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Abstract

We discuss some aspects of indivisibility of the special values of Dedekind zeta functions

at negative odd integers associated to real quadratic fields. These values are closely related to

the orders of certain cohomology groups and algebraic K-groups.

We show that, for an even number n and a prime p under some conditions, a quantitative

result for the distribution of real quadratic fields whose special values of the L-functions at

1− n are indivisible by p.

§ 1. Introduction

We shall consider indivisibility properties of special values of Dedekind zeta func-
tions associated to real quadratic fields at negative integers.

We use the following notation in the sequel. For any set S, we denote by #S the
cardinality of S. We fix an algebraic closure Q of the field of rational numbers Q in the
field of complex numbers C. We assume that any number field (an algebraic extension of
Q) is a subfield of Q. For any number field k, we denote by ζk(s) (s ∈ C) the Dedekind
zeta function of k. We denote by L(s, χ) (s ∈ C) the Dirichlet L-function associated to
a Dirichlet character χ.

For an imaginary quadratic field Q(
√

D), D < 0, with the Kronecker symbol
χD(·) = (D/·), the special value L(0, χD) of the Dirichlet L-function at 0 is essentially
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the class number h(D) of Q(
√

D). There are many investigations concerning indivisi-
bility of the class numbers of quadratic fields. Among these studies, the Cohen-Lenstra
heuristics [CL84] predicts that, for a fixed odd prime p,

(1.1) lim
X→∞

#{−X < D < 0 | p - h(D)}
#{−X < D < 0} =

∏

n≥1

(1− p−n),

where D runs through fundamental discriminants. There is also real quadratic counter-
part:

(1.2) lim
X→∞

#{0 < D < X | p - h(D)}
#{0 < D < X} =

∏

n≥2

(1− p−n).

We are interested in the indivisibility of the special values of Dedekind zeta func-
tions at negative integers because these values are also closely related to the orders of
certain cohomology groups and the orders of algebraic K-groups.

Byeon’s results [Bye03] (cf. Bruinier [Bru99, corollary 2]) can be stated that, com-
bining Birch-Tate conjecture (now a consequence of Iwasawa main conjecture proved
by Mazur-Wiles [MW84]), for any odd prime p, there are infinitely many real quadratic
fields Q(

√
D) with the ring of integers OD such that the order of the second algebraic

K-group K2(OD) is not divisible by p:

#{Q(
√

D) |D > 0, p - #K2(OD)} =∞.

We show that, for an even number n and a prime p under some conditions, a
quantitative result for the distribution of real quadratic fields whose special values of
the L-functions at 1− n are indivisible by p (Theorem 3.1). This is an analogue of the
Cohen-Lenstra heuristics on the distribution of ideal class groups of quadratic fields.

We deduce similar statements for indivisibility of orders of certain cohomology
groups and K-groups (corollary 3.5).

There is an imaginary quadratic counterpart, which will be treated in separate
article.

Remark. We treated in [Kim06] the other question: for an odd prime p and a
natural number n, are there infinitely many real or imaginary quadratic fields whose
special values of Dedekind zeta functions or Dirichlet L-functions at 1− n are divisible
by p?

In some cases, this question has been known to be true. Carlitz [Car59, Theorem
4] showd that if p is a rational prime such that pe|n but p - f , f being the conductor of
a Dirichlet character χ, then pe divides the numerator of the n-th generalized Bernoulli
number associated to χ.
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For real quadratic fields, Coates-Lichtenbaum [CL73, Example 6, §7] showed that,
for a prime p ≡ 3 (mod 4), the value ζQ(

√
pf)(−pr(p−1)/2) is divisible by pr+1, provided

that p - f , and f is not quadratic residue modulo p (cf. Carlitz (loc. cit. Theorem 6)).

§ 2. Preliminaries

We need some more notations. For an extension of fields K/k, [K : k] means the
degree of K/k. If the extension K/k is Galois extension, we denote its Galois group by
Gal(K/k). As usual, Z means the ring of rational integers, Z≥0 is the set of nonnegative
rational integers, N = Z>0 is the set of natural numbers. For a rational prime p, ordp(a)
is the additive valuation of a rational integer a, and |a|p = p−ordp(a) is the multiplicative
valuation.

