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Stress Intensity Factors bf a Subsurface
Crack in a Semi-Infinite Body due to Rolling/
Sliding Contact and Heat Generation*

Takahito GOSHIMA** and Toshimichi SODA***

This paper deals with the two-dimensional thermoelastic contact problem of a
rolling rigid cylinder of specified shape, which induces of friction and heat generation
in the contact region, moving with constant velocity in an elastic half-space containing
a subsurface crack. In the present temperature analysis, the speed of the moving heat
source is assumed to be much greater than the ratio of the thermal diffusivity and the
contact length. The problem is solved using complex-variable techniques and is
reduced to singular integral equations which are solved numerically. Numerical
results of stress intensity factors are obtained for a relatively short crack. The effects
of the frictional coefficient, the sliding/rolling ratio, the crack depth and the crack
angle on the stress intensity factors are considered.
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1. Introduction

The rolling contact fatigue failure, such as shell-
ing in railroads, spalling in rollers, may be manifested
by originating and growing subsurface crack due to
periodic rolling/sliding contact. These subsurface
cracks may be initiated by preexisting defects such as
inclusions, gas pores, or local soft spots, or may be
generated during the cyclic straining process itself.
Since the analysis for delamination theory of Suh®, a
considerable amount of research®-® on fracture
mechanics has been performed in order to understand
the mechanism of subsurface crack initiation and
propagation in rolling/sliding contacts. These studies,
however, dealt with an isothermal case. Most rolling
contacts are accompanied by frictional heat genera-
tion due to the relative slip between the two contact
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surfaces. Goshima and coworkers®-®% subsequently
dealt with the thermoelastic rolling contact problem
for a inclined surface crack. In these studies, it was
impossible to calculate for the shallow crack of the
inclination angle being under 20° in connection with
the tribological failure such as shelling. However, for
the analysis of the actual rolling contact fatigue fail-
ure such as shelling or spalling, the subsurface crack
model is profitable. For the analysis of a subsurface
crack accompanied by frictional heating, Chen et al.®®
has delt with a near-surface horizontal line crack
with the moving frictional heating. Although this
study was delt with as a thermoelastic problem, they
do not consider the rolling/sliding contact from
mechanical standpoint. The subsurface crack analy-
sis under rolling/sliding contact accompanied by fric-
tional heating has not been performed as yet.

In this study, we analyze the stress intensity
factors for a subsurface crack in an elastic half-space
under rolling/sliding contact accompanied by fric-
tional heating. This thermoelastic contact is dealt
with as a mixed boundary value problem with a
specified displacement shape beneath the rigid roller.
The crack face friction is neglected. In the present
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temperature analysis, it is assumed that the speed of
the moving contact region is much greater than the
ratio of the thermal diffusivity to the contact length
(large Peclet number), and that the temperature distri-
bution is not disturbed by the crack. Numerical
calculations of stress intensity factors are carried out
for a short crack. The effects of the frictional
coefficient, the slide/roll ratio and the crack depth and
the crack angle upon the stress intensity factors are
considered numerically.

2. Problem Formulation

An elastic half-space containing a subsurface
crack is subjected to rolling/sliding contact by a rigid
roller with constant moving velocity V, as shown in
Fig. 1. The surface of the half-space is specified as the
displacement shape of the roller in the contact region.
In the analysis, the following dimensionless parame-
ters are used.

(z, y)=(Z/c, Flc), (& ©)=(&/c, EJc)

n=Zi/c, =1/, xo=Folc, yo= Folc

R=Rlc, c=7lc, Pe=cV]xe, Sr=Vis|V

2a0Gox:(1+v RPy

HUZ t(l(_V) ), Prz GO
where, x: is thermal diffusivity, K: is thermal conduc-
tivity, Go is shear modulus, v is Poisson’s ratio, a is
coefficient of thermal expansion, P is the maximum
pressure, Zo and o are the rigid displacement compo-
nents of the roller, Vs is the sliding velocity during
rolling contact, P. is Peclet number and S, is the
slide/roll ratio.

