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Order relations among some interpolating families of means

Noboru Nakamura

Abstract. Some interpolating families of means of two positive num-
bers with a parameter are studied. They are concerned with some of
the most familiar means, i.e., the arithmetic, geometric, harmonic,
logarithmic means and so on. Their monotonicity with respect to the
parameter and the order relations among them are discussed.

1. Introduction

Together with the most familiar means, the arithmetic, geometric, har-
monic means, the logarithmic mean L(a, b) for two positive numbers a and
b is well-known, and is defined by

L(a, b) =
b − a

ln b − ln a
(a ̸= b), L(a, a) = a.

It can be seen that

1
L(a, b)

=
∫ ∞

0

dt

(t + a)(t + b)
. (1.1)

The arithmetic-geometric mean AG(a, b) of Gauss is well-known and it
is defined as follows: the two sequences {an} and {bn} defined inductively
as a0 = a, b0 = b, an+1 = an+bn

2 , bn+1 =
√

anbn have a common limit

AG(a, b) := lim
n→∞

an = lim
n→∞

bn. (1.2)
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By an ingenious calculation due to Gauss, (1.2) can be seen that

1
AG(a, b)

=
2
π

∫ ∞

0

dt√
(t2 + a2)(t2 + b2)

. (1.3)

A family of means Mp(a, b) with a parameter p was introduced by R.
Bhatia and R.-C. Li [3] as follows, noticing the similarity between the above
expressions (1.1) and (1.3):

1
Mp(a, b)

:= cp

∫ ∞

0

dt

{(tp + ap)(tp + bp)}1/p
, 0 < p < ∞, (1.4)

where the constant cp, depending on p, will be chosen to have Mp(a, a) = a.
Thus

1
cp

= a

∫ ∞

0

dt

(tp + ap)2/p
=

∫ ∞

0

ds

(sp + 1)2/p
.

Here a (symmetric) mean m(a, b) for a, b > 0 is defined as a function
satisfying the following properties:

(i) min{a, b} ≤ m(a, b) ≤ max{a, b} (In particular, m(a, a) = a);

(ii) m(a, b) = m(b, a) (Symmetry);

(iii) m(αa, αb) = αm(a, b) for all α > 0 (Homogeneity);

(iv) m(a, b) is non-decreasing in a and b.

It is easy to see that the familiar means stated before and Mp(a, b) satisfy
the properties (i)-(iv).

Now for other families of means, first, the power difference mean Kp(a, b)
is defined for any real number p and two positive numbers a and b as follows
([3],[9]):

Kp(a, b) :=
p − 1

p

ap − bp

ap−1 − bp−1
(a ̸= b), p ̸= 0, 1.

As for particular cases, Kp(a, a) = a (for any p) and for p = 0, 1

K0(a, b) := lim
p→0

Kp(a, b) = ab
ln b − ln a

b − a
, K1(a, b) := lim

p→1
Kp(a, b) = L(a, b).
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This mean admits the following integral expression ([3]):

1
Kp(a, b)

=
∫ 1

0

dt

{(1 − t)ap + tbp}1/p
(p ̸= 0).

Besides, Kp+1(a, b) can be defined directly as an integral form as follows
([9], [5]):

Kp+1(a, b) :=
∫ 1

0
{(1 − t)ap + tbp}1/pdt =

p

p + 1
ap+1 − bp+1

ap − bp
.

The power logarithmic mean Dp(a, b) and the power binomial mean
Np(a, b) for −∞ < p < ∞ and two positive numbers a and b, are defined
as follows, respectively ([9]),

Dp(a, b) :=
(∫ 1

0
{(1 − t)a + tb}pdt

)1/p

=
(

bp+1 − ap+1

(p + 1)(b − a)

)1/p

(a ̸= b, p ̸= −1, 0),

Dp(a, a) = a, D−1 = L(a, b), D0(a, b) =
1
e
(aab−b)1/(a−b) (a ̸= b),

and

Np(a, b) :=
(∫ 1

0
{(1 − t)ap + tbp}dt

)1/p

=
(

ap + bp

2

)1/p

(p ̸= 0),

N0(a, b) =
√

ab.

