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Abstract

Picone identities are established for a class of half-linear elliptic operators with
p(x)-Laplacians, and Sturmian comparison theorems are obtained on the basis
of the Picone identities. Generalizations to half-linear elliptic inequalities with
mixed nonlinearities are discussed, and specializations to half-linear partial or
ordinary differential inequalities with p(x)-Laplacians are shown.
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1. Introduction

The operator −∇·
(
|∇u|p(x)−2∇u

)
is said to be p(x)-Laplacian, and becomes

p-Laplacian−∇·
(
|∇u|p−2∇u

)
if p(x) = p (constant), where the dot · denotes the

scalar product,∇ = (∂/∂x1, ..., ∂/∂xn) and |x| denotes the Euclidean length of
x ∈ Rn. There has been much current interest in studying various mathematical
problems with variable exponent growth condition. The study of such problems
arise from nonlinear elasticity theory, electrorheological fluids (cf. [20, 27]).

Existence of weak solutions of the elliptic equation with p(x)-Laplacian

−∇ ·
(
a(x)|∇u|p(x)−2∇u

)
+ |u|p(x)−2u = f(x, u) in Rn

were investigated by several authors, see, for example, [5, 7, 14, 25]. For the
existence of weak solutions for p(x)-Laplacian Dirichlet problem, we refer to
[8, 13, 15, 16].
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The paper [26] by Zhang seems to be the first paper dealing with oscillations
of solutions of p(x)-Laplacian equations. In [26] oscillation problem for the p(t)-
Laplacian equation(

|u′|p(t)−2u′)′ + t−θ(t)g(t, u) = 0, t > 0

was treated. Motivated by Zhang [26], we establish Picone identities and Stur-
mian comparison theorems for half-linear elliptic inequalities.

Sturmain comparison theorems for half-linear elliptic equations

∇ ·
(
a(x)|∇u|α−1∇u

)
+ c(x)|u|α−1u = 0,

∇ ·
(
A(x)|∇v|α−1∇v

)
+ C(x)|v|α−1v = 0,

where α > 0, were derived by utilizing a Picone identity, where we means by
half-linear that a solution multiplied by any constant is also a solution. We
refer the reader to Allegretto [1], Allegretto and Huang [3, 4], Bognár and
Došlý [6], Došlý [9], Dunninger [12], Kusano, Jaroš and Yoshida [19], Yoshida
[21, 22, 23, 24] for Picone identities and Sturmian comparison theorems, and to
Došlý [10], Došlý and Řehák [11] for half-linear ordinary differential equations.

It might be natural to consider more genaral elliptic equations

∇ ·
(
a(x)|∇u|α(x)−1∇u

)
+ c(x)|u|α(x)−1u = 0,

∇ ·
(
A(x)|∇v|α(x)−1∇v

)
+ C(x)|v|α(x)−1v = 0,

where α(x) > 0, but the above equations are not half-linear if α(x) is not a con-
stant. In order to obtain some oscillation results such as Sturmian comparison
theorems, etc., which are generalizations of those of linear differential equations,
we first determine a class of half-linear elliptic equations with p(x)-Laplacians.

The objective of this paper is to establish Picone identities for half-linear
elliptic inequalities

uq[u] ≥ 0, (1.1)

vQ[v] ≤ 0, (1.2)

where q and Q are defined by

q[u] := ∇ ·
(
a(x)|∇u|α(x)−1∇u

)
− a(x)(log |u|)|∇u|α(x)−1∇α(x) · ∇u

+|∇u|α(x)−1b(x) · ∇u+ c(x)|u|α(x)−1u, (1.3)

Q[v] := ∇ ·
(
A(x)|∇v|α(x)−1∇v

)
−A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

+|∇v|α(x)−1B(x) · ∇v + C(x)|v|α(x)−1v, (1.4)

and derive Sturmian comparison theorems for q and Q by using the Picone
identities. In Section 2 we first show that (1.1) and (1.2) are half-linear in the
sense that a constant multiple of a solution u [resp. v] is also a solution of (1.1)
[resp. (1.2)] (see Proposition 2.1), and then establish Picone identities for q
and Q. We mention, in particular, the paper [2] by Allegretto in which Picone
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Identity arguments are used, and the formulae that are closely related to Picone
identities in Section 2 are established.

In Section 3 we derive Sturmian comparison theorems for q and Q, and
Section 4 is devoted to specializations to the case α(x) = α > 0, and to half-
linear ordinary differential equations with p(t)-Laplacians which seems to be
unknown.

2. Picone identities

Let G be a bounded domain in Rn with piecewise smooth boundary ∂G. It
is assumed that a(x), A(x) ∈ C(G; (0,∞)), b(x), B(x) ∈ C(G;Rn), c(x), C(x) ∈
C(G;R), and that α(x) ∈ C1(G; (0,∞)).

