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Accuracy of powers of accurate elements

Nobuharu Onoda and Takasi Sugatani

Abstract. Let R be an integral domain with quotient field K and
α an element of the algebraic closure of K. We show that (i) if α is
accurate over R and satisfies the monic minimal polynomial Xd − η
over K, then αn is accurate over R for any integer n; and (ii) if α is
super-primitive over R, then αn is super-primitive over R for every
positive integer n such that K(α) = K(αn).

1. Introduction

Let R be an integral domain with quotient field K and let L be the
algebraic closure of K. For an element α ∈ L we denote by ϕα(X) the
monic minimal polynomial of α over K. Let Φα: R[X] → R[α] be the
natural R-algebra homomorphism sending X to α. Then we say that α is
accurate (synonymously anti-integral) over R if kerΦα = IR,[α]ϕα(X)R[X],
where IR,[α] = R[X] :R ϕα(X). Write

ϕα(X) = Xd + η1X
d−1 + · · ·+ ηd.

Let R(α) = R[α]∩R[α−1] and R〈α〉 = R⊕ IR,[α]ζ1⊕· · ·⊕ IR,[α]ζd−1, where

ζi = αi + η1α
i−1 + · · ·+ ηi

for i = 1, . . . , d− 1.
It is known that (i) R〈α〉 is a subring of R(α) [6, Section 4 and Remark

5.1]; (ii) α is accurate over R if and only if R〈α〉 = R(α) [6, Theorem
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4.6 and Remark 5.1]; and (iii) α is accurate over R if and only if for any
g(X) ∈ kerΦα, the leading coefficient of g(X) is in IR,[α] [6, Lemma 2.2].
In particular, if d = 1, i.e., α ∈ K, then α is accurate over R if and only
if R(α) = R [1, Theorem 2.5]. From this it follows that if R is integrally
closed, then every α ∈ K is accurate over R ([2, (11.13)] and [7, Corollary
7]). Moreover we know ([1, Theorem 3.3] and [5, Theorem 3.3]) that R is
integrally closed if and only if every α ∈ K is accurate over R if and only
if every α ∈ L is accurate over R.

Using [1, Theorem 2.5] above one can easily prove that if α ∈ K is
accurate over R, then so is αn for every integer n (cf. Lemma 2.1). In view
of this it is natural to ask whether we can generalize this result to the case
where d > 1. In section 2, we will prove that the answer is affirmative if
ϕα(X) is of the form ϕα(X) = Xd − η with η ∈ K. In section 3, we will
turn to super-primitive elements (for the definition, see below) and will
show that if α is super-primitive over R, then αn is super-primitive over R

for every positive integer n such that K(α) = K(αn).

Let JR,[α] be the ideal of R defined by

JR,[α] = IR,[α](1, η1, η2, . . . , ηd).

After [8], we put

T (R) = {P ∈ Spec(R) |P is minimal over IR,[β] for some β ∈ K}.

It is shown [4, Proposition 6] that for P ∈ T (R), grade(P ) = 1 holds. Also,
note that if R is Noetherian, then by considering a primary decomposition
of a principal ideal, one sees T (R) = {P ∈ Spec(R) | depthRP = 1}.

An element α ∈ L is called super-primitive over R if JR,[α] 6⊂ P for any
P ∈ T (R). It is known [6, Theorem 5.5] that if α is super-primitive over
R, then α is accurate over R. The converse does hold if R is Noetherian
and satisfies S2-condition [3, Proposition 4]. However in general this is not
the case even if R is an integrally closed 1-dimensional quasilocal domain :
Let F be a field and s, t be indeterminates. Consider the valuation domain
V = F (s)[[t]]. Now let R = F + tV . Then [2, (11.13)] implies that s is
accurate over R, since R is integrally closed. Now observe that tV is the
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conductor from V to R. It then follows that s is not super-primitive over
R. For such examples of Noetherian case, see [6, Example 5.12].

Throughout this paper we keep the above notation and assumptions.

2. Powers of accurate elements

Our first result includes a bit more about the powers of an accurate
element, mentioned above.

