Accuracy of powers of accurate elements

Nobuharu Onoda and Takasi Sugatani

Abstract

Let R be an integral domain with quotient field K and α an element of the algebraic closure of K. We show that (i) if α is accurate over R and satisfies the monic minimal polynomial $X^{d}-\eta$ over K, then α^{n} is accurate over R for any integer n; and (ii) if α is super-primitive over R, then α^{n} is super-primitive over R for every positive integer n such that $K(\alpha)=K\left(\alpha^{n}\right)$.

1. Introduction

Let R be an integral domain with quotient field K and let L be the algebraic closure of K. For an element $\alpha \in L$ we denote by $\varphi_{\alpha}(X)$ the monic minimal polynomial of α over K. Let $\Phi_{\alpha}: R[X] \rightarrow R[\alpha]$ be the natural R-algebra homomorphism sending X to α. Then we say that α is accurate (synonymously anti-integral) over R if $\operatorname{ker} \Phi_{\alpha}=I_{R,[\alpha]} \varphi_{\alpha}(X) R[X]$, where $I_{R,[\alpha]}=R[X]:_{R} \varphi_{\alpha}(X)$. Write

$$
\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}
$$

Let $R(\alpha)=R[\alpha] \cap R\left[\alpha^{-1}\right]$ and $R\langle\alpha\rangle=R \oplus I_{R,[\alpha]} \zeta_{1} \oplus \cdots \oplus I_{R,[\alpha]} \zeta_{d-1}$, where

$$
\zeta_{i}=\alpha^{i}+\eta_{1} \alpha^{i-1}+\cdots+\eta_{i}
$$

for $i=1, \ldots, d-1$.
It is known that (i) $R\langle\alpha\rangle$ is a subring of $R(\alpha)[6$, Section 4 and Remark 5.1]; (ii) α is accurate over R if and only if $R\langle\alpha\rangle=R(\alpha)$ [6, Theorem

2000 Mathematics Subject Classification. Primary 13B02; Secondary 13G05.
Key words and phrases. accurate element, super-primitive element.
4.6 and Remark 5.1]; and (iii) α is accurate over R if and only if for any $g(X) \in \operatorname{ker} \Phi_{\alpha}$, the leading coefficient of $g(X)$ is in $I_{R,[\alpha]}$ [6, Lemma 2.2]. In particular, if $d=1$, i.e., $\alpha \in K$, then α is accurate over R if and only if $R(\alpha)=R$ [1, Theorem 2.5]. From this it follows that if R is integrally closed, then every $\alpha \in K$ is accurate over R ([2, (11.13)] and [7, Corollary 7]). Moreover we know ([1, Theorem 3.3] and [5, Theorem 3.3]) that R is integrally closed if and only if every $\alpha \in K$ is accurate over R if and only if every $\alpha \in L$ is accurate over R.

Using [1, Theorem 2.5] above one can easily prove that if $\alpha \in K$ is accurate over R, then so is α^{n} for every integer n (cf. Lemma 2.1). In view of this it is natural to ask whether we can generalize this result to the case where $d>1$. In section 2 , we will prove that the answer is affirmative if $\varphi_{\alpha}(X)$ is of the form $\varphi_{\alpha}(X)=X^{d}-\eta$ with $\eta \in K$. In section 3, we will turn to super-primitive elements (for the definition, see below) and will show that if α is super-primitive over R, then α^{n} is super-primitive over R for every positive integer n such that $K(\alpha)=K\left(\alpha^{n}\right)$.

Let $J_{R,[\alpha]}$ be the ideal of R defined by

$$
J_{R,[\alpha]}=I_{R,[\alpha]}\left(1, \eta_{1}, \eta_{2}, \ldots, \eta_{d}\right) .
$$

After [8], we put

$$
T(R)=\left\{P \in \operatorname{Spec}(R) \mid P \text { is minimal over } I_{R,[\beta]} \text { for some } \beta \in K\right\}
$$

It is shown [4, Proposition 6] that for $P \in T(R)$, grade $(P)=1$ holds. Also, note that if R is Noetherian, then by considering a primary decomposition of a principal ideal, one sees $T(R)=\left\{P \in \operatorname{Spec}(R) \mid\right.$ depth $\left.R_{P}=1\right\}$.

