Holomorphic line bundles and Cartier divisors on domains in a Stein orbifold with discrete singularities

Makoto Abe*

Abstract. Let X be a Stein orbifold of pure dimension n such that $\operatorname{Sing}(X)$ is discrete. Let D be an open set of X such that $H^k(D, \mathcal{O}) = 0$ for $2 \leq k \leq n-1$ and every topologically trivial holomorphic line bundle on D is associated to some Cartier divisor on D. Then D is Stein.

1. Introduction

Abe [1] proved that an open set D of a Stein manifold X of dimension 2 is Stein if every holomorphic line bundle L on D is associated to some Cartier divisor \mathfrak{d} on D. Ballico [7] proved that an open set D of a Stein manifold X of dimension more than 2 of the form $D = \{\varphi < c\}$, where $\varphi : X \to \mathbb{R}$ is a \mathscr{C}^2 weakly 2-convex function in the sense of Andreotti-Grauert [5], is Stein if every holomorphic line bundle L on D is associated to some Cartier divisor \mathfrak{d} on D.

A complex space is said to be an *orbifold* (or a *V-manifold*) if every $x \in \text{Sing}(X)$ is a quotient singular point. In this paper, we consider a Stein orbifold X of pure dimension n such that Sing(X) is discrete. Then, we prove that an open set D of X is Stein if $H^k(D, \mathscr{O}) = 0$ for $2 \leq k \leq n-1$ and for every topologically trivial holomorphic line bundle L on D is associated

²⁰⁰⁰ Mathematics Subject Classification. 32E10, 32C55, 32L10.

^{*}The author is partly supported by the Grant-in-Aid for Scientific Research (C) no. 23540217 of Japan Society for the Promotion of Science.

to some Cartier divisor \mathfrak{d} on D (see Theorem 4.2), which generalizes two results above and improves Abe [2].

2. Preliminaries

We denote by \mathscr{O} without subscript the reduced complex structure sheaf of a (not necessarily reduced) complex space. In other words, we always set $\mathscr{O} := \mathscr{O}_X/\mathscr{N}_X$ for a complex space X, where \mathscr{O}_X is the structure sheaf of Xand \mathscr{N}_X is the nilradical of \mathscr{O}_X . For a reduced complex space X, we denote by \mathscr{M} the sheaf of germs of meromorphic functions on X and by \mathscr{O}^* (resp. \mathscr{M}^*) the multiplicative sheaf on X of germs of invertible holomorphic (resp. meromorphic) functions.

Let X be a reduced complex space. Let $\text{Div}(X) := (\mathscr{M}^*/\mathscr{O}^*)(X)$. An element $\mathfrak{d} \in \text{Div}(X)$ is said to be a *Cartier divisor* on X. If $\mathfrak{d} \in \text{Div}(X)$ is defined by the meromorphic Cousin-II distribution $\{(U_i, m_i)\}_{i \in I}$ on X, then we denote by $[\mathfrak{d}]$ the holomorphic line bundle on X defined by the cocycle $\{m_i/m_j\} \in Z^1(\{U_i\}_{i \in I}, \mathscr{O}^*)$. We say that $[\mathfrak{d}]$ is the holomorphic line bundle associated to \mathfrak{d} . We say that \mathfrak{d} is *positive* if \mathfrak{d} can be defined by a holomorphic Cousin-II distribution.

By the extension theorem for analytic sets (see, for example, Grauert-Remmert [11, p. 181]), we have the following extension theorem for Cartier divisors on a complex manifold.

Lemma 2.1. Let X be a complex manifold of pure dimension $n \ge 2$. Let T be an analytic set of X such that dim $T \le n - 2$. Then for every $\mathfrak{d} \in \text{Div}(X \setminus T)$ there exists $\mathfrak{c} \in \text{Div}(X)$ such that $\mathfrak{c}|_{X \setminus T} = \mathfrak{d}$.

Proof. Let $A = \sum_{\lambda \in \Lambda} \alpha_{\lambda} A_{\lambda}$ be the Weil divisor on $X \setminus T$ corresponding to \mathfrak{d} , where A_{λ} is an irreducible analytic set of $X \setminus T$ of dimension n-1 and $\alpha_{\lambda} \in \mathbb{Z}$ for every $\lambda \in \Lambda$. Then, the closure $|\overline{A}|$ of $|A| = \bigcup_{\lambda \in \Lambda} A_{\lambda}$ in X is an analytic set of X of pure dimension n-1 and the closure \overline{A}_{λ} of A_{λ} in X is an irreducible analytic set of X of dimension n-1 for every $\lambda \in \Lambda$. We also have that $|\overline{A}| \cap (X \setminus T) = |A|$ and $\overline{A}_{\lambda} \cap (X \setminus T) = A_{\lambda}$ for every $\lambda \in \Lambda$. Since we can see that $|\overline{A}| = \bigcup_{\lambda \in \Lambda} \overline{A}_{\lambda}$, the system $\{\overline{A}_{\lambda}\}_{\lambda \in \Lambda}$ is locally finite in X. Let \mathfrak{c} be the Cartier divisor on X corresponding to the Weil divisor $B := \sum_{\lambda \in \Lambda} \alpha_{\lambda} \overline{A}_{\lambda}$ on X. Since $B|_{X \setminus T} = A$, we have that $\mathfrak{c}|_{X \setminus T} = \mathfrak{d}$. \Box

