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Extension of the Euler-Savary Equation
to Hypoid Gears*

Norio ITO** and Koichi TAKAHASHI***

The Euler-Savary equation is the most fundamental relationship used to deter-
mine the relative curvature of a two-dimensional tooth profile which corresponds to
relative motion. In this paper, the necessary conditions for gearing were analyzed,
when a pair of tooth surfaces mesh continuously with a contact line and the basic
relationships between tooth surfaces and their relative motion were derived mathemat-
ically. In addition, the relative normal curvature and the geodesic torsion of the tooth
surfaces and relative motion were shown to be related to hypoid gears, and the Euler-
Savary law was extended to the equation of three-dimensional tooth surfaces for the

most general form of gearing.
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1. Introduction

When the tooth profile curvature of either mem-
ber is chosen arbitrarily, the profile of the other one
can be derived by applying the fundamental law called
the “Euler-Savary equation®”. It is a very useful
method, but it can only be utilized for spur and helical
gear tooth action in a transverse plane.

In order to study three-dimensional gear mesh,
this paper introduces the conditions that are necessary
for gearing with a contact line that is along the pitch
line : the first one is that the relative normal velocity
is zero at any point of contact and the second one is
that the normal vectors of the tooth surfaces at the
contact point must fit together after small revolutions
of the gear axes.

From the above conditions, two basic equations
were obtained by using the normal curvatures of
surface along the geodesic line and the geodesic tor-
sion on their conjugate tooth surfaces. In addition, it
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was found that the Euler-Savary equation is a special
example of a new three-dimensional basic relation-
ship of hypoid gears.

2. Relative Motion of Two Surfaces

When two surfaces mesh and have a same contact
line, we will describe here some of the basic relation-
ships underlying these surfaces and conjugate action.

Figure 1 shows two surfaces which slide and roll
on a contact line. They are denoted by vectors Xi and
Xe. When surface X: is stationary, relative motion is
simulated by the planetary motion of the surface Xi.
If we assume that two of the surfaces are in contact
with line C at any time ¢, after a very small amount
of time dt, the relative motion is advanced so that the

Fig. 1 Relative motion of two surfaces and a slide line .
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contact line of these surfaces is C’ on the surface Xe.
Then, relative velocity occurs on contact line C due to
the .relative motion and similarly also occurs on the
new contact line C’. Vector w is the relative velocity
at mean point P on line C. Now, we can .consider line
K, which comes into contact with vector w at point P,
on surface X.. Line K intersects line C’ at point P’.
We can also make line K comes into contact with
relative velocity vector w’ at point P’. This type of
line is a slide line. The same can be said in regard to
the other points P: and P2 which are along contact line
C. Therefore, there are numerous slide lines on
surface X..

If two surfaces are replaced by two tooth sur-
faces, the standard point that is used to design and
manufacture gears is chosen on the mean point of
tooth surface. Here, let the mean point take the point
being considered. In Fig. 1 the point being considered
is point P. Slide line K which passes through point P
is called a tooth spiral or a tooth trace. When surface
X is stationary and the other surface X: is moved,
there is another slide line which passes through point
P on tooth surface Xi. The slide line is the tooth
spiral of Xi. As mentioned above, two tooth surfaces
which have the same contact line and have relative
motion each other produce a pair of tooth spirals.
This pair of tooth spirals comes into contact at point
P, but the contact point subsequently proceeds
with relative motion. Consequently, contact points
describe a locus in space. The locus line is called a
pitch line. In addition, two surfaces are described by
a revolution of the pitch line around each gear axis.
These surfaces are referred to as pitch surfaces®.

3. Curve and Geodesic Line on Surface

Figure 2 illustrates the ‘tooth surface and the
curve that is on it. The surface is denoted by vector
X:.  The point being considered is P, and the curve
which passes through point P is denoted by vector
X:(S:). A geodesic line which comes into contact with

