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Picone identities for ordinary differential equations

of fourth order

Tomoyuki Tanigawa∗and Norio Yoshida†

Abstract. It is known that there are two kinds of Picone identities
for fourth order ordinary differential equations. A new type of Pi-
cone identity is established, and Sturmian comparison theorems are
derived.

1. Introduction

Picone identity is a fundamental tool in establishing Sturmian compari-
son theorems. We refer the reader to Cimmino [1], Kreith [6, 7] and Kuks
[8] for fourth order ordinary differential equations, and to Cimmino [2],
Eastham [4], Halanay and Šandor [5], Kusano and Yoshida [9] for even
order ordinary differential equations. Two kind of Picone identities are
known for ordinary differential equations of fourth order, see, for example,
Eastham [4, p.197], Kreith [6, p.665].
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The objective of this paper is to establish a new type of Picone identity
for ordinary differential equations of fourth order. We can derive Sturmian
comparison theorems as applications.

2. Picone-type identities

We consider the ordinary differential operators l and L defined by

l[u] ≡ (a(t)u′′)′′ − (b(t)u′)′ + c(t)u, t ∈ (α, β),

L[v] ≡ (A(t)v′′)′′ − (B(t)v′)′ + C(t)v, t ∈ (α, β),

where (α, β) is a finite interval, a(t) ∈ C2[α, β], A(t) ∈ C2[α, β], b(t) ∈
C1[α, β], B(t) ∈ C1[α, β], c(t) ∈ C[α, β] and C(t) ∈ C[α, β].

The domains Dl((α, β)) of l is defined to be the set of all real-valued
functions of class C4(α, β)∩C2[α, β]. The domain DL((α, β)) is defined to
be the same as that of l, that is, Dl((α, β)) = DL((α, β)).

The following Picone identity is known, see, for example, Kreith [7,
p.270].

Theorem 1. Let v1 and v2 be linearly independent solutions of L[v] = 0
on [α, β] such that

v1(α) = v′1(α) = v2(α) = v′2(α) = 0

and define the functions σ and τ by

σ = v1v
′
2 − v2v

′
1,

τ = v′1v
′′
2 − v′2v

′′
1 .

If σ does not vanish in (α, β], then the following Picone identity holds :

d

dt

[
−(a(t)u′′)′u + a(t)u′′u′ + b(t)u′u−A(t)

σ′

σ
(u′)2

+2A(t)
τ

σ
uu′ − (A(t)τ)′

σ
u2

]

=
(
a(t)−A(t)

)
(u′′)2 +

(
b(t)−B(t)

)
(u′)2 +

(
c(t)− C(t)

)
u2

+ A(t)
(

u′′ − σ′

σ
u′ +

τ

σ
u

)2
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in (α, β].

The next Picone identity is a special case of a result of Kusano and
Yoshida [9, Theorem 1A].

Theorem 2. If u ∈ Dl((α, β)), v ∈ DL((α, β)) and if none of v and v′

vanish in (α, β), then we have the Picone identity :

d

dt

[
u

v

{
u(A(t)v′′)′ − v(a(t)u′′)′

}
+

u′

v′
{
v′(a(t)u′′)− u′(A(t)v′′)

}

+
u

v

{
v(b(t)u′)− u(B(t)v′)

}]

=
(
a(t)−A(t)

)
(u′′)2 +

(
b(t)−B(t)

)
(u′)2 +

(
c(t)− C(t)

)
u2

+ A(t)
(

u′′ − u′

v′
v′′

)2

+
(−v′(A(t)v′′)′ + B(t)(v′)2

) (
u′

v′
− u

v

)2

+
u

v
(uL[v]− vl[u]). (1)

Now we present new Picone identities in the following Theorems 3 and 4.
Theorem 3. If v ∈ DL((α, β)) and v does not vanish in (α, β), then we

obtain the Picone identity :

− d

dt

[
u

v

{
u(A(t)v′′)′

}− u′

v

{
u(A(t)v′′)

}− u

v

{
u(B(t)v′)

}− u(A(t)v′′)
(u

v

)′]

= A(t)(u′′)2 + B(t)(u′)2 + C(t)u2 −A(t)
(
u′′ − u

v
v′′

)2

− v
(
B(t)v − 2A(t)v′′

) {(u

v

)′}2

− u2

v
L[v]. (2)

Proof. The following identity holds:

d

dt

[
−u2

v
(A(t)v′′)′ + u(A(t)v′′)

(u

v

)′
+

u′

v
u(A(t)v′′)

]

= A(t)(u′′)2 + C(t)u2 −A(t)
(
u′′ − u

v
v′′

)2

+ 2A(t)
v′′

v

(
u′ − u

v
v′

)2
− u2

v
L[v] (3)
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which is a special case of Dunninger [3, Theorem 2.2]. We easily obtain

d

dt

[u

v
(uB(t)v′)

]
= B(t)(u′)2 −B(t)

(
v

(u

v

)′)2

+
u2

v
(B(t)v′)′. (4)

Combining (3) with (4) yields the desired identity (2).