Let X be a reduced complex space. Let $e : \mathcal{O} \to \mathcal{O}^*$ be the homomorphism of sheaves defined by $e_x(h_x) := (e^{2\pi i h})_x$ for $h_x \in \mathcal{O}_x$ and $x \in X$. Then e induces the homomorphism $e^* : H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}^*)$. As usual, we identify the cohomology group $H^1(X, \mathcal{O}^*)$ with the set of holomorphic line bundles on X.

For a complex space X, we define the homomorphism

$$\Phi_X: H^1(X, \mathscr{O}_X) \to H^1(X, \mathscr{O}^*)$$

as follows: If $\alpha \in H^1(X, \mathscr{O}_X)$ is defined by the cocycle $\{h_{ij}\} \in Z^1(\{U_i\}, \mathscr{O}_X)$, where $\{U_i\}$ is an open covering of X, then let $\Phi_X(\alpha)$ be the cohomology class in $H^1(X, \mathscr{O}^*)$ defined by the cocycle $\{e^{2\pi i [h_{ij}]}\} \in Z^1(\{U_i\}, \mathscr{O}^*)$.¹ This definition does not depend on the choice of $\{U_i\}$ and $\{h_{ij}\}$. If X is reduced, then we have that $\Phi_X = e^*$.

Let $\Delta(r) := \{t \in \mathbb{C} \mid |t| < r\}$ for r > 0 and $\Delta := \Delta(1)$. Let

$$P = P(n,\varepsilon) := \Delta(1+\varepsilon)^n \text{ and}$$
$$H = H(n,\varepsilon) := \Delta^n \cup \left(\left(\Delta(1+\varepsilon) \setminus \overline{\Delta(1-\varepsilon)} \right) \times \Delta(1+\varepsilon)^{n-1} \right)$$

for $n \in \mathbb{N}$ and $0 < \varepsilon < 1$. The pair (P, H) is said to be a *Hartogs figure*.

An open set D of a complex space X is said to be *locally Stein* at a point $x \in \partial D$ if there exists a neighborhood U of x in X such that the open subspace $D \cap U$ is Stein. By Lemmas 6.1 and 6.2 of Abe [3], we have the following lemma.

Lemma 2.2. Let X be a Stein space of pure dimension $n \ge 2$. Let D be an open set of X. Then the following two conditions are equivalent.

- (1) D is not locally Stein at some point $p \in \partial D \setminus \text{Sing}(X)$.
- (2) There exist a holomorphic map $\theta : X \to \mathbb{C}^{n,2}$ an open set $W \subset X \setminus \operatorname{Sing}(X), \varepsilon \in (0,1), \text{ and } b = (b_1, b_2, \dots, b_n) \in \mathbb{C}^n$ such that $\theta(W)$ is an open set of \mathbb{C}^n , the restriction $\theta|_W : W \to \theta(W)$ is biholomorphic, $P(n,\varepsilon) \in \theta(W), (\theta|_W)^{-1}(H(n,\varepsilon)) \subset D, |b_1| \leq 1-\varepsilon, 1 \leq |b_2| < 1+\varepsilon,$ $|b_{\nu}| < 1 \text{ for } 3 \leq \nu \leq n, \text{ and } (\theta|_W)^{-1}(b) \in \partial D.$

¹ We denote by [h] the valuation $x \mapsto h_x + \mathfrak{m}_x \in \mathscr{O}_{X,x}/\mathfrak{m}_x = \mathbb{C}, x \in U$, for $h \in \mathscr{O}_X(U)$, where U is an open set of X.

² As usual, we simply write $\theta: X \to \mathbb{C}^n$ instead of $(\theta, \tilde{\theta}): (X, \mathscr{O}_X) \to (\mathbb{C}^n, \mathscr{O}).$

Lemma 2.3. Let X be a reduced complex space. Then for every $x \in$ Sing(X) has a sufficiently small neighborhood U of x such that U is Stein, U is contractible to x, and rank $H^1(U \setminus x, \mathbb{Z}) < +\infty$.

Proof. Take a neighborhood E of x in X such that E can be regarded as an analytic set of an open set B of some \mathbb{C}^N in which x is the origin. Let $B_{\varepsilon} := \{z \in \mathbb{C}^N \mid \|z\| < \varepsilon\}$ for every $\varepsilon > 0$. Then, by the conic structure lemma of Burghelea-Verona [8, Lemma 3.2], there exists $\varepsilon_0 > 0$ such that $B_{\varepsilon_0} \in B$ and the pair $(\overline{B}_{\varepsilon}, \overline{B}_{\varepsilon} \cap E)$ is homeomorphic to the cone over the pair $(\partial B_{\varepsilon}, \partial B_{\varepsilon} \cap E)$ for every $\varepsilon \in (0, \varepsilon_0]$. Take an $\varepsilon \in (0, \varepsilon_0]$ and let $U := B_{\varepsilon} \cap E$. Then U is Stein and is contractible to x. Since, by Łojasiewicz [17, Theorem 1], there exists a finite simplicial complex which decomposes $\partial B_{\varepsilon} \cap E$, we see that $U \setminus x$ has a finite covering by contractible open sets and therefore rank $H^1(U \setminus x, \mathbb{Z}) < +\infty$.