For any number field k, D(k) denote the discriminant, Cl(k) denote the class group,
h(k) = #Cl(k) denote the class number, Ok denote the ring of integers (when k =
Q(
√

D) is a quadratic field, we abbreviate OD = OQ(
√

D)).
For any natural number m, ζm ∈ Q is a primitive m-th root of unity. Let wr(k)

(where r ∈ N) be

wr(k) := max{m ∈ Z≥0| exp(Gal(k(ζm)/k)) | r},

where exp(G) is the exponent of a finite group G. We abbreviate wr(D) = wr(Q(
√

D))
for a quadratic field Q(

√
D).

For any even natural number r and for any positive fundamental discriminant D,
we denote

ξr(D) := wr(D)ζQ(
√

D)(1− r).

It is known by Coates-Sinnott [CS77] that

(2.1) ξr(D) ∈ Z.

Let H(r,N), (r,N ∈ Z≥0) denote the generalized class number function defined by
Cohen [Coh75]. This is given by the following formula:

H(r,N) =





0 if N 6≡ 0, 1 (mod 4),

ζ(1− r) = −Br

r if N = 0,

L(1− r, χD)
∑

d|f µ(d)χD(d)dr−1σ2r−1

(
f
d

)
otherwise,

where (−1)rN = Df2, D is a fundamental discriminant, χD is the Kronecker character
associated to the quadratic field Q(

√
D), µ(·) is the Möbius function, σk(·) is the sum

of the k-th power of divisors. Note that H(r,N) is a rational number: H(r,N) ∈ Q.
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We write Mk(Γ, χ) for the space of modular forms of weight k and character χ on
a congruence subgroup Γ of the special linear group SL2(Z).

Let f(z) =
∑∞

n=0 a(n)qn, q = e2πiz be a q-expansion at infinity of f(z) ∈Mk(Γ, χ).
We write

f(z) ∈Mk(Γ, χ) ∩Q[[q]] (resp. f(z) ∈Mk(Γ, χ) ∩ Z[[q]])

if all of the coefficients a(n) are rational numbers (resp. rational integers).
For a prime p and modular forms f(z) =

∑∞
n=0 a(n)qn, g(z) =

∑∞
n=0 b(n)qn ∈

Mk(Γ, χ)∩Z[[q]], we denote f(z) ≡ g(z) (mod p) if and only if a(n) ≡ b(n) (mod p) for
all n.

Let g =
∑∞

n=0 a(n)qn ∈ Z[[q]] be a formal power series with coefficients in Z for a
variable q. Let ordp(g) be an order of g at p:

ordp(g) := min{n ≥ 0| a(n) 6≡ 0 (mod p)}.

We need Sturm’s theorem ([Stu87]) on congruence for modular forms. This is
proven for the integral weight case, but it holds for half integral weight case taking
appropriate powers.

Theorem 2.1 (Sturm’s theorem). If a modular form g(z) =
∑∞

n=0 a(n)qn ∈
Mk(Γ0(N), χ) ∩ Z[[q]] satisfies

ordp(g) ≥ κ(k, N) :=
k

12
[Γ0(1) : Γ0(N)],

then
g(z) ≡ 0 (mod p), i.e. for all n, a(n) ≡ 0 (mod p).

The generating function of H(r,N) is a modular form Hr(z) of half integral weight
for the principal congruence subgroup Γ0(4) of level 4. This is of weight r + (1/2) and
trivial character, with rational coefficients (cf. Cohen (loc. cit., Theorem 3.1)):

Hr(z) :=
∑

N≥0

H(r,N)qN ∈Mr+ 1
2
(Γ0(4), 1) ∩Q[[q]], q = e2πiz.

Lemma 2.2. Notations are the same as above. There exists a rational integer
M(r) ∈ Z such that all of the coefficients of M(r)Hr(z) are rational integers. Further,
if a prime p satisfies (p− 1)/2 - r, then p -M(r).

Proof. It can be shown that there exists an integer M ∈ Z such that

MHr(z) ∈Mr+ 1
2
(Γ0(4), 1) ∩ Z[[q]]

by “bounded denominators” principle (cf. Serre-Stark [SS77, lemma 8]). The assertion
of the lemma is more precise.
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This follows from the lemma by Harris and Segal [HS75, §4, p. 28]. To recall,
let F be a number field, W ⊂ Q× be the group of all root of unity. Letting the
Galois group Gal(Q/F ) act on W by σ ∗ ζ = σr(ζ), σ ∈ Gal(Q/F ), ζ ∈ W , we see
wr(F ) = #WGal(Q/F ), the order of the fixed subgroup. For a prime l, let w

(l)
r (F ) be

the l-primary factor of wr(F ), lm be the order of the group of l-power-th root of unity
in F (ζl) and s = [F (ζl) : F ]. In this setting, they proved that, if r ≡ 0 (mod s),
e. g. r = slλt, (l, t) = 1, then w

(l)
r = lm+λ. If r 6≡ 0 (mod s), then w

(l)
r = 1.