The domain Dq(G) of q is defined to be the set of all functions u of class
C1(G;R) such that a(x)|∇u|α(x)−1∇u ∈ C1(G;Rn) ∩ C(G;Rn). The domain
DQ(G) of Q is defined similarly.

We note in (1.1) that log |u| has singularities at zeros of u(x), but u log |u|
is continuous at every zero x0 if we define u log |u| = 0 at x = x0, in view of the
fact that limε→+0 ε log ε = 0. We make the similar remarks in (1.2).

We consider the elliptic inequalities

uq[u] ≥ 0 in G, (2.1)

vQ[v] ≤ 0 in G, (2.2)

where q and Q are defined by (1.3) and (1.4).
By a solution u [resp. v] of (2.1) [resp. (2.2)] we mean a function u ∈ Dq(G)

[resp. v ∈ DQ(G)] which satisfies (2.1) [resp. (2.2)] in G.

Proposition 2.1. Elliptic inequalities (2.1) and (2.2) are half-linear in the
sense that if u and v are solutions of (2.1) and (2.2), then ku and kv are also
solutions of (2.1) and (2.2) for any constant k, respectively.

Proof. It suffices to show that (2.1) is half-linear. Let u be any solution of
(2.1), and k(̸= 0) be any constant. It is easy to see that

q[ku] = ∇ ·
(
|k|α(x)−1ka(x)|∇u|α(x)−1∇u

)
−a(x)

(
|k|α(x)−1k

)
(log(|k||u|))|∇u|α(x)−1∇α(x) · ∇u

+
(
|k|α(x)−1k

)
|∇u|α(x)−1b(x) · ∇u

+
(
|k|α(x)−1k

)
c(x)|u|α(x)−1u. (2.3)

A simple computation shows that

∇ ·
(
|k|α(x)−1ka(x)|∇u|α(x)−1∇u

)
= ∇

(
|k|α(x)−1k

)
·
(
a(x)|∇u|α(x)−1∇u

)
+|k|α(x)−1k∇ ·

(
a(x)|∇u|α(x)−1∇u

)
. (2.4)
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Since
∇
(
|k|α(x)−1k

)
= |k|α(x)−1k(log |k|)∇α(x),

we see that

∇ ·
(
|k|α(x)−1ka(x)|∇u|α(x)−1∇u

)
= a(x)|k|α(x)−1k(log |k|)|∇u|α(x)−1∇α(x) · ∇u

+|k|α(x)−1k∇ ·
(
a(x)|∇u|α(x)−1∇u

)
. (2.5)

Combining (2.3) and (2.5) yields

(ku)q[ku] = |k|α(x)+1uq[u] ≥ 0

for any constant k(̸= 0). Since (ku) log |ku| = 0 for k = 0, we easily see that
(ku)q[ku] = 0 for k = 0. Hence, we conclude that (2.1) is half-linear.

Remark 2.1. We note that (2.1) and (2.2) are half-linear if and only if uq[u]
and vQ[v] are “homogeneous” functions in u and v, respectively, which satisfy

(ku)q[ku] = |k|α(x)+1uq[u] (k ∈ R),
(kv)Q[kv] = |k|α(x)+1vQ[v] (k ∈ R).

Theorem 2.1 (Picone identity for Q). If v ∈ DQ(G) and v has no zero in
G, then we obtain the following Picone identity for any u ∈ C1(G;R):

−∇ ·
(
uφ(u)

A(x)|∇v|α(x)−1∇v

φ(v)

)
= −A(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣∣α(x)+1

+C(x)|u|α(x)+1

+A(x)

[∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣∣α(x)+1

+α(x)
∣∣∣u
v
∇v

∣∣∣α(x)+1

−(α(x) + 1)
∣∣∣u
v
∇v

∣∣∣α(x)−1
(
∇u+

u log |u|
α(x) + 1

∇α(x)

− u

(α(x) + 1)A(x)
B(x)

)
·
(u
v
∇v

)]
−|u|α(x)+1

|v|α(x)+1

(
vQ[v]

)
in G, (2.6)

where φ(u) = |u|α(x)−1u = |u(x)|α(x)−1u(x).
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Proof. A direct calculation yields

−∇ ·
(
uφ(u)

A(x)|∇v|α(x)−1∇v

φ(v)

)
= −∇(uφ(u)) · A(x)|∇v|α(x)−1∇v

φ(v)

−uφ(u)A(x)|∇v|α(x)−1∇
(

1

φ(v)

)
· ∇v

−uφ(u)

φ(v)
∇ ·

(
A(x)|∇v|α(x)−1∇v

)
. (2.7)

We easily see that

∇(uφ(u)) = (α(x) + 1)φ(u)∇u+ uφ(u)(log |u|)∇α(x), (2.8)

∇
(

1

φ(v)

)
= − α(x)

vφ(v)
∇v − log |v|

φ(v)
∇α(x) (2.9)

in view of the fact that

∇φ(v) = α(x)
φ(v)

v
∇v + (log |v|)φ(v)∇α(x).

