# Holomorphic line bundles and Cartier divisors on domains in a Stein orbifold with discrete singularities 

Makoto ABE*


#### Abstract

Let $X$ be a Stein orbifold of pure dimension $n$ such that $\operatorname{Sing}(X)$ is discrete. Let $D$ be an open set of $X$ such that $H^{k}(D, \mathscr{O})=0$ for $2 \leq k \leq n-1$ and every topologically trivial holomorphic line bundle on $D$ is associated to some Cartier divisor on $D$. Then $D$ is Stein.


## 1. Introduction

Abe [1] proved that an open set $D$ of a Stein manifold $X$ of dimension 2 is Stein if every holomorphic line bundle $L$ on $D$ is associated to some Cartier divisor $\mathfrak{d}$ on $D$. Ballico [7] proved that an open set $D$ of a Stein manifold $X$ of dimension more than 2 of the form $D=\{\varphi<c\}$, where $\varphi: X \rightarrow \mathbb{R}$ is a $\mathscr{C}^{2}$ weakly 2 -convex function in the sense of Andreotti-Grauert [5], is Stein if every holomorphic line bundle $L$ on $D$ is associated to some Cartier divisor $\mathfrak{d}$ on $D$.

A complex space is said to be an orbifold (or a $V$-manifold) if every $x \in \operatorname{Sing}(X)$ is a quotient singular point. In this paper, we consider a Stein orbifold $X$ of pure dimension $n$ such that $\operatorname{Sing}(X)$ is discrete. Then, we prove that an open set $D$ of $X$ is Stein if $H^{k}(D, \mathscr{O})=0$ for $2 \leq k \leq n-1$ and for every topologically trivial holomorphic line bundle $L$ on $D$ is associated

[^0]to some Cartier divisor $\mathfrak{d}$ on $D$ (see Theorem 4.2), which generalizes two results above and improves Abe [2].

## 2. Preliminaries

We denote by $\mathscr{O}$ without subscript the reduced complex structure sheaf of a (not necessarily reduced) complex space. In other words, we always set $\mathscr{O}:=\mathscr{O}_{X} / \mathscr{N}_{X}$ for a complex space $X$, where $\mathscr{O}_{X}$ is the structure sheaf of $X$ and $\mathscr{N}_{X}$ is the nilradical of $\mathscr{O}_{X}$. For a reduced complex space $X$, we denote by $\mathscr{M}$ the sheaf of germs of meromorphic functions on $X$ and by $\mathscr{O}^{*}$ (resp. $\mathscr{M}^{*}$ ) the multiplicative sheaf on $X$ of germs of invertible holomorphic (resp. meromorphic) functions.

Let $X$ be a reduced complex space. Let $\operatorname{Div}(X):=\left(\mathscr{M}^{*} / \mathscr{O}^{*}\right)(X)$. An element $\mathfrak{d} \in \operatorname{Div}(X)$ is said to be a Cartier divisor on $X$. If $\mathfrak{d} \in \operatorname{Div}(X)$ is defined by the meromorphic Cousin-II distribution $\left\{\left(U_{i}, m_{i}\right)\right\}_{i \in I}$ on $X$, then we denote by $[\mathfrak{d}]$ the holomorphic line bundle on $X$ defined by the cocycle $\left\{m_{i} / m_{j}\right\} \in Z^{1}\left(\left\{U_{i}\right\}_{i \in I}, \mathscr{O}^{*}\right)$. We say that $[\mathfrak{d}]$ is the holomorphic line bundle associated to $\mathfrak{d}$. We say that $\mathfrak{d}$ is positive if $\mathfrak{d}$ can be defined by a holomorphic Cousin-II distribution.

By the extension theorem for analytic sets (see, for example, GrauertRemmert [11, p. 181]), we have the following extension theorem for Cartier divisors on a complex manifold.

Lemma 2.1. Let $X$ be a complex manifold of pure dimension $n \geq 2$. Let $T$ be an analytic set of $X$ such that $\operatorname{dim} T \leq n-2$. Then for every $\mathfrak{d} \in$ $\operatorname{Div}(X \backslash T)$ there exists $\mathfrak{c} \in \operatorname{Div}(X)$ such that $\left.\mathfrak{c}\right|_{X \backslash T}=\mathfrak{d}$.

Proof. Let $A=\sum_{\lambda \in \Lambda} \alpha_{\lambda} A_{\lambda}$ be the Weil divisor on $X \backslash T$ corresponding to $\mathfrak{d}$, where $A_{\lambda}$ is an irreducible analytic set of $X \backslash T$ of dimension $n-1$ and $\alpha_{\lambda} \in \mathbb{Z}$ for every $\lambda \in \Lambda$. Then, the closure $\overline{|A|}$ of $|A|=\bigcup_{\lambda \in \Lambda} A_{\lambda}$ in $X$ is an analytic set of $X$ of pure dimension $n-1$ and the closure $\bar{A}_{\lambda}$ of $A_{\lambda}$ in $X$ is an irreducible analytic set of $X$ of dimension $n-1$ for every $\lambda \in \Lambda$. We also have that $\overline{|A|} \cap(X \backslash T)=|A|$ and $\bar{A}_{\lambda} \cap(X \backslash T)=A_{\lambda}$ for every $\lambda \in \Lambda$. Since we can see that $\overline{|A|}=\bigcup_{\lambda \in \Lambda} \bar{A}_{\lambda}$, the system $\left\{\bar{A}_{\lambda}\right\}_{\lambda \in \Lambda}$ is locally finite in $X$. Let $\mathfrak{c}$ be the Cartier divisor on $X$ corresponding to the Weil divisor $B:=\sum_{\lambda \in \Lambda} \alpha_{\lambda} \bar{A}_{\lambda}$ on $X$. Since $\left.B\right|_{X \backslash T}=A$, we have that $\left.\mathfrak{c}\right|_{X \backslash T}=\mathfrak{d}$.