Lemma 2.1. Suppose that d = 1, i.e., α ∈ K. If α is accurate over R and
f(X) is a monic polynomial in R[X], then f(α) is accurate over R.

Proof. Let β = f(α). It suffices to show that if c is the leading coefficient
of some polynomial g(X) such that g(X) ∈ kerΦβ, then c ∈ IR,[β] by [6,
Lemma 2.2]. Let n = deg f(X) and write f(X) = Xn + a1X

n−1 + · · ·+ an.
We will show that cαi ∈ R for every i with 1 ≤ i ≤ n; if this is the case, then
cβ = cf(α) ∈ R, as desired. We use induction on i. Let h(X) = g(f(X)).
Then h(α) = g(β) = 0, and hence h(X) ∈ kerΦα. Note that c is the leading
coefficient of h(X) because f(X) is monic. Since α is accurate over R, it
thus follows from [6, Lemma 2.2] that c ∈ IR,[α]. Hence cα ∈ R, and the
assertion holds when i = 1.

Suppose that cαj ∈ R for j = 1, . . . , i with i < n. Then we have

cβ = cf(α) = c′αn−i + c′a1α
n−i−1 + · · ·+ c′an−i−1α + b,

where c′ = cαi ∈ R and b = c(an−iα
i + an−i+1α

i−1 + · · ·+ an) ∈ R. Let

u(X) = c′Xn−i + c′a1X
n−i−1 + · · ·+ c′an−i−1X + b

and write g(X) = cXm + g1(X), where m = deg g(X) and deg g1(X) < m.
Set

h1(X) = u(X)(f(X))m−1 + g1(f(X)).

Then
h1(α) = u(α)βm−1 + g1(β) = cβm + g1(β) = g(β) = 0,

because u(α) = cf(α) = cβ. Thus h1(X) ∈ kerΦα. Since

deg u(X)(f(X))m−1 = (n− i) + n(m− 1) > deg g1(f(X)),
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c′ is the leading coefficient of h1(X). Thus c′ ∈ IR,[α] by [6, Lemma 2.2], so
that cαi+1 = c′α ∈ R. This completes the proof.

From this line to the end of this section, we assume that ϕα(X) is of the
form ϕα(X) = Xd − η with η ∈ K. Note that in this case IR,[α] = R :R η.
Note also that ζi = αi for each i, so that

R〈α〉 = R⊕ IR,[α]α⊕ IR,[α]α
2 ⊕ · · · ⊕ IR,[α]α

d−1.(2.1)

Lemma 2.2. α is accurate over R if and only if η is accurate over R.

Proof. First suppose that α is accurate over R. Then R(α) = R〈α〉 by [6,
Theorem 4.6]. Note that R(η) ⊂ R(α) because η = αd. Hence, from the
equation (2.1), we have

R(η) ⊂ R⊕ IR,[α]α⊕ IR,[α]α
2 ⊕ · · · ⊕ IR,[α]α

d−1,

which implies R(η) = R, because R(η) ⊂ K. Therefore η is accurate over
R by [1, Theorem 2.5].

Conversely suppose that η is accurate over R. Then R(η) = R by [1,
Theorem 2.5]. Since αd = η, we have

R[α] = R[η] + R[η]α + · · ·+ R[η]αd−1

and
R[α−1] = R[η−1] + R[η−1]α−1 + · · ·+ R[η−1]α−(d−1).

Hence, for an element θ ∈ R(α), we can write

θ = f0 + f1α + · · ·+ fd−1α
d−1

= g0 + g1α
−1 + · · ·+ gd−1α

−(d−1)

for some f0, . . . , fd−1 ∈ R[η] and g0, . . . , gd−1 ∈ R[η−1]. From this it follows
that

f0α
d−1 + f1η + f2ηα + · · ·+ fd−1ηαd−2 = g0α

d−1 + g1α
d−2 + · · ·+ gd−1,

which implies f0 = g0 and fi = gd−iη
−1 for i ≥ 1. Thus

fi ∈ R[η] ∩R[η−1] = R(η) = R,
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for each i = 0, . . . , d− 1. Moreover for i ≥ 1 we have

fiη = gd−i ∈ R(η) = R,

which means fi ∈ R :R η = IR,[α]. Hence

θ ∈ R + IR,[α]α + · · ·+ IR,[α]α
d−1 = R〈α〉,

and therefore R(α) ⊂ R〈α〉. Since R〈α〉 ⊂ R(α) in general, we have R(α) =
R〈α〉. Thus α is accurate over R by [6, Theorem 4.6].