It is obvious from each definition that the means Kp(a, b), Dp(a, b) and
Np(a, b) satisfy the properties (i)-(iv).

For the mean Mp(a, b), considering (1.4), R. Bhatia and R.-C. Li ([3],
Theorems 2.4 and 2.5) showed that

M0(a, b)
(

:= lim
p→0

Mp(a, b)
)

=
√

ab,

M∞(a, b)
(

:= lim
p→∞

Mp(a, b)
)

=
2max{a, b}

2 + ln max{a,b}
min{a,b}

,

and that

M0(a, b) ≤ Mp(a, b) ≤ M∞(a, b). (1.5)
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The above fact (1.5) and inequalities already known then lead to the
chain

M0(a, b) ≤ M1(a, b) ≤ M2(a, b) ≤ M∞(a, b). (1.6)

Here the second inequality in (1.6) has been given, say, in [10]. R. Bhatia
and R.-C. Li ([3]) have conjectured that Mp(a, b) for fixed a and b is an
increasing function of p.

In this paper, we show monotonicity of Kp(a, b), Dp(a, b) and Np(a, b)
with respect to the parameter p. And we also investigate relations among
the above four interpolating families of means. Some facts are directly
obtained by calculating Taylor’s expansion of each mean.

2. Monotonicity of interpolating families of means

First, as for Np(a, b):

Lemma 2.1 (cf. [7], Theorem 2.1). Np(a, b) is an increasing function of
p (−∞ < p < ∞) with a, b > 0. I.e., if p ≤ q, then Np(a, b) ≤ Nq(a, b).

Let Φ(p) := Φp(a, b; t) = ((1 − t)ap + tbp)1/p for t ∈ [0, 1]. Then as a re-
mark, we can, similarly as Np(a, b), show that Φ(p) is an increasing function
of p.

For Kp(a, b) we have:

Proposition 2.2. Kp(a, b) is an increasing function of p (−∞ < p < ∞)
with a, b > 0.

Proof. If p ≤ q, pq ̸= 0, then {(1 − t)ap + tbp}1/p ≤ {(1 − t)aq + tbq}1/q by
the remark after Lemma 2.1. Hence from∫ 1

0

dt

{(1 − t)ap + tbp}1/p
≥

∫ 1

0

dt

{(1 − t)aq + tbq}1/q
,

the inequality 1
Kp(a,b) ≥ 1

Kq(a,b) holds, therefore Kp(a, b) ≤ Kq(a, b). The
same inequality is also obtained for p = 0 or q = 0. ¤

From the inequalities K−1(a, b) ≤ K0(a, b) ≤ K1/2(a, b) ≤ K1(a, b) ≤
K2(a, b), we have:
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Corollary 2.3. For a, b > 0, a ̸= b,

2ab

a + b
< ab

ln b − ln a

b − a
<

√
ab < L(a, b)

(
=

b − a

ln b − ln a

)
<

a + b

2
.

As a property of a convex (concave) function we know:

Proposition 2.4. If Φ(x) is a convex (concave) function, then, for a con-
tinuous function f(t) ≥ 0 on [0, 1],∫ 1

0
Φ(f(t))dt ≥ (≤) Φ

(∫ 1

0
f(t)dt)

)
. (2.1)

In the above (2.1), put Φ(x) = xp for p ≥ 1. Then Φ(x) is convex, so
that we obtain the following inequality:∫ 1

0
f(t)pdt ≥

(∫ 1

0
f(t)dt

)p

. (2.2)

Further, if 0 < p ≤ q, then put q/p = p1 ≥ 1. By (2.2),∫ 1

0
f(t)p1dt ≥

(∫ 1

0
f(t)dt

)p1

.

Replacing f(t) by f(t)p, we obtain∫ 1

0
f(t)qdt ≥

(∫ 1

0
f(t)pdt

)p1

.

