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Abstract

Picone identities are established for a class of half-linear elliptic operators with
p(x)-Laplacians, and Sturmian comparison theorems are obtained on the basis
of the Picone identities. Generalizations to half-linear elliptic inequalities with
mixed nonlinearities are discussed, and specializations to half-linear partial or
ordinary differential inequalities with p(x)-Laplacians are shown.
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1. Introduction

The operator —V - (|Vu|P(*)=2Vu) is said to be p(z)-Laplacian, and becomes
p-Laplacian —V-(|Vu|P=2Vu) if p(z) = p (constant), where the dot - denotes the
scalar product,V = (9/0x1, ...,0/0x,) and |z| denotes the Euclidean length of
x € R™. There has been much current interest in studying various mathematical
problems with variable exponent growth condition. The study of such problems
arise from nonlinear elasticity theory, electrorheological fluids (cf. [20, 27]).

Existence of weak solutions of the elliptic equation with p(z)-Laplacian

~V - (a(@)|VulP™ 72 Vu) + [uP™ 2y = f(z,u) in R"

were investigated by several authors, see, for example, [5, 7, 14, 25]. For the
existence of weak solutions for p(z)-Laplacian Dirichlet problem, we refer to
[8, 13, 15, 16].
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The paper [26] by Zhang seems to be the first paper dealing with oscillations
of solutions of p(z)-Laplacian equations. In [26] oscillation problem for the p(t)-
Laplacian equation

(luPO=2u) 4+ D g(t,u) =0, ¢>0

was treated. Motivated by Zhang [26], we establish Picone identities and Stur-
mian comparison theorems for half-linear elliptic inequalities.
Sturmain comparison theorems for half-linear elliptic equations

V- (a(@)|Vu|*"'Vu) + c(2)ul*'u =0,
V- (A(z)|Vo|* Vo) + C(2)|v|*tv =0,

where « > 0, were derived by utilizing a Picone identity, where we means by

half-linear that a solution multiplied by any constant is also a solution. We

refer the reader to Allegretto [1], Allegretto and Huang [3, 4], Bognéar and

Dosly [6], Dosly [9], Dunninger [12], Kusano, Jaro§ and Yoshida [19], Yoshida

[21, 22, 23, 24] for Picone identities and Sturmian comparison theorems, and to

Dosly [10], Dosly and Rehék [11] for half-linear ordinary differential equations.
It might be natural to consider more genaral elliptic equations

V- (a(@)|[Vu|* @7 V) + c(z)|u|*® 1y = 0,
V- (A(2)|Vo[*®=1V0) + C(2)|v][*® 1o = 0,

where a(z) > 0, but the above equations are not half-linear if o(z) is not a con-
stant. In order to obtain some oscillation results such as Sturmian comparison
theorems, etc., which are generalizations of those of linear differential equations,
we first determine a class of half-linear elliptic equations with p(x)-Laplacians.

The objective of this paper is to establish Picone identities for half-linear
elliptic inequalities

uglu] > 0, (1.1)
vQ[v] <0, (1.2)
where g and @ are defined by
qu] = V- (a(x)|Vu|a(z)71Vu) — a(z)(log |u|)|Vu|* @~ IVa(z) - Vu
+|Vu|* @ b(z) - Vu + e(z) |u] @, (1.3)

V- (A(x)\Vv|“(”)_1Vv) — A(z)(log |v])|[Vo|* @~V a(z) - Vo
+|Vo|*@~1B(g) - Vv 4 C(z)|v]*® Lo, (1.4)

S
=
[

and derive Sturmian comparison theorems for ¢ and @ by using the Picone
identities. In Section 2 we first show that (1.1) and (1.2) are half-linear in the
sense that a constant multiple of a solution u [resp. v] is also a solution of (1.1)
[resp. (1.2)] (see Proposition 2.1), and then establish Picone identities for ¢
and Q. We mention, in particular, the paper [2] by Allegretto in which Picone



Identity arguments are used, and the formulae that are closely related to Picone
identities in Section 2 are established.