Assuming that all the work done by the friction
load is transformed into heat energy, the frictional-
heat generation is given as Qu(x)=fV:P(x), P(x)
being contact pressure and f being frictional
coefficient. However in the present study, having
specified the displacement shape of the roller, the
contact pressure distribution Pi(x) is not given, and
@i(x) cannot be determined. In the present analysis,

y
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! heat generation
EV QX
X >
Rolling = +_ -
\\direc?ion' R
i A 20
B 2 f'(O;y)7=o
B\~
B L
K AN

3

Fig. 1 Problem configuration and coordinate system
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we assume that the frictional heat generation Q(x) is
given as

Qi(2)=QQ(x)=1VS-PQ(x), (1)
where the distribution of heat generation Q(x) is
assumed to be a proper function of z.

The region outside the area of contact is assumed
to be thermally insulated. Furthermore, it is assumed
that the temperature distribution 7(x,y) is not
affected by the presence of crack. Thus, the thermal
boundary conditions can be given as follows.
(8_T> :{chSrPoQ(x)/Kt, lx|<1 (2)

dy Jy=0 |0, lz|>1

(T)ya—oozo ( 3 )

The mechanical boundary conditions on the sur-
face and at infinity of the half-space are given as

Oxy+ fouy =0, lz|<1 (4)
Oyy+ 1025=0, lx|>1 (5)
Ulyle=(x—20)*/(2R) +yo, |x|<1 (6)
(0p)y--==0, (p, q=z, ¥), (7)

where 0pq(p, =z, y) are the stress components, Uyy
is a vertical displacement and 7*=—1.

Assuming that crack -face friction is neglected,
the boundary condition along the crack may be ex-

pressed as
(et tn=0=0, 0< Ex<ts, k=1,2 (8)
(Osen)v=0=0, ErEErop, k=1, 2, (9)

where &rop is the crack face opening region of the
crack.

We require continuity of displacements through-
out the body except at the crack and hence the condi-
tion for single-valued of displacements is shown as

ﬂUxx-f-iny)dz:O, (z=z+1y) (10)

where ]( denotes the integration along a contour

around the subsurface crack.
3. Stress Analysis

In general, using Muskhelishivili’s complex stress
function @(z), ¥(z) and a thermoelastic potential w,
thermal stresses and displacements are represented
as®,

Oyy— Oz — 2102y =2{20"(2) + T(2)}
Fo  Fo . 0w
~26(-L4—5%+2 S (12)

2G(Uszfc + iUl Jc)=xP(2)— D(2)
R ondll Fo | . Fw )
T@-T@+26(G4+i2L) (13

Vo=1 aT(z, ), (14)
where primes denote differentiation with respect to
z(=x+yi) and I*=*/0x+ */0y?, x=3—4v.

First, consider the thermoelastic problem of
a rigid roller sliding with friction and arbitrarily
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distributed heat input on an uncracked half -space.
The quasi-stationary temperature solution in a half-
space due to a fast-moving heat source, which satisfies
the boundary conditions Eqs.(2) and ( 3), is given as*”

T(x, y)=
O —oco<l < —1
Q(t) —PezyM(x—-t) _
Jn_ 3 /— dt, —1<x<1
Q(t> _Pzzym(x_t)
»\/ﬂ'— . JT dt, 1<.Z'<00,
(15)

where T*=2/VS:Poc/K:. Substituting Eq.(15) into
Eq.(14), we can easily get the solution of w. From the
known solution for thermoelastic stress and displace-
ment, the solution to this contact problem may be
obtained by application of the methods described by
Muskhelishvili’® to the boundary conditions Egs.
(4)-(7).
Hilbert problem, the solution of which is®
01(2) =2iGo(1+if {z— 27— X(2)} {R(x+1)}

+ fSrHoPrGo[ _2"(1;{;23‘35(”) Su(2)

-i-Mfl{Q(u)— /—][—Qx(u)}81(z; u)du
Sa( )
2”@/ v dv] (16)
where

S)= [ )?f{t)) {H X)) gy (17)
(18)
()= [ Q) —v)*dt, 1Svso  (19)
X+(Z.):<1 + t)O.S—)‘(l — t)0.5+7 (20)
X(Z)z(2+1)0‘5—7(2_1)0'5+7 (21)
7:%tan*1(—’;% (22)
Q\l(u):’—a'%/_.it%)%fa%. (23)

The stresses and displacements in an uncracked half-
space are given as follows®®.
(ny bey)@l = @l(Z) @1(2)

(2 2)OU2) - 260( z+z""2‘“) (24)

ox 0xoy
2Go Utz e +iUby[) o1 =2 Pi(2) + @1 Z)

