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Proofs of operator monotonicity of some functions by using

Löwner’s integral representation

Noboru Nakamura

Abstract. We give somewhat simple proofs of operator monotonic-
ity of some functions by using Löwner’s integral representation of an
operator monotone function.

1. Introduction

A (bounded linear) operator A acting on a Hilbert space H is said

to be positive, denoted by A ≥ 0, if (Av, v) ≥ 0 for all v ∈ H. The

definition of positivity induces the order A ≥ B for self-adjoint operators

A and B on H. A real-valued function f on (0,∞) is operator monotone, if

0 ≤ f(A) ≤ f(B) for operators A and B on H such that 0 ≤ A ≤ B. For

a positive operator monotone function f on (0,∞), by Löwner’s integral

representation theorem, we have:

f(x) = α+ βx+

∫

∞

0

x

x+ λ
dµ(λ)

with nonnegative α, β and a positive measure µ on (0,∞). As a typical

example, x 7→ xp (0 ≤ p ≤ 1) is an operator monotone function, which is

well-known as Löwner-Heinz theorem (LH).

In this paper, applying Löwner’s integral representation of an operator

monotone function, we show an alternative simple proof of the known fact
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that the function x 7→ f(xp)
1

p (0 < p ≤ 1) for an operator monotone

function f is operator monotone and also give an alternative simple proof

of a restricted case of a result in M. Uchiyama’s theorem related to Petz-

Hasegawa theorem.

We assume that all operator monotone functions f are defined on (0,∞)

and strictly positive, and f(0) = lim
x→0

f(x) if necessary.

2. Preliminaries

By Kubo-Ando theory [10], an operator mean σ is defined as a binary

relation of positive operators, satisfying the following properties in common:

(monotonicity) A ≤ C,B ≤ D =⇒ AσB ≤ CσD,

(transformer inequality) C(AσB)C ≤ (CAC)σ(CBC),

(normality) AσA = A,

(strong operator semi-continuity) An ↓ A,Bn ↓ B =⇒ AnσBn ↓ AσB.

Sometimes for the definition of an operator mean we must assume oper-

ators to be invertible. Without any assumption for invertibility every mean

is well-defined as the (strong operator) limits of (A+ εI)σ(B+ εI) as ε ↓ 0

instead of AσB. (I is the identity operator.)

To every operator mean σ corresponds a unique operator monotone func-

tion, that is, its representing function fσ which is defined by fσ(x) = 1σx.

Conversely, if f is an operator monotone function with f(1) = 1, then the

definition of the operator mean corresponding to f is given by

AσB = A
1

2 f
(

A−
1

2BA−
1

2

)

A
1

2

for positive invertible operators A and B.

For our discussion, we use the following basic facts:

(I) For an operator mean σ and for two operator monotone functions g

and h, if we define gσh by

(gσh)(x) = g(x)fσ

(

h(x)

g(x)

)

,

then gσh is operator monotone.
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(II) For a strictly positive function f on (0,∞), define f◦(x) := xf(1/x)

(transpose), f∗(x) := 1/f(1/x) (adjoint) and f⊥(x) := x/f(x) (dual),

then the four functions f, f◦, f∗, f⊥ are equivalent to one another with

respect to operator monotonicity ([10], [7]).

3. Main results

Applying (I) to the operator mean σap
corresponding to the operator

monotone function ap(x) = (1+xp

2 )
1

p (−1 ≤ p ≤ 1, p 6= 0, a0(x) = x
1

2 )

(notice ap(1) = 1), we showed in [8]:

Lemma 3.1 (cf. [8, Lemma 3.1], [11]). Let f, g be operator monotone func-

tions, then fσap
g =

(

fp+gp

2

) 1

p
(or equivalently, (fp + gp)

1

p ) is operator

monotone for −1 ≤ p ≤ 1, p 6= 0. Further, if f1, ..., fn are operator

monotone functions, then (
n
∑

i=1

fp
i )

1

p is operator monotone. In particular,

(
n
∑

i=1

(αi + βix)
p)

1

p (αi, βi ≥ 0) is operator monotone.

The following theorem was shown first by T. Ando [1], next by Y. Naka-

mura [11], and recently by J.I. Fujii-M. Fujii [3], by T. Sano-S. Tachibana

[13]. We give an alternative proof to the theorem, applying Löwner’s in-

tegral representation of an operator monotone function. (We can see that

the theorem is valid for a wider interval −1 ≤ p ≤ 1, p 6= 0 by the proof.)

Theorem 3.2. For an operator monotone function f , the function x 7→

(f(xp))
1

p for 0 < p ≤ 1 is operator monotone.