In Section 3 we derive Sturmian comparison theorems for ¢ and @, and
Section 4 is devoted to specializations to the case a(x) = a > 0, and to half-
linear ordinary differential equations with p(t¢)-Laplacians which seems to be
unknown.

2. Picone identities

Let G be a bounded domain in R™ with piecewise smooth boundary 0G. It
is assumed that a(z), A(z) € C(G;(0,00)), b(x), B(x) € C(G;R"), c(z),C(z) €
C(G;R), and that a(z) € CY(G; (0, 00)).

The domain D4(G) of g is defined to be the set of all functions u of class
C'(G;R) such that a(z)|Vu|*®~1Vu € CY(G;R™) N C(G;R"). The domain
Dgo(G) of Q is defined similarly.

We note in (1.1) that log |u| has singularities at zeros of u(x), but ulog |ul
is continuous at every zero xg if we define ulog |u| = 0 at © = x¢, in view of the
fact that lim._, 19 eloge = 0. We make the similar remarks in (1.2).

We consider the elliptic inequalities

uqlu] >0 in G, (2.1)
vQv] <0 in G,
where ¢ and @ are defined by (1.3) and (1.4).

By a solution u [resp. v] of (2.1) [resp. (2.2)] we mean a function u € D,(G)
[resp. v € Dg(G)] which satisfies (2.1) [resp. (2.2)] in G.

Proposition 2.1. Elliptic inequalities (2.1) and (2.2) are half-linear in the
sense that if u and v are solutions of (2.1) and (2.2), then ku and kv are also
solutions of (2.1) and (2.2) for any constant k, respectively.

PrOOF. It suffices to show that (2.1) is half-linear. Let u be any solution of
(2.1), and k(s 0) be any constant. It is easy to see that
glku] = V- (|k|a($)_1ka(x)\Vu\“(””)_1Vu)
—a(x) (|k[*©~ k) (log([Kl[ul) V|~ Va(z) - Vu
+([k[* 1) [V () - Vu
+ (B[ ) () [u|* )~ L, (2.3)
A simple computation shows that
V- (|k|*® ka ()| Vu|* @) V)
= V(k[*™7E) - (a(z)|Vu|* " Vu)
+k[ @Y - (a(z) | Vu|*®) V). (2.4)



Since
V(K[ 1k) = [k*@ k(log [k) Vo),

we see that
V- (|k1*O  ka(x) | Vu|* @) V)
= a(z)|k|*®k(og |k|)|Vu|*1Va(z) - Vu
+k[ @Y - (a(z) | Vu| ¥ V). (2.5)
Combining (2.3) and (2.5) yields
(ku)g[ku] = |k|°‘(x)+1uq[u] >0

for any constant k(s 0). Since (ku)log |ku| = 0 for k = 0, we easily see that
(ku)g[ku] = 0 for k = 0. Hence, we conclude that (2.1) is half-linear.

Remark 2.1. We note that (2.1) and (2.2) are half-linear if and only if ug[u]
and vQ[v] are “homogeneous” functions in u and v, respectively, which satisfy
(ku)qlku] = K| uglu] (k € R),
(kv)Q[kv] = [k|*@F1uQ[v] (k € R).

Theorem 2.1 (Picone identity for Q). If v € Dgo(G) and v has no zero in
G, then we obtain the following Picone identity for any u € C1(G;R):

v (uotu A(z)|Vo|*@=1vy
v (ueto M)
L ulog |u| 3 u (@)+1
= —A(z) |Vu+ a@) 1 IVa(x) o)+ l)A(x)B(x)
FO(@) a7
ulog |u| u (@)+1
+A(m){ Vu + WV@(@ RCCE 1)A(x)B(sc)
u a(z)+1
+a(z) ‘EVU
—(a(z) + 1) ‘%Vu a(x)—1 <vu + Z:(lxo)gﬂVa(x)
@)t I)A(a:)B(x)> ' (UW)]
| Jujr@+ QL) inC (2.6)
|,U‘oz(:1:)+1 ’ '

where o(u) = |u|*@ 1y = |u(x)|*@1u(z).