Therefore (∫ 1

0
f(t)qdt

)1/q

≥
(∫ 1

0
f(t)pdt

)1/p

. (2.3)

If f(t) is (strictly) positive and p ≤ q < 0, then replace, in the above
(2.3), f(t) by 1

f(t) and p, q by −q,−p, respectively. We again obtain the
same inequality. Now define Φp(f) by

Φp(f) :=
(∫ 1

0
f(t)pdt

)1/p

for p ̸= 0.
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Moreover, define Φ0(f) by

Φ0(f) = lim
p→0

Φp(f) = exp
(∫ 1

0
ln f(t)dt

)
.

Then we obtain the inequality (2.3) for p = 0 or q = 0. Now we have:

Proposition 2.5. If f(t) is a positive continuous function on [0, 1], then
Φp(f) is an increasing function of p (−∞ < p < ∞).

Putting f(t) = (1 − t)a + tb, we have:

Corollary 2.6. Dp(a, b) is an increasing function of p (−∞ < p < ∞)
with a, b > 0.

3. Order relations among the four interpolating families of
means

Now we prepare useful lemmas related to the order between Np(a, b) and
Dp(a, b), and that between Mp(a, b) and Kp(a, b).

First the following fact can be obtained from [9], Proposition 4.2:

Lemma 3.1. Let a, b > 0 and a ̸= b. Then

(i) Np(a, b) < Dp(a, b) for 0 ≤ p < 1,

(ii) N1(a, b) = D1(a, b)
(
= a+b

2

)
,

(iii) Np(a, b) > Dp(a, b) for p > 1.

Lemma 3.2 ([3], Theorem 3.1). Let a, b > 0 and a ̸= b. Then

(i) Mp(a, b) > Kp(a, b) for 0 ≤ p < 1,

(ii) M1(a, b) = K1(a, b) (= L(a, b)) ,

(iii) Mp(a, b) < Kp(a, b) for p > 1.
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Based on the above facts, we first have order relations among the four
interpolating families of means with respect to the parameter p with 0 ≤
p ≤ 1.

Proposition 3.3. Let a, b > 0 and a ̸= b. Then

(i) K0(a, b) < M0(a, b) = N0(a, b) < D0(a, b),

(ii) Kp(a, b) < Mp(a, b) < Np(a, b) < Dp(a, b) for 0 < p < 1 ,

(iii) K1(a, b) = M1(a, b) < N1(a, b) = D1(a, b).

Proof. For (i), we can easily see that

K0(a, b) = ab
ln b − ln a

b − a
< K1/2(a, b) =

√
ab = M0(a, b) = N0(a, b)

= D−2(a, b) < D0(a, b) =
1
e

(
aab−b

) 1
a−b

.

For (ii), the second inequality Mp(a, b) < Np(a, b) =
(

ap+bp

2

)1/p
has been

given by Theorem 2.1 in [3], Np(a, b) < Dp(a, b) by Lemma 3.1 (i), and that
Kp(a, b) < Mp(a, b) by Lemma 3.2.

For (iii), we can easily see

K1(a, b) = M1(a, b) =
b − a

ln b − ln a
< N1(a, b) = D1(a, b) =

a + b

2
. ¤

As for the order relations among Mp(a, b),Kp(a, b), Dp(a, b) and Np(a, b)
for p > 1, p ̸= 3, though the result is restricted to a neighbourhood of
b/a = 1, we have:

Proposition 3.4. The following inequalities (i) and (ii) hold if 0 < |b/a−
1| < ε with a sufficiently small number ε > 0.

(i) Mp(a, b) < Kp(a, b) < Dp(a, b) < Np(a, b) for 1 < p < 3,

(ii) Mp(a, b) < Dp(a, b) < Kp(a, b) < Np(a, b) for p > 3.