In our situation, F = Q(
√

D) is a real quadratic field. s = [Q(
√

D, ζl) : Q(
√

D)] is
either (l − 1)/2 or l − 1. Thus the prime l which affects wr(D) satisfies (l − 1)/2 | r or
(l − 1) | r. Combining this with (2.1) shows that, we can take M(r) =

∏
l l

a(l), where
the product run through a prime which (l − 1)/2 | r or (l − 1) | r, and accordingly,
a(l) = ordl(2r/(l − 1)) + 1 or a(l) = ordl(r/(l − 1)) + 1.

§ 3. Main Results

In this section, we extend Theorem 2 of K. Ono [Ono99] to the case of special values
of Dirichlet L-functions at negative integers.

For the Dirichlet character χD associated to a quadratic field Q(
√

D), let B(r, χD)
denote the r-th generalized Bernoulli number associated to χD.

Theorem 3.1. Let r be an even natural number, p > 3 a prime which satisfies
(p − 1)/2 - r. Suppose there is a fundamental discriminant D0 coprime to p such that
|B(r, χD0)|p = 1.

Then there exist an arithmetic progression {rp + ntp|n ∈ Z} with (rp, tp) = 1 and
a constant κ(p) depending on p which satisfy all of the conditions below:

For any prime l ≡ rp (mod tp), there exists an integer dl such that 1 ≤ dl ≤ κ(p)l
which satisfy the following two conditions:

1. Dl = dllp is a fundamental discriminant,

2. p - ξr(D).

Proof. Retaining notations as above, we have

M(r)Hr(z) ∈Mr+ 1
2
(Γ0(4), 1) ∩ Z[[q]].

Let us define some modular forms from Hr(z).

Fr(z) := M(r)Hr(z)−M(r)(Vp|Up|Hr(z))

= M(r)
∑

(n,p)=1

H(r, n)qn ∈Mr+ 1
2
(Γ0(4p2), χ0).
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Take a prime Q so that Q 6= p, (D0/Q) = −1, where (D0/·) is the Kronecker
symbol. Then, we define another modular form

Gp(z) :=Fr(z)⊗
( ·

Q

)

= M(r)
∑

(n,p)=1

(
n

Q

)
H(r, n)qn.

Finally, we put

Gr(z) :=
1
2

(
Gp(z)⊗

( ·
Q

)
− Gp(z)

)

= M(r)
∑

(n,p)=1, ( n
Q )=−1

H(r, n)qn.

By the assumption and lemma 2.2, the coefficients of qD0 of Gr(z) is not congruent
to 0 modulo p. Thus we see

Gr(z) 6≡ 0 (mod p).

The coefficients H(r, 0),H(r, n2),H(r, pn) of Gr(z) are annihilated.
Let l be any rational prime. We define two linear maps Ul, Vl from Mk(Γ0(N), χ)

to Mk(Γ0(lN), χ(4p/·)). For any f(z) =
∑∞

n=0 a(n)qn ∈Mk(Γ, χ), we define

(Ul|f)(z) =
∞∑

n=0

a(ln)qn,

(Vl|f)(z) =
∞∑

n=0

a(n)qln.

We define (Ul|Gr)(z), (Vl|Gr)(z) by the following;

(Ul|Gr)(z) :=
∞∑

n=1

ur,l(n)qn

= M(r)
∑

( ln
Q )=−1, ( ln

p )=1

H(r, ln)qn(3.1)

(Vl|Gr)(z) :=
∞∑

n=1

vr,l(n)qln

= M(r)
∑

( n
Q )=−1, (n

p )=1

H(r, n)qln(3.2)

Then we see

(Ul|Gr)(z), (Vl|Gr)(z) ∈Mr+ 1
2
(Γ0(4p2Q4l),

(
4l

·
)

).
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We need Sturm’s theorem 2.1 to proceed. It is well known that [Γ0(1) : Γ0(N)] =
N
∏

p|N (1 + p−1). In our situation, N = 4p2Q4l, thus we have

[Γ0(1) : Γ0(4p2Q4l)] = 4p2Q4l
3
2

(
1 +

1
p

)(
1 +

1
Q

)(
1 +

1
l

)

= 6pQ3(p + 1)(Q + 1)(l + 1).