Let $X$ be a reduced complex space. Let $e: \mathscr{O} \rightarrow \mathscr{O}^{*}$ be the homomorphism of sheaves defined by $e_{x}\left(h_{x}\right):=\left(\mathrm{e}^{2 \pi \mathrm{i} h}\right)_{x}$ for $h_{x} \in \mathscr{O}_{x}$ and $x \in X$. Then $e$ induces the homomorphism $e^{*}: H^{1}(X, \mathscr{O}) \rightarrow H^{1}\left(X, \mathscr{O}^{*}\right)$. As usual, we identify the cohomology group $H^{1}\left(X, \mathscr{O}^{*}\right)$ with the set of holomorphic line bundles on $X$.

For a complex space $X$, we define the homomorphism

$$
\Phi_{X}: H^{1}\left(X, \mathscr{O}_{X}\right) \rightarrow H^{1}\left(X, \mathscr{O}^{*}\right)
$$

as follows: If $\alpha \in H^{1}\left(X, \mathscr{O}_{X}\right)$ is defined by the cocycle $\left\{h_{i j}\right\} \in$ $Z^{1}\left(\left\{U_{i}\right\}, \mathscr{O}_{X}\right)$, where $\left\{U_{i}\right\}$ is an open covering of $X$, then let $\Phi_{X}(\alpha)$ be the cohomology class in $H^{1}\left(X, \mathscr{O}^{*}\right)$ defined by the cocycle $\left\{\mathrm{e}^{2 \pi \mathrm{i}}\left[h_{i j}\right]\right\} \in$ $Z^{1}\left(\left\{U_{i}\right\}, \mathscr{O}^{*}\right) .{ }^{1}$ This definition does not depend on the choice of $\left\{U_{i}\right\}$ and $\left\{h_{i j}\right\}$. If $X$ is reduced, then we have that $\Phi_{X}=e^{*}$.

Let $\Delta(r):=\{t \in \mathbb{C}| | t \mid<r\}$ for $r>0$ and $\Delta:=\Delta(1)$. Let

$$
\begin{aligned}
& P=P(n, \varepsilon):=\Delta(1+\varepsilon)^{n} \text { and } \\
& H=H(n, \varepsilon):=\Delta^{n} \cup\left((\Delta(1+\varepsilon) \backslash \overline{\Delta(1-\varepsilon)}) \times \Delta(1+\varepsilon)^{n-1}\right)
\end{aligned}
$$

for $n \in \mathbb{N}$ and $0<\varepsilon<1$. The pair $(P, H)$ is said to be a Hartogs figure.
An open set $D$ of a complex space $X$ is said to be locally Stein at a point $x \in \partial D$ if there exists a neighborhood $U$ of $x$ in $X$ such that the open subspace $D \cap U$ is Stein. By Lemmas 6.1 and 6.2 of Abe [3], we have the following lemma.

Lemma 2.2. Let $X$ be a Stein space of pure dimension $n \geq 2$. Let $D$ be an open set of $X$. Then the following two conditions are equivalent.
(1) $D$ is not locally Stein at some point $p \in \partial D \backslash \operatorname{Sing}(X)$.
(2) There exist a holomorphic map $\theta: X \rightarrow \mathbb{C}^{n},{ }^{2}$ an open set $W \subset$ $X \backslash \operatorname{Sing}(X), \varepsilon \in(0,1)$, and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{C}^{n}$ such that $\theta(W)$ is an open set of $\mathbb{C}^{n}$, the restriction $\left.\theta\right|_{W}: W \rightarrow \theta(W)$ is biholomorphic, $P(n, \varepsilon) \Subset \theta(W),\left(\left.\theta\right|_{W}\right)^{-1}(H(n, \varepsilon)) \subset D,\left|b_{1}\right| \leq 1-\varepsilon, 1 \leq\left|b_{2}\right|<1+\varepsilon$, $\left|b_{\nu}\right|<1$ for $3 \leq \nu \leq n$, and $\left(\left.\theta\right|_{W}\right)^{-1}(b) \in \partial D$.

[^1]Lemma 2.3. Let $X$ be a reduced complex space. Then for every $x \in$ Sing $(X)$ has a sufficiently small neighborhood $U$ of $x$ such that $U$ is Stein, $U$ is contractible to $x$, and $\operatorname{rank} H^{1}(U \backslash x, \mathbb{Z})<+\infty$.

Proof. Take a neighborhood $E$ of $x$ in $X$ such that $E$ can be regarded as an analytic set of an open set $B$ of some $\mathbb{C}^{N}$ in which $x$ is the origin. Let $B_{\varepsilon}:=\left\{z \in \mathbb{C}^{N} \mid\|z\|<\varepsilon\right\}$ for every $\varepsilon>0$. Then, by the conic structure lemma of Burghelea-Verona [8, Lemma 3.2], there exists $\varepsilon_{0}>0$ such that $B_{\varepsilon_{0}} \Subset B$ and the pair $\left(\bar{B}_{\varepsilon}, \bar{B}_{\varepsilon} \cap E\right)$ is homeomorphic to the cone over the pair $\left(\partial B_{\varepsilon}, \partial B_{\varepsilon} \cap E\right)$ for every $\varepsilon \in\left(0, \varepsilon_{0}\right]$. Take an $\varepsilon \in\left(0, \varepsilon_{0}\right]$ and let $U:=B_{\varepsilon} \cap E$. Then $U$ is Stein and is contractible to $x$. Since, by Łojasiewicz [17, Theorem 1], there exists a finite simplicial complex which decomposes $\partial B_{\varepsilon} \cap E$, we see that $U \backslash x$ has a finite covering by contractible open sets and therefore rank $H^{1}(U \backslash x, \mathbb{Z})<+\infty$.

## 3. Domains in a Stein space

In this section, we revise the contents of Abe [2], for there are incorrect arguments in the proof of Abe [2, Lemma 3.3].

