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Mutual Interference of Two Subsurface
Cracks in a Semi-Infinite Body Due to
Rolling Contact with Frictional Heating*

Takahito GOSHIMA**, Sotomi ISHIHARA**,
Masayoshi SHIMIZU** and Toshimichi SODA***

This paper deals with the two-dimensional thermoelastic contact problem of a
rolling rigid roller of specified shape, which induced of friction and heat generation in
the contact region, moving with constant velocity in an elastic half-space containing
a couple of subsurface cracks. In the present temperature analysis, the speed of the
moving heat source is assumed to be much greater than the ratio of the thermal
diffusivity and the half contact length. The problem is solved using complex-variable
techniques and is reduced to singular integral equations which are solved numerically.
Numerical results of stress intensity factors are obtained for the case of two short
cracks which are located parallel to the surface. The variance in interference effects
on the stress intensity factors with the distance between two cracks, and the effects of
the frictional coefficient, the sliding/rolling ratio and the depth of the crack location

on the results are considered.
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1. Introduction

The rolling contact fatigue failure such as shell-
ing in railroads, spalling in rollers, may be manifested
by originating and growing subsurface cracks due to
periodic rolling/sliding contact. These subsurface
cracks may be initiated by preexisting defects such as
inclusions, gas pores, or local soft spot, or may be
generated during the cyclic straining process itself.
Since the analysis for delamination theory of Suh”, a
considerable amount of research®® on fracture
mechanics has been performed in order to understand
the mechanism of subsurface crack initiation and
propagation in rolling/sliding contacts. These studies,
however, dealt with an isothermal case. Most rolling
contacts are accompanied by frictional heat genera-
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tion due to the relative slip between the two contact
surfaces. Goshima and coworkers® subsequently
dealt with the thermoelastic rolling contact problem
for a subsurface crack. However, multiple subsurface
crack analysis under rolling/sliding contact ac-
companied by frictional heating has not been per-
formed as yet. For multiple surface cracks, one of the
authors”®Y has showed that the stress intensity
factors decrease due to the mutual interference
effects. Otherwise, for the case of multiple subsurface
cracks, the stress intensity factors will happen to be
increased due to the mutual interference effects.
Therefore, it will be very important to analyze the
stress intensity factors for multiple subsurface cracks
under the rolling/sliding contact with frictional heat-
ing.

In this study, we analyze the stress intensity
factors for a pair of subsurface cracks in an elastic
half-space under rolling/sliding contact with fric-
tional heating by a rigid roller. This thermoelastic
contact is dealt with as a mixed boundary value
problem with a specified displacement shape beneath
the rigid roller. The crack face friction is neglected.
In the present temperature analysis, it is assumed that
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the speed of the moving contact region is much
greater than the ratio of the thermal diffusivity to the
contact length (large Peclet number), and that the
temperature distribution is not disturbed by the
cracks. Numerical calculations of stress intensity
factors are carried out for two subsurface cracks
arranged in a series or in a row which are parallel to
the contact surface. The effects of the distance
between cracks, the frictional coefficient, the slide/
roll ratio and the subsurface depth of the cracks upon
mutual interference of cracks are considered numeri-
cally.

2. Problem Formulation

An elastic half-space containing a couple of sub-
surface cracks is subjected to rolling/sliding contact
by a rigid roller with constant velocity V, as shown in
Fig. 1. The surface of the half-space is specified as the
displacement shape of the roller in the contact region.
We call the cracks crack 1 and crack 2 in the order of
contact. In the analysis, the dimensionless parameters
for crack 1 or 2 are represented by subscript # (where
k=1,2) and are shown as:

(x, )=(Zc, G/c), (&x, L)=(Eufc, Eulc),

/k: ik/C,

R=R/c, xo=Zolc, xe=TFrlc, Yr= Yilc,

Sr: Vs/V, Pe:CV/Kt,

200Gox:(1+ vy RFPs

Ho= Of(to(llg‘ U) )' b= Go
Where x; is thermal diffusivity, K: is thermal conduc-
tivity, Go is shear modulus, v is Poissoin’s ratio, a is
coefficient of thermal expansion, £ is the maximum
contact pressure, Zo and ¥o are the rigid displacement
components of the roller, Vs is the sliding velocity
during rolling contact, P. is Peclet number and S- is
the slide/roll ratio. Assuming that all the work done
by the friction load is transformed into heat energy,
the frictional heat generation is given as Q(F)=
SVsP(X), P(Z) being contact pressure and f being
frictional coefficient. However in the present study,

~ y
X2
T Frictional
1 heat generation
\ Qx)

’f%
Roling  ° -I'_

Yirectionl R .
| TLX

2C
'_‘——’f'(o;y)%o

Crack?2

Fig. 1

Geometry and coordinate system
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having specified the displacement shape of the roller,
the contact pressure distribution P(Z) is not given
and Q(Z) cannot be determined. In the previous
study'® for a single subsurface crack, Q(x) was
assumed to be Hertzian distribution being Qi(F)=
QoQ(x), Q=/sVSFs. In the present analysis, follow-
ing the previous study®, we assume that the frictional
heat generation is given as:
Qu&)=fVSPoQ(x)=FVS,Po/1—x* (1)
The region outside the area of contact is assumed
to be thermally insulated. Furthermore, it is assumed
that the temperature distribution 7(x,y) is not
affected by the presence of cracks. Thus, the thermal
boundary conditions can be given as follows.

OT\ _ [feVS:PRQ(x)/Ke, |x]<1
(T)y--==0 (3)

The mechanical boundary conditions on the sur-
face and at infinity of the half-space are given as

Oxu+ fouu=0, |x|<1 (4)
Oyy+10:y=0, || >1 (5)
Uyyfe =(x—20)*/(2R) + o, |x|<1 (6)
(0pa)u--==0, (p,q=x, y) (7)

where gpq(p, g=x, y) are the stress components, Uy
is a vertical displacement and 2= —1.

Assuming that crack face friction is neglected,
the boundary condition along the cracks may be
expressed as

(Gent)se0=0, 0<Eu< Ly (B=1,2) (8)

(Oue)u-0=0, E,EEF (k=1,2) (9)
where £ (k=1, 2) is the crack face opening region of
crack k.

We require continuity of displacements through-
out the body except at the cracks and hence the
condition for single valued of displacements is shown
as

f Ut iU da=0, (ar=at ivn; £=1,2)

(10)
where '{ denotes the integration along a contour

around the subsurface cracks.
3. Stress Analysis

In general, using Muskhelishivili's"? complex
stress function @(z), ¥(z) and a thermoelastic poten-
tial w, thermal stresses and displacements are re-
presented as:

O+ 0 =2{0(2)+ 0(2) } —2GoVw (11)

Gy — Ore— 2104 =2{20 (2)+ ¥(2) }
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— W) +2G 7 +ile Zo ) (13)
Vip= %Jr Y T (x, y) (14)

where primes denote differentiation with respect to
z2(=x+iy) and V*=3*/ox®+3*/0y?, x=3—4v. The
thermal stresses and displacements for the half-space
are represented as!"®:

Oy — 100y=0(2)— O(2) +(z2— 2) D' (2)

ZC"( : o aa;g)y> (15)
<Ucm+'U ) x@(2)+0(2)—(2—2)0'(2)
+2G°< a e a%ﬁ,) (16)

First, the solution of the thermoelastic contact
problem of a rigid roller with friction and arbitrarily
distributed heat input on an uncracked half-space
which satisfy the thermal and mechanical boundary
conditions Egs.(2), (3) and (4)-(7), are given by
using the following stress function @(z) with Eqgs.
(15), (16) as a similar manner to the previous
paper®-(4_

0,(2) =4S (o 5y X(2))

