Proofs of operator monotonicity of some functions by using Löwner's integral representation

Noboru Nakamura

Abstract. We give somewhat simple proofs of operator monotonicity of some functions by using Löwner's integral representation of an operator monotone function.

1. Introduction

A (bounded linear) operator A acting on a Hilbert space H is said to be positive, denoted by $A \ge 0$, if $(Av, v) \ge 0$ for all $v \in H$. The definition of positivity induces the order $A \ge B$ for self-adjoint operators A and B on H. A real-valued function f on $(0, \infty)$ is *operator monotone*, if $0 \le f(A) \le f(B)$ for operators A and B on H such that $0 \le A \le B$. For a positive operator monotone function f on $(0, \infty)$, by Löwner's integral representation theorem, we have:

$$f(x) = \alpha + \beta x + \int_0^\infty \frac{x}{x+\lambda} d\mu(\lambda)$$

with nonnegative α, β and a positive measure μ on $(0, \infty)$. As a typical example, $x \mapsto x^p$ $(0 \le p \le 1)$ is an operator monotone function, which is well-known as *Löwner-Heinz theorem* (LH).

In this paper, applying Löwner's integral representation of an operator monotone function, we show an alternative simple proof of the known fact

²⁰⁰⁰ Mathematics Subject Classification. 47A63, 47A64.

 $Key\ words\ and\ phrases.$ operator monotone function, Löwner's integral representation.

that the function $x \mapsto f(x^p)^{\frac{1}{p}}$ (0 for an operator monotone function <math>f is operator monotone and also give an alternative simple proof of a restricted case of a result in M. Uchiyama's theorem related to Petz-Hasegawa theorem.

We assume that all operator monotone functions f are defined on $(0, \infty)$ and strictly positive, and $f(0) = \lim_{x \to 0} f(x)$ if necessary.

2. Preliminaries

By Kubo-Ando theory [10], an operator mean σ is defined as a binary relation of positive operators, satisfying the following properties in common:

(monotonicity)	$A \le C, B \le D \Longrightarrow A\sigma B \le C\sigma D,$
(transformer inequality)	$C(A\sigma B)C \le (CAC)\sigma(CBC),$
(normality)	$A\sigma A = A,$
(strong operator semi-continuity)	$A_n \downarrow A, B_n \downarrow B \Longrightarrow A_n \sigma B_n \downarrow A \sigma B.$

Sometimes for the definition of an operator mean we must assume operators to be invertible. Without any assumption for invertibility every mean is well-defined as the (strong operator) limits of $(A + \varepsilon I)\sigma(B + \varepsilon I)$ as $\varepsilon \downarrow 0$ instead of $A\sigma B$. (*I* is the identity operator.)

To every operator mean σ corresponds a unique operator monotone function, that is, its representing function f_{σ} which is defined by $f_{\sigma}(x) = 1\sigma x$. Conversely, if f is an operator monotone function with f(1) = 1, then the definition of the operator mean corresponding to f is given by

$$A\sigma B = A^{\frac{1}{2}} f\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}$$

for positive invertible operators A and B.

For our discussion, we use the following basic facts:

(I) For an operator mean σ and for two operator monotone functions g and h, if we define $g\sigma h$ by

$$(g\sigma h)(x) = g(x)f_{\sigma}\left(\frac{h(x)}{g(x)}\right),$$

then $g\sigma h$ is operator monotone.

(II) For a strictly positive function f on $(0, \infty)$, define $f^{\circ}(x) := xf(1/x)$ (transpose), $f^{*}(x) := 1/f(1/x)$ (adjoint) and $f^{\perp}(x) := x/f(x)$ (dual), then the four functions $f, f^{\circ}, f^{*}, f^{\perp}$ are equivalent to one another with respect to operator monotonicity ([10], [7]).

3. Main results

Applying (I) to the operator mean σ_{a_p} corresponding to the operator monotone function $a_p(x) = \left(\frac{1+x^p}{2}\right)^{\frac{1}{p}}$ $(-1 \le p \le 1, p \ne 0, a_0(x) = x^{\frac{1}{2}})$ (notice $a_p(1) = 1$), we showed in [8]:

Lemma 3.1 (cf. [8, Lemma 3.1], [11]). Let f, g be operator monotone functions, then $f\sigma_{a_p}g = \left(\frac{f^p+g^p}{2}\right)^{\frac{1}{p}}$ (or equivalently, $(f^p+g^p)^{\frac{1}{p}}$) is operator monotone for $-1 \leq p \leq 1$, $p \neq 0$. Further, if $f_1, ..., f_n$ are operator monotone functions, then $(\sum_{i=1}^n f_i^p)^{\frac{1}{p}}$ is operator monotone. In particular, $(\sum_{i=1}^n (\alpha_i + \beta_i x)^p)^{\frac{1}{p}} (\alpha_i, \beta_i \geq 0)$ is operator monotone.

