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Quasi-abelian varieties given by certain
algebraic number fields

Yukitaka ABE

Abstract. Let Ky be a totally real algebraic number field. We consider
an n-dimensional algebraic extension K of Ky which has two complex con-
jugate fields over Ky and n — 2 real ones. We construct a quasi-abelian

variety from K.
1. Introduction

In the previous paper [1] we defined ox,-quasi-abelian varieties for gen-
eral algebraic number fields, and investigated their properties. It seems to
us that it is not easy to use general og-quasi-abelian varieties practically.
However, a usual quasi-abelian variety has a good projective algebraic com-
pactification which will provide some useful tools for the progress of this
subject. Then we treat algebraic number fields which give quasi-abelian
varieties in this paper.

We consider a totally real algebraic number field Ky of degree m. Let K
be an n-dimensional extension of Ky which has two complex conjugate fields
and n — 2 real ones over Ky. As in [1] we define a map ¥ : K — C™(~1)
by embeddings of K over Q. Let ox be the ring of integers of K. Then
X := C™"=1) /W (o) is a toroidal group ([3], see also [1] for a simple proof).

We prove the following theorem which is a generalization of a result in [3].
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THEOREM. X is a quasi-abelian variety.

We note that the word “og,-” can be dropped in the results in [1] for

these algebraic number fields.

2. Preliminaries

Let Ky be a totally real algebraic number field of degree m, whose real
embeddings over Q are g; : Ko — R, ¢ = 1,...,m. We consider an n-

dimensional algebraic extension K of Ky with two complex conjugate fields
1 (n—2)
SRGNNE

be the extensions of g; to K for i = 1,...,m such that 7;(K),7;(K) ¢ R
and O'(J)(K) C Rforj=1,...,n—2 We define a map ¥ : K —

i

C™ x Rm(n—2) C (Cm(n—l) by

over Ky and n — 2 real conjugate fields over Kg. Let 7, 7;, 0

U(a) = (r(a), ..., mm(a), 0P (a),...,00(a),....0" (a),...,0 D (a))

rYm

for any a € K. We set T' := ¥(og). Then X := C™"~D/I is a toroidal
group. We refer to [2] for the definitions of toroidal groups and quasi-abelian
varieties and their basic properties. We denote X, := C"™"~1) /¥(o) for any
order o of K. Then X, is also a toroidal group. Since all X, are isogeneous,

the following lemma is obvious.

LeMMA 1. If X, is a quasi-abelian variety for some order o, then so is any

X, especially X is a quasi-abelian variety.

Let 1,a4,...,am—1 be a basis of 0g,, which are also a basis of K over
Q. We take x € og such as K = Ko(x). Weset y; := 1i(z) fori=1,...,m.
Then the imaginary part Im(y;) is non-zero. The following lemma is due
to Andreotti and Gherardelli [3].

LEMMA 2. We can take x € o such that Im(y;) >0 for alli=1,...,m.

Proof. By a map Ky — R™, a —— (01(a),...,0m(a)) we can define an
R-isomorphism ¢ : Ko ®g R — R™. Let n; := Im(y;),7 = 1,...,m. Take
e > 0 such that € < |n;| for all i = 1,...,m. Since p;(Kp) is dense in R,
there exists & € g;(Kp) such that |§; — n;| < £/2. Then we have £ € Ky
such that

~ 3 .
‘Ql(é)_él’<§’ Z:]-v'”vmv
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where 9(&) = H(1(€), ..., 0m(£)). This means that

Im(7;(éx)) = 0i(§)ni >0, i=1,...,m.

Furthermore there exists £ € N such that k§ € og,. If we newly take k{x
as x, then it has the desired properties. O

3. A lemma on polynomials

We define a polynomial a,(:) (t1,...,t,) in 7 variables ¢,...,t, for r € N
and k= —-1,0,1,... by

S ittt iR 21
a,(:)(tl,...,tr) =< 1 ifk=0
0 if k= —

Fixing &1, ...,&, &+1 € C, we consider a polynomial P (51, ey & &y T)
in a variable T of degree k defined by

k
PO, e T) =Y a6 [ YD e, TP
J=0

a+B=k—j
(r)

Here we note B, ’ = 1 for any r € N.

LEmMMA 3. Foranyr € N and k=0,1,... we have
PO & T) = PV (6 &6t Erva)
(T §T+2) r+1 (glu LRI 7£T+1; €7‘+2; T>7
where &p49 € C.