To prove this proposition, we prepare the next lemma for Mp(a, b) (p > 0)
with a = 1 and b = x.
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Lemma 3.5. Applying Taylor’s expansion to the mean Mp(1, x), we have

Mp(1, x) = 1 +
1
2
(x − 1) − 1

4(p + 2)
(x − 1)2 + o[x − 1]3, (3.1)

where 0 ≤ o[x − 1]3 ≤ c[x − 1]3 for some constant c > 0.

Before the proof of this lemma we state well-known formulae related to
the Beta and the Gamma functions:

B(s, t) =
Γ(s)Γ(t)
Γ(s + t)

, Γ(z) = (z − 1)Γ(z − 1) (z > 1).

Proof of Lemma 3.5. By Theorem 2.1 in [3], we have

1
Mp(1, x)

=

∫ 1

0

t
1
p
−1(1 − t)

1
p
−1

(1 − t + xpt)
1
p

dt∫ 1

0
t

1
p
−1(1 − t)

1
p
−1

dt

.

From the definition of the Beta function, we have∫ 1

0
t

1
p
−1(1 − t)

1
p
−1

dt = B

(
1
p
,
1
p

)
.

Hence

1
Mp(1, x)

=
1

B
(

1
p , 1

p

) ∫ 1

0

t
1
p
−1(1 − t)

1
p
−1

(1 − (1 − (1 + (x − 1))p)t)
1
p

dt

=
1

B
(

1
p , 1

p

) ∫ 1

0

t
1
p
−1(1 − t)

1
p
−1(

1 − (1 − (1 + p(x − 1) + p(p−1)(x−1)2

2 + · · · ))t
) 1

p

dt

=
1

B
(

1
p , 1

p

) ∫ 1

0

t
1
p
−1(1 − t)

1
p
−1(

1 +
(
p(x − 1) + p(p−1)(x−1)2

2 + · · ·
)

t
) 1

p

dt

=
1

B
(

1
p , 1

p

) ∫ 1

0
t

1
p
−1(1 − t)

1
p
−1

×
(

1 +
(

p(x − 1) +
p(p − 1)(x − 1)2

2
+ · · ·

)
t

)− 1
p

dt
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=
1

B
(

1
p , 1

p

) ∫ 1

0
t

1
p
−1(1 − t)

1
p
−1

×

(
1 − 1

p
·
(

p(x − 1) +
p(p − 1)(x − 1)2

2
+ · · ·

)
t

+
1
2
· 1
p
·
(

1
p

+ 1
)(

p(x − 1) +
p(p − 1)(x − 1)2

2
+ · · ·

)2

t2 + · · ·

)
dt

=
1

B
(

1
p , 1

p

)(
B

(
1
p
,
1
p

)
− 1

p

(
p(x − 1) +

p(p − 1)(x − 1)2

2
+ · · ·

)

×
∫ 1

0
t

“

1
p
+1

”

−1(1 − t)
1
p
−1

dt +
1
2
· 1
p
·
(

1
p

+ 1
)

×
(

p(x − 1) +
p(p − 1)(x − 1)2

2
+ · · ·

)2 ∫ 1

0
t

“

1
p
+2

”

−1(1 − t)
1
p
−1

dt − · · ·

)

= 1 − 1
p

B
(

1
p + 1, 1

p

)
B

(
1
p , 1

p

) (
p(x − 1) +

p(p − 1)(x − 1)2

2
+ · · ·

)

+
1
2
· 1
p
· 1 + p

p
·
B

(
1
p + 2, 1

p

)
B

(
1
p , 1

p

) (
p(x − 1) +

p(p − 1)(x − 1)2

2
+ · · ·

)2

− · · ·

= 1 −
B

(
1
p + 1, 1

p

)
B

(
1
p , 1

p

) (x − 1)

−

B
(

1
p + 1, 1

p

)
B

(
1
p , 1

p

) p − 1
2

− 1 + p

2

B
(

1
p + 2, 1

p

)
B

(
1
p , 1

p

)
 (x − 1)2 − · · · .