Lemma 3.1 (cf. Abe [2, Lemma 3.1]) Let $X$ be a Stein space of pure dimension 2 and $D$ an open set of $X$. Let $W$ be an open set of $X \backslash \operatorname{Sing}(X)$ and $\theta: X \rightarrow \mathbb{C}^{2}$ be a holomorphic map such that $\theta(W)$ is an open set of $\mathbb{C}^{2}$ and the restriction $\left.\theta\right|_{W}: W \rightarrow \theta(W)$ is biholomorphic. Assume that there exist $\varepsilon \in(0,1)$ and $b=\left(b_{1}, b_{2}\right) \in \mathbb{C}^{2}$ such that $P(2, \varepsilon) \Subset \theta(W)$, $\left(\left.\theta\right|_{W}\right)^{-1}(H(2, \varepsilon)) \subset D,\left|b_{1}\right| \leq 1-\varepsilon, 1 \leq\left|b_{2}\right|<1+\varepsilon$, and $\left(\left.\theta\right|_{W}\right)^{-1}(b) \in$ $\partial D$. Then there exists a cohomology class $\alpha \in H^{1}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)$ such that the holomorphic line bundle $\left.\Phi_{\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)}(\alpha)\right|_{D \cap R} \in H^{1}\left(D \cap R, \mathscr{O}^{*}\right)$ is not associated to any Cartier divisor on $D \cap R$, where $R:=\left(\left.\theta\right|_{W}\right)^{-1}(P(2, \varepsilon))$.

Proof. The proof is essentially same as that of Abe [2, Lemma 3.1]. Let $\theta_{\nu}:=\tilde{\theta} z_{\nu}$ for $\nu=1,2$, where $z_{1}, z_{2}$ are the coordinates of $\mathbb{C}^{2}$. Let $E_{\nu}:=$ $\left\{\left[\theta_{\nu}\right] \neq b_{\nu}\right\}$ for $\nu=1,2$. Since $E_{\nu}$ is Stein and $1 /\left(\left[\theta_{\nu}\right]-b_{\nu}\right) \in \mathscr{O}\left(E_{\nu}\right)$, there exists $u_{\nu} \in \mathscr{O}_{X}\left(E_{\nu}\right)$ such that $\left[u_{\nu}\right]=1 /\left(\left[\theta_{\nu}\right]-b_{\nu}\right)$ on $E_{\nu}$ for $\nu=1,2$. Let $T:=\left\{\left|\left[\theta_{2}\right]\right|<1+\varepsilon\right\}$ and $F:=\left(E_{1} \cap T\right) \cup(T \backslash \bar{R})$. Then $T$ is Stein, $\{R, F\}$ is an open covering of $T$, and $R \cap F=E_{1} \cap R$. Since $H^{1}\left(\{R, F\},\left.\mathscr{O}_{X}\right|_{T}\right)=0$,
there exist $v_{0} \in \mathscr{O}_{X}(R)$ and $v_{1} \in \mathscr{O}_{X}(F)$ such that $u_{1}=v_{1}-v_{0}$ on $R \cap F$. Let $D_{1}:=D \cap F$ and $D_{2}:=D \cap E_{2}$. Since $\left(\left.\theta\right|_{W}\right)^{-1}(b) \notin D$, we see that $\left\{D_{1}, D_{2}\right\}$ is an open covering of $D$. Let $\alpha \in H^{1}\left(\left\{D_{1}, D_{2}\right\},\left.\mathscr{O}_{X}\right|_{D}\right)$ be the cohomology class defined by $\left.\mathrm{e}^{v_{1}+u_{2}}\right|_{D_{1} \cap D_{2}} \in \mathscr{O}_{X}\left(D_{1} \cap D_{2}\right) .{ }^{3}$ Assume that $\left.\Phi_{\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)}(\alpha)\right|_{D \cap R}$ is associated to some Cartier divisor on $D \cap R$. Then there exist $g_{\nu} \in \mathscr{M}^{*}\left(D_{\nu} \cap R\right), \nu=1,2$, such that $\exp \left(2 \pi \mathrm{i}^{\mathrm{v}_{1}+u_{2}}\right)=g_{1} / g_{2}$ on $D_{1} \cap D_{2} \cap R$. Let $P:=P(2, \varepsilon)$ and $H:=H(2, \varepsilon)$. Let $P_{\nu}:=P \cap\left\{z_{\nu} \neq b_{\nu}\right\}$ and $H_{\nu}:=H \cap\left\{z_{\nu} \neq b_{\nu}\right\}$ for $\nu=1,2$. Since $\left(\left.\theta\right|_{W}\right)^{-1}\left(H_{\nu}\right) \subset D \cap E_{\nu} \cap$ $R=D_{\nu} \cap R$, we have the function $f_{\nu}:=g_{\nu} \circ\left(\left.\theta\right|_{W}\right)^{-1} \in \mathscr{M}^{*}\left(H_{\nu}\right)$ for $\nu=1,2$. Since $\left(\left.\theta\right|_{W}\right)^{-1}\left(P_{1} \cap P_{2}\right) \subset E_{1} \cap E_{2} \cap R=F \cap E_{2} \cap R$, we have the function $\xi:=\exp \left(2 \pi \mathrm{i} \mathrm{e}^{v_{1}+u_{2}}\right) \circ\left(\left.\theta\right|_{W}\right)^{-1} \in \mathscr{O}\left(P_{1} \cap P_{2}\right)$. Then we have that $\xi=f_{1} / f_{2}$ on $H_{1} \cap H_{2}$. Since $P$ is an envelope of holomorphy of $H$, the open set $P_{\nu}$ is an envelope of holomorphy of $H_{\nu}$ for $\nu=1,2$ by Grauert-Remmert [10, Satz 7] (see Jarnicki-Pflug [13, p. 182]). Therefore, by Kajiwara-Sakai [15, Proposition 3], there exists $\tilde{f}_{\nu} \in \mathscr{M}\left(P_{\nu}\right)$ such that $\tilde{f}_{\nu}=f_{\nu}$ on $H_{\nu}$ for $\nu=1,2$. Then, by the theorem of identity, we have that $\tilde{f}_{\nu} \in \mathscr{M}^{*}\left(P_{\nu}\right)$ for $\nu=1,2$ and $\xi=\tilde{f}_{1} / \tilde{f}_{2}$ on $P_{1} \cap P_{2}$. Let $w_{\nu}:=\left(z_{\nu}-b_{\nu}\right) / \delta$ for $\nu=1,2$, where $0<\delta \leq 1+\varepsilon-\left|b_{2}\right|$. Let $U_{1}:=\left\{0<\left|w_{1}\right|<1,\left|w_{2}\right|<1\right\}$, $U_{2}:=\left\{\left|w_{1}\right|<1,0<\left|w_{2}\right|<1\right\}$, and $M:=U_{1} \cup U_{2}$. Since $M$ is Cousin-II, we moreover have that $\left.\xi\right|_{U_{1} \cap U_{2}} \in B^{1}\left(\left\{U_{1}, U_{2}\right\}, \mathscr{O}^{*}\right)$. Let $\eta:=v_{0} \circ\left(\left.\theta\right|_{W}\right)^{-1}$ on $P$. We have that