PRrROOF. A direct calculation yields

A(z) | Vo|o@=1vy

v+ (et

— V(up(w) - A2

p(v)

Vo[e@ -1y

() A(2)| @Y (

¢(v)

1
¢(v)

)
) v

-2 WG )| Tl 1),

o(v)

We easily see that

V(up(u) = (a(z) + Dop(u)Vu + up(u)(log [u) Va(z),

1\ o)l
V(wo)‘ @) " ()

in view of the fact that

Va(z)

Vo) = a(@) 220 + (log[o])p(v) Va(z).

v
Hence, we observe from (2.8) and (2.9) that

V (ugp(u)) -

A(z) | Vo|*@®-1vy

¢(v)

— (a(@) + )Y 4 (@) Vole@ 17y . T

— (a(@) + DA®) |2V

u
@Y\v

and

wp(u) A(2)| Vol @1y (

A(x)|Vola@) -1

(v)
a(z)—1

1

¢(v)

= —a(x) Z@(u) A(x)|Vv|a(m)+1

()
= —A(x)a(z) ‘%Vu

_W(“)A(x)(log )| Vo[* @1V a(z) - V.

¢(v)

a(z)+1

Va(z) - Vo

(Vu) - (%Vu)

+A(z)u(log |u)<pg))|Vv|a(x)_1Va(x) -Vou

).Vv

_W(“)A(x)(log ]| Vo[*@-1Va(z) - Vo

(2.10)

(2.11)



It follows from (1.2) that

W) G (A Vel 170)

e(v)
_uwew) (o loe oD Vol @ 1T a(z) - Vo
o) (@le] + AG) (log oD V| Va(w) - ¥
_|V'U|O¢(I)—1B(x) Vo — C(m)\v\o‘(w)_lv>
= up() v up(w) x)(log |v ¥ =1ga(2) - Vo
oty QLT+ o AW (og o) V4] Va(z) - v
_u@(u) ,Uoz(w)fl ) - Vo — " u(l(fb)Jrl
o) | VU B(@) - Ve = Oyl : (2.12)

Combining (2.7), (2.10)-(2.12), we arrive at

9. (up AT 50

a(z)+1

— (a(z) +1) ‘%Vu

a(z)—1

(5
(Vo(z)) - (%w)
B(x) - (%w)
oy (@)
— C(x)|u|a(z)+1

+A(z) [a(a:) ‘%w

—A(x)u(log |u|) ‘%VU

a(z)—1

—Vu
v

u
+u‘

a(z)+1

—(a(z)+1) ‘%Vu Va(x)

a(z)—1 ulog |ul
(Vu + alz)+1

~wwimae™®) (7))

_up(w) o
ooy PQL);

which is equivalent to the desired identity (2.6).
Now we consider the first-order differential system
Vw = H(x), (2.13)

where H(z) = (h1(z), ho(z), ..., hn(z)) is a vector function of class C, and we
define the sequence of functions {gx(z)}7_, by

g1(z) = /hl(x)dxl, (2.14)



gr(x) = gr—1(z) —|—/ (hk(x) - aikgk_l(xo dxy (k=2,3,...,n). (2.15)

Proposition 2.2. The system (2.13) has a C'-solution if and only if

9 (hk(x) — agk_l(x)) =0 (j=2,3,...kk=23,..,n). (2.16)
&m

Bx]-,l

Then any C'-solution w of (2.13) has the form
w = g(@) + Cn (2.17)
for some constant C,.