Fig. 2 Curve and geodesic line
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curve X«(S:) at point P is denoted by vector Xi(Si),
S; and Si, indicate the arc lengths of these curves
respectively. Points P, Py, P, »*+, Py, *++, are on curve
X.(S:). Certain geodesic lines which come into con-
tact with the curve at those points are drawn on the
surface X:. When curve X:(S;) is closed, a polygon is
produced by these geodesic lines. If the number of
divisions of the curve are increased infinitely, the
polygon itself becomes a curve. Consequently, an
infinitesimal part of the curve on the surface can be
considered to be an infinitesimal part of a geodesic
line that is in contact with the curve. Therefore, the
curve on the surface should have its own the curvature
and the torsion and also curvature and torsion of the
geodesic line which comes into contact with the curve.
The curvature and the torsion of the geodesic line are
the normal curvature and geodesic torsion that are in
the tangent direction of the curve at the point being
considered. Therefore, if we consider the curve to-be
a tooth spiral, the characteristics of tooth surfaces are
represented by geodesic lines Xi(Si) which come into
contact with the tooth spirals.

4. Normal and Geodesic Curvature of Tooth
Surface

We used the above characteristics of the tooth
surfaces in order to obtain certain relationships
between these surfaces and the relative motion. Then,
the tooth surfaces mesh while touching a contact line.

Figure 3 shows two tooth surfaces which have
meshed with a line contact. They are denoted by
vectors X1 and Xz They are fixed on the gear axes,
and they rotate together due to angular velocity
vectors @: and .. We will consider a three right-

"'1,2 /

'\“\._\ 7 %\_Iew contact
A lime
Pitch plane

0,

Fig. 3 Tooth surface mesh with a contact line
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hand orthogonal coordinate system P-XYZ which is
necessary in order to study the motion of tooth spirals
on the tooth surface. Let P point being considered be
origin P at any one instant £. P is the pitch point and
the Z-axis is the relative velocity direction of a tooth
spiral at point P. The Y-axis is the direction of vector
product v2Xwv;, where vi and v» are the velocity
vectors for the pinion and the gear. viand v: lie in the
pitch plane. The X-axis is perpendicular to the Y and
Z axes. The ZX plane then becomes a pitch plane.
The Y-axis intersects with the two points O: and O
on the pinion and gear axes, respectively. Pitch point
P at any time ¢ proceeds to a new pitch point P’ after
a very small increment of two gear rolls. Then, point
P on tooth surface X: moves to point Py, and, similar-
ly, the point P on tooth surface Xz moves to point P-.
When the common normal vector of the tooth sur-
faces at point P is denoted by unit vector n, n also
moves to point P: on surface X; and to point P2 on
surface X: after a very small rotation increment and
changes unit normal vectors nm: and n. respectively.
When the first contact point P on the tooth spirals
proceeds to the next contact point P’, points P
and P: move along the respective tooth spirals
71 and 7: and they meet at the same point P’. At
point P’, the normal vectors on their surfaces are
denoted by ni and n;, respectively. These two normal
vectors must coincide. Therefore, the contact point
moves by a small incremental arc length ds: along
tooth spiral 71 on tooth surface X1 and moves by a
small incremental arc lengt/h\ ds» along tooth spiral 7
on tooth surface Xz. Arc PP’ is on the pitch line.
Figure 4 shows the motion on the pitch plane that

I @P)| N

Fig. 4 Tooth spiral after small incremental
relative motion
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is shown in Fig. 3. Angular velocity vectors @: and @
are projected onto the pitch plane. Relative velocity
w at point P is vector vi-v.. Spiral angles ¢: and ¢
of the tooth spirals are the angles between the Z-axis
and the respective @1 and ®: on the pitch plane. If
vector PP'=dg, dE is the vector which indicates the
direction of the pitch line.

The following equations were obtained based on
the above data. Hereafter, we will use the subscript 7.
¢=1 is the symbol for tooth surface Xi and /=2 is the
symbol for tooth surface Xo.

First, the normal vector n: is given by the follow-
ing equation :

n;=n+w,-><ndt+[fgf] ds: (1)
: AP

where [ Ir in the equation expresses the value of
pitch point P. Using 4PP:P’ in Fig. 4, the following
equation are obtained :

dE= v:dt ~%d’si . (2)

where w=|w|.