—(z— z)(Dl(z5+2Go( 2+zaa;g;) (25)

To account for the stress field caused by the
crack, we consider the problem of a dislocation pres-
ent at the point 2=2z2=x:+ 71+ 7e~*) in an infinite
space. Then the dislocation density is defined as

_ Gl U;:r]c_(k;j[-l-(]lg):]}eviﬂ (26)

where {[Us]+i[U:]} represents the displacement
jumps. This problem is solved using the following
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complex potential functions®®.
Oo(z)= 7 @2n
. a aZo
Uy(z)= Z (Z_QZO)Z (28)

Then the stress representation is given by Egs.(11)-
(13), and is @=0. An additional potential @s, which is
required to remove the surface tractions, is conve-
niently written in terms of ©@., ¥ as®®

@s(Z)z

{— 0:(2)—205(2)— Ty(2), Im(2)<0

O 2), Im(2) >0.
Then the stress representation is given by Eqs.(24)
and (25), and is w=0.

The superposition of the thermoelastic contact
solution (@) on the dislocation solution (@, ¥ and
@) does not satisfy the boundary condition Eq.(6).
In order to satisfy the surface boundary conditions
Egs.(4)-(6), an additional potential must be deter-
mined in order to remove the displacement effects
beneath the roller that arise due to the dislocation.
This interaction potential @s was derived by Bryant et
al.® and their result can be expressed as

O(2)=—(1+i)/2[(a+ @) {F(z; 2)—F(z; 20)}

—(z0— 2o0){@G(z; Zo)+aG(z; z0)}
+(a+ a){1/X(20)—1/X(Z0)}
(20— 20 @aX'(Z0) [ X*(Z0)

(29)

+ aX'(20) /X *(20)}], (30)
where
F(z; 20)={1— X (2)/X (20)}/ (2~ 20) (31)
G(z; 20)={F(z; 20) + X (2) X" (20) /X*(20)} | (z— 20).
(32)

Thus, using the potentials @, (j=2,3,4) and ¥,
we can obtain the stress field for a dislocation a.
Replacing the constant @ with distributed dislocation
density a(7)dy defined along the line & of a subsurface
crack, the stress due to the cracks can be obtained by
integration of 7.

Superposing these results with the thermoelastic
roller solution (@), the stress solution which satisfies
the boundary conditions Egs.(2)-(7), can be
obtained. With substitution of these stresses into Egs.
(8),(9) and (10), the following singular integral
equations for @ are obtained :

2% [ 294y + ["(a(m)Fi(8, )
+WF2($, m)}dn

=—{(0x:—10e) 21} s=0 (33)
[a<77)d77=0 (34)
where
R n)=2 [@r(z ) +(1—e**) 0F(z; 20)

~ez’”(l)r( Z;2)+e®(2—2)0F(z; z)) (35)
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Fy(€, 77)— [(D*(z 20)+(1—e**) 0,(z;: z0)

— 2’”@;“(2 c20)+ e (z—Z) 0z )] (36)
Ou(z; 20)=—(1+if)/2{F(z; 2)— F(z; Z0)

—(20— 20)G(z; 20)+1/X (20) —1/X( Z0)

+ (20— Z0) X "(20) /X *(20)} (37
0¥ (z; 20)=—(1+14f)/2{F{z; 20)— F(z; Z0)

—(z— §0>G(Z; Zo)+1/X(20)—1/X(Z0)

+(20— 20) X'(20) /[ X4 Z0)} (38)

= [=1/(z— Z0), Im(2)<0

@3(2,20)—{ l/(Z—‘Zo), Im(z)>0 (39)
v = (2= z0)/(z2—2)? Im(z)<0
3(2,20)—{ 0 ()0 (40)

z=x1+ iy + e~ (41)

4. Numerical Calculations and Stress
Intensity Factors

Equation (33), (34) was solved numerically using
the piecewise quadratic method of Gerasoulis®®. a(7)
is written as

a(77)=—E((i°f—(ﬁ77z)We"”, 7=2nc/c—1 (42)
Let us divide the interval [—1, 1] into 2% equal parts.
We define the nodal points as 7,=—1+(—1)/n (j=1
~2n+1), and use the Lagrange interpolation formula
for three nodal points in the approximation. Setting
the collocation points as &.=7:+1/2n (k=1~2n), Eq.
(33), (34) reduces to the simultaneous linear algebraic
system of (2n+1) equations for a(7,). Using these
solutions, the stress intensity factors K7, Kit at the
crack tip A (7=1) and KF, K# at the crack tip B (j=
2n+1) are given as