Proof. First we have

PO i &ri; T) = POV G o 6 brpas Enpo)

Zk:a’” (&1,...,&) Z @C«YH( £r+2>

Jj=0 a+p=k—j

k—1
(T = &rv2) Zaﬁ’" (ST N B N S D GLT
J=0

a+pB=k—j y+6=p-1
B21
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By a straight calculation we obtain

k—1
0
e Y en| Y LT
j=0 atpB=k—j y+6=B-1
621
k—1 k—1—j
= ay) (&, &) Z & Z ;{+2T6
j=0 a=0 y+o=k—1—j—«
k—1k—1—j
= Z agT) (617 e 757")67?—1—1 Z Z—&—QT(S
7i=0 a=0 v+d=k—1—(j+a)
k—1
6
= Z a§r) (517 e 7€T>£1?+1 Z :—i-QT
5=0 j+a=s y+o=k—1—s
k—1
= agT+1) (51, .. ,gr, €r+1) Z 7’”Y+2T6
s=0 y+o=k—1-s
1
= P;Sj €, &1 by T).
Thus the proof completes. ]

4. Proof of the theorem

We use the notations in the previous sections. Let 1,a1,...,a;,—1 be a
basis of 0g,. We may assume that K = Ky(x) with z € og and = has the

property in Lemma 2. Then the following is a basis of K over Q
lag,...,0;m—1, 2,200, .. ., TQp—1, .-, & T QL. T Q1.

We set a;; = pi(cj) € R and wl(j) = ai(j)(x) € Rfori=1,...,m and
j=1....n—2.

We denote by o the order of K generated by the above basis. It suffices
to show that X, is quasi-abelian, by Lemma 1. Let P be the period matrix
of X, given by the above basis of 0. Then we have

A YA YZ2A e Yy lA
» A XxXMag (XMWy32a ... (xW)yn—1y

A x(=1)y (X(n—2))2A (X(n—2))n—1A
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where
1 on o1 m—1
A= ,
1 am QOm m—1
AP
X .= . 0=1,...,n—2
o0
and
a1
Y =
Ym

We shall transform P into the standard form of a period matrix of a quasi-

abelian variety. If we set

I Y & yn-1
7 x@ (X(l))2 (X(l))nfl
Q:= | ,
7 xn-2) (X(an))2 (X(nf2))n71
then
A
A
P=0qQ ;
A

where [ is the unit matrix of degree m. Therefore it is sufficient to consider
the transformation of Q).

Let P; and P> be square matrices of degree k. We write P; ~ P, if there
exists M € GL(k,C) such that M P; = P,. We first obtain
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where
Boy  Bog Bon-1
1 1
Yy Cia
Q0:: . . )
n—3 n—3 n—3
o ely? ey

fork=1,....n—1land ¢=1,...,n—3.

Next we consider the transformation of ()g. We note that C(ST?’) is a
non-singular matrix for Céﬁ_g) = X(=3) _X(=2) Substracting the (n—2)-
nd row multiplied by Boyl(C’éﬁf?’))_l from the first row and the (n —2)-nd
row multiplied by CSQ(C&_?’) )=t from the (1 + £)-th row, we obtain

0
Qo ~ : @ ;
0
n—y3 n—3 n—3
ey V| eiy? Cond
where
B B - Bin-2
1 1
oy i
Q1= ; : )
n—4 n—4 n—4
Y ety o
Since
n—3)\ — n—3 n—2)\% n— j
(C(()71 )) 1C(§,k+): Z (X( 2)) (X( 3))])
i+j=k
we have
Bir = Boky1 —30,1(067,11_3))_10&131)

= (v — X2 Z (X (n-2)yi (yj _ (X(n—S))j>
it+j=k
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n—2
- (Y _X(p)) Z (X(n*Q))i Z (X(n*3))ayﬁ
p=n—3 i+j=k a+ﬁ;j—1
azl

3
|

2
- Y — xX®) Z (X(”m)i( Z (X(n=3)ay s

p=n—3 it+j=Fk a+pB=j-1
j21

k—1
— (Y — X@) Z(X(n%))j’ ( Z (X("3))01y[3>

Il
3

i
no

p=n—3 3'=0 a+B=k—1—j"
—2
= (Y — X(p))p]gl_)l(X(n—z);X(n—?)),Y)