3. Domains in a Stein space

In this section, we revise the contents of Abe [2], for there are incorrect arguments in the proof of Abe [2, Lemma 3.3].

Lemma 3.1 (cf. Abe [2, Lemma 3.1]) Let X be a Stein space of pure dimension 2 and D an open set of X. Let W be an open set of $X \setminus \text{Sing}(X)$ and $\theta : X \to \mathbb{C}^2$ be a holomorphic map such that $\theta(W)$ is an open set of \mathbb{C}^2 and the restriction $\theta|_W : W \to \theta(W)$ is biholomorphic. Assume that there exist $\varepsilon \in (0,1)$ and $b = (b_1, b_2) \in \mathbb{C}^2$ such that $P(2,\varepsilon) \Subset \theta(W)$, $(\theta|_W)^{-1}(H(2,\varepsilon)) \subset D$, $|b_1| \leq 1 - \varepsilon$, $1 \leq |b_2| < 1 + \varepsilon$, and $(\theta|_W)^{-1}(b) \in$ ∂D . Then there exists a cohomology class $\alpha \in H^1(D, \mathscr{O}_X|_D)$ such that the holomorphic line bundle $\Phi_{(D, \mathscr{O}_X|_D)}(\alpha)|_{D\cap R} \in H^1(D \cap R, \mathscr{O}^*)$ is not associated to any Cartier divisor on $D \cap R$, where $R := (\theta|_W)^{-1}(P(2,\varepsilon))$.

Proof. The proof is essentially same as that of Abe [2, Lemma 3.1]. Let $\theta_{\nu} := \tilde{\theta} z_{\nu}$ for $\nu = 1, 2$, where z_1, z_2 are the coordinates of \mathbb{C}^2 . Let $E_{\nu} := \{[\theta_{\nu}] \neq b_{\nu}\}$ for $\nu = 1, 2$. Since E_{ν} is Stein and $1/([\theta_{\nu}] - b_{\nu}) \in \mathcal{O}(E_{\nu})$, there exists $u_{\nu} \in \mathcal{O}_X(E_{\nu})$ such that $[u_{\nu}] = 1/([\theta_{\nu}] - b_{\nu})$ on E_{ν} for $\nu = 1, 2$. Let $T := \{|[\theta_2]| < 1 + \varepsilon\}$ and $F := (E_1 \cap T) \cup (T \setminus \overline{R})$. Then T is Stein, $\{R, F\}$ is an open covering of T, and $R \cap F = E_1 \cap R$. Since $H^1(\{R, F\}, \mathcal{O}_X|_T) = 0$,

there exist $v_0 \in \mathscr{O}_X(R)$ and $v_1 \in \mathscr{O}_X(F)$ such that $u_1 = v_1 - v_0$ on $R \cap F$. Let $D_1 := D \cap F$ and $D_2 := D \cap E_2$. Since $(\theta|_W)^{-1}(b) \notin D$, we see that $\{D_1, D_2\}$ is an open covering of D. Let $\alpha \in H^1(\{D_1, D_2\}, \mathscr{O}_X|_D)$ be the cohomology class defined by $e^{v_1+u_2}|_{D_1\cap D_2} \in \mathscr{O}_X(D_1\cap D_2)^3$ Assume that $\Phi_{(D,\mathscr{O}_X|_D)}(\alpha)|_{D\cap R}$ is associated to some Cartier divisor on $D\cap R$. Then there exist $g_{\nu} \in \mathscr{M}^*(D_{\nu} \cap R), \nu = 1, 2$, such that $\exp(2\pi i e^{v_1 + u_2}) = g_1/g_2$ on $D_1 \cap D_2 \cap R$. Let $P := P(2, \varepsilon)$ and $H := H(2, \varepsilon)$. Let $P_{\nu} := P \cap \{z_{\nu} \neq b_{\nu}\}$ and $H_{\nu} := H \cap \{z_{\nu} \neq b_{\nu}\}$ for $\nu = 1, 2$. Since $(\theta|_W)^{-1}(H_{\nu}) \subset D \cap E_{\nu} \cap$ $R = D_{\nu} \cap R$, we have the function $f_{\nu} := g_{\nu} \circ (\theta|_W)^{-1} \in \mathscr{M}^*(H_{\nu})$ for $\nu = 1, 2.$ Since $(\theta|_W)^{-1}(P_1 \cap P_2) \subset E_1 \cap E_2 \cap R = F \cap E_2 \cap R$, we have the function $\xi := \exp(2\pi i e^{v_1 + u_2}) \circ (\theta|_W)^{-1} \in \mathscr{O}(P_1 \cap P_2)$. Then we have that $\xi = f_1/f_2$ on $H_1 \cap H_2$. Since P is an envelope of holomorphy of H, the open set P_{ν} is an envelope of holomorphy of H_{ν} for $\nu = 1, 2$ by Grauert-Remmert [10, Satz 7] (see Jarnicki-Pflug [13, p. 182]). Therefore, by Kajiwara-Sakai [15, Proposition 3], there exists $f_{\nu} \in \mathscr{M}(P_{\nu})$ such that $\tilde{f}_{\nu} = f_{\nu}$ on H_{ν} for $\nu = 1, 2$. Then, by the theorem of identity, we have that $\tilde{f}_{\nu} \in \mathscr{M}^*(P_{\nu})$ for $\nu = 1, 2$ and $\xi = \tilde{f}_1/\tilde{f}_2$ on $P_1 \cap P_2$. Let $w_{\nu} := (z_{\nu} - b_{\nu})/\delta$ for $\nu = 1, 2$, where $0 < \delta \le 1 + \varepsilon - |b_2|$. Let $U_1 := \{0 < |w_1| < 1, |w_2| < 1\},\$ $U_2 := \{ |w_1| < 1, 0 < |w_2| < 1 \}$, and $M := U_1 \cup U_2$. Since M is Cousin-II, we moreover have that $\xi|_{U_1\cap U_2} \in B^1(\{U_1, U_2\}, \mathscr{O}^*)$. Let $\eta := v_0 \circ (\theta|_W)^{-1}$ on P. We have that