Next, the relative velocity vector w’ of the tooth
spirals at new pitch point P’ is given by the following
equation :

w=w+woXdé (3)
where @ is the relative angular velocity vector and @
=w:1— w2. At the first contact point P of the two tooth
surfaces, the following well-known meshing condition
must be satisfied.

n-w=0 (4)
Moreover, at the new contact point P’ after a small

"incremental rotation, the following condition must be

satisfied :
new'=0 _ (5)
Another necessary condition is the coincidence of the
directions of the normal vectors nri and n: on the two
tooth surfaces.
niXn;=0 (6)
From Eqgs.(1) and (6), we can obtain
{(nx(w:Xn)—nx(w X n)}dt+n
0Pz s~ nx-U 55— (7)
In this equation, dn:/ds: can be replaced by the dn./ds:
from the geodesic line which is in contact with the
tooth spiral at the point being considered, because ds;
and dsig are equal in the small incremental arc length.
When normal curvature at point P is 1/0; and geodesic
torsion is 1/z;, we can obtain the next equation along
the geodesic line using Frenet-Serret’s formula as
follows : '
dni_ 1 dX. 1 dX.
dSi O: as; T ds:
From Eqgs.(7) and (8), we can obtain

X

><ni (8)
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wlls 1
nXx{@wXn)dt—nXx w< o 081 o 832)
+nx <£>< n><—1—6sl ——1—832>=:O (9)
w 1A 4]
Thus, from Eq.(9), the relationship between the two
normal curvatures from the tooth spiral direction on

the tooth surface is obtained as follows :

— 0T not+-L o —Lss,=0 (10)
w 01 02

Similarly, the relationship between the two geodesic
curvatures is obtained as follows :
—w-wé‘t+w<—1—é‘sl—l832)=0 (11)
Y5t 5]

Equations (10) and (11) are the results from Eq.(6).

Next, let us consider the significance of Eq.(5).
Substituting Eq.(8) into Eq.(5) and arranging Eq.
(5), the following equation can be obtained :

n (@ X v2— w2 X v1)6t+(-$7——”—'—@—>2<—5"—>w53i=0

w
(12)
Here p, g, and A are given by the following scalar
equations :
c@wX
p="001 (13)
. X01— X
g=2 (w; vul)z @1 X U2) (14)
A= (15)
Using Eqs.(13)-(15), Eq.(12) is written as follows:
1
s—L o Lo (16)
w q ’

Substituting Eqgs.(10) and (11) which were obtained
from Eq.(6) into Eq.(16) which was obtained from
Eq.(5), the following important equations were
obtained :

——p ——p 9
01 O2
1 1
5] 2 7 A
T, 1 "« 1)
01 02

Equations (17) and (18) are the basic relationships
between the normal curvatures and the geodesic tor-
sions along the tooth spirals on the tooth surfaces.
The contact point proceeds along the pitch line with
the small incremental motion of tooth surfaces mesh-
ing, so these equations must be satisfied at all of the
points on the pitch line. In Eq.(17) ¢=0 is the singular
example. It is the turning point of interference of the
tooth spirals that gives the concept® of the limit
normal curvature and the limit pressure angle. By
rewriting Eq.(17), the following equation is obtained :
1 1 __ 7
PR R Sl (19)
j/ b/
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This equation can be used in place of Eq.(17).
5. Application to Concrete Gears

5.1 Hypoid gears

Hypoid gears are hyperboloidal gears that have a
conical external form and they are the most general-
ized gear pair. Therefore, the equations from the
basic relationship obtained above can be applied to
hypoid gears. Here, let us express 2, ¢, and A using the
hypoid gear elements.

?, q, and A are constants which are determined by
a pair of pitch surface forms and normal direction of
tooth surfaces. The pitch surfaces of the hypoid gears
can be described by rotating the pitch line about each
gear axis, as was mentioned above. The pitch sur-
faces can be replaced by their inscribed or circum-
scribed cones ; these are referred to as pitch cones.
The characteristics of these pitch cones are represent-
ed by the three elements of pitch cone distance, pitch
angle, and the spiral angle of the tooth spiral. These
are three cone elements.