Proof. From the integral representation of f(x), we have:

(f(xp))
1

p =

(

α+ βxp +

∫

∞

0

xp

xp + λ
dµ(λ)

) 1

p

(−1 ≤ p ≤ 1, p 6= 0).

Note that the integral
∫

∞

0
x

x+λ
dµ(λ) is approximated by Jǫ,E(x):=

∫ E

ǫ
x

x+λ
dµ(λ)

for 0 < ǫ < E < ∞, so that
∫

∞

0
xp

xp+λ
dµ(λ) by Jǫ,E(xp) :=

∫ E

ǫ
xp

xp+λ
dµ(λ).

Let

Σǫ,E(xp) :=
n
∑

i=1

xp

xp + λi

mi (ǫ = λ0 < λ1 < ... < λn = E)
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with mi = µ((λi−1, λi]) be an approximate sum of Jǫ,E(xp). Then we have

to show that

φn(x) := (α+ βxp + Σǫ,E(xp))
1

p

is operator monotone. Now if we put f−1 = α
1

p , f0 = β
1

px and fi =

x

(xp+λi)
1
p

m
1

p

i for i = 1, ..., n, then all fi (−1 ≤ i ≤ n) are operator monotone

and φn(x) = (
n
∑

i=−1

fp
i )

1

p , so that from Lemma 3.1, we see that φn(x) is

operator monotone.

Assuming Löwner’s integral representation of the operator monotone

function again, by using the approximate sum Σǫ,E(x) of the integral Jǫ,E(x),

we show the following (modified) Bendat-Sherman theorem (cf. [2], [11],

[4], [14]):

Theorem 3.3. If f is a (non-constant) operator monotone function, then

F (x) := x−a
f(x)−f(a) for a ≥ 0 is operator monotone.

Proof. If we put ψn(x) := α + βx + Σǫ,E(x) = α + βx +
n
∑

i=1

x

x+ λi

mi

instead of f(x) in the proof of Theorem 3.2, then we have

Fn(x) :=
x− a

ψn(x) − ψn(a)
=

(

β +
n
∑

i=1

λimi

(a+ λi)(x+ λi)

)−1

.

This function is operator monotone since F⊥

n (x) = βx+
n
∑

i=1

λimix

(a+ λi)(x+ λi)

is operator monotone. Hence the limit F (x) of Fn(x) is operator monotone.

Further with a similar method as the above, we show the following the-

orem (which is a restricted case of a result in [14, Theorem 2.7]):

Theorem 3.4. If f is a (non-constant) operator monotone function, then

for a ≥ 0

G(x) :=
x− a

f(x) − f(a)
·

x− a

f(x)⊥ − f⊥(a)

is operator monotone.
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Proof. Put γi = λi

a+λi
and δi = a

a+λi
. Then

Gn(x) =
x− a

ψn(x) − ψn(a)
·

x− a

ψ⊥
n (x) − ψ⊥

n (a)

= ψn(a) ·

α+ βx+
n
∑

i=1

mix

x+ λi
(

β +
n
∑

i=1

miγi

x+ λi

)(

α+
n
∑

i=1

miδix

x+ λi

)

= ψn(a) ·













1

β +
n
∑

i=1

miγi

x+ λi

+
x

α+
n
∑

i=1

miδix

x+ λi













= ψn(a) · (I + II).

Here,

I =
1

β +
n
∑

i=1

miγi

x+ λi

, II =
x

α+
n
∑

i=1

miδix

x+ λi

.

Then we obtain

I∗ = β +
n
∑

i=1

miγi

1
x

+ λi

= β +
n
∑

i=1

miγi

λi

·
x

x+ 1
λi

,

which is operator monotone, so that I is also operator monotone. For II

we see that:

II⊥ = α+
n
∑

i=1

miδix

x+ λi

,

which is operator monotone, so that II is also operator monotone. There-

fore, Gn(x) is operator monotone. Hence G(x) is operator monotone as the

limit of Gn(x), tending n to ∞.

If f(x) = xp (0 < p < 1), then f⊥(x) = x1−p. Hence as an application of

Theorem 3.4 we at once obtain the following :

Corollary 3.5. For 0 < p < 1, a ≥ 0

(x− a)2

(xp − ap)(x1−p − a1−p)

is operator monotone.
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An extension of the above theorem is known [9] as follows:

Theorem 3.6. For −1 ≤ p ≤ 2, a, b ≥ 0

Hp(x) :=
p(1 − p)(x− a)(x− b)

(xp − ap)(x1−p − b1−p)
, p 6= 0, 1

(

H0(x) = H1(x) =
x− 1

log x

)

is operator monotone.
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