$$\xi = \exp\left(2\pi i e^{v_0 + u_1 + u_2}\right) \circ (\theta|_W)^{-1} = \exp\left(2\pi i e^{\eta} e^{(1/\delta)(1/w_1 + 1/w_2)}\right)$$

on $U_1 \cap U_2$. By Abe [3, Lemma 3.3], we then have that

$$e^{\eta}e^{(1/\delta)(1/w_1+1/w_2)} \in B^1(\{U_1, U_2\}, \mathscr{O}),$$

which contradicts Kajiwara-Kazama [14, Lemma 9] (see Abe [3, Lemma 3.2]). It follows that the cohomology class $\Phi_{(D, \mathscr{O}_X|_D)}(\alpha)|_{D\cap R}$ is not associated to any Cartier divisor on $D \cap R$.

Lemma 3.2 (cf. Abe [2, Lemma 3.3]) Let X be a Cohen-Macaulay Stein space of pure dimension $n \ge 2.^4$ Let D be an open set of X such

³See Kaup-Kaup [16, pp. 246] for the definition of $e^h \in \mathscr{O}_X(U)$, where U is an open set of a complex space X and $h \in \mathscr{O}_X(U)$.

⁴ A complex space X is said to be *Cohen-Macaulay* if the local \mathbb{C} -algebra $\mathscr{O}_{X,x}$ is Cohen-Macaulay for every $x \in X$.

that $H^k(D, \mathscr{O}_X|_D) = 0$ for $2 \leq k \leq n-1$. Let W be an open set of $X \setminus \operatorname{Sing}(X)$ and $\theta : X \to \mathbb{C}^n$ be a holomorphic map such that $\theta(W)$ is an open set of \mathbb{C}^n and the restriction $\theta|_W : W \to \theta(W)$ is biholomorphic. Assume that there exist $\varepsilon \in (0,1)$ and $b = (b_1, b_2, \ldots, b_n) \in \mathbb{C}^n$ such that $P(n,\varepsilon) \subseteq \theta(W), \ (\theta|_W)^{-1}(H(n,\varepsilon)) \subset D, \ |b_1| \leq 1-\varepsilon, \ 1 \leq |b_2| < 1+\varepsilon,$ $|b_{\nu}| < 1$ for $3 \leq \nu \leq n$, and $(\theta|_W)^{-1}(b) \in \partial D$. Then there exists a cohomology class $\alpha \in H^1(D \cap R, \mathscr{O}^*)$ is not associated to any Cartier divisor on $D \cap R$, where $R := (\theta|_W)^{-1}(P(n,\varepsilon))$.