Lemma 2.3. Let n be a positive integer and let β = αn. Then, setting
m = gcd{d, n}, we have ϕβ(X) = Xd/m − ηn/m.

Proof. Let f(X) = Xd/m − ηn/m. Then f(β) = 0, so that

[K(β) : K] ≤ d/m.(2.2)

On the other hand, for integers r, s with rd + sn = m, we have αm =
αrd+sn = ηrβs ∈ K(β), which implies

[K(α) : K(β)] ≤ m.(2.3)

It follows from (2.2) and (2.3) that

d = [K(α) : K] = [K(α) : K(β)][K(β) : K] ≤ m(d/m) = d,

so that the equalities must hold both in (2.2) and (2.3). Therefore f(X) =
ϕβ(X).

Theorem 2.4. Let R be an integral domain with quotient field K and let
α be an element of the algebraic closure of K such that ϕα(X), the minimal
polynomial of α over K, is of the form ϕα(X) = Xd − η with η ∈ K. If α

is accurate over R, then αn is accurate over R for every integer n.

Proof. By [6, Theorem 4.6], we may assume that n is positive. Suppose
that α is accurate over R. Then η is accurate over R by Lemma 2.2.
Hence ηn/m is also accurate over R by Lemma 2.1, where m = gcd{d, n}.
Therefore, by Lemmas 2.2 and 2.3, we know that αn is accurate over R.
This completes the proof.
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3. Powers of super-primitive elements

Lemma 3.1. Let t1, . . . , td be indeterminates, and n a positive integer.
For each i = 1, . . . , d, let si be the i-th elementary symmetric polynomial
of t1, . . . , td and ui the i-th elementary symmetric polynomial of tn1 , . . . , tnd .
Then we can write

ui = sn
i +

∑
ci1···irs

j1
i1
· · · sjr

ir
,(3.1)

where ci1···ir ∈ Z, j1 > 0, . . . , jr > 0 , i1j1+ · · ·+irjr = in, j1+ · · ·+jr ≤ n,
(i1, . . . ir) 6= (i, . . . , i) and max{i1, . . . , ir} > i.

Proof. Since ui is a symmetric polynomial of t1, . . . , td, there exists a
polynomial F (X1, . . . , Xd) ∈ Z[X1, . . . , Xd] such that ui = F (s1, . . . , sd).
Let m be the total degree of F (X1, . . . , Xd). We will show that m = n. Let
Fm(X1, . . . , Xd) be the leading form of F . Note that

si = s′i−1td + s′i(3.2)

for i = 1, . . . , d, where s′i is the i-th elementary symmetric polynomial of
t1, . . . , td−1 with s′0 = 1 and s′d = 0. Hence we can write

ui = F (s1, . . . , sd) = Fm(1, s′1, . . . , s
′
d−1)t

m
d + H,(3.3)

where H is a polynomial in t1, . . . , td over Z with degtd
H < m. Since

degtd
ui = n, it thus follows from (3.3) that m ≥ n. If m > n, then

Fm(1, s′1, . . . , s′d−1) = 0 again by (3.3), which implies Fm(1, X2, . . . , Xd) = 0
because s′1, . . . , s′d−1 are algebraically independent over Z. This means
Fm(X1, . . . , Xd) is divisible by X1−1, so that Fm(X1, . . . , Xd) = 0 because
Fm(X1, . . . , Xd) is homogeneous. This is a contradiction. We have thus
proved m = n. On the other hand, ui is a homogeneous polynomial in
t1, . . . , td of degree in. Therefore we can write

ui = csn
i +

∑
ci1···irs

j1
i1
· · · sjr

ir
,(3.4)

where i1j1 + · · · + irjr = in, j1 + · · · + jr ≤ n, (i1, . . . ir) 6= (i, . . . , i) and
c, ci1···ir ∈ Z. Let ik = max{i1, . . . , ir}. If ik ≤ i, then

in = i1j1 + · · ·+ irjr ≤ i(j1 + · · ·+ jr) ≤ in,
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and so

(i1, . . . , ir) = (i, . . . , i),

a contradiction. Thus ik > i. Substituting td = 0 in (3.4) and using
(3.2), we have an equality corresponding to (3.4) for the case of d − 1
indeterminates t1, . . . , td−1. It now follows c = 1 by induction on d.