K -1 11—“**71'\/—270!( 1) (43)
Kf—i. B:wwﬁ a) (44)

In carrying out the numerical calculations, it was
necessary to determine iteratively the degree of crack
opening for a given set of parameters. Iteration was
performed under the condition of the absence of over-
lap of the material. First, the numerical solution was
obtained for a completely open crack (£°°: 0<E<¢).
The resulting crack opening displacement was
checked by Eq.(26), and if overlap was found as U<
0, partial crack closure was approximated by setting
Re{@(7;)}=0 for that portion of the crack where
overlap occurred. Then the procedure was repeated
for the partially closed crack and results were
verified. This method generally converged within
three iterations. For the number of collocation points,
a good accuracy was obtained for #=10.

Numerical calculations were carried out for the
case of a short crack (¢=0.1), and P.=100 and Ho=
1.0e0e0 In Eq.(1), the heat input distribution @(x)
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is equal to the contact pressure distribution P(x)=
(0yy)v=0/Po. However, in the present analysis P(z) is
not given. Therefore, from the results of previous
paper™, Q(x) is assumed to have a Hertzian distribu-
tion as

Qx)=(1—x?"? (45)
In the present numerical results, since the stress inten-
sity factors at the both crack tips (A and B)are almost
equal, we show the results only at the crack tip A. In
the following, we represent K, K#f as K, K.

Figures 2 - 4 show the numerical results of stress
intensity factors K, Ku as functions of the crack
location over a complete loading cycle for the case of
a horizontal crack (8=0°) located at the depth |z|=
0.5 for the various values of frictional coefficient f and
slide/roll ratio Sr. From these figures, we can see that
K attains a positive maximum at about x1=1 which
corresponds to the crack tip A being directly beneath
the right edge of the contact region. Figure 2 shows
the effects of frictional coefficient on the variation of
K; and Ky for Sr=0.1. The value of K; and Knu
increase with an increase of the frictional coefficient
/. Figures 3 and 4 show the effects of slide/roll ratio
Sr on the variation of K;, Ky for f=0.1 and f=0.7
respectively. The value of K; and K; increase with an
increase of the slide/roll ratio Sr peculiarly for large
frictional coefficient as shown in Fig.4. From these
figures, we can see that the value of (K)max is so small
that it may be disregarded as compared to the value of

~0.06[~

-0.08f

Fig. 2 Stress intensity factors as a function of
crack location showing the effect of frictional
coefficient f
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Fig. 3 Stress intensity factors as a function of crack
location showing the effect of slide/roll ratio Sr
for the case of f=0.1

Kugd
G
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\/ X,

-0.02-

Fig. 4 Stress intensity factors as a function of crack
location showing the effect of slide/roll ratio Sr
for the case of f=0.7

(Kn)max. Therefore, the shearing mode crack growth
seems to be predominant for the horizontal subsurface
crack. The range of Ku, 4Kiy=(Ku)mex— (Kir)un, is
the important quantity in fatigue considerations. For
the case of |y1|=0.5, the value of 4Ky does not change
very much with changing of the value of f and Sr as
shown in Figs. 2 and 3.

In order to investigate the effects of crack depth
ly1] on the stress intensity factors, Fig.5 show the
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Fig. 5 Mode II Stress intensity factors Kr as a function
of crack location showing the effect of subsurface
crack depth |y

0.08

0.06

0.04

0.0 ] 1 L1 ] 1 |
3O 0.2 0.4 0.6 0.8

il

Fig. 6 A4Kn=(Km)max—(Kn)mn as a function of subsur-
face crack depth |y for various slide/roll ratio S-