Proof. The proof proceeds by induction on *n*. By Lemma 3.1, the assertion is true if n = 2. We consider the case where $n \ge 3$. Let $\theta_{\nu} := \tilde{\theta} z_{\nu}$ for $\nu = 1, 2, \ldots, n$, where z_1, z_2, \ldots, z_n are the coordinates of \mathbb{C}^n . We may assume that *W* is connected. Then, there exists $f \in \mathcal{O}_X(X)$ such that $[f] = [\theta_n] - b_n$ on the irreducible component X_0 of *X* containing *W* and $[f] \not\equiv 0$ on any irreducible component of *X*. Let $Y := \{[f] = 0\}$ and $\mathcal{O}_Y := (\mathcal{O}_X / f \mathcal{O}_X)|_Y$. By the argument in the proof of Abe [2, Lemma 3.3], the complex space *Y* is a Cohen-Macaulay Stein space of pure dimension n-1 and we have that $H^k(D \cap Y, \mathcal{O}_X|_{D\cap Y}) = 0$ for $2 \le k \le n-2$ and the restriction $\tilde{\iota}^* : H^1(D, \mathcal{O}_X|_D) \to H^1(D \cap Y, \mathcal{O}_Y |_{D\cap Y})$ is surjective. Let $\theta' : Y \to \mathbb{C}^{n-1}$ be the holomorphic map such that $\tilde{\theta'} z_{\nu} = (\tilde{\iota} \theta_{\nu})|_Y$ for $\nu = 1, 2, \ldots, n-1$. Let $R' := R \cap Y$ and $W' := W \cap Y$. Then we have that $R' \subseteq W' \subset Y \setminus \operatorname{Sing}(Y), \theta(x) = (\theta'(x), b_n)$ for every $x \in W'$, the set $\theta'(W')$ is open in \mathbb{C}^{n-1} , the restriction $\theta'|_{W'} : W' \to \theta'(W')$ is biholomorphic,

$$(\theta'|_{W'})^{-1}(P(n-1,\varepsilon)) = R',$$

$$(\theta'|_{W'})^{-1}(H(n-1,\varepsilon)) = (\theta|_W)^{-1}(H(n-1,\varepsilon) \times \{b_n\})$$

$$= (\theta|_W)^{-1}(H(n,\varepsilon)) \cap W' \subset D \cap Y,^5 \text{ and}$$

$$(\theta'|_{W'})^{-1}((b_1,\ldots,b_{n-1})) = (\theta|_W)^{-1}(b) \notin D \cap Y.$$

Let $b' := (b_1, t_0 b_2, b_3, \dots, b_{n-1})$, where

 $t_0 := \sup\{t \in [0,1] \mid (\theta'|_{W'})^{-1}((b_1, sb_2, b_3, \dots, b_{n-1})) \in D \cap Y \text{ for every } s \in [0,t]\}.$

⁵ Because $|b_n| < 1$, we have that $H(n-1,\varepsilon) \times \{b_n\} = H(n,\varepsilon) \cap \{z_n = b_n\}$. The proof of Abe [2, Lemma 3.3] is not correct as the possibility of $|b_n| = 1$ is not avoided there.

Then we have that $1 \leq |t_0b_2| < 1 + \varepsilon$ and the point $(\theta'|_{W'})^{-1}(b')$ belongs to the boundary of $D \cap Y$ in Y. By induction hypothesis, there exists $\alpha' \in H^1(D \cap Y, \mathscr{O}_Y|_{D \cap Y})$ such that $\Phi_{(D \cap Y, \mathscr{O}_Y|_{D \cap Y})}(\alpha')|_{D \cap R'}$ is not associated to any Cartier divisor on $D \cap R'$. Since $\tilde{\iota}^*$ is surjective, there exists $\alpha \in$ $H^1(D, \mathscr{O}_X|_D)$ such that $\tilde{\iota}^*(\alpha)|_{D \cap Y} = \alpha'$. Then, by the argument in the proof of Abe [2, Lemma 3.3], the line bundle $\Phi_{(D, \mathscr{O}_X|_D)}(\alpha)|_{D \cap R}$ is not associated to any Cartier divisor on $D \cap R$.

Theorem 3.3 (Abe [2, Theorem 4.1]) Let X be a Stein space of pure dimension n. Assume further that X is Cohen-Macaulay if $n \ge 3$. Let D be an open set of X which satisfies the following two conditions:

- $H^k(D, \mathscr{O}_X|_D) = 0$ for $2 \le k \le n 1.^6$
- For every $\alpha \in H^1(D, \mathscr{O}_X|_D)$ there exists $\mathfrak{d} \in \operatorname{Div}(D)$ such that $\Phi_{(D, \mathscr{O}_X|_D)}(\alpha) = [\mathfrak{d}].$

Then D is locally Stein at every point $x \in \partial D \setminus \operatorname{Sing}(X)$.

Proof. We may assume that $n \geq 2$. Assume that there exists $p \in \partial D \setminus$ Sing(X) such that D is not locally Stein at p. Then, by Lemma 2.2, there exist a holomorphic map $\theta : X \to \mathbb{C}^n$, an open set $W \subset X \setminus \text{Sing}(X)$, $\varepsilon \in (0,1)$, and $b = (b_1, b_2, \dots, b_n) \in \mathbb{C}^n$ such that $\theta(W)$ is an open set of \mathbb{C}^n , the restriction $\theta|_W : W \to \theta(W)$ is biholomorphic, $P(n,\varepsilon) \in \theta(W)$, $(\theta|_W)^{-1}(H(n,\varepsilon)) \subset D$, $|b_1| \leq 1 - \varepsilon$, $1 \leq |b_2| < 1 + \varepsilon$, $|b_\nu| < 1$ for $3 \leq \nu \leq n$, and $(\theta|_W)^{-1}(b) \in \partial D$. By Lemmas 3.1 and 3.2, there exists $\alpha \in$ $H^1(D, \mathscr{O}_X|_D)$ such that the line bundle $\Phi_{(D,\mathscr{O}_X|_D)}(\alpha)|_{D\cap R}$ is not associated to any Cartier divisor on $D \cap R$, where $R := (\theta|_W)^{-1}(P(n,\varepsilon))$. It is a contradiction. \Box

⁶ This condition can be replaced by the weaker one that dim $H^k(D, \mathscr{O}_X|_D) \leq \aleph_0$ for $2 \leq k \leq n-1$ (see Abe [2, Remark 4.2]).