Hence, we observe from (2.8) and (2.9) that

∇(uφ(u)) · A(x)|∇v|α(x)−1∇v

φ(v)

= (α(x) + 1)
φ(u)

φ(v)
A(x)|∇v|α(x)−1∇u · ∇v

+uφ(u)(log |u|)A(x)|∇v|α(x)−1

φ(v)
∇α(x) · ∇v

= (α(x) + 1)A(x)
∣∣∣u
v
∇v

∣∣∣α(x)−1

(∇u) ·
(u
v
∇v

)
+A(x)u(log |u|)φ(u)

φ(v)
|∇v|α(x)−1∇α(x) · ∇v (2.10)

and

uφ(u)A(x)|∇v|α(x)−1∇
(

1

φ(v)

)
· ∇v

= −α(x)
uφ(u)

vφ(v)
A(x)|∇v|α(x)+1

−uφ(u)

φ(v)
A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

= −A(x)α(x)
∣∣∣u
v
∇v

∣∣∣α(x)+1

−uφ(u)

φ(v)
A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v. (2.11)
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It follows from (1.2) that

uφ(u)

φ(v)
∇ ·

(
A(x)|∇v|α(x)−1∇v

)
=

uφ(u)

φ(v)

(
Q[v] +A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

−|∇v|α(x)−1B(x) · ∇v − C(x)|v|α(x)−1v
)

=
uφ(u)

φ(v)
Q[v] +

uφ(u)

φ(v)
A(x)(log |v|)|∇v|α(x)−1∇α(x) · ∇v

−uφ(u)

φ(v)
|∇v|α(x)−1B(x) · ∇v − C(x)|u|α(x)+1. (2.12)

Combining (2.7), (2.10)–(2.12), we arrive at

−∇ ·
(
uφ(u)

A(x)|∇v|α(x)−1∇v

φ(v)

)
= C(x)|u|α(x)+1

+A(x)

[
α(x)

∣∣∣u
v
∇v

∣∣∣α(x)+1

− (α(x) + 1)
∣∣∣u
v
∇v

∣∣∣α(x)−1

(∇u) ·
(u
v
∇v

)]
−A(x)u(log |u|)

∣∣∣u
v
∇v

∣∣∣α(x)−1

(∇α(x)) ·
(u
v
∇v

)
+u

∣∣∣u
v
∇v

∣∣∣α(x)−1

B(x) ·
(u
v
∇v

)
− u

φ(v)

(
φ(u)Q[v]

)
= C(x)|u|α(x)+1

+A(x)

[
α(x)

∣∣∣u
v
∇v

∣∣∣α(x)+1

−(α(x) + 1)
∣∣∣u
v
∇v

∣∣∣α(x)−1
(
∇u+

u log |u|
α(x) + 1

∇α(x)

− u

(α(x) + 1)A(x)
B(x)

)
·
(u
v
∇v

)]
−uφ(u)

vφ(v)

(
vQ[v]

)
,

which is equivalent to the desired identity (2.6).

Now we consider the first-order differential system

∇w = H(x), (2.13)

where H(x) =
(
h1(x), h2(x), ..., hn(x)

)
is a vector function of class C1, and we

define the sequence of functions {gk(x)}nk=1 by

g1(x) =

∫
h1(x)dx1, (2.14)
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gk(x) = gk−1(x) +

∫ (
hk(x)−

∂

∂xk
gk−1(x)

)
dxk (k = 2, 3, ..., n). (2.15)

Proposition 2.2. The system (2.13) has a C1-solution if and only if

∂

∂xj−1

(
hk(x)−

∂

∂xk
gk−1(x)

)
= 0 (j = 2, 3, ..., k; k = 2, 3, ..., n). (2.16)

Then any C1-solution w of (2.13) has the form

w = gn(x) + Cn (2.17)

for some constant Cn.

Proof. Assume that (2.13) has a C1-solution w, then we obtain

∂w

∂x1
= h1(x)

and

w =

∫
h1(x)dx1 + C1(x2, ..., xn)

= g1(x) + C1(x2, ..., xn)

for some function C1(x2, ..., xn). Since we have

∂w

∂x2
= h2(x),

we find that C1(x2, ..., xn) must satisfy

∂C1

∂x2
= h2(x)−

∂

∂x2
g1(x).