An element $\alpha \in L$ is called super-primitive over R if $J_{R,[\alpha]} \not \subset P$ for any $P \in T(R)$. It is known [6, Theorem 5.5] that if α is super-primitive over R, then α is accurate over R. The converse does hold if R is Noetherian and satisfies S_{2}-condition [3, Proposition 4]. However in general this is not the case even if R is an integrally closed 1 -dimensional quasilocal domain : Let F be a field and s, t be indeterminates. Consider the valuation domain $V=F(s)[t]]$. Now let $R=F+t V$. Then [2, (11.13)] implies that s is accurate over R, since R is integrally closed. Now observe that $t V$ is the
conductor from V to R. It then follows that s is not super-primitive over R. For such examples of Noetherian case, see [6, Example 5.12].

Throughout this paper we keep the above notation and assumptions.

2. Powers of accurate elements

Our first result includes a bit more about the powers of an accurate element, mentioned above.

Lemma 2.1. Suppose that $d=1$, i.e., $\alpha \in K$. If α is accurate over R and $f(X)$ is a monic polynomial in $R[X]$, then $f(\alpha)$ is accurate over R.

Proof. Let $\beta=f(\alpha)$. It suffices to show that if c is the leading coefficient of some polynomial $g(X)$ such that $g(X) \in \operatorname{ker} \Phi_{\beta}$, then $c \in I_{R,[\beta]}$ by $[6$, Lemma 2.2]. Let $n=\operatorname{deg} f(X)$ and write $f(X)=X^{n}+a_{1} X^{n-1}+\cdots+a_{n}$. We will show that $c \alpha^{i} \in R$ for every i with $1 \leq i \leq n$; if this is the case, then $c \beta=c f(\alpha) \in R$, as desired. We use induction on i. Let $h(X)=g(f(X))$. Then $h(\alpha)=g(\beta)=0$, and hence $h(X) \in \operatorname{ker} \Phi_{\alpha}$. Note that c is the leading coefficient of $h(X)$ because $f(X)$ is monic. Since α is accurate over R, it thus follows from [6, Lemma 2.2] that $c \in I_{R,[\alpha]}$. Hence $c \alpha \in R$, and the assertion holds when $i=1$.

Suppose that $c \alpha^{j} \in R$ for $j=1, \ldots, i$ with $i<n$. Then we have

$$
c \beta=c f(\alpha)=c^{\prime} \alpha^{n-i}+c^{\prime} a_{1} \alpha^{n-i-1}+\cdots+c^{\prime} a_{n-i-1} \alpha+b,
$$

where $c^{\prime}=c \alpha^{i} \in R$ and $b=c\left(a_{n-i} \alpha^{i}+a_{n-i+1} \alpha^{i-1}+\cdots+a_{n}\right) \in R$. Let

$$
u(X)=c^{\prime} X^{n-i}+c^{\prime} a_{1} X^{n-i-1}+\cdots+c^{\prime} a_{n-i-1} X+b
$$

and write $g(X)=c X^{m}+g_{1}(X)$, where $m=\operatorname{deg} g(X)$ and $\operatorname{deg} g_{1}(X)<m$. Set

$$
h_{1}(X)=u(X)(f(X))^{m-1}+g_{1}(f(X)) .
$$

Then

$$
h_{1}(\alpha)=u(\alpha) \beta^{m-1}+g_{1}(\beta)=c \beta^{m}+g_{1}(\beta)=g(\beta)=0,
$$

because $u(\alpha)=c f(\alpha)=c \beta$. Thus $h_{1}(X) \in \operatorname{ker} \Phi_{\alpha}$. Since

$$
\operatorname{deg} u(X)(f(X))^{m-1}=(n-i)+n(m-1)>\operatorname{deg} g_{1}(f(X)),
$$

c^{\prime} is the leading coefficient of $h_{1}(X)$. Thus $c^{\prime} \in I_{R,[\alpha]}$ by [6, Lemma 2.2], so that $c \alpha^{i+1}=c^{\prime} \alpha \in R$. This completes the proof.