PROOF. Assume that (2.13) has a C'-solution w, then we obtain

ow
Txl = hl (.’L‘)

and

woo= /h1($)d9€1 + Ci (22, ..., Tn)
= gl(x)+01(332,...,xn)
for some function C4(xs, ..., z,). Since we have

ow
87@ = ha(z),

we find that Cy(za, ..., z,) must satisfy

ac, P

It is necessary that

s (120) = (@) =0

and we obtain
0
0= [ (o) - a(@)) oz + ol
€2

for some function Cy(z3, ..., z,), and hence

w = gi(z) +/ <h2($) - ;@gﬂx)) dxo + Co(x3, .0y )
= gz(ﬂ?)—‘rCQ(Q??,,...,S(}n).

Repeating the above procedure, we observe that (2.15) is necessary that the
solution w can be written in the form (2.17). It can be shown from the above
consideration that the condition (2.16) is sufficient for (2.13) to have a C*-
solution.



Theorem 2.2 (Picone identity for ¢ and Q). Leta(z) € C%(G;(0,)) and
b(z)/a(z) € CYG;R™). Assume that u € CY(G;R), u has no zero in G, and
that:

(Hy) there is a function f € C(G;R) such that f € C*(G;R) and

log |ul

Vi= alz)+1

alx —Lx) mn
Velr) - G+ Damy "¢

Ifefu € Dy(G), v € Do(G) and v has no zero in G, then we obtain the following
Picone identity:

V- <e-<a(f>+1>f(efu)a(x)|V(efu)|a<w>—1wefu)

“¢(“)A(x)|w|a<r>1w)

o(v)
ulog |u| o u ) a(z)+1
= @ Vet o 1V e Daw
M . ulog ‘ul v " B (z)+1
SO @Y G nam P
+(C(x) = c(@)) jul*@F
+A(z) Hvu Luloslul Gy U o
alz)+1 (a(z) + 1) A(x)
U a(z)+1
+a(x) ‘;Vv
u_ |al@)-1 ulog |ul
e ae?®) (7))
" a(z)+1
_‘_e*(a(z)Jrl)f(efu)q[efu] - ||,U||a(ac)+1(UQ[UD in G. (2.18)

PrOOF. A direct calculation shows that
v (e*<a<m>+1>f (efu)a(x)|V(efu)|a<w>*1V(efu))
= (efu)V (e~ @@+ (a )|V (el u) |a<x)—1v(efu))
+e~ (@I (efy) (a z)|V(efu) |‘1(I)_1V(efu))
e~ @@+ (efy)v . (a )|V (el u) |°‘(I)71V(efu)) . (2.19)

Since

V(e I) = @] ((Ta(a)) f - (afx) + V).

8



we observe, using the hypothesis (H;), that
(efu)V (e~ (¥@+D])y
= e @@ (efu)(Va(@))[ - (a(z) + Deluv ]|

— e (a@+D)f [—(efu)(Voz(x))f — el (ulog |u)Va(z) + e a(“x)b(m)]
= DI - log efulVata) + 2]

and therefore
(e/ u)V (e~ (@@+DF) . (a(x)w(efu)\a@)*lwefu))
= e @@+ (fy) [—a(x) log |efu||V(efu)|*®~Va(x) - V(elu)
IV (efu)| 2@ 1p(g) - V(efu)] (2.20)
It is clear that
e~ (@IVIg (efy) - a(z)|V(efu)| * @1V (efu)
— e*(a(w)Jrl)fa(x)|v(efu)|a(w)+1
= a(z)le TV (efu)|a®+!
a(z)|Vu + uV f|o@+1
ulog |u| u
= - — —b
a(z) alx) + 1Va(x) (a(z) 4+ 1)a(x) (z)
in view of the hypothesis (H;). From (2.19)—(2.21) it follows that

a(z)+1

Vu+ (2.21)

V- (e @@ (S uya(@) V(e )"V (el u) )
= e_(a(w)+1)f(efu) [V . (a(m)|V(efu)|a(’”)_1V(efu))
—a(x)log |efu||V(efu)|[*@®~IVa(z) - V(elu)
(el )2 b(a) - V(e )|