It is necessary that
∂

∂x1

(
h2(x)−

∂

∂x2
g1(x)

)
= 0

and we obtain

C1 =

∫ (
h2(x)−

∂

∂x2
g1(x)

)
dx2 + C2(x3, ..., xn)

for some function C2(x3, ..., xn), and hence

w = g1(x) +

∫ (
h2(x)−

∂

∂x2
g1(x)

)
dx2 + C2(x3, ..., xn)

= g2(x) + C2(x3, ..., xn).

Repeating the above procedure, we observe that (2.15) is necessary that the
solution w can be written in the form (2.17). It can be shown from the above
consideration that the condition (2.16) is sufficient for (2.13) to have a C1-
solution.
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Theorem 2.2 (Picone identity for q and Q). Let α(x) ∈ C2(G; (0,∞)) and
b(x)/a(x) ∈ C1(G;Rn). Assume that u ∈ C1(G;R), u has no zero in G, and
that:

(H1) there is a function f ∈ C(G;R) such that f ∈ C1(G;R) and

∇f =
log |u|

α(x) + 1
∇α(x)− b(x)

(α(x) + 1)a(x)
in G.

If efu ∈ Dq(G), v ∈ DQ(G) and v has no zero in G, then we obtain the following
Picone identity:

∇ ·
(
e−(α(x)+1)f (efu)a(x)|∇(efu)|α(x)−1∇(efu)

−uφ(u)

φ(v)
A(x)|∇v|α(x)−1∇v

)
= a(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)a(x)
b(x)

∣∣∣∣α(x)+1

−A(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣∣α(x)+1

+
(
C(x)− c(x)

)
|u|α(x)+1

+A(x)

[∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣∣α(x)+1

+α(x)
∣∣∣u
v
∇v

∣∣∣α(x)+1

−(α(x) + 1)
∣∣∣u
v
∇v

∣∣∣α(x)−1
(
∇u+

u log |u|
α(x) + 1

∇α(x)

− u

(α(x) + 1)A(x)
B(x)

)
·
(u
v
∇v

)]
+e−(α(x)+1)f (efu)q[efu]− |u|α(x)+1

|v|α(x)+1

(
vQ[v]

)
in G. (2.18)

Proof. A direct calculation shows that

∇ ·
(
e−(α(x)+1)f (efu)a(x)|∇(efu)|α(x)−1∇(efu)

)
= (efu)∇(e−(α(x)+1)f ) ·

(
a(x)|∇(efu)|α(x)−1∇(efu)

)
+e−(α(x)+1)f∇(efu) ·

(
a(x)|∇(efu)|α(x)−1∇(efu)

)
+e−(α(x)+1)f (efu)∇ ·

(
a(x)|∇(efu)|α(x)−1∇(efu)

)
. (2.19)

Since

∇(e−(α(x)+1)f ) = e−(α(x)+1)f
(
−(∇α(x))f − (α(x) + 1)∇f

)
,
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we observe, using the hypothesis (H1), that

(efu)∇(e−(α(x)+1)f )

= e−(α(x)+1)f
[
−(efu)(∇α(x))f − (α(x) + 1)efu∇f

]
= e−(α(x)+1)f

[
−(efu)(∇α(x))f − ef (u log |u|)∇α(x) + ef

u

a(x)
b(x)

]
= e−(α(x)+1)f (efu)

[
− log |efu|∇α(x) +

b(x)

a(x)

]
and therefore

(efu)∇(e−(α(x)+1)f ) ·
(
a(x)|∇(efu)|α(x)−1∇(efu)

)
= e−(α(x)+1)f (efu)

[
−a(x) log |efu||∇(efu)|α(x)−1∇α(x) · ∇(efu)

+|∇(efu)|α(x)−1b(x) · ∇(efu)
]
. (2.20)

It is clear that

e−(α(x)+1)f∇(efu) · a(x)|∇(efu)|α(x)−1∇(efu)

= e−(α(x)+1)fa(x)|∇(efu)|α(x)+1

= a(x)|e−f∇(efu)|α(x)+1

= a(x)|∇u+ u∇f |α(x)+1

= a(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)a(x)
b(x)

∣∣∣∣α(x)+1

(2.21)

in view of the hypothesis (H1). From (2.19)–(2.21) it follows that

∇ ·
(
e−(α(x)+1)f (efu)a(x)|∇(efu)|α(x)−1∇(efu)

)
= e−(α(x)+1)f (efu)

[
∇ ·

(
a(x)|∇(efu)|α(x)−1∇(efu)

)
−a(x) log |efu||∇(efu)|α(x)−1∇α(x) · ∇(efu)

+|∇(efu)|α(x)−1b(x) · ∇(efu)
]

+a(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)a(x)
b(x)

∣∣∣∣α(x)+1

= a(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)a(x)
b(x)

∣∣∣∣α(x)+1

+e−(α(x)+1)f (efu)
[
q[efu]− c(x)|efu|α(x)−1efu

]
= a(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)a(x)
b(x)

∣∣∣∣α(x)+1

−c(x)|u|α(x)+1 + e−(α(x)+1)f (efu)q[efu]. (2.22)

Combining (2.6) with (2.22) yields the desired identity (2.18).