From this line to the end of this section, we assume that $\varphi_{\alpha}(X)$ is of the form $\varphi_{\alpha}(X)=X^{d}-\eta$ with $\eta \in K$. Note that in this case $I_{R,[\alpha]}=R:_{R} \eta$. Note also that $\zeta_{i}=\alpha^{i}$ for each i, so that

$$
\begin{equation*}
R\langle\alpha\rangle=R \oplus I_{R,[\alpha]} \alpha \oplus I_{R,[\alpha]} \alpha^{2} \oplus \cdots \oplus I_{R,[\alpha]} \alpha^{d-1} \tag{2.1}
\end{equation*}
$$

Lemma 2.2. α is accurate over R if and only if η is accurate over R.
Proof. First suppose that α is accurate over R. Then $R(\alpha)=R\langle\alpha\rangle$ by [6, Theorem 4.6]. Note that $R(\eta) \subset R(\alpha)$ because $\eta=\alpha^{d}$. Hence, from the equation (2.1), we have

$$
R(\eta) \subset R \oplus I_{R,[\alpha]} \alpha \oplus I_{R,[\alpha]} \alpha^{2} \oplus \cdots \oplus I_{R,[\alpha]} \alpha^{d-1}
$$

which implies $R(\eta)=R$, because $R(\eta) \subset K$. Therefore η is accurate over R by [1, Theorem 2.5].

Conversely suppose that η is accurate over R. Then $R(\eta)=R$ by [1, Theorem 2.5]. Since $\alpha^{d}=\eta$, we have

$$
R[\alpha]=R[\eta]+R[\eta] \alpha+\cdots+R[\eta] \alpha^{d-1}
$$

and

$$
R\left[\alpha^{-1}\right]=R\left[\eta^{-1}\right]+R\left[\eta^{-1}\right] \alpha^{-1}+\cdots+R\left[\eta^{-1}\right] \alpha^{-(d-1)}
$$

Hence, for an element $\theta \in R(\alpha)$, we can write

$$
\begin{aligned}
\theta & =f_{0}+f_{1} \alpha+\cdots+f_{d-1} \alpha^{d-1} \\
& =g_{0}+g_{1} \alpha^{-1}+\cdots+g_{d-1} \alpha^{-(d-1)}
\end{aligned}
$$

for some $f_{0}, \ldots, f_{d-1} \in R[\eta]$ and $g_{0}, \ldots, g_{d-1} \in R\left[\eta^{-1}\right]$. From this it follows that

$$
f_{0} \alpha^{d-1}+f_{1} \eta+f_{2} \eta \alpha+\cdots+f_{d-1} \eta \alpha^{d-2}=g_{0} \alpha^{d-1}+g_{1} \alpha^{d-2}+\cdots+g_{d-1}
$$

which implies $f_{0}=g_{0}$ and $f_{i}=g_{d-i} \eta^{-1}$ for $i \geq 1$. Thus

$$
f_{i} \in R[\eta] \cap R\left[\eta^{-1}\right]=R(\eta)=R
$$

for each $i=0, \ldots, d-1$. Moreover for $i \geq 1$ we have

$$
f_{i} \eta=g_{d-i} \in R(\eta)=R
$$

which means $f_{i} \in R:_{R} \eta=I_{R,[\alpha]}$. Hence

$$
\theta \in R+I_{R,[\alpha]} \alpha+\cdots+I_{R,[\alpha]} \alpha^{d-1}=R\langle\alpha\rangle
$$

and therefore $R(\alpha) \subset R\langle\alpha\rangle$. Since $R\langle\alpha\rangle \subset R(\alpha)$ in general, we have $R(\alpha)=$ $R\langle\alpha\rangle$. Thus α is accurate over R by [6, Theorem 4.6].

Lemma 2.3. Let n be a positive integer and let $\beta=\alpha^{n}$. Then, setting $m=\operatorname{gcd}\{d, n\}$, we have $\varphi_{\beta}(X)=X^{d / m}-\eta^{n / m}$.

Proof. Let $f(X)=X^{d / m}-\eta^{n / m}$. Then $f(\beta)=0$, so that

$$
\begin{equation*}
[K(\beta): K] \leq d / m \tag{2.2}
\end{equation*}
$$

On the other hand, for integers r, s with $r d+s n=m$, we have $\alpha^{m}=$ $\alpha^{r d+s n}=\eta^{r} \beta^{s} \in K(\beta)$, which implies

$$
\begin{equation*}
[K(\alpha): K(\beta)] \leq m \tag{2.3}
\end{equation*}
$$

It follows from (2.2) and (2.3) that

$$
d=[K(\alpha): K]=[K(\alpha): K(\beta)][K(\beta): K] \leq m(d / m)=d
$$

so that the equalities must hold both in (2.2) and (2.3). Therefore $f(X)=$ $\varphi_{\beta}(X)$.