Figure 5 shows the pitch cones of the gear and
pinion and their three elements. A; and A. are the
pitch cone distances, ¥ and I” are the pinion and gear
pitch angles, and ¢1 and ¢. are the pinion and gear
spiral angles. The coordinate system is the kine-
matics coordinate system P-XYZ. Each element
contained equations of p, g, and A, which are obtained
as follows :

Gear pitch cone

o,

Fig. 5 Pitch cones of hypoid gears on their pitch plane
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€oS. v sin ¢i
a)1'—'€01|: sin Y }
cos y cos ¢
cos I sin ¢,
W=z} —sinl’
cos I' cos ¢» 20)
cos ¢
m=wArsin y 0 }
—sin ¢
CoS ¢
U= — a)zAz sinI” 0 }
—sin ¢»

D=wW1— W2
tan ¢1/(Aitan y)+tan ¢»/(Aztan I')
= vn[ 1/(As cos ¢)—1/(As cos ¢)
1/(A;tan y)+1/(Aztan I')

(21)
w=v—v:

0
=yv,(tan ¢ —tan ¢2){ 0 ] (22)
-1

vn=wi A1 sin y cos ¢1=—w2A2sin I" cos ¢» (23)
When ¢ is the pressure angle of the tooth surface at
the pitch point, unit normal vector n of the tooth
surface is expressed by the following matrix :

—cos ¢
n={—-sin ¢} (24)
0

From the results above, $, ¢, and A are written as
follows :
__—wvisin ¢+ vacos ¢

tan ¢ —tan ¢,
_ v3cos (¢h—¢s) sin p+vicos ¢
T cos ¢ cos ¢e(tan ¢i—tan ¢)?

_ — U3 .
A= tan ¢1—tan ¢» @7

» (25)

(26)

where
Y= tan ¢ tan ¢,
Aitany  Astan I’
V2= 1 - L
Aicos ¢ Ascos ¢

1 1 (28)

=4 tan 7 T A tan T
V= sin ¢ sin ¢
A, Ay
Substituting these p, ¢, and A values into Eqs.(17) and
(18), we can quantitatively find the normal curvature
and geodesic torsion of the tooth spiral of the hypoid
gears. v
5.2 Gear pair with parallel axes
‘When the hypoid axes become parallel, spur gears
are considered to be a special type of hypoid gears. In
regard to the method that makes the gear axes paral-
lel, there are two cases as follows :
5.2.1 The pitch cylinder Here, the values of
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pitch angles 7 and I' of the hypoid gears are zero, in
addition, the values of the spiral angles ¢1 and ¢ are
also equal. We will substitute y=0, I'=0, and ¢1=¢»
=¢ into Egs.(20)-(28) with respect to the hypoid
gears. Then, the radii of the pinion and the gear pitch
cones at pitch point P are defined as the radii of the
pitch circles. They are represented by R: and R,
respectively. We have Ri=A;sin y and R:=A:sin I
In cylindrical gears radii R and R: of the pitch circles
are constant and the pitch plane is a common tangént
plane that is in contact with two pitch cylinders.
Hence we can obtain the following equations :

oL 1
yi=tan </1< 7 + Rz)
)/2:0

1,1
V3= R1 -+ Rz (29)
va=0
P s (L+2)

7 sin ¢ sin® ¢ R1+Rz
Substituting Eq.(29) into Eq.(19), the following equa-
tion is obtained.

11y (“L _1_>

oo sin ¢ sin® ¢ R1+ 2 (30)
Similarly, from Egs.(18) and (29), we can obtain

) S S 1.1

. sin ¢ cos g/)( 7 + Rz) (3D

Equation (30) expresses the relative curvature of the
tooth spirals and Eq.(31) expresses their relative
torsion. Equations (30) and (31) are the necessary
conditions for gear pair meshing with a contact line.

Figure 6 shows the pitch cylinders and the pitch
plane of the helical gears. Two tooth surfaces Xi and

wl\o Pitch cylinder

Fig. 6 Pitch cylinder
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X: come into contact at pitch point P. Points Q, O}
and O3 correspond to points P, O: and O, respectively.
All other symbols are the same as defined previously.