9



Remark 2.2. In order to explain the role of the function f in the hypothesis
(H1), we treat the ordinary differential operaor ℓ and the variation V [y] defined
by

ℓ[y] =
(
a(t)y′

)′
+ b(t)y′, t ∈ (t1, t2),

V [y] =

∫ t2

t1

a(t)

∣∣∣∣y′ − b(t)

2a(t)
y

∣∣∣∣2 dt,
where a(t) ∈ C1([t1, t2]; (0,∞)) and b(t) ∈ C([t1, t2];R). Letting

f(t) = −
∫

b(t)

2a(t)
dt,

we observe that

V [y] =

∫ t2

t1

a(t)
∣∣∣e−f(t)

(
ef(t)y

)′∣∣∣2 dt
=

∫ t2

t1

e−2f(t)a(t)
((

ef(t)y
)′)2

dt

= −
∫ t2

t1

e−2f(t)
(
ef(t)y

)
ℓ[ef(t)y] dt

if y(t1) = y(t2) = 0. Introducing the function f(t), we can consider the function
ef(t)y to be a new unknown function.

Remark 2.3. We give an example which illustrates the hypothesis (H1). Let
n = 1, G = (0, π), u = sinx, α(x) = esin x+1−1, a(x) = 1, b(x) = −(cosx)esin x+1.
Defining f(x) by

f(x) =

{
(sinx) log sinx, x ∈ (0, π)

0 at x = 0, π,

we conclude that

f ′(x) = (cosx) log sinx+ cosx

=
log |u|

α(x) + 1
α′(x)− b(x)

(α(x) + 1)a(x)
in (0, π).

Moreover, we see that f(x) is a continuous function on [0, π] in view of the fact
that limε→+0 ε log ε = 0.

Remark 2.4. It follows from Proposition 2.2 that if (H1) holds, then the func-
tion

log |u|
α(x) + 1

∇α(x)− b(x)

(α(x) + 1)a(x)
(2.23)

must satisfy (2.16) in G with H(x) replaced by (2.23). It is necessary that
α(x) ∈ C2 and b(x)/a(x) ∈ C1. For example, we treat the case where n = 2,
G = (0, π)× (0, π), u = sinx1 sinx2, α(x) = esin x1 sin x2+1 − 1, a(x) = 1, and

b(x) =
(
−(cosx1 sinx2)e

sin x1 sin x2+1,−(sinx1 cosx2)e
sin x1 sin x2+1

)
.
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Then we have

log |u|
α(x) + 1

∇α(x)− b(x)

(α(x) + 1)a(x)
=

(
h1(x1, x2), h2(x1, x2)

)
,

where

h1(x1, x2) =
(
cosx1 log sinx1 + cosx1

)
sinx2 + cosx1 sinx2 log sinx2,

h2(x1, x2) =
(
cosx2 log sinx2 + cosx2

)
sinx1 + cosx2 sinx1 log sinx1.

It is easy to check that

∂

∂x1

(
h2(x1, x2)−

∂

∂x2

∫
h1(x1, x2)dx1

)
= 0,

and the solution f of

∇f =
(
h1(x1, x2), h2(x1, x2)

)
in G

is written in the form

f =
(
sinx1 log sinx1

)
sinx2 +

(
sinx2 log sinx2

)
sinx1,

which is continuous on G = [0, π]× [0, π] by defining f = 0 on ∂G.

3. Sturmian comparison theorems

On the basis of the Picone identity in Section 2 we present Sturmian com-
parison theorems for the half-linear elliptic operators q and Q.

Lemma 3.1. The inequality

|ξ|α(x)+1 + α(x) |η|α(x)+1 − (α(x) + 1)|η|α(x)−1ξ · η ≥ 0 (3.1)

is valid for x ∈ G, ξ, η ∈ Rn, where the equality holds if and only if ξ = η.

Proof. For any fixed x ∈ G, the inequality (3.1) holds for any ξ, η ∈ Rn by
Hardy, Littlewood and Pólya [17, Theorem 41] and Kusano, Jaroš and Yoshida
[19, Lemma 2.1].