4. Domains in a Stein orbifold

Lemma 4.1. Let X be a Stein orbifold of pure dimension $n \ge 2$ such that Sing(X) is discrete. Let D be an open set of X which satisfies the following three conditions:

- $H^k(D, \mathscr{O}) = 0$ for $2 \le k \le n-1$.
- For every topologically trivial holomorphic line bundle L on D there exists $\mathfrak{d} \in \operatorname{Div}(D)$ such that $L = [\mathfrak{d}]$.⁷
- $X \setminus \operatorname{Sing}(X) \subset D$.

Then we have that D = X.

Proof. Assume that $D \subsetneq X$. Then $P := X \setminus D \neq \emptyset$. Since $\operatorname{Sing}(X)$ is discrete and $P \subset \operatorname{Sing}(X)$, the set P is also discrete. Take a system $\{U_x\}_{x\in P}$ of connected Stein open sets of X such that $U_x \cap \operatorname{Sing}(X) = \{x\}$ for every $x \in P$ and $U_x \cap U_y = \emptyset$ if $x \neq y$. By the Mayer-Vietoris exact sequence, we have the isomorphisms

$$H^{k}(D,\mathscr{O}) \xrightarrow{\sim} H^{k}(\bigcup_{x \in P} (U_{x} \setminus x), \mathscr{O}) \cong \prod_{x \in P} H^{k}(U_{x} \setminus x, \mathscr{O})$$

for every $k \geq 1$. Therefore $H^1(D, \mathscr{O}) \to H^1(U_x \setminus x, \mathscr{O})$ is surjective and $H^k(U_x \setminus x, \mathscr{O}) = 0, 2 \leq k \leq n-1$, for every $x \in P$. Since X is normal,⁸ the open set $U_x \setminus x$ is not Stein by the second Riemann extension theorem. It follows that $H^1(U_x \setminus x, \mathscr{O}) \neq 0$ for every $x \in P$ (see, for example, Coen [9]). We fix a point $p \in P$. By Prill [18] (see Abe [3, Lemma 2.4]), there exist a neighborhood U' of p in X, an open set W' of \mathbb{C}^n , and a finitely sheeted ramified covering $\pi' : W' \to U'$ such that $U' \cap \operatorname{Sing}(X) = \{p\}$ and π' is locally biholomorphic on $W' \setminus \pi'^{-1}(p)$. We may assume that $\pi'^{-1}(p) = \{0\}$ (see Grauert-Remmert [11, p. 48]). Take an open ball B centered at 0 such that $B \subset W'$. By Lemma 2.3, we may further assume that $U := U_p$ is contractible to p, rank $H^1(U \setminus p, \mathbb{Z}) < +\infty$, $U \subset U'$, and $W := \pi'^{-1}(U) \subset B$.

⁷ Note that the set im $e^* = \ker \delta$ coincides with the set of topologically trivial holomorphic line bundles on D, where $H^1(D, \mathscr{O}) \xrightarrow{e^*} H^1(D, \mathscr{O}^*) \xrightarrow{\delta} H^2(D, \mathbb{Z})$.

⁸ Every complex orbifold is Cohen-Macaulay and normal (see Abe [3, p. 706]).

Let $\pi := \pi'|_W : W \to U$. Let $b := \# \pi^{-1}(\xi), \xi \in U \setminus p$, which is constant. The sequence $0 \to \mathbb{Z} \to \mathscr{O} \xrightarrow{e} \mathscr{O}^* \to 0$ is exact and we have the commutative diagram:

where the rows are exact. Take an arbitrary $\beta \in H^1(U \setminus p, \mathscr{O})$. Since the restriction $r : H^1(D, \mathscr{O}) \to H^1(U \setminus p, \mathscr{O})$ is surjective, there exists $\alpha \in H^1(D, \mathscr{O})$ such that $r(\alpha) = \beta/b$. By assumption, there exists $\mathfrak{d} \in \operatorname{Div}(D)$ such that $[\mathfrak{d}] = e^*(\alpha)$. By Lemma 2.1, there exists $\mathfrak{c} \in \operatorname{Div}(W')$ such that $\mathfrak{c}|_{W'\setminus 0} = \pi'_*(\mathfrak{d}|_{U'\setminus p})$. Since $H^1(B, \mathscr{O}^*) = 0$, we have that $[\mathfrak{c}]|_B = 0$. Then we have that

$$e^*(\pi_*(\beta/b)) = e^*(\pi_*(r(\alpha))) = \pi_*(r(e^*(\alpha))) = \pi_*([\mathfrak{d}]|_{U\setminus p}) = [\mathfrak{c}]|_{W\setminus 0} = 0.$$