variations of Ky as a function of horizontal crack
location for changing the crack depth |#|=0.5, 0.2,
0.05, 0.01, for the case of f=S,=0.1. As the crack
approach the contact surface, the value of 4Ky
decreases and the variation of Kz become to be simi-
lar to the distribution of the contact pressure. Figure
6 shows 4Ky as a function of horizontal crack depth
ly1| for changing of the slide/roll ratio Rs=0.1, 0.3,
0.7, for the case of f=0.1. From this figure, we can see
that 4Ky attains a maximum at |#]=0.5 and 4Ky
decrease rapidly with a decrease of |zi|. In this case,
4Ky is not affected very much by the slide/roll ratio.
Figure 7 shows 4Ky, as a function of horizontal crack
depth || for changing of the frictional coefficient
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=01, 0.3, 0.5, 0.7, for the case of S;=0.1. When
|11]<0.5, as the crack approach the contact surface
4Ky is significantly affected by the value of frictional
coefficient. For example, when f=0.7 4K} increases
rapidly with a decrease of |¢1]. Therefore, when the
frictional coefficient is small, the failure such as a
shelling may occur at the depth |y|=0.5. However,
for the case of large frictional coefficient(dry con-
tact), it seems to be the most probable that the failure
such as shelling occur at the vicinity of the contact
surface. The numerical results in Figs. 6 and 7 are

Sr=0.1
B0

5C

AKir

I N A S B B
0 0.2 0.4 06 08

il

Fig. 7 4Ku=(Ki)max— (Ki)mn as a function of subsur-
face crack depth |y| for various frictional
coefficients f

Kz R =
Gy/C B =0°
O.1I0F

Sr=0.1, f=0.1
Y\l=0.5

Bri0" N N

-0.10- B =50° B =90°

Fig. 8 Mode II Stress intensity factors K as a function
of crack location showing the effect of inclined

crack angle 58
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shown for the range of |y|=0.01 which is the limita-
tion of the calculations.

Finally, in order to investigate the effects of the
crack angle B on the stress intensity factors, Fig. 8
show the variations of Kr as a function of inclined crack
location for changing the crack inclination angle 5=
0°,10°,50°, 90° for the case of |#:1/=0.5 and f=S,=0.1.
For the case of the horizontal or vertical crack, |Ku|
attain maximum at about x1=1 which corresponds to
the crack tip A being directly beneath the right edge
of the contact region. For the case of 8=50°, Ky
attain a negative maximum at x:=0 which corre-
sponds to the crack tip A being directly beneath the
center of the contact region. Figure 9 shows 4Ky as
a function of A at three values of S, for the case of ||

=0.5 and f=0.1. From this figure, we can see that
0.2
xr(% i f=0.1
= =0.5
¥ 0l8 o
<

0.14

0.12

Fig. 9 AK11=(K11)max—(Ku_)mm as a function of the in-
clined crack angle £ for various slide/roll ratio S»

Fig. 10 AKu:(Ku)max—(Ku)mm_ as a function of the in-
clined crack angle B for various frictional

coefficients f
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4Ky attains a maximum at 8=7° or 90°, and 4Ky
shows a minimum at 8=50°. Figure 10 shows 4Ky
and (Ki)mex as a function of B at five values of fric-
tional coefficient f, for the case of |s|=0.5 and S,=
0.1. When the frictional coefficient is small, 4K attains
a maximum at the roughly horizontal or vertical
crack. However, for the case of large frictional
coefficient, 4Ky attains a maximum at the inclined
crack. For example, for the case of f=0.7 dKnu
attains a maximum at 8=30°. (Ki)max increase with
an increase of frictional coefficient and (K:)max attains
a maximum at £=90°.

5. Conclusions

We analyzed the stress intensity factors for a
subsurface crack due to rolling/sliding contact by a
rigid roller with frictional heat generation. From
numerical examples of the stress intensity factors for
short cracks, the following conclusions can be drawn.

(1) The maximum values of stress intensity fac-
tors and 4K increase with increasing of frictional
coefficient and slide/roll ratio (increasing of thermal
-stresses).

(2) For small frictional coefficient, 4Ky of hori-
zontal subsurface crack attains a maximum when the
subsurface crack depth is 1/2 of the half contact
length. For large frictional coefficient, the value of
4K increase as the subsurface crack approach to the
contact surface.

(3) When the frictional coefficient is small, 4Ky
attains a maximum at B=0° or 90°, therefore the
shear mode crack growth of the horizontal or vertical
subsurface crack seems to be the most probable.

(4) When the frictional coefficient is large (f=
0.7), 4Ky attains a maximum at £ =30°, and (Ki)max
attains a maximum at 8=90°, therefore the shear
mode crack growth of the inclined subsurface crack
or the mixed mode crack growth of the virtical sub-
surface crack seems to be the most probable.
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