R(x+1)
2iA(1+ if)cos(my)
B ey L)
+ A0S Q) /@) Pe )
X Si(z: u)du
Sa(l/)
Zﬂx/;P:f dy an
where,
A‘fSrHOPrGO (18)
Sa)= /. )?(f,?){ X(’;)} (19)
X(t)
Stzi 0= s may 1T g
lul<1 (20)
Sa(u)tj_‘iQ(l‘)(t*y)’l'sdt, 1<y<oo (21)
X ()=Q+ )71 —t)*>>*7 (22)
X(Z):(Z+1)0.5*7(2A_1)0.5+7 (23)
Q)= [ e (25)

To account for the stress field caused by the
cracks, we consider the problem of a pair of disloca-
tions present at the points z=2zow (20r=xr+ s+
7. € %) in an infinite space. Then the dislocation

density is defined as

%—(207*])‘{[ Uéké”] + Z[ (Jlkik]}e—mk (26)

where {[ Usen) + [ Use]} represents the displacement
jumps. This problem is solved by superposing the

A=
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following complex stress functions with Egs. (11) - (16)
being w=0 as a similar manner to the previous
paper!?,

DA(2)=2 { 2 } @7

< 2ok
Ui(z)= 2{ 2] (28)
@3(2’):{

—d)z(z) z@z(z) Ty(2), Im(2)<0
0 2), Im(z)>0

&;L)i;][(aﬁ @{F(z ; z08)

(29)

@4(2) -

—F(z ; Zor)}

— (200 — Zox)arn G(2; 200) + @x G(2; Zow)}

H(an+ @ ){1/X(200) —1/X(Z02)}

+ (200 — Zop){ @u X" (208) [ XX 202)

+ @ X' (Zor) /X% Zor)}] (30)
where

F(z; Zox)={1— X(2) /X (200)} /(2 — 20) (31)

G(z; Zow)=F(z; Zor)

— X (2) X" (200) [ X*(200)} | (2— 208) (32)

Thus, using the potentials @, @s, @5 and ¥, we
can obtain the stress field for a pair of dislocations ax.
Replacing the constant @. with distributed dislocation
density ax(7:)d7n. defined along the line &. of each
crack, the stress due to the cracks can be obtained by
integration of 7.

Superposing these results with the thermoelastic
roller solution, the stress solution which satisfies the
boundary conditions Eqs.(4)-(7). With substitution
of these stresses into Egs.(8)-(10), the following
singular integral equations for a. are obtained :

L
PR AN,
¢ /0. Ek — e d??k
2 lr
+§1£ {&(9) Do+ a(9;) Ar.sydn;
:(‘O‘?ktk+l~0<gk§n)d’h§k=0, (k:L 2) (33)
e

_/0' ar(7:)dne=0, (k=1,2) (34)

where
4 o
Ly = 2{0r(2x 5 20) + (1~ ™) OF (24 5 20)
— ¥ D, (Zn; 205) + 22— Z2) OF (2 ; 205)}
(35)
4 S
= ;3{ OF(2k 5 205) + (1= **) D12k ; 205)
— & QI (24 20;)+ ¥ (z2— 2) Oz ; 205) }
(36)
Ou(2s } 205)= *mTzﬁ{F(Zk 5 205) — F (2 ; Zo;)

—(20;— 20;) G2k ; 207) +1/X (20,) — 1/X(Z05)
+ (205 — Z05) X ' (205) [ X*( Zos)} 37

F2r; 205)= **(1%][) {F(zx; 205) — F(zx ; Zo;)

—(205— 20;) G(2x ; Z0) +1/X (205) —1/X(Z05)
+ (20— Z0;) X' (Z05) /X *( Z05)} (38)
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_1/(Zk“20h), Im(z)<0

1/(zs—201), Im(2)>0 (39)
~(ze— Zow) /(2 — z00)%, Im(2)<0
0, Im(z) >0

(40)

Zp=Xpt+iYp+Ere™ " (41)