Therefore there exists $\tilde{\nu} \in H^1(W \setminus 0, \mathbb{Z})$ such that $\iota(\tilde{\nu}) = \pi_*(\beta/b)$. Since $\pi : W \setminus 0 \to U \setminus p$ is a *b*-sheeted unramified covering over $U \setminus p$, there exists a simple open covering $\{V_i\}_{i \in I}$ of $U \setminus p$ such that $\pi^{-1}(V_i)$ consists of *b* connected components $\tilde{V}_{i1}, \tilde{V}_{i2}, \ldots, \tilde{V}_{ib}$ and $\pi|_{\tilde{V}_{i\lambda}} : \tilde{V}_{i\lambda} \to V_i$ is biholomorphic for every $i \in I$ and for every $\lambda = 1, 2, \ldots, b$. Then $\{\pi^{-1}(V_i)\}_{i \in I}$ is a Leray open covering of $W \setminus 0$ with respect to the constant sheaf \mathbb{Z} . Therefore there exists a cocycle $\{\tilde{\nu}_{ij}\} \in Z^1(\{\pi^{-1}(V_i)\}_{i \in I}, \mathbb{Z})$ such that $\tilde{\nu} = [\{\tilde{\nu}_{ij}\}] \in H^1(\{\pi^{-1}(V_i)\}_{i \in I}, \mathbb{Z})$. Since $\{V_i\}_{i \in I}$ can be chosen sufficiently fine, we may assume that there exists a cocycle $\{\beta_{ij}\} \in Z^1(\{V_i\}_{i \in I}, \mathcal{O})$ such that $\beta = [\{\beta_{ij}\}] \in H^1(\{V_i\}_{i \in I}, \mathcal{O})$. Since $\beta/b - \iota(\tilde{\nu}) = [\{(\beta_{ij} \circ \pi)/b - \tilde{\nu}_{ij}\}] = 0$ in $H^1(\{\pi^{-1}(V_i)\}_{i \in I}, \mathcal{O})$, there exists $\{\tilde{\gamma}_i\} \in C^0(\{\pi^{-1}(V_i)\}_{i \in I}, \mathcal{O})$ such that $(\beta_{ij} \circ \pi)/b - \tilde{\nu}_{ij} = \tilde{\gamma}_j - \tilde{\gamma}_i$ on $\pi^{-1}(V_i \cap V_j)$ for every $i, j \in I$. For an arbitrary $\xi \in \pi^{-1}(V_i \cap V_j)$ let $\{\eta_1, \eta_2, \ldots, \eta_b\} := \pi^{-1}(\xi)$. Since $\beta_{ij}(\xi)/b - \tilde{\nu}_{ij}(\eta_{\lambda}) = \tilde{\gamma}_j(\eta_{\lambda}) - \tilde{\gamma}_i(\eta_{\lambda})$ for $\lambda = 1, 2, \ldots, b$, we obtain that

$$\beta_{ij}(\xi) - \sum_{\lambda=1}^{b} \tilde{\nu}_{ij}(\eta_{\lambda}) = \sum_{\lambda=1}^{b} \tilde{\gamma}_{j}(\eta_{\lambda}) - \sum_{\lambda=1}^{b} \tilde{\gamma}_{i}(\eta_{\lambda}).$$

Let $\gamma_i := \sum_{\lambda=1}^b \tilde{\gamma}_i \circ (\pi|_{\tilde{V}_{i\lambda}})^{-1}$ on V_i and let $\nu_{ij} := \sum_{\lambda=1}^b \tilde{\nu}_{ij} \circ ((\pi|_{\tilde{V}_{i\lambda}})^{-1}|_{V_i \cap V_j})$ on $V_i \cap V_j$. Then γ_i is a holomorphic function on V_i , ν_{ij} is a constant function on $V_i \cap V_j$ with values in \mathbb{Z} , and we have that $\beta_{ij} - \nu_{ij} = \gamma_j - \gamma_i$ on $V_i \cap V_j$ for every $i, j \in \mathbb{Z}$. Since $\delta\{\nu_{ij}\} = \delta\{\beta_{ij}\} - \delta\{\gamma_j - \gamma_i\} = 0$, we have that $\{\nu_{ij}\} \in Z^1(\{V_i\}_{i \in I}, \mathbb{Z})$. Then we have that $\beta = \iota(\nu) \in H^1(\{V_i\}_{i \in I}, \mathcal{O}) \subset$ $H^1(U \setminus p, \mathcal{O})$, where $\nu := [\{\nu_{ij}\}] \in H^1(\{V_i\}_{i \in I}, \mathbb{Z})$. Thus we proved that $\iota : H^1(U \setminus p, \mathbb{Z}) \to H^1(V \setminus p, \mathcal{O})$ is surjective. Since $H^1(U \setminus p, \mathcal{O})$ is a nontrivial \mathbb{C} -vector space, we have that $\# H^1(U \setminus p, \mathcal{O}) \ge \aleph$. Since rank $H^1(U \setminus p, \mathbb{Z}) < +\infty$, we also have that $\# H^1(U \setminus p, \mathbb{Z}) \le \aleph_0$, which is a contradiction. It follows that D = X.