Theorem 2.4. Let R be an integral domain with quotient field K and let α be an element of the algebraic closure of K such that $\varphi_{\alpha}(X)$, the minimal polynomial of α over K, is of the form $\varphi_{\alpha}(X)=X^{d}-\eta$ with $\eta \in K$. If α is accurate over R, then α^{n} is accurate over R for every integer n.

Proof. By [6, Theorem 4.6], we may assume that n is positive. Suppose that α is accurate over R. Then η is accurate over R by Lemma 2.2. Hence $\eta^{n / m}$ is also accurate over R by Lemma 2.1, where $m=\operatorname{gcd}\{d, n\}$. Therefore, by Lemmas 2.2 and 2.3, we know that α^{n} is accurate over R. This completes the proof.

3. Powers of super-primitive elements

Lemma 3.1. Let t_{1}, \ldots, t_{d} be indeterminates, and n a positive integer. For each $i=1, \ldots, d$, let s_{i} be the i-th elementary symmetric polynomial of t_{1}, \ldots, t_{d} and u_{i} the i-th elementary symmetric polynomial of $t_{1}^{n}, \ldots, t_{d}^{n}$. Then we can write

$$
\begin{equation*}
u_{i}=s_{i}^{n}+\sum c_{i_{1} \cdots i_{r}} s_{i_{1}}^{j_{1}} \cdots s_{i_{r}}^{j_{r}} \tag{3.1}
\end{equation*}
$$

where $c_{i_{1} \cdots i_{r}} \in \mathbb{Z}, j_{1}>0, \ldots, j_{r}>0, i_{1} j_{1}+\cdots+i_{r} j_{r}=i n, j_{1}+\cdots+j_{r} \leq n$, $\left(i_{1}, \ldots i_{r}\right) \neq(i, \ldots, i)$ and $\max \left\{i_{1}, \ldots, i_{r}\right\}>i$.

Proof. Since u_{i} is a symmetric polynomial of t_{1}, \ldots, t_{d}, there exists a polynomial $F\left(X_{1}, \ldots, X_{d}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{d}\right]$ such that $u_{i}=F\left(s_{1}, \ldots, s_{d}\right)$. Let m be the total degree of $F\left(X_{1}, \ldots, X_{d}\right)$. We will show that $m=n$. Let $F_{m}\left(X_{1}, \ldots, X_{d}\right)$ be the leading form of F. Note that

$$
\begin{equation*}
s_{i}=s_{i-1}^{\prime} t_{d}+s_{i}^{\prime} \tag{3.2}
\end{equation*}
$$

for $i=1, \ldots, d$, where s_{i}^{\prime} is the i-th elementary symmetric polynomial of t_{1}, \ldots, t_{d-1} with $s_{0}^{\prime}=1$ and $s_{d}^{\prime}=0$. Hence we can write

$$
\begin{equation*}
u_{i}=F\left(s_{1}, \ldots, s_{d}\right)=F_{m}\left(1, s_{1}^{\prime}, \ldots, s_{d-1}^{\prime}\right) t_{d}^{m}+H \tag{3.3}
\end{equation*}
$$

where H is a polynomial in t_{1}, \ldots, t_{d} over \mathbb{Z} with $\operatorname{deg}_{t_{d}} H<m$. Since $\operatorname{deg}_{t_{d}} u_{i}=n$, it thus follows from (3.3) that $m \geq n$. If $m>n$, then $F_{m}\left(1, s_{1}^{\prime}, \ldots, s_{d-1}^{\prime}\right)=0$ again by (3.3), which implies $F_{m}\left(1, X_{2}, \ldots, X_{d}\right)=0$ because $s_{1}^{\prime}, \ldots, s_{d-1}^{\prime}$ are algebraically independent over \mathbb{Z}. This means $F_{m}\left(X_{1}, \ldots, X_{d}\right)$ is divisible by $X_{1}-1$, so that $F_{m}\left(X_{1}, \ldots, X_{d}\right)=0$ because $F_{m}\left(X_{1}, \ldots, X_{d}\right)$ is homogeneous. This is a contradiction. We have thus proved $m=n$. On the other hand, u_{i} is a homogeneous polynomial in t_{1}, \ldots, t_{d} of degree $i n$. Therefore we can write