Dy 21 Zo;):{

@ék(zk ; ZO.;‘):{

4. Numerical Calculations and Stress
Intensity Factors

Equations (33), (34) was solved numerically using
the piecewise quadratic method of Gerasoulis®.
Each dislocation density a@x(7:) are written as

a’k(’?k):’kgzolcf_,k(ﬁz%?ﬁ e ﬁk:Zkafl (42)
Let us the interval [—1, 1] into 2Nx equal parts. We
define the nodal points as 7. (#=1~2N,+1), and
use the Lagrange interpolation formula for three
nodal points in the approximation. Setting the collo-
cation points as &Exr=Trr+1/2Ne (r=1~2N,).
Equations (33), (34) reduce to the simultaneous linear
algebraic system of (2N, +2MN,) equations for @« 7s.x).
Using these solutions, the stress intensity factors at
the crack tip Ax for crack k. (k=1,2) are given as:

Ki— K= — (1’30 ay2ely @ —1) (43)

and at the crack tip Bx for crack # (=1, 2) are given
as:

Ki— z'fs'nz%nﬁczk @u(1) (44)

In carrying out the numerical calculations, it was
necessary to determine iteratively the degree of crack
opening for a given set of parameters. Iteration was
performed under the condition of the absence of
overlap of the material. First, the numerical solution
was obtained for a completely open crack (£27: 0< &,
< lx). The resulting crack opening displacement was
checked by Egs.(26), (42), and if overlap was found as
U, <0, partial crack closure was approximated by
setting Re{@x(7x.)}=0 for that portion of the crack
where overlap occurred. Then the procedure was
repeated for the partially closed crack and results
were verified. This method generally converged
within three iterations. For the number of collocation
points, a good accuracy was obtained for n=10.

Numerical calculations were carried out for hori-
zontal parallel subsurface cracks (5= /.=180°) with
equal length (4= £=0.1), P.=100, Hy=1.0190D and P,
=1.0. The numerical results of stress intensity factors
are shown for two cases of subsurface cracks which
arranged in a series (Fig.2) and arranged in a row
(Fig. 3).

4.1 Subsurface cracks arranged in a series

In the present numerical results for Fig. 2, since

the stress intensity factors at the both tips (A, and B,
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Surface

Y2 dn Yi=Y2
\ Crack 2 ’< >i Crack 1 2
B2 Az B Al

‘ X2 Xi

Fig. 2 Two subsurface cracks arranged in a series

Surface

Y Crack 1 A1

Yz

B Crack 2 dv
B2 A2

=1

Fig. 3 Two subsurface cracks arranged in a row

R
TKp)——
K dp=0.01 K Gyde
————— dn=0.5 0.3
- ——dn=0.01, f=0.7 Y1=Y2=0.1,{=0.7
K dp=0.5,=0.7
S$=0.1
K1(Y1=Y2=0.1
Y1=Y2=0.5
£=0.7
270
Yi=Y2=0.1
f=0.1
Y1=Y2=0.5, {=0.1 0.1k

Fig. 4 Stress intensity factors Kn as a function of crack
location for the case of S,=0.1

or A, and B)) are almost equal, we show the results
only at the crack tips A, and A,. Figures 4 and 5 show
the numerical results of stress intensity factors at the
crack tip A, as functions of the contact location over
complete loading cycle for S,=0.1 and S,=0.7 respec-
tively. In these figures, mode I and II stress intensity
factors Ki, Ky are shown for each values of f=0.1, 0.7,
Y.=0.1, 0.5 and d»=0.01, 0.5. From these figures, we
can see that the value of (Ki)max is so small that it may
be disregarded as compared to the value of (Ki)max.
Therefore, the shearing mode crack growth seems to
be predominant for horizontal subsurface crack. In
Figs. 4 and 5, K attains a positive maximum at x>=0
only for the case of f=0.7 and Y.=0.5, however for
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R
X, Kn)_

——dn=0.01
Gyic
0.45

Kn ———=dh=0.5

—-—dn=0.01, f=0.7
Dy A

S$=0.7

Y1=Y2=0.1, f=07

Fig. 5 Stress intensity factors Ku as a function of crack
location for the case of Sr=0.7
0.3 - T |