Theorem 3.1 (Sturmian comparison theorem). Let α(x) ∈ C2(G; (0,∞))
and b(x)/a(x), B(x)/A(x) ∈ C1(G;Rn). Assume that there exists a function
u ∈ C1(G;R) such that u = 0 on ∂G, u has no zero in G, the hypothesis (H1)
of Theorem 2.2 holds and that:

(H2) there is a function F ∈ C(G;R) such that F ∈ C1(G;R) and

∇F =
log |u|

α(x) + 1
∇α(x)− B(x)

(α(x) + 1)A(x)
in G.
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If the following conditions are satisfied:

(i) efu ∈ Dq(G) and
(efu)q[efu] ≥ 0 in G;

(ii)

VG[u] :=

∫
G

[
a(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)a(x)
b(x)

∣∣∣∣α(x)+1

−A(x)

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣∣α(x)+1

+
(
C(x)− c(x)

)
|u|α(x)+1

]
dx ≥ 0,

then every solution v ∈ DQ(G) of (2.2) must vanish at some point of G.

Proof. Suppose to the contrary that there exists a solution v ∈ DQ(G) of (2.2)
such that v has no zero on G. Integrating the Picone identity (2.18) over G and
using the divergence theorem, we obtain

0 ≥ VG[u] +

∫
G

W (u, v) dx ≥ 0,

which yields the following ∫
G

W (u, v) dx = 0,

where

W (u, v)

:= A(x)

[∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣∣α(x)+1

+α(x)
∣∣∣u
v
∇v

∣∣∣α(x)+1

−(α(x) + 1)
∣∣∣u
v
∇v

∣∣∣α(x)−1
(
∇u+

u log |u|
α(x) + 1

∇α(x)

− u

(α(x) + 1)A(x)
B(x)

)
·
(u
v
∇v.

)]
.

It follows from Lemma 3.1 that

∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x) ≡ u

v
∇v in G,

that is,

∇u+ u∇F ≡ u

v
∇v in G,
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from which we have
e−F v∇

(
eF

u

v

)
≡ 0 in G.

Therefore, there exists a constant k0 such that eFu/v = k0 in G and hence on
G by continuity. Since u = 0 on ∂G, we see that k0 = 0, which contradicts the
hypothesis that u is nontrivial. The proof is complete.

Corollary 3.1. Let α(x) ∈ C2(G; (0,∞)), b(x)/a(x), B(x)/A(x) ∈ C1(G;Rn).
Assume that:

(i)
b(x)

a(x)
=

B(x)

A(x)
in G;

(ii) a(x) ≥ A(x), C(x) ≥ c(x) in G.

If there exists a function u ∈ C1(G;R) such that u = 0 on ∂G, u has no zero in
G, the hypothesis (H1) of Theorem 2.2 holds and (i) of Theorem 3.1 is satisfied,
then every solution v ∈ DQ(G) of (2.2) must vanish at some point of G.

Proof. The conditions (i), (ii) imply that VG[u] ≥ 0 for any u ∈ C1(G;R) and
(H2) is the same as (H1). The conclusion follows from Theorem 3.1.

Corollary 3.2. Let α(x) ∈ C2(G; (0,∞)), b(x)/a(x), B(x)/A(x) ∈ C1(G;Rn).
Assume that the hypotheses (i), (ii) of Corollary 3.1 are satisfied, and that there
exists a nontrivial function u ∈ C1(G;R) which satisfies u = 0 on ∂G and the
following:

(H̃1) there is a function f ∈ C(G;R) such that f ∈ C1(Nu;R) and

∇f =
log |u|

α(x) + 1
∇α(x)− b(x)

(α(x) + 1)a(x)
in Nu,

where
Nu := {x ∈ G; u(x) ̸= 0}.

If efu ∈ Dq(Nu), (efu)q[efu] ≥ 0 in Nu, then every solution v ∈ DQ(G) of
(2.2) must vanish at some point of G.

Proof. Since u is nontrivial and u = 0 on ∂G, there is a domain G0 ⊂ G for
which u = 0 on ∂G0 and u has no zero in G0. Applying Corollary 3.1 with G
replaced by G0, we conclude that every solution v ∈ DQ(G) of (2.2) must vanish
at some point of G0 ⊂ G, that is, v has a zero on G.

Next we deal with the case where G is the annular domain A(r1, r2) defined
by

A(r1, r2) = {x ∈ Rn; r1 < |x| < r2} (r1 < r2).

We use the notation:

A[r1, r2] = {x ∈ Rn; r1 ≤ |x| ≤ r2},
Sr = {x ∈ Rn; |x| = r}.
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Let Ā(r) and C̄(r) denote the spherical means of A(x) and C(x) over the
sphere Sr, respectively, that is,

Ā(r) =
1

ωnrn−1

∫
Sr

A(x) dS =
1

ωn

∫
S1

A(r, θ) dω,

C̄(r) =
1

ωnrn−1

∫
Sr

C(x) dS =
1

ωn

∫
S1

C(r, θ) dω,

where ωn is the surface area of the unit sphere S1, (r, θ) is the hyperspherical
coordinates in Rn and ω is the measure on S1.