$$
\begin{equation*}
u_{i}=c s_{i}^{n}+\sum c_{i_{1} \cdots i_{r}} s_{i_{1}}^{j_{1}} \cdots s_{i_{r}}^{j_{r}}, \tag{3.4}
\end{equation*}
$$

where $i_{1} j_{1}+\cdots+i_{r} j_{r}=i n, j_{1}+\cdots+j_{r} \leq n,\left(i_{1}, \ldots i_{r}\right) \neq(i, \ldots, i)$ and $c, c_{i_{1} \cdots i_{r}} \in \mathbb{Z}$. Let $i_{k}=\max \left\{i_{1}, \ldots, i_{r}\right\}$. If $i_{k} \leq i$, then

$$
i n=i_{1} j_{1}+\cdots+i_{r} j_{r} \leq i\left(j_{1}+\cdots+j_{r}\right) \leq i n
$$

and so

$$
\left(i_{1}, \ldots, i_{r}\right)=(i, \ldots, i),
$$

a contradiction. Thus $i_{k}>i$. Substituting $t_{d}=0$ in (3.4) and using (3.2), we have an equality corresponding to (3.4) for the case of $d-1$ indeterminates t_{1}, \ldots, t_{d-1}. It now follows $c=1$ by induction on d.

Lemma 3.2. Suppose that R is a quasilocal ring with maximal ideal P, and let n be a positive integer satisfying $K(\alpha)=K(\beta)$, where $\beta=\alpha^{n}$. If $J_{R,[\alpha]}=R$, then $J_{R,[\beta]}=R$.

Proof. First we show that we may assume that α is separable over K. Let p be the characteristic of K and let p^{e} be the minimal integer such that $\alpha^{\prime}:=\alpha^{p^{e}}$ is separable over K. Then $\varphi_{\alpha}(X) \in K\left[X^{p^{e}}\right]$ and $\varphi_{\alpha^{\prime}}(X)=$ $\varphi_{\alpha}\left(X^{1 / p^{e}}\right)$. In particular we have $I_{R,[\alpha]}=I_{R,\left[\alpha^{\prime}\right]}$ and $J_{R,[\alpha]}=J_{R,\left[\alpha^{\prime}\right]}$. On the other hand, since $K(\alpha)=K(\beta)$, it follows that $K\left(\alpha^{\prime}\right)=K\left(\beta^{\prime}\right)$, where $\beta^{\prime}=\beta^{p^{e}}$. Thus $\operatorname{deg} \varphi_{\alpha^{\prime}}(X)=\operatorname{deg} \varphi_{\beta^{\prime}}(X)$. Let $\psi(X)=\varphi_{\beta^{\prime}}\left(X^{p^{e}}\right)$. Then $\psi(\beta)=0$, so that $\psi(X)=\varphi_{\beta}(X)$, because $\operatorname{deg} \psi(X)=p^{e} \operatorname{deg} \varphi_{\beta^{\prime}}(X)=d$. From this we have $I_{R,[\beta]}=I_{R,\left[\beta^{\prime}\right]}$ and $J_{R,[\beta]}=J_{R,\left[\beta^{\prime}\right]}$. Since $\beta^{\prime}=\alpha^{\prime n}$, replacing α by α^{\prime}, we may assume that α is separable over K.

Let $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ be the conjugates of α over K and write

$$
\varphi_{\beta}(X)=X^{d}+\xi_{1} X^{d-1}+\cdots+\xi_{d} .
$$

Then $\alpha_{1}^{n}=\beta, \alpha_{2}^{n}, \ldots, \alpha_{d}^{n}$ are the conjugates of β over K. In fact if γ is a conjugate of β, then we have a K-isomorphism $\sigma: K(\beta) \rightarrow K(\gamma)$. But $K(\beta)=K(\alpha)$, and so $\gamma=\sigma(\alpha)^{n}$. Hence ξ_{i} is the i-th elementary symmetric polynomial of $\alpha_{1}^{n}, \ldots, \alpha_{d}^{n}$. It then follows from Lemma 3.1 that

$$
\begin{equation*}
\xi_{i}=\eta_{i}^{n}+\sum c_{i_{1} \cdots i_{r}} \eta_{i_{1}}^{j_{1}} \cdots \eta_{i_{r}}^{j_{r}}, \tag{3.5}
\end{equation*}
$$