Lemma 3.2. Suppose that R is a quasilocal ring with maximal ideal P ,
and let n be a positive integer satisfying K(α) = K(β), where β = αn. If
JR,[α] = R, then JR,[β] = R.

Proof. First we show that we may assume that α is separable over K.
Let p be the characteristic of K and let pe be the minimal integer such
that α′ := αpe

is separable over K. Then ϕα(X) ∈ K[Xpe
] and ϕα′(X) =

ϕα(X1/pe
). In particular we have IR,[α] = IR,[α′] and JR,[α] = JR,[α′]. On

the other hand, since K(α) = K(β), it follows that K(α′) = K(β′), where
β′ = βpe

. Thus deg ϕα′(X) = deg ϕβ′(X). Let ψ(X) = ϕβ′(Xpe
). Then

ψ(β) = 0, so that ψ(X) = ϕβ(X), because deg ψ(X) = pe deg ϕβ′(X) = d.
From this we have IR,[β] = IR,[β′] and JR,[β] = JR,[β′]. Since β′ = α′n,
replacing α by α′, we may assume that α is separable over K.

Let α1 = α, α2, . . . , αd be the conjugates of α over K and write

ϕβ(X) = Xd + ξ1X
d−1 + · · ·+ ξd.

Then αn
1 = β, αn

2 , . . . , αn
d are the conjugates of β over K. In fact if γ is

a conjugate of β, then we have a K-isomorphism σ : K(β) → K(γ). But
K(β) = K(α), and so γ = σ(α)n. Hence ξi is the i-th elementary symmetric
polynomial of αn

1 , . . . , αn
d . It then follows from Lemma 3.1 that

ξi = ηn
i +

∑
ci1···irη

j1
i1
· · · ηjr

ir
,(3.5)

where ci1···ir ∈ the prime ring of R , i1j1 + · · ·+ irjr = in, j1 + · · ·+ jr ≤ n,
(i1, . . . ir) 6= (i, . . . , i) and max{i1, . . . , ir} > i. It thus follows that In

R,[α] ⊂
IR,[β]. Now, since

JR,[α] = IR,[α] + IR,[α]η1 + · · ·+ IR,[α]ηd = R
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and R is quasilocal, setting η0 = 1, we have IR,[α]ηj = R for some j. Let
i be the maximal integer satisfying IR,[α]ηi = R. Thus IR,[α]ηi = R and
IR,[α]ηj ⊂ P for j > i. It then follows that

In
R,[α]η

j1
i1
· · · ηjr

ir
⊂ P,

because max{i1, . . . , ir} > i. Since In
R,[α]η

n
i = R, from (3.5) it follows that

In
R,[α]ξi = R. Hence IR,[β]ξi = R, which implies JR,[β] = R. This completes

the proof.

Theorem 3.3. Let R be an integral domain with quotient field K and let
α be an element of the algebraic closure of K. Suppose that α is super-
primitive over R. Then αn is super-primitive over R for every positive
integer n such that K(α) = K(αn).

Proof. Note that α is super-primitive over R if and only if JR,[α]RP = RP

for every P ∈ T (R). Note also that IR,[α]RP = IRP ,[α] since IR,[α] = R :R
(η1, . . . , ηd), so that JR,[α]RP = JRP ,[α]. Now let n be a positive integer
such that K(α) = K(αn), and set β = αn. Then, for P ∈ T (R), we have
JRP ,[α] = RP , and hence JRP ,[β] = RP by Lemma 3.2. Thus JR,[β] 6⊂ P

for any P ∈ T (R), which implies that β is super-primitive over R. This
completes the proof.
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