$$
\xi=\exp \left(2 \pi \mathrm{i}^{v_{0}+u_{1}+u_{2}}\right) \circ\left(\left.\theta\right|_{W}\right)^{-1}=\exp \left(2 \pi \mathrm{i}^{\eta} \mathrm{e}^{(1 / \delta)\left(1 / w_{1}+1 / w_{2}\right)}\right)
$$

on $U_{1} \cap U_{2}$. By Abe [3, Lemma 3.3], we then have that

$$
\mathrm{e}^{\eta} \mathrm{e}^{(1 / \delta)\left(1 / w_{1}+1 / w_{2}\right)} \in B^{1}\left(\left\{U_{1}, U_{2}\right\}, \mathscr{O}\right),
$$

which contradicts Kajiwara-Kazama [14, Lemma 9] (see Abe [3, Lemma 3.2]). It follows that the cohomology class $\left.\Phi_{\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)}(\alpha)\right|_{D \cap R}$ is not associated to any Cartier divisor on $D \cap R$.

Lemma 3.2 (cf. Abe [2, Lemma 3.3]) Let $X$ be a Cohen-Macaulay Stein space of pure dimension $n \geq 2 .{ }^{4}$ Let $D$ be an open set of $X$ such

[^2]that $H^{k}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)=0$ for $2 \leq k \leq n-1$. Let $W$ be an open set of $X \backslash \operatorname{Sing}(X)$ and $\theta: X \rightarrow \mathbb{C}^{n}$ be a holomorphic map such that $\theta(W)$ is an open set of $\mathbb{C}^{n}$ and the restriction $\left.\theta\right|_{W}: W \rightarrow \theta(W)$ is biholomorphic. Assume that there exist $\varepsilon \in(0,1)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{C}^{n}$ such that $P(n, \varepsilon) \Subset \theta(W),\left(\left.\theta\right|_{W}\right)^{-1}(H(n, \varepsilon)) \subset D,\left|b_{1}\right| \leq 1-\varepsilon, 1 \leq\left|b_{2}\right|<1+\varepsilon$, $\left|b_{\nu}\right|<1$ for $3 \leq \nu \leq n$, and $\left(\left.\theta\right|_{W}\right)^{-1}(b) \in \partial D$. Then there exists a cohomology class $\alpha \in H^{1}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)$ such that the holomorphic line bundle $\left.\Phi_{\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)}(\alpha)\right|_{D \cap R} \in H^{1}\left(D \cap R, \mathscr{O}^{*}\right)$ is not associated to any Cartier divisor on $D \cap R$, where $R:=\left(\left.\theta\right|_{W}\right)^{-1}(P(n, \varepsilon))$.

Proof. The proof proceeds by induction on $n$. By Lemma 3.1, the assertion is true if $n=2$. We consider the case where $n \geq 3$. Let $\theta_{\nu}:=\tilde{\theta} z_{\nu}$ for $\nu=1,2, \ldots, n$, where $z_{1}, z_{2}, \ldots, z_{n}$ are the coordinates of $\mathbb{C}^{n}$. We may assume that $W$ is connected. Then, there exists $f \in \mathscr{O}_{X}(X)$ such that $[f]=\left[\theta_{n}\right]-b_{n}$ on the irreducible component $X_{0}$ of $X$ containing $W$ and $[f] \not \equiv 0$ on any irreducible component of $X$. Let $Y:=\{[f]=0\}$ and $\mathscr{O}_{Y}:=\left.\left(\mathscr{O}_{X} / f \mathscr{O}_{X}\right)\right|_{Y}$. By the argument in the proof of Abe [2, Lemma 3.3], the complex space $Y$ is a Cohen-Macaulay Stein space of pure dimension $n-1$ and we have that $H^{k}\left(D \cap Y,\left.\mathscr{O}_{X}\right|_{D \cap Y}\right)=0$ for $2 \leq k \leq n-2$ and the restriction $\tilde{\iota}^{*}: H^{1}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right) \rightarrow H^{1}\left(D \cap Y,\left.\mathscr{O}_{Y}\right|_{D \cap Y}\right)$ is surjective. Let $\theta^{\prime}: Y \rightarrow \mathbb{C}^{n-1}$ be the holomorphic map such that $\tilde{\theta}^{\prime} z_{\nu}=\left.\left(\tilde{\iota} \theta_{\nu}\right)\right|_{Y}$ for $\nu=1,2, \ldots, n-1$. Let $R^{\prime}:=R \cap Y$ and $W^{\prime}:=W \cap Y$. Then we have that $R^{\prime} \Subset W^{\prime} \subset Y \backslash \operatorname{Sing}(Y), \theta(x)=\left(\theta^{\prime}(x), b_{n}\right)$ for every $x \in W^{\prime}$, the set $\theta^{\prime}\left(W^{\prime}\right)$ is open in $\mathbb{C}^{n-1}$, the restriction $\left.\theta^{\prime}\right|_{W^{\prime}}: W^{\prime} \rightarrow \theta^{\prime}\left(W^{\prime}\right)$ is biholomorphic,