Theorem 4. If v ∈ DL((α, β)) and v does not vanish in (α, β), then we
obtain the Picone identity :

d

dt

[
u

v

{
u(A(t)v′′)′ − v(a(t)u′′)′

}
+

u′

v

{
v(a(t)u′′)− u(A(t)v′′)

}

+
u

v

{
v(b(t)u′)− u(B(t)v′)

}− u(A(t)v′′)
(u

v

)′]

=
(
a(t)−A(t)

)
(u′′)2 +

(
b(t)−B(t)

)
(u′)2 +

(
c(t)− C(t)

)
u2

+A(t)
(
u′′ − u

v
v′′

)2
+ v

(−2A(t)v′′ + B(t)v
) {(u

v

)′}2

+
u

v
(uL[v]− vl[u]).

(5)

Proof. It is easy to see that

ul[u] =
d

dt

[
u(a(t)u′′)′

]− d

dt

[
u′(a(t)u′′)

]− d

dt

[
u(b(t)u′)

]

+ a(t)(u′′)2 + b(t)(u′)2 + c(t)u2. (6)

Combining (2) with (6), we arrive at (5).

Remark 1. In the case where none of v and v′ does not vanish in (α, β),
the Picone identity (2) reduces to (1) with a(t) = b(t) = c(t) = 0. It is easy
to check that

d

dt

[
u′

v

{
u(A(t)v′′)

}
+ u(A(t)v′′)

(u

v

)′]
=

d

dt

[(
u2

v

)′
A(t)v′′

]
. (7)

Since

d

dt

[(
u2

v

)′
A(t)v′′ +

(
u′ − u

v
v′

)2 A(t)v′′

v′

]
=

d

dt

[
(u′)2

v′
A(t)v′′

]
(8)
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and

− d

dt

[(
u′ − u

v
v′

)2 A(t)v′′

v′

]

= −A(t)
(
u′′ − u

v
v′′

)2
+ 2

A(t)v′′

v

(
u′ − u

v
v′

)2

− v′(A(t)v′′)′
(

u′

v′
− u

v

)2

+ A(t)
(

u′′ − u′

v′
v′′

)2

, (9)

combining (7) – (9) yields

d

dt

[
u′

v

{
u(A(t)v′′)

}
+ u(A(t)v′′)

(u

v

)′]

=
d

dt

[
u′

v′
{
u′(A(t)v′′)

}]
−A(t)

(
u′′ − u

v
v′′

)2
+ 2

A(t)v′′

v

(
u′ − u

v
v′

)2

− v′(A(t)v′′)′
(

u′

v′
− u

v

)2

+ A(t)
(

u′′ − u′

v′
v′′

)2

. (10)

Substituting (10) into the left hand side of (2), we observe that (2) reduces
to (1) with a(t) = b(t) = c(t) = 0.

3. Sturmian comparison theorems

By using the Picone identity established in Section 2, we derive Sturmian
comparison theorems.

Theorem 5. Assume that A(t) ≥ 0 in (α, β). If there exists a nontrivial
solution u ∈ Dl((α, β)) of l[u] = 0 in (α, β) such that

u(α) = u′(α) = u(β) = u′(β) = 0

and

V [u] ≡
∫ β

α

[
(a(t)−A(t))(u′′)2 + (b(t)−B(t))(u′)2 + (c(t)− C(t))u2

]
dt

≥ 0,

then every solution v ∈ DL((α, β)) of L[v] = 0 in (α, β) satisfying

v
(
B(t)v − 2A(t)v′′

) ≥ 0 in (α, β), (11)

B(t)v − 2A(t)v′′ 6= 0 in (α, β) (12)
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has a zero on [α, β].
Proof. Suppose to the contrary that there exists a solution v ∈ DL((α, β))

of L[v] = 0 in (α, β) which satisfies (11), (12) and the property that v 6= 0
on [α, β]. Integrating (5) over [α, β], we find that

0 ≥ V [u] +
∫ β

α
v
(
B(t)v − 2A(t)v′′

){(u

v

)′}2

dt

≥ 0

and therefore we obtain
∫ β

α
v
(
B(t)v − 2A(t)v′′

) {(u

v

)′}2

dt = 0.

The assumptions (11) and (12) imply that
(

u
v

)′ ≡ 0 in (α, β), that is, u = kv

for some nonzero constant k. Since u(α) = u(β) = 0 and v 6= 0 on [α, β],
we are led to a contradiction. The proof is complete.