The following theorem was shown first by T. Ando [1], next by Y. Nakamura [11], and recently by J.I. Fujii-M. Fujii [3], by T. Sano-S. Tachibana [13]. We give an alternative proof to the theorem, applying Löwner's integral representation of an operator monotone function. (We can see that the theorem is valid for a wider interval $-1 \le p \le 1$, $p \ne 0$ by the proof.)

Theorem 3.2. For an operator monotone function f, the function $x \mapsto (f(x^p))^{\frac{1}{p}}$ for 0 is operator monotone.

Proof. From the integral representation of f(x), we have:

$$(f(x^{p}))^{\frac{1}{p}} = \left(\alpha + \beta x^{p} + \int_{0}^{\infty} \frac{x^{p}}{x^{p} + \lambda} d\mu(\lambda)\right)^{\frac{1}{p}} \ (-1 \le p \le 1, \ p \ne 0).$$

Note that the integral $\int_0^\infty \frac{x}{x+\lambda} d\mu(\lambda)$ is approximated by $J_{\epsilon,E}(x) := \int_{\epsilon}^E \frac{x}{x+\lambda} d\mu(\lambda)$ for $0 < \epsilon < E < \infty$, so that $\int_0^\infty \frac{x^p}{x^p+\lambda} d\mu(\lambda)$ by $J_{\epsilon,E}(x^p) := \int_{\epsilon}^E \frac{x^p}{x^p+\lambda} d\mu(\lambda)$. Let

$$\Sigma_{\epsilon,E}(x^p) := \sum_{i=1}^n \frac{x^p}{x^p + \lambda_i} m_i \quad (\epsilon = \lambda_0 < \lambda_1 < \dots < \lambda_n = E)$$

with $m_i = \mu((\lambda_{i-1}, \lambda_i])$ be an approximate sum of $J_{\epsilon,E}(x^p)$. Then we have to show that

$$\phi_n(x) := (\alpha + \beta x^p + \Sigma_{\epsilon,E}(x^p))^{\frac{1}{p}}$$

is operator monotone. Now if we put $f_{-1} = \alpha^{\frac{1}{p}}, f_0 = \beta^{\frac{1}{p}}x$ and $f_i = \frac{x}{(x^p + \lambda_i)^{\frac{1}{p}}} m_i^{\frac{1}{p}}$ for i = 1, ..., n, then all f_i $(-1 \le i \le n)$ are operator monotone and $\phi_n(x) = (\sum_{i=-1}^n f_i^p)^{\frac{1}{p}}$, so that from Lemma 3.1, we see that $\phi_n(x)$ is operator monotone.

Assuming Löwner's integral representation of the operator monotone function again, by using the approximate sum $\Sigma_{\epsilon,E}(x)$ of the integral $J_{\epsilon,E}(x)$, we show the following (modified) Bendat-Sherman theorem (cf. [2], [11], [4], [14]):

Theorem 3.3. If f is a (non-constant) operator monotone function, then $F(x) := \frac{x-a}{f(x)-f(a)}$ for $a \ge 0$ is operator monotone.

Proof. If we put $\psi_n(x) := \alpha + \beta x + \Sigma_{\epsilon,E}(x) = \alpha + \beta x + \sum_{i=1}^n \frac{x}{x+\lambda_i} m_i$ instead of f(x) in the proof of Theorem 3.2, then we have

$$F_n(x) := \frac{x-a}{\psi_n(x) - \psi_n(a)} = \left(\beta + \sum_{i=1}^n \frac{\lambda_i m_i}{(a+\lambda_i)(x+\lambda_i)}\right)^{-1}$$

This function is operator monotone since $F_n^{\perp}(x) = \beta x + \sum_{i=1}^n \frac{\lambda_i m_i x}{(a + \lambda_i)(x + \lambda_i)}$ is operator monotone. Hence the limit F(x) of $F_n(x)$ is operator monotone.

Further with a similar method as the above, we show the following theorem (which is a restricted case of a result in [14, Theorem 2.7]):

Theorem 3.4. If f is a (non-constant) operator monotone function, then for $a \ge 0$

$$G(x) := \frac{x-a}{f(x) - f(a)} \cdot \frac{x-a}{f(x)^{\perp} - f^{\perp}(a)}$$

is operator monotone.