Single crack L A
@ Crack length | 0.2 [ 0.1 1
RS £07,Y,=0.1 | A | & |—A2

0 0.25 £=05,Y,=0.1 |V [O | $=0.0
MI: £=0.1,Y,=0.1 | A | O |(isothermal)

< =0.7, Y1=Y2=0.1

\i,& Y1=Y2=0.1
0.1

)
f=0.1, Y1=Y2=0.1

Single crack
Crack length | 0.2 | 0.1
=0.7,Y,=05 |® |m
£=0.1,Y,=05 |0 |O
| | | 1
0.0 0.1 0.2 0.3 0.4 0.5

dn

0.05+

Fig. 6 Interference effects on AKy with a decrease of dhx
for isothermal case (S-=0)

other cases, Ku attains a positive maximum at r:=1
and a negative maximum at x2= —1. For the case of
large frictional coefficient, the values of (Ki)max for
shallow crack (Y.=0.1) are greater than those for
deep crack (Y»=0.5). Otherwise, for the case of small
frictional coefficient, the values of (Ku)max for deep
crack (Y.=0.5) are greater than those for shallow
crack (Y,=0.1). Comparing Fig.4 (S,=0.1) with
Fig.5 (S;=0.7), the value of (Ki)max for S,=0.1 is
greater than that for S,=0.7 only for the case of f=
0.1 and Y.=0.1, however for another cases the values
of (Ki)max for S»=0.7 are always greater than those
for Sr=0.1. Moreover, in any cases, the values of
(Kir)max for d»=0.01 are always greater than those for
d»=0.5 due to the mutual interference effect.
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Single crack

0.1+ Crack length [0.2]0.1]]
£=0.7,5,=0.7 | A
£0.5,8.=0.7 |V
=0.1, S,=0.7 | A
£0.7,S=0.1 | ®

o

|

[

0.05 |-

oo o e°

£=0.1, S,=0.1
| ] ]

0.0 0.1 0.2 0.3 0.4 0.5
dn

Fig. 7 Interference effects on AKu with a decrease of @
for the case of Y.=0.5, S,=0.1 and 0.7

0.45

Single crack
Crack length | 0.2
£=0.7, 5,=0.7
£0.5, S,=0.7

=

onmod e°

G
)
0]
$4d
coen<r

L
[

=0.1, $,=0.7

0.05

| |
0.0 0.1 0.2

| |
0.3 0.4 0.5
dn

Fig. 8 Interference effects on AKu with a decrease of da
for the case of Y:=0.1, S,=0.1 and 0.7

Then, in order to investigate the mutual interfer-
ence effects of the cracks, we evaluate the stress
intensity factor range AKu=(Ki)max — (Ki)mn which is
the important quantity in fatigue considerations, the
results of which are shown in Figs.6-8. In these
figures, the values of AKu at the crack tips A, and A,
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are shown as functions of the distance d» between the
cracks (0.01= d,<0.5) for the isothermal case in Fig. 6
(S:=0) and for the case of the existence of frictional
heating in Fig. 7 ( Y»=0.5) and Fig. 8 (Y»=0.1). From
these figures, we can recognize the effect of mutual
interference of the cracks; that is, the values of AK)
increase with a decrease of the distance d» between
the cracks. Especially, for d»<0.1~0.05, the values of
AK) at the crack tip A, show a marked interference
effect compared with AKn at the crack tip A,. In
these figures, the results of single crack!® are also
shown by the symbols (¢ ® ) being the crack length
{=0=5=01, and the symbols (a~~@0) being the
crack length /=/41+£0,=0.2 at d»=0. As the distance
dy increase, the results of AKu coincide with the
results of the single crack which are shown by the
symbols (em ). In fact, when two cracks go away
from each other at a distance d» >0.5, instead of those
results of AKi the results of single crack can be used.
While, for the case of d»=0.01, the results of AKn at
the crack tip A, are always greater than those results
of single crack shown by the symbols (a~v@0), and
the results of AKi at the crack tip A, for d»=0.01 are
always smaller than the results of single crack which
are shown by the symbols (a~v@0). Moreover, in
order to investigate the mutual interference effects
quantitatively, we consider the dimensionless quan-
tities L1, L2 at the crack tip A;, A,, which represent
the ratio of the value of AKu for d»=0.01 to the value
for the single crack as:

Lk - (AK})dh:o.nl/(A](n)dh:oo,

(k=1: A\, k=2: A)) (45)
At the crack tip A,, the minimum value : L2=1.40 for
Sr=0, f=0.1, Y>=0.1 (in Fig.6) and the maximum
value : L.=1.51 for S,=0.7, /=0.7, Y>=0.1 (in Fig. 8),
the mutual interference effect increase with an
increase of thermal and frictional effects. However,
in the present numerical examples, the degree of the
increase is not so large as 1.4< L,<151. At the crack
tip A,, the minimum value: Li=1.11 for S,=0, f=
0.1, ¥1=0.1 (in Fig. 6) and the maximum value: L=
1.17 for S-=0.7, f=0.7, Y1=0.1 (in Fig. 8), the mutual
interference effect is smaller than that at the crack tip
A, and the degree of the effect with thermal and
frictional effects is also small as 1.11=L,<1.17.
4.2 Subsurface cracks arranged in a row

As a numerical example for Fig. 3, the depth of
the crack 2 is taken to be constant as Y>=0.5. First,
for the case of the crack distance d,=0.1 and 0.01, the
numerical results of the stress intensity factors K, Kui
at the crack tip A, are plotted as functions of the
contact location over a complete loading cycle in
Fig. 9 for S;=0.1, 0.7 and f=0.1, 0.7. From this figure,
we can see that the value of (Ki)max is so small that it
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dy=0.1 (Kl ’ Kn)_'_
Ko _____ d:=0<01 Gorle
025~ t.0.7,5,=0.7
K, —-—0v=0.1,§=0.7 .
I dy=0.01,f=0.7 f=0.7,5,=0.1
Y,=0.5 £-0.1,5,=0.7
£=0.1,5,=0.1
K (S:=0.1)
-2.0

f=0.1,5,=0.7

f=0.1,5,=0.1
-0.1

Fig. 9 Stress intensity factors Ku as a function of crack
location for the case of Y>2=0.5

may be disregarded as compared to the value of
(Ki)max. Therefore, the shearing mode crack growth
seems to be predominant for horizontal subsurface
crack. In any cases, the values of K attain a positive
maximum at z2=1 and (Ki)max increase with an
increase of thermal and frictional effects, the values of
(Ki)max for d»=0.01 are always smaller than those for
d»=0.1 due to the mutual interference effect.

Then, in order to investigate the mutual interfer-
ence effects of the cracks, when the crack 1
approaches to crack 2 being constant depth Y>=0.5,
the numerical results of the stress intensity factor
range AKy=(Ki)max—(Ki)mn at the crack tip A, of
crack 2 are shown in Fig. 10 as functions of the
distance d». In this figure, the results for the single
crack® corresponding to the crack 2 are also shown
by the broken line. In any cases, as the crack 1
approaches to the crack 2 from d»,=0.4, AKu gradu-
ally increase and attains a maximum at ¢»=0.1. The
values of (AKi)max are slightly larger than the values
for the single crack. Furthermore, as the crack 1
approaches to the crack 2 for d»,<0.1, the values of
AK,; rapidly decrease due to the mutual interference
effect. Then, in order to investigate the mutual inter-
ference effects quantitatively, we consider the dimen-
sionless quantities M, at the crack tip A,, which
represent the ratio of the value of AKu for d»=0.01 to
the value for the single crack as:

MQ:(A]{ll)du:0.0I/(AKl)single crack 2 (46)
From Fig. 10, the minimum value : M>.=0.79 for S,=
0, /=0.1 and the maximum value : M.=0.83 for S,=
0.7, /=07, the mutual interference effect slightly
decrease with an increase of thermal and frictional
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0.25