+a($) Vu MVO{(I) o u b(x) a(z)+1
alz)+1 (a(@) + Da(z)
= a(x) Vu+ Mva(x) . #b(x) a(z)+1
a(r) +1 (a(z) + Da(z)
+6_(a(x)+1)f(efu) [q[efu] _ c(m)|efu|a(x)_1efu}
= a(z)|Vu+ MV@(;U) - u b(e) a(z)+1
a(r) +1 (a(z) + a(z)

—c(x)u| @+ 4 o= (@@FDF (Fy)glefu). (2.22)
Combining (2.6) with (2.22) yields the desired identity (2.18).



Remark 2.2. In order to explain the role of the function f in the hypothesis
(Hy), we treat the ordinary differential operaor ¢ and the variation V]y] defined
by

fy] = (a(t)y) +bt)y, te (tits),
Viyl = / Ca(n) |y - 22,

2a(t)”
where a(t) € C*([t1,t2]; (0,00)) and b(t

Yy -

)

O([th tQ] ) Lettlng

e
)=~ [ gugs

we observe that

dt

=~
=
|

ts 9
/ a(t)‘e—f(t)(ef(t)y)’

t1

t 2
/ T2 W) (")) s

t

1
to
_ / =210 () e V) dt
t1

if y(t1) = y(t2) = 0. Introducing the function f(¢), we can consider the function
ey to be a new unknown function.

Remark 2.3. We give an example which illustrates the hypothesis (Hy). Let
n=1,G=(0,7),u=sinz, alr) =11 qa(x) =1, b(xr) = —(cos z)esn*+1L.
Defining f(z) b

_ [ (sinz)logsinz, z € (0,m)
f(x)—{ 0 at z =0, m,

we conclude that

f'(x) = (cosz)logsinx + cosz
_ logful oy b@) o
= e +1% T G@ e O™

Moreover, we see that f(x) is a continuous function on [0, 7] in view of the fact
that lim._,;geloge = 0.

Remark 2.4. Tt follows from Proposition 2.2 that if (H;) holds, then the func-
tion
log |ul b(x)

a(r) +1 (a(z) + 1a(x)
must satisfy (2.16) in G with H(z) replaced by (2.23). It is necessary that
a(z) € C? and b(x)/a(z) € C. For example, we treat the case where n = 2,
G = (0,m) x (0,7), u = sinxy sin @y, ax) = eSM@1sinz2+l 1 q(3) =1, and

Va(z) — (2.23)

sinxzq sinxzo+1 sin 1 sinngrl)
y .

b(z) = (—(cos 1 sinzz)e —(sinz coszy)e

10



Then we have

log |ul

W = (hl(xl,xQ)th(mlaxQ))a

where

hi(zy,22) = (cos z1 logsin x1 4 cos xl) sin xo + cos x1 sin x2 log sin s,
ha(z1,22) = (cos 9 log sin x9 4 cos 3:2) sin 1 + cos xo sinx1 log sin 1.
It is easy to check that

0 0
87331 <h2(l’1,$2) — 871,‘2 /hl(xlax2)dxl) = 07

and the solution f of
Vf= (hl(xl,xg),hg(xl,xg)) in G
is written in the form
f= (sin x1 log sin xl) sin zo + (sin 9 log sin xg) sinzy,

which is continuous on G = [0, 7] x [0, 7] by defining f = 0 on 9G.

3. Sturmian comparison theorems

On the basis of the Picone identity in Section 2 we present Sturmian com-
parison theorems for the half-linear elliptic operators ¢ and Q.

Lemma 3.1. The inequality
€15+ + a(a) [p] O — (az) + Dl* e n >0 (3.1)
is valid for x € G, €,n € R™, where the equality holds if and only if £ =n.

PROOF. For any fixed € G, the inequality (3.1) holds for any £, € R™ by
Hardy, Littlewood and Pdlya [17, Theorem 41] and Kusano, Jaros and Yoshida
[19, Lemma 2.1].