We assume that:

(H3) α(x) ≡ α(|x|) in A(r1, r2);

(H4)
B(x)

A(x)
= B0(|x|)

xi

|x|
in A(r1, r2) for some function B0(r) ∈ C[r1, r2].

Associated with (2.2) we treat the half-linear elliptic operator q̃ defined by

q̃[u] := ∇ ·
(
Ā(|x|)|∇u|α(|x|)−1∇u

)
− Ā(|x|)(log |u|)|∇u|α(|x|)−1∇α(|x|) · ∇u

+|∇u|α(|x|)−1Ā(|x|)B0(|x|)
xi

|x|
· ∇u+ C̄(|x|)|u|α(|x|)−1u.

We define the half-linear ordinary differential operator q0 by

q0[y] :=
(
rn−1Ā(r)|y′|α(r)−1y′

)′
− rn−1Ā(r)(log |y|)|y′|α(r)−1α′(r)y′

+rn−1Ā(r)B0(r)|y′|α(r)−1y′ + rn−1C̄(r)|y|α(r)−1y,

and the domain Dq0((r1, r2)) of q0 is defined to be the set of all functions y of
class C1[r1, r2] such that rn−1Ā(r)|y′|α(r)−1y′ ∈ C1(r1, r2)∩C[r1, r2]. If y(r) is
a solution of yq0[y] ≥ 0, then u(x) = y(|x|) is a radially symmetric solution of
uq̃[u] ≥ 0.

Theorem 3.2. Assume that the hypotheses (H3), (H4) hold. If there exists a
function z = z(r) ∈ Dq0((r1, r2)) such that:

(i) z(r1) = z(r2) = 0 and z(r) > 0 in (r1, r2);

(ii) there is a function f0 = f0(r) ∈ C[r1, r2] such that f0 ∈ C1(r1, r2) and

f ′
0(r) =

log |z(r)|
α(r) + 1

α′(r)− B0(r)

α(r) + 1
in (r1, r2);

(iii) ef0z ∈ Dq0((r1, r2)) and

(ef0z)q0[e
f0z] ≥ 0 in (r1, r2),

then every solution v ∈ DQ(G) of (2.2) must vanish at some point of G.
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Proof. Suppose on the contrary, that there is a solution v ∈ DQ(G) of (2.2)
such that v has no zero on G. Defining

u(x) := z(|x|),

we compare uq̃[u] ≥ 0 with (2.2). The condition (ii) implies that the hypotheses
(H1), (H2) are satisfied for the case where u(x) = z(|x|), f = F = f0(|x|) and

Ā(|x|)B0(|x|)
xi

|x|

/
Ā(|x|) = B(x)/A(x) = B0(|x|)

xi

|x|
.

Noting that∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)Ā(|x|)
Ā(|x|)B0(|x|)

xi

|x|

∣∣∣∣α(x)+1

=

∣∣∣∣∇u+
u log |u|
α(x) + 1

∇α(x)− u

(α(x) + 1)A(x)
B(x)

∣∣∣∣α(x)+1

=

∣∣∣∣z′(r) + z(r) log |z(r)|
α(r) + 1

α′(r)− z(r)

α(r) + 1
B0(r)

∣∣∣∣α(r)+1

on Sr,

we easily arrive at

VA(r1,r2)[u]

=

∫
A(r1,r2)

[(
Ā(|x|)−A(x)

)
×

×
∣∣∣∣∇u+

u log |u|
α(x) + 1

∇α(x)− u

α(x) + 1
B0(|x|)

xi

|x|

∣∣∣∣α(x)+1

+
(
C(x)− C̄(|x|)

)
|u|α(x)+1

]
dx

=

∫ r2

r1

∫
Sr

[(
Ā(|x|)−A(x)

)
×

×
∣∣∣∣∇u+

u log |u|
α(x) + 1

∇α(x)− u

α(x) + 1
B0(|x|)

xi

|x|

∣∣∣∣α(x)+1

+
(
C(x)− C̄(|x|)

)
|u|α(x)+1

]
dSdr

=

∫ r2

r1

∫
S1

[(
Ā(r)−A(r, θ)

)
×

×
∣∣∣∣z′(r) + z(r) log |z(r)|

α(r) + 1
α′(r)− z(r)

α(r) + 1
B0(r)

∣∣∣∣α(r)+1

+
(
C(r, θ)− C̄(r)

)
|z(r)|α(r)+1

]
rn−1dωdr
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= ωn

∫ r2

r1

[(
Ā(r)− 1

ωn

∫
S1

A(r, θ)dω

)
×

×
∣∣∣∣z′(r) + z(r) log |z(r)|

α(r) + 1
α′(r)− z(r)

α(r) + 1
B0(r)

∣∣∣∣α(r)+1

+

(
1

ωn

∫
S1

C(r, θ)dω − C̄(r)

)
|z(r)|α(r)+1

]
rn−1dr

= 0.