Theorem 6. Assume that A(t) ≥ 0 in (α, β). If there exists a nontrivial
function u ∈ C2[α, β] such that

u(α) = u′(α) = u(β) = u′(β) = 0, (13)

M [u] ≡
∫ β

α

[
A(t)(u′′)2 + B(t)(u′)2 + C(t)u2

]
dt ≤ 0, (14)

then every solution v ∈ DL((α, β)) of L[v] = 0 in (α, β) satisfying (11) and
(12) has a zero in (α, β) unless u is a constant multiple of v.

Proof. Let v ∈ DL((α, β)) be any solution of L[v] = 0 in (α, β) which
satisfies (11), (12) and the condition v 6= 0 in (α, β). In view of the bound-
ary condition (13) and the fact u ∈ C2[α, β], we see that u belongs to the

Sobolev space
◦
H2 ((α, β)) which is the closure in the norm

‖u‖ = ‖u‖2 =




∫ β

α

2∑

j=0

|u(j)(t)|2dt




1/2

(15)

of the class C∞
0 ((α, β)) of infinitely differentiable functions with compact

support in (α, β). Let {um(t)} be a sequence of functions in C∞
0 ((α, β))
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converging to u in norm (15). Then, the Picone identity (2) with u = um

holds. Integrating (2) with u = um over (α, β), we find that

M [um] =
∫ β

α

[
A(t)

(
u′′m − um

v
v′′

)2
+ v

(
B(t)v − 2A(t)v′′

){(um

v

)′}2
]

dt

≥ 0.

Since A(t), B(t) and C(t) are uniformly bounded on [α, β], there is a con-
stant K > 0 such that

|M [um]−M [u]|

=
∣∣∣∣
∫ β

α

[
A(t)((u′′m)2 − (u′′)2) + B(t)((u′m)2 − (u′)2) + C(t)(u2

m − u2)
]
dt

∣∣∣∣

≤ K

∫ β

α

∣∣u′′m(um − u)′′ + u′′(um − u)′′
∣∣ dt

+ K

∫ β

α
|u′m(um − u)′ + u′(um − u)′|dt

+ K

∫ β

α
|um(um − u) + u(um − u)|dt.

Application of Schwarz inequality yields

|M [um]−M [u]| ≤ 3K(‖um‖+ ‖u‖)‖um − u‖.

Since lim
m→∞ ‖um − u‖ = 0, we observe that lim

m→∞M [um] = M [u] ≥ 0, and
hence M [u] = 0 in view of (14). Let J denote an arbitrary interval with
J̄ ⊂ (α, β) and define

HJ [u] ≡
∫

J

[
A(t)

(
u′′ − u

v
v′′

)2
+ v

(
B(t)v − 2A(t)v′′

) {(u

v

)′}2
]

dt

for u ∈ C2[α, β]. We easily see that

0 ≤ HJ [um] ≤ M [um]

and that the inequality

|HJ [um]−HJ [u]| ≤ K1(‖wm‖J + ‖w‖J)‖wm − w‖J
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holds, where K1 is a positive constant, wm = um/v, w = u/v and the sub-
script J indicates the integrals involved in the norm (15) are taken over J .
As v 6= 0 on J̄ , we see that lim

m→∞ ‖wm − w‖ = 0 when lim
m→∞ ‖um − u‖ = 0,

and therefore lim
m→∞HJ [um] = HJ [u]. Since lim

m→∞M [um] = M [u] = 0, we
obtain lim

m→∞HJ [um] = HJ [u] = 0. Hence, (u
v )′ ≡ 0 in J , that is, u = kv

in J for some nonzero constant k. We conclude that u = kv in (α, β) by
continuity, or u is a constant multiple of v. This completes the proof.

Theorem 7. Assume that A(t) ≥ 0 in (α, β). If there exists a nontrivial
solution u ∈ Dl((α, β)) of l[u] = 0 in (α, β) such that

u(α) = u′(α) = u(β) = u′(β) = 0,

V [u] ≥ 0,

then every solution v ∈ DL((α, β)) of L[v] = 0 in (α, β) satisfying (11) and
(12) has a zero in (α, β) unless u is a constant multiple of v.

Proof. Using (6), we find that

V [u] =
∫ β

α
ul[u] dt−M [u]

for any u ∈ Dl((α, β)) satisfying (13). Hence, we conclude that V [u] =
−M [u] for the solution u of l[u] = 0 satisfying (13). The conclusion follows
from Theorem 6.

Remark 2. The condition (11) holds true if B(t) ≥ 0 and vv′′ ≤ 0 in
(α, β).
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