Proof. Put $\gamma_i = \frac{\lambda_i}{a+\lambda_i}$ and $\delta_i = \frac{a}{a+\lambda_i}$. Then $G_n(x) = \frac{x-a}{\psi_n(x) - \psi_n(a)} \cdot \frac{x-a}{\psi_n^{\perp}(x) - \psi_n^{\perp}(a)}$ $= \psi_n(a) \cdot \frac{\alpha + \beta x + \sum_{i=1}^n \frac{m_i x}{x+\lambda_i}}{\left(\beta + \sum_{i=1}^n \frac{m_i \gamma_i}{x+\lambda_i}\right) \left(\alpha + \sum_{i=1}^n \frac{m_i \delta_i x}{x+\lambda_i}\right)}$ $= \psi_n(a) \cdot \left(\frac{1}{\beta + \sum_{i=1}^n \frac{m_i \gamma_i}{x+\lambda_i}} + \frac{x}{\alpha + \sum_{i=1}^n \frac{m_i \delta_i x}{x+\lambda_i}}\right) = \psi_n(a) \cdot (I + II).$

Here,

$$I = \frac{1}{\beta + \sum_{i=1}^{n} \frac{m_i \gamma_i}{x + \lambda_i}}, II = \frac{x}{\alpha + \sum_{i=1}^{n} \frac{m_i \delta_i x}{x + \lambda_i}}$$

Then we obtain

$$I^* = \beta + \sum_{i=1}^n \frac{m_i \gamma_i}{\frac{1}{x} + \lambda_i} = \beta + \sum_{i=1}^n \frac{m_i \gamma_i}{\lambda_i} \cdot \frac{x}{x + \frac{1}{\lambda_i}},$$

which is operator monotone, so that I is also operator monotone. For II we see that:

$$II^{\perp} = \alpha + \sum_{i=1}^{n} \frac{m_i \delta_i x}{x + \lambda_i},$$

which is operator monotone, so that II is also operator monotone. Therefore, $G_n(x)$ is operator monotone. Hence G(x) is operator monotone as the limit of $G_n(x)$, tending n to ∞ .

If $f(x) = x^p$ (0 f^{\perp}(x) = x^{1-p}. Hence as an application of Theorem 3.4 we at once obtain the following :

Corollary 3.5. For $0 , <math>a \ge 0$

$$\frac{(x-a)^2}{(x^p-a^p)(x^{1-p}-a^{1-p})}$$

is operator monotone.

An extension of the above theorem is known [9] as follows:

Theorem 3.6. For $-1 \le p \le 2$, $a, b \ge 0$

$$H_p(x) := \frac{p(1-p)(x-a)(x-b)}{(x^p - a^p)(x^{1-p} - b^{1-p})}, \ p \neq 0, 1 \ \left(H_0(x) = H_1(x) = \frac{x-1}{\log x}\right)$$

is operator monotone.

Acknowledgement. The author would like to thank Emeritus Professor Saichi Izumino for valuable suggestions.

References

- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203-241.
- J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc., 79 (1955), 58-71.
- [3] J.I. Fujii and M. Fujii, An analogue to Hansen's theory of generalized Löwner's functions, Math. Japon., 35, No.2 (1990), 327-330.
- [4] J.I. Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), 301-306.
- [5] T. Furuta, Elementary proof of Petz-Hasegawa Theorem, Lett. Math. Phys., 101 (2012), 355-359.
- [6] T. Furuta, J. Mićič Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.
- [7] F. Hiai and K. Yanagi, Hilbert spaces and linear operators, Makino Shoten, (1995), (in Japanese).
- [8] S. Izumino and N. Nakamura, Elementary proofs of operator monotonicity of some functions, Sci. Math. Japon., Online, e-2013, 679-686.

- [9] S. Izumino and N. Nakamura, *Elementary proofs of operator mono*tonicity of some functions II, Sci. Math. Japon., to appear.
- [10] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
- [11] Y. Nakamura, Classes of operator monotone functions and Stieltjes functions, In: Dym H. et al., (eds) The Gohberg Anniversary Collection, Vol. II: Topics in Analysis and Operator Theory, Operator Theory: Advances and Appl., Vol. 41 Birkhäuser, Basel, (1989), 395-404.
- [12] D. Petz and H. Hasegawa, On the Riemannian metric of α -entropies of density matrices, Lett. Math. Phys., **38** (1996), 221-225.
- [13] T. Sano and S. Tachibana, On Loewner and Kwong matrices, Sci. Math. Japon., Online, e-2012, 411-414.
- [14] M. Uchiyama, Majorization and some operator functions, Linear Algebra and Appl., 432 (2010), 1867-1872.

Faculty of Education Okayama University 1-1, Naka 3-chome, Tsushima, Okayama, 700-8530 Japan email: n-nakamu@okayama-u.ac.jp

(Received July 11, 2014)