Theorem 4.2. Let X be a Stein orbifold of pure dimension n such that Sing(X) is discrete. Let D be an open set of X. Then the following two conditions are equivalent.

- (1) D is Stein.
- (2) D satisfies the following two conditions:
 - $H^k(D, \mathcal{O}) = 0$ for $2 \le k \le n 1.9$
 - For every topologically trivial holomorphic line bundle L on D there exists ∂ ∈ Div(D) such that L = [∂].

Proof. $(1) \rightarrow (2)$. Every holomorphic line bundle on a reduced Stein space is associated to some positive Cartier divisor (see Gunning [12, p. 124]). $(2) \rightarrow (1)$. We may assume that $n \geq 2$. By Theorem 3.3, the open set Dis locally Stein at every $x \in \partial D \setminus \operatorname{Sing}(X)$. Let D^* be the extension of Dalong $\operatorname{Sing}(X)$. We have that $D^* \setminus \operatorname{Sing}(X) = D \setminus \operatorname{Sing}(X)$. The open set D^* does not have boundary points removable along $\operatorname{Sing}(X)$ and is locally Stein at every $x \in \partial D^* \setminus \operatorname{Sing}(X)$. By Abe-Hamada [4, Lemma 2] (see Abe [3, Lemma 2.4]), the open set D^* is locally Stein at every $x \in \partial D^*$. Since $\operatorname{Sing}(X)$ is discrete, the open set D^* is Stein by Andreotti-Narasimhan [6]. Since $D^* \setminus \operatorname{Sing}(X) \subset D \subset D^*$, we have that $D = D^*$ by Lemma 4.1. Thus we proved that D is Stein. \Box

⁹ This condition can be replaced by the weaker one that dim $H^k(D, \mathcal{O}) \leq \aleph_0$ for $2 \leq k \leq n-1$ (see footnotes 6 and 8).

Corollary 4.3. Let X be a Stein orbifold of pure dimension 2. Then for every open set D of X the following two conditions are equivalent.

- (1) D is Stein.
- (2) For every topologically trivial holomorphic line bundle L on D there exists $\mathfrak{d} \in \operatorname{Div}(D)$ on D such that $L = [\mathfrak{d}]$.

References

- M. Abe, Holomorphic line bundles on a domain of a two-dimensional Stein manifold, Ann. Polon. Math., 83 (2004), 269–272.
- [2] M. Abe, Holomorphic line bundles and divisors on a domain of a Stein manifold, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5), 6 (2007), 323– 330.
- [3] M. Abe, Open sets which satisfy the Oka-Grauert principle in a Stein space, Ann. Mat. Pura Appl. (4), 190 (2011), 703–723.
- [4] M. Abe and H. Hamada, On the complete Kählerity of complex spaces, Bull. Kyushu Kyoritsu Univ. Fac. Engineering, 20 (1996), 17–23.
- [5] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193–259.
- [6] A. Andreotti and R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, *Trans. Amer. Math. Soc.*, **111** (1964), 345–366.
- [7] E. Ballico, Cousin I condition and Stein spaces, Complex Var. Theory Appl., 50 (2005), 23–25.
- [8] D. Burghelea and A. Verona, Local homological properties of analytic sets, *Manuscripta Math.*, 7 (1972), 55–66.
- [9] S. Coen, Annulation de la cohomologie à valeurs dans le faisceau structural et espaces de Stein, Compositio Math., 37 (1978), 63–75.

- [10] H. Grauert and R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorph-konvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, *Comment. Math. Helv.*, **31** (1956), 152–183.
- [11] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Grundl. Math. Wiss., vol. 265, Springer, Berlin, 1984.
- [12] R. C. Gunning, Introduction to holomorphic functions of several variables, vol. 3, Wadsworth, Belmont, 1990.
- [13] M. Jarnicki and P. Pflug, Extension of Holomorphic Functions, Walter de Gruyter, Berlin, 2000.
- [14] J. Kajiwara and H. Kazama, Two dimensional complex manifold with vanishing cohomology set, *Math. Ann.*, **204** (1973), 1–12.
- [15] J. Kajiwara and E. Sakai, Generalization of Levi-Oka's theorem concerning meromorphic functions, Nagoya Math. J., 29 (1967), 75–84.
- [16] L. Kaup and B. Kaup, Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, 1983.
- [17] S. Łojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa (3), 19 (1964), 449–474.
- [18] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, *Duke Math. J.*, **34** (1967), 375–386.

Makoto ABE Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739-8521, Japan e-mail: abem@hiroshima-u.ac.jp

(Received July 9, 2013)