Theorem 3.1 (Sturmian comparison theorem). Let a(x) € C%(G;(0,))
and b(x)/a(x), B(z)/A(z) € C(G;R"). Assume that there exists a function

u € CY(G;R) such that u = 0 on G, u has no zero in G, the hypothesis (Hy)
of Theorem 2.2 holds and that:

(Hz) there is a function F € C(G;R) such that F € C1(G;R) and

log |u|
afz)+1

B(x)

vE= (@) + DA()

Va(z) — in G.

11



If the following conditions are satisfied:

(i) efu € Dy(G) and
(efu)gle’u] >0 in G,

(i)

W = [ a@) |vu+ 1oel G - . .
Vol = [ Jo(e)|Vus 2 Vet o)
—A(x) Vu—i—Lgm'Va( ) — - B(z) -
a(e) +1 (a(2) + DA(@)

+(C(e) — ea)) @+ [ do > 0,

then every solution v € Dgo(G) of (2.2) must vanish at some point of G.

PROOF. Suppose to the contrary that there exists a solution v € Dg(G) of (2.2)
such that v has no zero on G. Integrating the Picone identity (2.18) over G and
using the divergence theorem, we obtain

0> Vg[u] +/ W (u,v)dz > 0,
G
which yields the following

/ W (u,v)dx =0,
G

where
W (u,v)
o ulog |ul u =)+
= A(z) { Vu + WVQ(@ - MB(@
U a(z)+1
+a(z) ‘;VU

—(a(z) +1) ‘%Vu

a(z)-1 ulog |ul
<VU + WVa(m)

U u
- B - (=Vuo.)]|.
(a(z) + DA@) (x)> (37 )}
It follows from Lemma 3.1 that

ulog |u| u o

Vu+a(x)+1

that is,
Vu+uVF = gVv in G,
v

12



from which we have

e Fov (eF%> =0 inG.

Iherefore7 there exists a constant ko such that ef'u/v = ko in G and hence on
G by continuity. Since u = 0 on 0G, we see that kg = 0, which contradicts the
hypothesis that w is nontrivial. The proof is complete.

Corollary 3.1. Let a(z) € C*(G;(0,00)), b(x)/a(x), B(x)/A(z) € CH(G;R").
Assume that:

bz) _ B(z)

W 2@ =A@

(@)
(i) a(z) > A(x), C(z) >c(z) inG.

n G;

If there exists a function u € C*(G;R) such that u =0 on G, u has no zero in
G, the hypothesis (Hy) of Theorem 2.2 holds and (i) of Theorem 3.1 is satisfied,
then every solution v € Do(G) of (2.2) must vanish at some point of G.

PROOF. The conditions (i), (ii) imply that Vg[u] > 0 for any u € C*(G;R) and
(Hz) is the same as (Hy). The conclusion follows from Theorem 3.1.

Corollary 3.2. Let a(z) € C%(G;(0,00)), b(x)/a(x), B(x)/A(z) € CH(G;R").
Assume that the hypotheses (i), (ii) of Corollary 3.1 are satisfied, and that there
exists a nontrivial function u € C*(G;R) which satisfies u = 0 on G and the
following:

(Hy) there is a function f € C(G;R) such that f € C'(N,;R) and

log |u]

vi= alz) +1

VOZ(.I') — m Nu7

where
N, :={z € G; u(z) #0}.
If efu € Dg(Ny), (efu)glefu] > 0 in N, then every solution v € Dqo(G) of

(2.2) must vanish at some point of G.

PROOF. Since u is nontrivial and v = 0 on G, there is a domain Gy C G for
which v = 0 on 0Gy and u has no zero in Gy. Applying Corollary 3.1 with G
replaced by Gg, we conclude that every solution v € Dg(G) of (2.2) must vanish
at some point of Gy C G, that is, v has a zero on G.