)
n—3

Il
3

3

p

for k=1,...,n — 2. Similarly we have
_ X .
]l H p( ) (X x(=2). x( 3);X(4))

fork:1,...,n—2and£:1,...,n—4.
Suppose that we have already obtained the matrix Q, for 1 Sr<n—3
such that

0
Qr—lz : QT )
0
n—r—2 n—r—2 n—r—2
Cﬁfl,l ) 07571,2 ) C'vgfl,nf72
Br,l Br,2 Br,nfrfl
1 1 1
B N B R B
e B
n—2
Br,k: H (Y—X(p))PIET,)l(X(n_Q),...,X("_T_l);X(”_T_Q);Y)
p=n—r—2

fork=1,....n—7r—1and

n—2
cfl= J[ x©-x)pD (xn=2, . x(r-b; xeor-2), x(O)

p=n—r—2
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fork=1,....n—r—1land £ =1,...,n—7 — 3. We note that the matrix
n—2
Cﬁﬁ—r—iﬁ) _ H (X(n—r—3) _ X(p))
p=n—r—2
is non-singular. Then we can carry out the same procedure as in the case

r = 0. Hence we obtain @1 such that

0
Qr ~ Qr—f—l
0
n—r—3 n—r—3 n—r—3
R e e B
Brii1 Bri12 -+ Bryigp—r—2
1 1 1
0 C7E+)1,1 07{4—)1,2 T Cr(-s-)l,n—r—z
r+1 = . . . 9
n—r—4 n—r—4 n—r—4
C£+171 : C'1£+1,2 b C1E+1,n—7")—2
where 5
{ Bi1j = Br g1 — Br,l(C(”‘T‘?’))‘lCﬁZ‘ﬁ‘ ),
¢ {4 n—r—3)\— n—r—3
Cﬁﬁl,k = Cﬁ,lerl - 05,1)(05,1 )) 1C£,k+1 )-
Since
n—2
By = H (Y — X(p)),
p=n—r—2
n—2
Bpi= [[ (v—x®)pI(x2 L xeoro xeor-2)y)
p=n—r—2
and

(Cﬁq_r_?’))flc(n_r_?’) _ PIET) (X(an) X(nfrfl),X(nfrf2);X(n7r73))

rk+1 1rr ) )
we have
n—2
Briie = H (Y = X@) x
p=n—r—2
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It follows from Lemma 3 that
<P]§T) (X(n—Q)’ o ’X(n—r—l);X(n—r—Q); Y)
. ]57") (}((n—2)7 o 7X(n—r—1); X(n—r—Z); X(n—r—3)))
— (Y _ X(n—r—S))Plgi—lil) (X(n—Q)’ L ’X(n—r—2);X(n—r—3); Y)

Then we have
n—2
By = H (Y — X(p))Plgi-lil)(X(n—Q)’ ., X mr=2), x(nr=3). Y).
p=n—r—3
Similarly we obtain
n—2

= [ xO-x@)pribxt=d . xero2), xored), x(0),

r
p=n—r—3

Repeating this procedure to r = n — 3, we finally obtain a matrix

Qn-3=( Bn-31 Bn-32)

such that
-~ ( 0 Qus ) |
* kk
where
n—2
BTL—?),I = H(Y _ X(p)>’
p=1
n—2
By_32 = H(y _ X(p))pl("%)(X(n—z)’ X @ x My
p=1
n—2 n—2
= H(Y —X(p))(Y+ ZX(E))_
p=1 /=1

Then we need only to show that
( Bn-31A Bp 324)

is a period matrix of an abelian variety of dimension m. Let d(Kj) be the
discriminant of Ky. Noting that | det A|> = |d(Kp)| = 1, we obtain

( BusiA Buogod)=(t44 fA(Y + X2 x0) 4 ).



36 Yukitaka ABE

Any entry of tAA is
m m
D apiar; =Y or(aiog) = Trg,(aiaj) € Z,
k=1 k=1

where we set ag = 1 and ayg = 1. It is obvious that tA (Y + Z?:_l? X(e)> A

is symmetric. Furthermore we have

n—2
Im <tA (Y + ZXW) A> ="AIm(Y)A > 0
/=1

by Lemma 2. Thus we complete the proof. O
REMARK. If K is a CM-field of degree 2n, then the period matrix of
X =C"/¥(ok) in our argument is P = (A Y A). Then it is obvious that
P~ (*!AA 'AY A) is a period matrix of an abelian variety. This is another
way to show that any CM-field gives an abelian variety.
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