5.2.2 Pitch plane Here, the values of pitch
angles 7 and I" of the hypoid gears come together and
become 7/2. Two gear axes are parallel and have the
same directions. They mesh as if they'are internal
gears. If we calculate the equations for the hypoid
gears under the above conditions, we can obtain the
following equations :

=0
S S
Aicos ¢ Azcos ¢
v3=0
V= sin ¢1 _ sin ¢,
A A
p:< 11 > cos ¢ (32)
Aicos ¢ Azcos ¢/ tan ¢1—tan ¢
_ cos ¢
97"Cos ¢r cos dultan ¢r—tan go)
X(sin Ql _ sin ¢2>
Az Ar-
A=0
Whence, 1/p is given by the following equation.
1 A1A2 sin (¢1 - ¢2)

b (Azcos ¢o— Az cos ¢n) cos ¢ (33)

Figure 7 shows pinion and gear tooth surfaces Xi
and X3 whose pitch surfaces are a plane and which
come into contact at pitch point P. The pinion and gear
axes intersect the pitch plane at points Or and Oc.
Therefore we can get OpP =A; and OcP = A4,. Let the
intersection of the extension of line OrO¢ and the X-
axis be point O and let OP=7, O0s =R}, and 00c=
Ru. Now, when straight line Oz is drawn at right
angles to OOr on the pitch plane, let £POu=g¢, tan a
is given by the following equation:

r—Azsin ¢
Az cos ¢

tan a=

Fig. 7 Pitch plane
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— Aisin ¢1"‘A2 sin §/)2 (34)
Ascos ¢p— A1 cos ¢
Whence, solving for »; we have
o AlAz sin (¢1 - ¢’z)
¥="4, cos ¢o— A cos & (35)
From Egs.(33) and (35), we can obtain
1_ 7
5 cos @ (36)
7 ( 1 1 >
q cot a cos ¢ Aicos 1 Ascos ¢/ (37)
Referring to Fig. 7, we have
Ri= Alcg:(s)sa¢l
Ru= Az COS ¢z (38)
1 cos a

Ry and Ru are the radii of the pitch circles of a gear
pair with parallel axes, and point O corresponds to the
new pitch point. From Egs.(37) and (38), we have

P _cosd(1 1
q " sin a/( R Ru ) (39)

Substituting Egs.(36) and (39) into Eq.(19), we can
obtain the following :

1 1 1 (1 1)
p1cos p—7 ' pacos p—#» sina\ R Ru
(40)

In addition, by substituting Eq.(18) into A=0, we can
obtain the following :
1 1

(5} _ 2

01COS ¢ 7  p2cos ¥

In Eqgs. (40) and (41), 1/(o: cos ¢) and 1/(pz2cos @) are
the geodesic curvatures of the tooth spirals on the
pitch plane and, in addition, they are equal to the
curvatures of the plane curves. Therefore Eq.(40)
concurs the Euler-Savary equation on the plane curve.
Here ¢ corresponds to the spiral angle of the internal
gear, and $=0 when we consider spur gears.

6. Conclusion

When the tooth surfaces mesh continuously after
the infinitesimal turning motion with an instantaneous
contact line, it is made clear by this study that there
are two necessary conditions and two kinds relation-
ships that are necessary for gearing. One of the
necessary conditions is that the normal vectors at any
contact point on their tooth surfaces should coincide
and the other is that the relative normal velocity at
the contact point must be zero.

Equations (17) and (18) can be derived alge-
braically by using these conditions. The former equa-
tions express the relationship between the normal
curvatures and relative motion of the tooth surfaces
and the latter equation is composed of geodesic tor-
sions and the relative motion of their surfaces.

When the gear axes are parallel and have the
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directi hypoi i ; .
same direc %ons, a hypoid pair b.ecorr.1es' spur ge.ars References
Here each pitch angle of the hypoid pair is just a right
angle and each spiral angle becomes zero. At the (1) Dudly, D.W., Gear Handbook, (1962), p.1-7,
same time, the tooth spirals of the hypoid gears McGraw-Hill. _ .
change into the gear profiles on the pitch plane of the (2) ;I‘akaf;a;hl, Kd i(i}nd It% N., SJtudu;s onMP1tﬁhESur-
spur gears. Thus, Eq.(40) concurs the Euler-Savar ace ol Hypold s€ar, 1rans. Jpn. Soc. eCh. tng.,
P g q Y (in Japanese), Vol. 49, No. 443, C(1983), p. 1246-
equation. 1255 .

In conclusion, there are two basic relationships (3) Wildhander, E., Basic Relationship of Hypoid
required for three-dimensional gearing, and they can Gears II, Am. Mach., Vol. 90, No. 2 (1946), p. 131~
be applied to all other types of two-dimensional 134,
gearing.

Series C, Vol. 42, No. 1, 1999 JSME International Journal

NI | -El ectronic Library Service