Now if we put

X(p) = −
B

(
1
p + 1, 1

p

)
B

(
1
p , 1

p

) (x − 1)

−

B
(

1
p + 1, 1

p

)
B

(
1
p , 1

p

) p − 1
2

− 1 + p

2

B
(

1
p + 2, 1

p

)
B

(
1
p , 1

p

)
 (x − 1)2 − · · · ,

then since 1
Mp(1,x) = 1 + X(p), we have

Mp(1, x) = (1 + X(p))−1 = 1 − X(p) + X(p)2 − · · ·
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= 1 +
B

(
1
p + 1, 1

p

)
B

(
1
p , 1

p

) (x − 1)

+

B
(

1
p + 1, 1

p

)
B

(
1
p , 1

p

) p − 1
2

− p + 1
2

B
(

1
p + 2, 1

p

)
B

(
1
p , 1

p

)


×(x − 1)2 + · · · +

B
(

1
p + 1, 1

p

)
B

(
1
p , 1

p

)
2

(x − 1)2 + o[x − 1]3.

Put ϕ(p) =
B

(
1
p + 1, 1

p

)
B

(
1
p , 1

p

) and

ψ(p) =

B
(

1
p + 1, 1

p

)
B

(
1
p , 1

p

) p − 1
2

− p + 1
2

B
(

1
p + 2, 1

p

)
B

(
1
p , 1

p

)
 +

B
(

1
p + 1, 1

p

)
B

(
1
p , 1

p

)
2

.

Then
Mp(1, x) = 1 + ϕ(p)(x − 1) + ψ(p)(x − 1)2 + o[x − 1]3.

Now using the formulae between the Beta and the Gamma functions, we
can show

ϕ(p) =
Γ

(
1
p + 1

)
Γ

(
2
p

)
Γ

(
1
p

)
Γ

(
2
p + 1

) =
1
2

and

ψ(p) =
Γ

(
1
p + 1

)
Γ

(
2
p

)
Γ

(
1
p

)
Γ

(
2
p + 1

) p − 1
2

− p + 1
2

Γ
(

1
p + 2

)
Γ

(
2
p

)
Γ

(
1
p

)
Γ

(
2
p + 2

)
+

Γ
(

1
p + 1

)
Γ

(
2
p

)
Γ

(
1
p

)
Γ

(
2
p + 1

)
2

=
1
2
· p − 1

2
− p

2
· p + 1

p
· p + 1
2p + 4

+
(

1
2

)2

= − 1
4(p + 2)

.

Hence we have the desired Taylor’s expansion of Mp(1, x). ¤

Proof of Proposition 3.4. For p ≥ 1, to compare the four means
Mp(a, b),Kp(a, b), Dp(a, b) and Np(a, b), we can take a = 1 and b = x
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without loss of generality. First from (3.1) in Lemma 3.5, we have

Mp(1, x) = 1 +
1
2
(x − 1) − 1

4(p + 2)
(x − 1)2 + o[x − 1]3.

For the other means Kp(1, x), Dp(1, x) and Np(1, x), we can obtain

Kp(1, x) = 1 +
1
2
(x − 1) +

p − 2
12

(x − 1)2 + o[x − 1]3,

Dp(1, x) = 1 +
1
2
(x − 1) +

p − 1
24

(x − 1)2 + o[x − 1]3,

and

Np(1, x) = 1 +
1
2
(x − 1) +

p − 1
8

(x − 1)2 + o[x − 1]3.

Now for (i), if p−2
12 < p−1

24 , that is, p < 3 then the inequality Kp(1, x) <

Dp(1, x) holds for x such that 0 < |x−1| < ε, with a sufficiently small ε > 0.
The other inequalities are obvious from Lemmas 3.1 and 3.2. And also, for
the first inequality of (ii), it is clear that − 1

4(p+2) < p−1
24 for p > −2.

Therefore the first inequality of (ii) holds for p > 3. Furthermore from
Lemmas 3.1 and 3.2, we obtain the other inequalities of (ii). ¤

Remark 3.6. The inequality K3(a, b) > D3(a, b) holds for a, b > 0, a ̸= b.