$$
\begin{aligned}
\left(\left.\theta^{\prime}\right|_{W^{\prime}}\right)^{-1}(P(n-1, \varepsilon)) & =R^{\prime}, \\
\left(\left.\theta^{\prime}\right|_{W^{\prime}}\right)^{-1}(H(n-1, \varepsilon)) & =\left(\left.\theta\right|_{W}\right)^{-1}\left(H(n-1, \varepsilon) \times\left\{b_{n}\right\}\right) \\
& =\left(\left.\theta\right|_{W}\right)^{-1}(H(n, \varepsilon)) \cap W^{\prime} \subset D \cap Y, \quad \text { and } \\
\left(\left.\theta^{\prime}\right|_{W^{\prime}}\right)^{-1}\left(\left(b_{1}, \ldots, b_{n-1}\right)\right) & =\left(\left.\theta\right|_{W}\right)^{-1}(b) \notin D \cap Y .
\end{aligned}
$$

Let $b^{\prime}:=\left(b_{1}, t_{0} b_{2}, b_{3}, \ldots, b_{n-1}\right)$, where
$t_{0}:=\sup \left\{t \in[0,1] \mid\left(\left.\theta^{\prime}\right|_{W^{\prime}}\right)^{-1}\left(\left(b_{1}, s b_{2}, b_{3}, \ldots, b_{n-1}\right)\right) \in D \cap Y\right.$ for every $\left.s \in[0, t]\right\}$.

[^3]Then we have that $1 \leq\left|t_{0} b_{2}\right|<1+\varepsilon$ and the point $\left(\left.\theta^{\prime}\right|_{W^{\prime}}\right)^{-1}\left(b^{\prime}\right)$ belongs to the boundary of $D \cap Y$ in $Y$. By induction hypothesis, there exists $\alpha^{\prime} \in H^{1}\left(D \cap Y,\left.\mathscr{O}_{Y}\right|_{D \cap Y}\right)$ such that $\left.\Phi_{\left(D \cap Y,\left.\mathscr{O}_{Y}\right|_{D \cap Y}\right)}\left(\alpha^{\prime}\right)\right|_{D \cap R^{\prime}}$ is not associated to any Cartier divisor on $D \cap R^{\prime}$. Since $\tilde{\iota}^{*}$ is surjective, there exists $\alpha \in$ $H^{1}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)$ such that $\left.\tilde{\iota}^{*}(\alpha)\right|_{D \cap Y}=\alpha^{\prime}$. Then, by the argument in the proof of Abe [2, Lemma 3.3], the line bundle $\left.\Phi_{\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)}(\alpha)\right|_{D \cap R}$ is not associated to any Cartier divisor on $D \cap R$.

Theorem 3.3 (Abe [2, Theorem 4.1]) Let $X$ be a Stein space of pure dimension $n$. Assume further that $X$ is Cohen-Macaulay if $n \geq 3$. Let $D$ be an open set of $X$ which satisfies the following two conditions:

- $H^{k}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)=0$ for $2 \leq k \leq n-1 .{ }^{6}$
- For every $\alpha \in H^{1}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)$ there exists $\mathfrak{d} \in \operatorname{Div}(D)$ such that $\Phi_{\left(D, \mathscr{O}_{X} \mid D\right)}(\alpha)=[\mathfrak{d}]$.

Then $D$ is locally Stein at every point $x \in \partial D \backslash \operatorname{Sing}(X)$.

Proof. We may assume that $n \geq 2$. Assume that there exists $p \in \partial D \backslash$ $\operatorname{Sing}(X)$ such that $D$ is not locally Stein at $p$. Then, by Lemma 2.2 , there exist a holomorphic map $\theta: X \rightarrow \mathbb{C}^{n}$, an open set $W \subset X \backslash \operatorname{Sing}(X)$, $\varepsilon \in(0,1)$, and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{C}^{n}$ such that $\theta(W)$ is an open set of $\mathbb{C}^{n}$, the restriction $\left.\theta\right|_{W}: W \rightarrow \theta(W)$ is biholomorphic, $P(n, \varepsilon) \Subset \theta(W)$, $\left(\left.\theta\right|_{W}\right)^{-1}(H(n, \varepsilon)) \subset D,\left|b_{1}\right| \leq 1-\varepsilon, 1 \leq\left|b_{2}\right|<1+\varepsilon,\left|b_{\nu}\right|<1$ for $3 \leq$ $\nu \leq n$, and $\left(\left.\theta\right|_{W}\right)^{-1}(b) \in \partial D$. By Lemmas 3.1 and 3.2, there exists $\alpha \in$ $H^{1}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)$ such that the line bundle $\left.\Phi_{\left(D,\left.\mathscr{O}_{X}\right|_{D}\right)}(\alpha)\right|_{D \cap R}$ is not associated to any Cartier divisor on $D \cap R$, where $R:=\left(\left.\theta\right|_{W}\right)^{-1}(P(n, \varepsilon))$. It is a contradiction.

[^4]
## 4. Domains in a Stein orbifold

Lemma 4.1. Let $X$ be a Stein orbifold of pure dimension $n \geq 2$ such that $\operatorname{Sing}(X)$ is discrete. Let $D$ be an open set of $X$ which satisfies the following three conditions:

- $H^{k}(D, \mathscr{O})=0$ for $2 \leq k \leq n-1$.
- For every topologically trivial holomorphic line bundle $L$ on $D$ there exists $\mathfrak{d} \in \operatorname{Div}(D)$ such that $L=[\mathfrak{d}]$.7
- $X \backslash \operatorname{Sing}(X) \subset D$.

Then we have that $D=X$.

