intensity factors for a pair
of surface cracks due to rolling-sliding contact by a
rigid roller with frictional heat generation. From
numerical examples of the stress intensity factors for
parallel cracks with equal length, the following con-
clusions can be drawn.

(1) In the present numerical examples, magni-
tudes of mode I and mode II stress intensity factors
decrease with decreasing distance between the two
cracks due to the mutual interference by the cracks.

(2) The interference effects on the mode II stress
intensity factors become stronger with increasing
magnitude of the slide/roll ratio or frictional
coefficient ; however, these effects are not greatly
influenced by the difference in the heat distribution.
The interference effects on the mode 1 stress inten-
sity factors are not greatly influenced by the slide/roll
ratio or the difference in the heat distributions.

(3) In the present numerical examples, when the
crack inclination angle is about 40° the amplitude of
the mode II stress intensity factor range attains a
maximum.

(4) The contact pressure for an isothermal con-
tact problem has a Hertzian distribution. However,
the contact pressure distribution for a thermoelastic
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contact problem is different from a Hertzian shape
and is an approximately parabolic configuration.
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