Hence Proposition 3.4 (ii) is also valid for p = 3. For this, it suffices to
show that K3(1, x) > D3(1, x) holds for any x > 0, x ̸= 1: Since

K3(1, x) =
2
3
· (x2 + x + 1)

(x + 1)
and D3(1, x) =

{
(x + 1)(x2 + 1)

4

}1/3

,

we see

K3(1, x)3 − D3(1, x)3 =
1

108(x + 1)3
{32(x2 + x + 1)3 − 27(x + 1)4(x2 + 1)}.

Now we have to prove f(x) := 32(x2 + x + 1)3 − 27(x + 1)4(x2 + 1) > 0.
If we put u = (x + 1)2 and v = x2 + 1, then from x2 + x + 1 = u+v

2 and
1 < u

v < 2, we obtain, putting t = u
v , for 1 < t < 2,

f(x) = 32
(

u + v

2

)3

−27u2v = v3(4t3−15t2+12t+4) = v3(4t+1)(t−2)2 > 0.
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Remark 3.7. Related to Proposition 3.4, we can prove that if 0 ≤ p ≤ 2,
then Dp(a, b) ≥ Kp(a, b) for a, b > 0. The proof is as follows:

First for 0 ≤ p ≤ 1, Dp(a, b) ≥ Kp(a, b) by Proposition 3.3. Next for
1 ≤ p ≤ 2, since 0 ≤ p − 1 ≤ 1, we have, by concavity of x 7−→ xp−1,

(1 − t)ap−1 + tbp−1 ≤ {(1 − t)a + tb}p−1.

Based on the above inequality, we obtain Kp(a, b) ≤ Dp(a, b) for 1 ≤ p ≤ 2,
by the following inequalities,∫ 1

0
{(1 − t)ap−1 + tbp−1}

1
p−1 dt

≤
∫ 1

0
{(1 − t)a + tb}dt ≤

[∫ 1

0
{(1 − t)a + tb}pdt

] 1
p

.

¤

Remark 3.8. In [9], by using convexity of X 7−→ X−1 for positive matrices
X, the following inequality

Kp(A,B) ≤ Kp+1(A,B)

was shown for all positive matrices A,B and all real numbers p. Moreover
the functions Kp(1, x) was shown to be operator monotone for −1 ≤ p ≤ 2

([6], Proposition 4.2). For the function Dp−1(1, x) =
(

xp−1
p(x−1)

) 1
p−1

, it is
known to be matrix monotone if −2 ≤ p ≤ 2 ([1], Theorem 3). For the
function Np(1, x) =

(
1+xp

2

)1/p
, it is known to be matrix monotone if (and

only if) −1 ≤ p ≤ 1 ([1], Theorem 4).

Remark 3.9. A hypergeometric function 2F1(α, β, γ; z) with parameters
α, β, γ is defined by

2F1(α, β, γ; z) = 1 +
∞∑

k=1

(α)k(β)k

(γ)k(1)k
zk,

where (λ)k =
∏k

i=1(λ + i − 1).
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In [3], R. Bhatia and R.-C. Li showed the following expression with
respect to Mp(a, b) (for a, b, p > 0):

1
Mp(a, b)

= (max{a, b})−1

[
1 +

∞∑
k=1

∏k−1
i=0 (1

p + i)2∏k−1
i=0 (2

p + i) · k!

{
1 −

(
min{a, b}
max{a, b}

)p}k
]

.

From this fact we obtain:

1
Mp(a, b)

= (max{a, b})−1

1 +
∞∑

k=1

(
1
p

)
k

(
1
p

)
k(

2
p

)
k
(1)k

{
1 −

(
min{a, b}
max{a, b}

)p}k


= (max{a, b})−1
2F1

(
1
p
,
1
p
,
2
p
;
(

1 − min{a, b}
max{a, b}

)2
)

.

In particular, if p = 2, then we have

1
AG(a, b)

= (max{a, b})−1
2F1

(
1
2
,
1
2
, 1;

(
1 − min{a, b}

max{a, b}

)2
)

.
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