Proof. Assume that $D \varsubsetneqq X$. Then $P:=X \backslash D \neq \emptyset$. Since $\operatorname{Sing}(X)$ is discrete and $P \subset \operatorname{Sing}(X)$, the set $P$ is also discrete. Take a system $\left\{U_{x}\right\}_{x \in P}$ of connected Stein open sets of $X$ such that $U_{x} \cap \operatorname{Sing}(X)=\{x\}$ for every $x \in P$ and $U_{x} \cap U_{y}=\emptyset$ if $x \neq y$. By the Mayer-Vietoris exact sequence, we have the isomorphisms

$$
H^{k}(D, \mathscr{O}) \xrightarrow{\sim} H^{k}\left(\bigcup_{x \in P}\left(U_{x} \backslash x\right), \mathscr{O}\right) \cong \prod_{x \in P} H^{k}\left(U_{x} \backslash x, \mathscr{O}\right)
$$

for every $k \geq 1$. Therefore $H^{1}(D, \mathscr{O}) \rightarrow H^{1}\left(U_{x} \backslash x, \mathscr{O}\right)$ is surjective and $H^{k}\left(U_{x} \backslash x, \mathscr{O}\right)=0,2 \leq k \leq n-1$, for every $x \in P$. Since $X$ is normal, ${ }^{8}$ the open set $U_{x} \backslash x$ is not Stein by the second Riemann extension theorem. It follows that $H^{1}\left(U_{x} \backslash x, \mathscr{O}\right) \neq 0$ for every $x \in P$ (see, for example, Coen [9]). We fix a point $p \in P$. By Prill [18] (see Abe [3, Lemma 2.4]), there exist a neighborhood $U^{\prime}$ of $p$ in $X$, an open set $W^{\prime}$ of $\mathbb{C}^{n}$, and a finitely sheeted ramified covering $\pi^{\prime}: W^{\prime} \rightarrow U^{\prime}$ such that $U^{\prime} \cap \operatorname{Sing}(X)=\{p\}$ and $\pi^{\prime}$ is locally biholomorphic on $W^{\prime} \backslash \pi^{\prime-1}(p)$. We may assume that $\pi^{\prime-1}(p)=\{0\}$ (see Grauert-Remmert [11, p. 48]). Take an open ball $B$ centered at 0 such that $B \subset W^{\prime}$. By Lemma 2.3, we may further assume that $U:=U_{p}$ is contractible to $p$, $\operatorname{rank} H^{1}(U \backslash p, \mathbb{Z})<+\infty, U \subset U^{\prime}$, and $W:=\pi^{\prime-1}(U) \subset B$.

[^5]Let $\pi:=\left.\pi^{\prime}\right|_{W}: W \rightarrow U$. Let $b:=\# \pi^{-1}(\xi), \xi \in U \backslash p$, which is constant. The sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathscr{O} \xrightarrow{e} \mathscr{O}^{*} \rightarrow 0$ is exact and we have the commutative diagram:

where the rows are exact. Take an arbitrary $\beta \in H^{1}(U \backslash p, \mathscr{O})$. Since the restriction $r: H^{1}(D, \mathscr{O}) \rightarrow H^{1}(U \backslash p, \mathscr{O})$ is surjective, there exists $\alpha \in$ $H^{1}(D, \mathscr{O})$ such that $r(\alpha)=\beta / b$. By assumption, there exists $\mathfrak{d} \in \operatorname{Div}(D)$ such that $[\mathfrak{d}]=e^{*}(\alpha)$. By Lemma 2.1, there exists $\mathfrak{c} \in \operatorname{Div}\left(W^{\prime}\right)$ such that $\left.\mathfrak{c}\right|_{W^{\prime} \backslash 0}=\pi_{*}^{\prime}\left(\left.\mathfrak{d}\right|_{U^{\prime} \backslash p}\right)$. Since $H^{1}\left(B, \mathscr{O}^{*}\right)=0$, we have that $\left.[\mathfrak{c}]\right|_{B}=0$. Then we have that

$$
e^{*}\left(\pi_{*}(\beta / b)\right)=e^{*}\left(\pi_{*}(r(\alpha))\right)=\pi_{*}\left(r\left(e^{*}(\alpha)\right)\right)=\pi_{*}\left(\left.[\mathfrak{d}]\right|_{U \backslash p}\right)=\left.[\mathfrak{c}]\right|_{W \backslash 0}=0 .
$$