Next we deal with the case where G is the annular domain A(ry,72) defined
by
A(T‘l,Tg) = {l’ S Rn, ry < ‘{17| < 7”2} (7”1 < ’I"Q).

We use the notation:

Alry,ro] ={z € R"; r <lz| <ra},
Sy ={x e R"; |z| =71}

13



Let A(r) and C(r) denote the spherical means of A(x) and C(z) over the
sphere S,., respectively, that is,

_ 1 1
A(T) = W /;17‘ A(x) dS = ;ﬂ ., A(T}@) dw,
_ 1 1
C(r)= v /ST C(x)dS = o S, C(r,0) dw,

where w,, is the surface area of the unit sphere Sy, (r,6) is the hyperspherical
coordinates in R™ and w is the measure on S;.
We assume that:

(H3) a(z) =a(jz|) in A(ry,r);

B
Agi = BO(|x|)x— in A(rq,re) for some function By(r) € C|ry, ra].

Associated with (2.2) we treat the half-linear elliptic operator ¢ defined by

(Ha)

i
xT

q] = V- (A(]) [Vl Vu) — A(la]) (og [ul)[Vul*0=) 7 Va|a]) - Vu
IVl DA ) Bofel) - T Cla el

We define the half-linear ordinary differential operator ¢y by

_ / _
wly = (AW Oy ) =T AR Gog yDly 120 el (r)y
_i_rn—lA(r)BO(T)|y/|a(r)—1y/_’_Tn—lc_v(r)|y|a(7')—1y7

and the domain Dy, ((r1,r2)) of go is defined to be the set of all functions y of
class C'[ry, 7o) such that r* =1 A(r)|y/ | =1y € C(ry,72) N C[ry, o). I y(r) is
a solution of yqoly] > 0, then u(z) = y(|z|) is a radially symmetric solution of
uqlu] > 0.

Theorem 3.2. Assume that the hypotheses (Hsz), (Hy) hold. If there exists a
function z = z(r) € Dy, ((r1,r2)) such that:

(i) z(r1) = z(r2) =0 and z(r) > 0 in (r1,72);

(ii) there is a function fo = fo(r) € C[r1,rs] such that fo € C*(r1,r2) and

or) = B gy - PO

a(r)+1 (r)+1

(iil) efoz € Dy, ((r1,72)) and

(efoz)qo[efoz} Z 0 in (rlaT'Q)v

then every solution v € Dgo(G) of (2.2) must vanish at some point of G.
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PROOF. Suppose on the contrary, that there is a solution v € Dg(G) of (2.2)
such that v has no zero on G. Defining

u(z) = z(|z),

we compare ug[u] > 0 with (2.2). The condition (ii) implies that the hypotheses

(H1), (Hy) are satisfied for the case where u(x) = =((al), f = F = fo(Jz) and
Ael)Bo(l) [ / Alla]) = Bla)/Alw) = Bo(lal) .

Noting that

ur MBI Gyt sy 2]
a(z) +1 (a(z) + 1) A(|z]) ||

I ulog\u|v (2) — u B( )Q(I)H

N “ alz) +1 aNE (az) +1)A(x) *

| 2 og ()] 2(r) ot

= z(r)—l—ma (r) — a(r)+1BO(T) on S,
we easily arrive at

VA(Tl ,T2) [u]

= [ |l - A) x
A(ri,r2)
ulog |ul ;| A
x |Vu + WVQ(J?) - mBo(‘xl)m

+(C(x) - o(|x|))|u|a<w>+1] dx

Cje(z)+1

z;
Bo(m)m

a(z)+1

+(C(x) — C(|z])) [u|*®)+| dSdr

z(r)log|z(r)| z(r)
W(x (r) — By(r)

+(C’(7’, 0) — C’(r)) |z(r)°‘(r)+1] ™ dwdr
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(A(r) o s A(r, 9)dw> X
/ z(r)log|z(r)| , 2(
Z(T’)‘FWQ(T)*W

+ (1 C(r,0)dw — C_'(T)) |z(r)|0‘(T)+1‘| =1y

Wn, S1
= 0.