Therefore, all hypotheses of Theorem 3.1 are satisfied, and the conclusion follows
from Theorem 3.1. The proof is complete.

4. Specializations

In this Section we give some specializations to the case where α(x) = α > 0,
and the case where n = 1, b(x) = B(x) ≡ 0.

Theorem 4.1. Let α(x) = α > 0 and b(x)/a(x), B(x)/A(x) ∈ C1(G;Rn). As-
sume that there exists a nontrivial function u ∈ C1(G;R) such that u = 0 on
∂G, and that the following hypotheses are satisfied:

(Ĥ1) there is a function f ∈ C(G;R) such that f ∈ C1(G;R) and

∇f = − b(x)

(α+ 1)a(x)
in G;

(Ĥ2) there exists a function F ∈ C(G;R) such that F ∈ C1(G;R) and

∇F = − B(x)

(α+ 1)A(x)
in G.

If efu ∈ Dq(G),
(efu)q[efu] ≥ 0 in G,

and

VG[u] =

∫
G

[
a(x)

∣∣∣∣∇u− u

(α+ 1)a(x)
b(x)

∣∣∣∣α+1

−A(x)

∣∣∣∣∇u− u

(α+ 1)A(x)
B(x)

∣∣∣∣α+1

+
(
C(x)− c(x)

)
|u|α+1

]
dx ≥ 0,

then every solution v ∈ DQ(G) of (2.2) must vanish at some point of G.
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Proof. Since ∇α(x) ≡ 0 on G, the Picone identity (2.18) holds without the
hypothesis that u has no zero in G. Therefore, the conclusion follows from
Theorem 3.1.

The following corollary was established by Dunninger [12], Kusano, Jaroš
and Yoshida [19].

Corollary 4.1. Let α(x) = α > 0 and b(x) = B(x) ≡ 0 in G. If there exists a
nontrivial function u ∈ Dq(G) such that u = 0 on ∂G, uq[u] ≥ 0 in G, and

VG[u] =

∫
G

[(
a(x)−A(x)

)
|∇u|α+1 +

(
C(x)− c(x)

)
|u|α+1

]
dx ≥ 0,

then every solution v ∈ DQ(G) of (2.2) must vanish at some point of G.

Proof. Since b(x) = B(x) ≡ 0 on G, we can choose f = F ≡ 0 on G. Hence,
the conclusion follows from Theorem 4.1.

Next we consider the special case where n = 1, b(x) = B(x) ≡ 0, that is, we
let x1 = t, G = (t1, t2), and define q1 and Q1 by

q1[y] :=
(
a(t)|y′|α(t)−1y′

)′
− a(t)(log |y|)|y′|α(t)−1α′(t)y′

+c(t)|y|α(t)−1y, (4.1)

Q1[z] :=
(
A(t)|z′|α(t)−1z′

)′
−A(t)(log |z|)|z′|α(t)−1α′(t)z′

+C(t)|z|α(t)−1z, (4.2)

where the coefficients appearing in (4.1) and (4.2) are supposed to satisfy the
same conditions as in Section 2. The domains Dq1(I), DQ1

(I) are defined as in
Section 2, where I = (t1, t2).

Theorem 4.2. Let α(x) ∈ C2(I; (0,∞)) ∩ C1(I; (0,∞)). Assume that there
exists a function y ∈ C1(I;R) such that y(t1) = y(t2) = 0, y has no zero in I,
and the following hypothesis is satisfied:

(H̄1) there is a function f ∈ C(I;R) such that f ∈ C1(I;R) and

f ′(t) =
log |y|
α(t) + 1

α′(t) in I.

If efy ∈ Dq1(I),
(efy)q1[e

fy] ≥ 0 in I,

and

VI [u] =

∫
I

[(
a(t)−A(t)

) ∣∣∣∣y′ + y log |y|
α(t) + 1

α′(t)

∣∣∣∣α(t)+1

+
(
C(t)− c(t)

)
|y|α(t)+1

]
dt ≥ 0,

then every solution z ∈ DQ1(I) of zQ1[z] ≤ 0 must vanish at some point of I.
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Proof. The conclusion follows from Theorem 3.1.

We state the analogue of Corollary 3.1.

Corollary 4.2. Let α(x) ∈ C2(I; (0,∞))∩C1(I; (0,∞)). Assume that there is
a function y ∈ C1(I;R) such that y(t1) = y(t2) = 0, y has no zero in I, and the
hypothesis (H̄1) of Theorem 4.2 holds. If efy ∈ Dq1(I),

(efy)q1[e
fy] ≥ 0 in I,

and
a(t) ≥ A(t), C(t) ≥ c(t) in I,

then every solution z ∈ DQ1(I) of zQ1[z] ≤ 0 must vanish at some point of I.
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