Therefore there exists $\tilde{\nu} \in H^{1}(W \backslash 0, \mathbb{Z})$ such that $\iota(\tilde{\nu})=\pi_{*}(\beta / b)$. Since $\pi: W \backslash 0 \rightarrow U \backslash p$ is a $b$-sheeted unramified covering over $U \backslash p$, there exists a simple open covering $\left\{V_{i}\right\}_{i \in I}$ of $U \backslash p$ such that $\pi^{-1}\left(V_{i}\right)$ consists of $b$ connected components $\tilde{V}_{i 1}, \tilde{V}_{i 2}, \ldots, \tilde{V}_{i b}$ and $\left.\pi\right|_{\tilde{V}_{i \lambda}}: \tilde{V}_{i \lambda} \rightarrow V_{i}$ is biholomorphic for every $i \in I$ and for every $\lambda=1,2, \ldots, b$. Then $\left\{\pi^{-1}\left(V_{i}\right)\right\}_{i \in I}$ is a Leray open covering of $W \backslash 0$ with respect to the constant sheaf $\mathbb{Z}$. Therefore there exists a cocycle $\left\{\tilde{\nu}_{i j}\right\} \in Z^{1}\left(\left\{\pi^{-1}\left(V_{i}\right)\right\}_{i \in I}, \mathbb{Z}\right)$ such that $\tilde{\nu}=\left[\left\{\tilde{\nu}_{i j}\right\}\right] \in$ $H^{1}\left(\left\{\pi^{-1}\left(V_{i}\right)\right\}_{i \in I}, \mathbb{Z}\right)$. Since $\left\{V_{i}\right\}_{i \in I}$ can be chosen sufficiently fine, we may assume that there exists a cocycle $\left\{\beta_{i j}\right\} \in Z^{1}\left(\left\{V_{i}\right\}_{i \in I}, \mathscr{O}\right)$ such that $\beta=$ $\left[\left\{\beta_{i j}\right\}\right] \in H^{1}\left(\left\{V_{i}\right\}_{i \in I}, \mathscr{O}\right)$. Since $\beta / b-\iota(\tilde{\nu})=\left[\left\{\left(\beta_{i j} \circ \pi\right) / b-\tilde{\nu}_{i j}\right\}\right]=0$ in $H^{1}\left(\left\{\pi^{-1}\left(V_{i}\right)\right\}_{i \in I}, \mathscr{O}\right)$, there exists $\left\{\tilde{\gamma}_{i}\right\} \in C^{0}\left(\left\{\pi^{-1}\left(V_{i}\right)\right\}_{i \in I}, \mathscr{O}\right)$ such that $\left(\beta_{i j} \circ \pi\right) / b-\tilde{\nu}_{i j}=\tilde{\gamma}_{j}-\tilde{\gamma}_{i}$ on $\pi^{-1}\left(V_{i} \cap V_{j}\right)$ for every $i, j \in I$. For an arbitrary $\xi \in \pi^{-1}\left(V_{i} \cap V_{j}\right)$ let $\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{b}\right\}:=\pi^{-1}(\xi)$. Since $\beta_{i j}(\xi) / b-\tilde{\nu}_{i j}\left(\eta_{\lambda}\right)=$ $\tilde{\gamma}_{j}\left(\eta_{\lambda}\right)-\tilde{\gamma}_{i}\left(\eta_{\lambda}\right)$ for $\lambda=1,2, \ldots, b$, we obtain that

$$
\beta_{i j}(\xi)-\sum_{\lambda=1}^{b} \tilde{\nu}_{i j}\left(\eta_{\lambda}\right)=\sum_{\lambda=1}^{b} \tilde{\gamma}_{j}\left(\eta_{\lambda}\right)-\sum_{\lambda=1}^{b} \tilde{\gamma}_{i}\left(\eta_{\lambda}\right) .
$$

Let $\gamma_{i}:=\sum_{\lambda=1}^{b} \tilde{\gamma}_{i} \circ\left(\left.\pi\right|_{V_{i \lambda}}\right)^{-1}$ on $V_{i}$ and let $\nu_{i j}:=\sum_{\lambda=1}^{b} \tilde{\nu}_{i j} \circ\left(\left.\left(\left.\pi\right|_{\tilde{V}_{i \lambda}}\right)^{-1}\right|_{V_{i} \cap V_{j}}\right)$ on $V_{i} \cap V_{j}$. Then $\gamma_{i}$ is a holomorphic function on $V_{i}, \nu_{i j}$ is a constant function on $V_{i} \cap V_{j}$ with values in $\mathbb{Z}$, and we have that $\beta_{i j}-\nu_{i j}=\gamma_{j}-\gamma_{i}$ on $V_{i} \cap V_{j}$ for every $i, j \in \mathbb{Z}$. Since $\delta\left\{\nu_{i j}\right\}=\delta\left\{\beta_{i j}\right\}-\delta\left\{\gamma_{j}-\gamma_{i}\right\}=0$, we have that $\left\{\nu_{i j}\right\} \in Z^{1}\left(\left\{V_{i}\right\}_{i \in I}, \mathbb{Z}\right)$. Then we have that $\beta=\iota(\nu) \in H^{1}\left(\left\{V_{i}\right\}_{i \in I}, \mathscr{O}\right) \subset$ $H^{1}(U \backslash p, \mathscr{O})$, where $\nu:=\left[\left\{\nu_{i j}\right\}\right] \in H^{1}\left(\left\{V_{i}\right\}_{i \in I}, \mathbb{Z}\right)$. Thus we proved that $\iota: H^{1}(U \backslash p, \mathbb{Z}) \rightarrow H^{1}(V \backslash p, \mathscr{O})$ is surjective. Since $H^{1}(U \backslash p, \mathscr{O})$ is a nontrivial $\mathbb{C}$-vector space, we have that $\# H^{1}(U \backslash p, \mathscr{O}) \geq \aleph$. Since $\operatorname{rank} H^{1}(U \backslash$ $p, \mathbb{Z})<+\infty$, we also have that $\# H^{1}(U \backslash p, \mathbb{Z}) \leq \aleph_{0}$, which is a contradiction. It follows that $D=X$.

Theorem 4.2. Let $X$ be a Stein orbifold of pure dimension $n$ such that $\operatorname{Sing}(X)$ is discrete. Let $D$ be an open set of $X$. Then the following two conditions are equivalent.
(1) $D$ is Stein.
(2) D satisfies the following two conditions:

- $H^{k}(D, \mathscr{O})=0$ for $2 \leq k \leq n-1 .{ }^{9}$
- For every topologically trivial holomorphic line bundle $L$ on $D$ there exists $\mathfrak{d} \in \operatorname{Div}(D)$ such that $L=[\mathfrak{d}]$.

Proof. (1) $\rightarrow$ (2). Every holomorphic line bundle on a reduced Stein space is associated to some positive Cartier divisor (see Gunning [12, p. 124]). $(2) \rightarrow(1)$. We may assume that $n \geq 2$. By Theorem 3.3 , the open set $D$ is locally Stein at every $x \in \partial D \backslash \operatorname{Sing}(X)$. Let $D^{*}$ be the extension of $D$ along $\operatorname{Sing}(X)$. We have that $D^{*} \backslash \operatorname{Sing}(X)=D \backslash \operatorname{Sing}(X)$. The open set $D^{*}$ does not have boundary points removable along $\operatorname{Sing}(X)$ and is locally Stein at every $x \in \partial D^{*} \backslash \operatorname{Sing}(X)$. By Abe-Hamada [4, Lemma 2] (see Abe [3, Lemma 2.4]), the open set $D^{*}$ is locally Stein at every $x \in \partial D^{*}$. Since $\operatorname{Sing}(X)$ is discrete, the open set $D^{*}$ is Stein by Andreotti-Narasimhan [6]. Since $D^{*} \backslash \operatorname{Sing}(X) \subset D \subset D^{*}$, we have that $D=D^{*}$ by Lemma 4.1. Thus we proved that $D$ is Stein.