Therefore, all hypotheses of Theorem 3.1 are satisfied, and the conclusion follows

from Theorem 3.1. The proof is complete.

4. Specializations

In this Section we give some specializations to the case where a(z) = a > 0,

and the case where n = 1, b(z) = B(z) = 0.

Theorem 4.1. Let a(x) = a > 0 and b(z)/a(z), B(z)/A(z) € C'(G;R™). As-
sume that there exists a nontrivial function u € C*(G;R) such that u = 0 on

0G, and that the following hypotheses are satisfied:
(Hy) there is a function f € C(G;R) such that f € CY(G;R) and

b(x)

V= e Date)

n G;

(Hg) there exists a function F € C(G;R) such that F € CY(G;R) and

= —73(96) m

V= (a+1)A(x) G
If efu € Dy(G),

(efu)glefu] >0 in G,
and

a+1
Valu] = /G[a(x) Vu — mb(x)
u a+1
—A(z) |Vu — mB(m)

+(C(z) — c(x)) u|“+1] dx >0,

then every solution v € Dg(G) of (2.2) must vanish at some point of G.
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PROOF. Since Va(z) = 0 on G, the Picone identity (2.18) holds without the
hypothesis that v has no zero in G. Therefore, the conclusion follows from
Theorem 3.1.

The following corollary was established by Dunninger [12], Kusano, Jaros
and Yoshida [19].

Corollary 4.1. Let a(x) = a > 0 and b(x) = B(x) =0 in G. If there exists a
nontrivial function uw € Dy(G) such that u =0 on 0G, uglu] > 0 in G, and
Valu] = / [(a(z) — A(2))|Vul|*T! + (C(z) — c(z))[u|*t!] dz > 0,
G

then every solution v € Dg(G) of (2.2) must vanish at some point of G.

PROOF. Since b(x) = B(z) = 0 on G, we can choose f = F =0 on G. Hence,
the conclusion follows from Theorem 4.1.

Next we consider the special case where n = 1, b(z) = B(z) = 0, that is, we
let ©1 =t, G = (t1,t2), and define ¢; and Q; by

all = (/1O —a(t)log [yl o’ 1)y
+e(t)]y| Dy, (4.1)
Qe = (AW O = A log [#]) "0 o (1)
+C(t)]z|*P 1z, (4.2)

where the coefficients appearing in (4.1) and (4.2) are supposed to satisfy the
same conditions as in Section 2. The domains D, (I), Do, (I) are defined as in
Section 2, where I = (t1,12).

Theorem 4.2. Let a(z) € C*(I;(0,00)) N C(I;(0,00)). Assume that there
exists a function y € CY(I;R) such that y(t;) = y(t2) = 0, y has no zero in I,
and the following hypothesis is satisfied:

(Hy) there is a function f € C(I;R) such that f € C'(I;R) and

, _I%WId i
f@%—agij (t) inl.

If efy € Dy, (1), ,
(fyarle’y] >0 inl,
and

a(t)+1
1
ylog |y| ()

/
+ a(t)+1

vl =[] (@0 - )]y

e - c<t>)|y|a<t>+1] at >0,

then every solution z € Dg, (I) of 2Q1[z] < 0 must vanish at some point of I.
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PrROOF. The conclusion follows from Theorem 3.1.
We state the analogue of Corollary 3.1.

Corollary 4.2. Let a(z) € C*(I; (0,00)) N C'(T; (0,00)). Assume that there is
a function y € C'(I;R) such that y(t1) = y(tz2) = 0, y has no zero in I, and the
hypothesis (Hy) of Theorem 4.2 holds. If e’y € Dy, (I),

(efy)ql [efy] >0 inl,

and
alt) = A(t), C(t)=c(t) inl,

then every solution z € Dg, (I) of 2Q1[z] < 0 must vanish at some point of I.
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