Crack tip A%

. =0.
—-—S§,=0.
----8ingle crack
(crack 2)
Y,=05

0.05|-

s | L ! s L

1
0 01 0.2 0.3 0.4
dy

Fig. 10 Interference effects on AKy of the crack tip A,
with a decrease of d» for Y2=0.5, S=0 and 0.7

0.3 : : . ; ——r
2
M
o 0.25
M:
<
0.2
0.15
0.1
Crack tip A 4 i
— =07
—-—8§,=00
0.05- ----Sirngle crack
(crack 1)
Yo=05 A
A ] . ! . 1 .
0 0.1 0.2 0.3 04
dy
Fig. 11 Interference effects on AKu of the crack tip A,

with a decrease of d» for Y2=0.5, S»=0 and 0.7

effects. However, in the present numerical examples,
the degree of the effect is not so large as 0.79= M,<0.
33.

While, AKy at the crack tip A, of crack 1 are
shown in Fig. 11 as functions of the distance d» for the
crack 2 being constant depth Y>=0.5. In this figure,
the results for the single crack® corresponding to the
crack 1 are also shown by the broken line. In any
cases, when dy is greater than 0.3, the results of AKj
are agree with the results of the single crack. For the
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case of f=0.1, as the crack 1 approaches to the crack
2 from d»=0.4, AKq gradually increase and attains a
maximum at d»=0.1. For the case of f=0.5 and 0.7,
AKy: gradually decrease as a decrease of dv. In any
cases, for d»<0.07, the values of AKu are smaller than
the values for the single crack. Furthermore, as the
crack 1 approaches to the crack 2 for d»<0.07, the
values of AKu rapidly decrease due to the mutual
interference effect. Then, in order to investigate the
mutual interference effects quantitatively, we con-
sider the dimensionless quantities M at the crack tip
A,, which represent the ratio of the value of AKu for
d»=0.01 to the value for the single crack as:

M1 = (A[{II)dv:O.OI/(A]{II)SingIe crack 2 (47)
From Fig. 11, as the minimum value : M:=0.80 for S-
=0, f=0.1 and the maximum value : M>=0.83 for S-
=0.7, /=0.7, we can see that the mutual interference
effect is not so large in the same manner as crack 2.

5. Conclusions

We analyzed the stress intensity factors for a pair
of subsurface cracks due to rolling/sliding contact by
a rigid roller with frictional heat generation. From
numerical examples of stress intensity factors for two
parallel subsurface cracks with equal length arranged
in a series or in a row, the following conclusions can
be made within the present numerical examples.

(1) For the case of subsurface cracks arranged in
a series, magnitudes of stress intensity factors at the
inside crack tips increase with decreasing distance
between the two inside crack tips due to mutual inter-
ference by the cracks. While, for the case of subsur-
face cracks arranged in a row, magnitudes of stress
intensity factors decrease with decreasing distance
between the two cracks due to mutual interference by
the cracks. These interference effects on the increase
or decrease of stress intensity factors are not greatly
influenced by the frictional and thermal effects.

(2) When the dimensionless distance d»=0.01
between the two inside crack tips for subsurface
cracks as the frictional
coefficient and the frictional heat input increase, the
magnitude of AKy at the outside crack tips slightly
increase from 1.11 times to 1.17 times as large as the
magnitude of single crack, while the magnitude of
AKi at the inside crack tips increase from 1.40 times
to 1.51 times as large as the magnitude of single crack.

(3) When the dimensionless distance d»=0.01
between the two parallel subsurface cracks arranged
in a row for the crack 2 being constant dimensionless
depth Y>=0.5, as the frictional coefficient and the
frictional heat input increase, the magnitude of AKiy
at the crack tips slightly increase from 0.80 times to
0.83 times as large as the magnitude of single crack,

arranged in a series,
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and the interference effect on the crack 1 and that on
the crack 2 are almost equal.

(1)
(2)

(3)

(4)
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