where $c_{i_{1} \cdots i_{r}} \in$ the prime ring of $R, i_{1} j_{1}+\cdots+i_{r} j_{r}=i n, j_{1}+\cdots+j_{r} \leq n$, $\left(i_{1}, \ldots i_{r}\right) \neq(i, \ldots, i)$ and $\max \left\{i_{1}, \ldots, i_{r}\right\}>i$. It thus follows that $I_{R,[\alpha]}^{n} \subset$ $I_{R,[\beta]}$. Now, since

$$
J_{R,[\alpha]}=I_{R,[\alpha]}+I_{R,[\alpha]} \eta_{1}+\cdots+I_{R,[\alpha]} \eta_{d}=R
$$

and R is quasilocal, setting $\eta_{0}=1$, we have $I_{R,[\alpha]} \eta_{j}=R$ for some j. Let i be the maximal integer satisfying $I_{R,[\alpha]} \eta_{i}=R$. Thus $I_{R,[\alpha]} \eta_{i}=R$ and $I_{R,[\alpha]} \eta_{j} \subset P$ for $j>i$. It then follows that

$$
\left.I_{R,[\alpha]}^{n}\right]_{i_{1}}^{j_{1}} \cdots \eta_{i_{r}}^{j_{r}} \subset P
$$

because $\max \left\{i_{1}, \ldots, i_{r}\right\}>i$. Since $I_{R,[\alpha]}^{n} \eta_{i}^{n}=R$, from (3.5) it follows that $I_{R,[\alpha]}^{n} \xi_{i}=R$. Hence $I_{R,[\beta]} \xi_{i}=R$, which implies $J_{R,[\beta]}=R$. This completes the proof.

Theorem 3.3. Let R be an integral domain with quotient field K and let α be an element of the algebraic closure of K. Suppose that α is superprimitive over R. Then α^{n} is super-primitive over R for every positive integer n such that $K(\alpha)=K\left(\alpha^{n}\right)$.

Proof. Note that α is super-primitive over R if and only if $J_{R,[\alpha]} R_{P}=R_{P}$ for every $P \in T(R)$. Note also that $I_{R,[\alpha]} R_{P}=I_{R_{P},[\alpha]}$ since $I_{R,[\alpha]}=R:_{R}$ $\left(\eta_{1}, \ldots, \eta_{d}\right)$, so that $J_{R,[\alpha]} R_{P}=J_{R_{P},[\alpha]}$. Now let n be a positive integer such that $K(\alpha)=K\left(\alpha^{n}\right)$, and set $\beta=\alpha^{n}$. Then, for $P \in T(R)$, we have $J_{R_{P},[\alpha]}=R_{P}$, and hence $J_{R_{P},[\beta]}=R_{P}$ by Lemma 3.2. Thus $J_{R,[\beta]} \not \subset P$ for any $P \in T(R)$, which implies that β is super-primitive over R. This completes the proof.

References

[1] A. Mirbagheri and L. J. Ratliff, Jr., On the intersection of two overrings, Houston J. Math., 8(1982), 525-535.
[2] M. Nagata, Local rings, Interscience Tracts, no. 13, Interscience Publ., New York, 1962.
[3] N. Onoda, T. Sugatani and K. Yoshida, Note on LCM-stability of simple extensions of Noetherian domains, Math. J. Toyama Univ., 21(1998), 111-115.
[4] N. Onoda, T. Sugatani and K. Yoshida, Some remarks on Richman simple extensions of an integral domain, Comm. Algebra, 29(2001), 2013-2019.
[5] N. Onoda and T. Sugatani, A remark on Noetherian property of certain type of algebras, Arab. J. Sci. Eng. Sect. C Theme Issues, 26(2001), 161-169.
[6] N. Onoda, T. Sugatani and K. Yoshida, Accurate elements and superprimitive elements over rings, J. Algebra, 245(2001), 370-394.
[7] L. J. Ratliff, Jr., Conditions for $\operatorname{Ker}(R[X] \rightarrow R[c / b])$ to have a linear base, Proc. Amer. Math. Soc., 39(1973), 509-514.
[8] H. T. Tang, Gauss' lemma, Proc. Amer. Math. Soc., 35(1972), 372-376.

Nobuharu Onoda
Department of Mathematics
University of Fukui
Fukui 910-8507, JAPAN
e-mail: onoda@apphy.fukui-u.ac.jp
Takasi Sugatani
Department of Mathematics
University of Toyama
Toyama, 930-8555, JAPAN
e-mail: sugatani@sci.u-toyama.ac.jp