[^6]Corollary 4.3. Let $X$ be a Stein orbifold of pure dimension 2. Then for every open set $D$ of $X$ the following two conditions are equivalent.
(1) $D$ is Stein.
(2) For every topologically trivial holomorphic line bundle $L$ on $D$ there exists $\mathfrak{d} \in \operatorname{Div}(D)$ on $D$ such that $L=[\mathfrak{d}]$.

## References

[1] M. Abe, Holomorphic line bundles on a domain of a two-dimensional Stein manifold, Ann. Polon. Math., 83 (2004), 269-272.
[2] M. Abe, Holomorphic line bundles and divisors on a domain of a Stein manifold, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5), 6 (2007), 323330.
[3] M. Abe, Open sets which satisfy the Oka-Grauert principle in a Stein space, Ann. Mat. Pura Appl. (4), 190 (2011), 703-723.
[4] M. Abe and H. Hamada, On the complete Kählerity of complex spaces, Bull. Kyushu Kyoritsu Univ. Fac. Engineering, 20 (1996), 17-23.
[5] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
[6] A. Andreotti and R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc., 111 (1964), 345-366.
[7] E. Ballico, Cousin I condition and Stein spaces, Complex Var. Theory Appl., 50 (2005), 23-25.
[8] D. Burghelea and A. Verona, Local homological properties of analytic sets, Manuscripta Math., 7 (1972), 55-66.
[9] S. Coen, Annulation de la cohomologie à valeurs dans le faisceau structural et espaces de Stein, Compositio Math., 37 (1978), 63-75.
[10] H. Grauert and R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorph-konvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, Comment. Math. Helv., 31 (1956), 152-183.
[11] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Grundl. Math. Wiss., vol. 265, Springer, Berlin, 1984.
[12] R. C. Gunning, Introduction to holomorphic functions of several variables, vol. 3, Wadsworth, Belmont, 1990.
[13] M. Jarnicki and P. Pflug, Extension of Holomorphic Functions, Walter de Gruyter, Berlin, 2000.
[14] J. Kajiwara and H. Kazama, Two dimensional complex manifold with vanishing cohomology set, Math. Ann., 204 (1973), 1-12.
[15] J. Kajiwara and E. Sakai, Generalization of Levi-Oka's theorem concerning meromorphic functions, Nagoya Math. J., 29 (1967), 75-84.
[16] L. Kaup and B. Kaup, Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, 1983.
[17] S. Łojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa (3), 19 (1964), 449-474.
[18] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J., 34 (1967), 375-386.

Makoto Abe
Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
e-mail: abem@hiroshima-u.ac.jp


[^0]:    2000 Mathematics Subject Classification. 32E10, 32C55, 32L10.
    *The author is partly supported by the Grant-in-Aid for Scientific Research (C) no. 23540217 of Japan Society for the Promotion of Science.

[^1]:    ${ }^{1}$ We denote by $[h]$ the valuation $x \mapsto h_{x}+\mathfrak{m}_{x} \in \mathscr{O}_{X, x} / \mathfrak{m}_{x}=\mathbb{C}, x \in U$, for $h \in \mathscr{O}_{X}(U)$, where $U$ is an open set of $X$.
    ${ }^{2}$ As usual, we simply write $\theta: X \rightarrow \mathbb{C}^{n}$ instead of $(\theta, \tilde{\theta}):\left(X, \mathscr{O}_{X}\right) \rightarrow\left(\mathbb{C}^{n}, \mathscr{O}\right)$.

[^2]:    ${ }^{3}$ See Kaup-Kaup [16, pp. 246] for the definition of $\mathrm{e}^{h} \in \mathscr{O}_{X}(U)$, where $U$ is an open set of a complex space $X$ and $h \in \mathscr{O}_{X}(U)$.
    ${ }^{4}$ A complex space $X$ is said to be Cohen-Macaulay if the local $\mathbb{C}$-algebra $\mathscr{O}_{X, x}$ is Cohen-Macaulay for every $x \in X$.

[^3]:    ${ }^{5}$ Because $\left|b_{n}\right|<1$, we have that $H(n-1, \varepsilon) \times\left\{b_{n}\right\}=H(n, \varepsilon) \cap\left\{z_{n}=b_{n}\right\}$. The proof of Abe [2, Lemma 3.3] is not correct as the possibility of $\left|b_{n}\right|=1$ is not avoided there.

[^4]:    ${ }^{6}$ This condition can be replaced by the weaker one that $\operatorname{dim} H^{k}\left(D,\left.\mathscr{O}_{X}\right|_{D}\right) \leq \aleph_{0}$ for $2 \leq k \leq n-1$ (see Abe [2, Remark 4.2]).

[^5]:    ${ }^{7}$ Note that the set $\operatorname{im} e^{*}=\operatorname{ker} \delta$ coincides with the set of topologically trivial holomorphic line bundles on $D$, where $H^{1}(D, \mathscr{O}) \xrightarrow{e^{*}} H^{1}\left(D, \mathscr{O}^{*}\right) \xrightarrow{\delta} H^{2}(D, \mathbb{Z})$.
    ${ }^{8}$ Every complex orbifold is Cohen-Macaulay and normal (see Abe [3, p. 706]).

[^6]:    ${ }^{9}$ This condition can be replaced by the weaker one that $\operatorname{dim} H^{k}(D, \mathscr{O}) \leq \aleph_{0}$ for $2 \leq k \leq n-1$ (see footnotes 6 and 8).