The Sturm bound κ(r + (1/2), 4p2Q4l) is thus given by

κ(r +
1
2
, 4p2Q4l) =

r + 1
2

12
6pQ3(p + 1)(Q + 1)(l + 1) =

2r + 1
4

p(p + 1)Q3(Q + 1)(l + 1).

For brevity we put

κ(r, p) =
2r + 1

4
p(p + 1)Q3(Q + 1).

By Sturm’s theorem 2.1, we see that, for sufficiently large prime lÀ 0, if

g ∈Mr+(1/2)(Γ0(4p2Q4l), (4l/·)) ∩ Z[[q]]

and ordp(g) > κ(p, r)l, then g ≡ 0 (mod p).
Let l 6= p be a prime with (l/Q) = 1. If (n/Q) 6= −1 or (n, p) 6= 1, by (3.1) and

(3.2),
ur,l(nl) = vr,l(nl) = 0.

For n with (n/Q) = −1 and (n, p) = 1, we see that

ur,l(nl) = M(r)H(r, nl2),(3.3)

vr,l(nl) = M(r)H(r, n).(3.4)

Then, if (l/Q) = 1, lÀ 0, for all n ≤ κ(p, r),

(3.5) ur,l(nl) = M(r)(1− χDn(l)lr−1 + l2r−1)H(r, n),

where Dn is a discriminant of Q(
√

(−1)rn).
Let us define a set Sp,r by

Sp,r :=
{

Dn|n ≤ κ(p, r),
(

n

Q

)
= 1, (n, p) = 1

}
.

If n < κ(p, r), the Dnm2-th coefficients of Gr(z) is 0, and it does not affect the arguments
after here.

There exists an arithmetic progression {rp + ntp|n ∈ Z}, (rp, tp) = 1, p | tp for
which the three conditions hold:

1. χDn(l) = 1, for all prime l ≡ rp (mod tp) and for all Dn ∈ Sp,r.
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2. (l/Q) = 1 for all l ≡ rp (mod tp).

3. rr
p 6≡ 1 (mod p).

By (3.3), (3.4), (3.5), for all prime l ≡ rp (mod tp), we see that

ur,l(nl) ≡ (1− rr−1
p + r2r−1

p )vr,l(nl) (mod p).

holds for all n ≤ κ(p, r).
If l - n, then vr,l(n) = 0. Thus we see that the following implication holds: There

is no n with n ≤ κ(p, r)l, l - n and

ur,l(n) = M(r)H(r, nl) 6≡ 0 (mod p),

then

(3.6) (Ul|Gr)(z) ≡ (1− rr−1
p + r2r−1

p )(Vl|Gr)(z) (mod p).

(We shall show that (3.6) does not hold, there is thus an n ≤ κ(p, r)l, l - n and
ur,l(n) 6≡ 0 (mod p).)

By a fundamental properties of H(r,N) and by the definitions of ur,l(N), vr,l(N),
if l ≡ rp (mod tp),

ur,l(D0l
3) ≡M(r)L(1− r, χD0)× (*),

where the factor (*) is given below: Since ur,l(D0l
3) is D0l

4-th coefficient of M(r)Hr(z),
and (−1)rD0l

4 = (−1)rD0(l2)2,

(*) =
∑

d|l2
µ(d)χD0(d)dr−1σ2r−1

(
l2

d

)
.

The summation is calculated as follows:

∑

d|l2
µ(d)χD0(d)dr−1σ2r−1

(
l2

d

)

=
∑

d=1,l,l2

µ(d)χD0(d)dr−1σ2r−1

(
l2

d

)

=
∑

d=1,l

µ(d)χD0(d)dr−1σ2r−1

(
l2

d

)
(Note that µ(l2) = 0)

= σ2r−1(l2)− χD0(l)l
r−1σ2r−1(l)

= 1 + l2r−1 + l2(2r−1) − lr−1(1 + l2r−1) (Note that χD0(l) = 1 for all l ≡ rp (mod tp))

= 1 + l2r−1 + l2(2r−1) − lr−1 − l3r−2.
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On the other hand, it is plain to see

vr,l(D0l
3) = M(r)H(r,D0l

3) = M(r)L(1− r, χD0)(1 + l2r−1 − χD0(l)l
r−1)

= M(r)L(1− r, χD0)(1 + l2r−1 − lr−1).

We see that it holds that

ur,l(D0l
3) 6≡ vr,l(D0l

3) (mod p)

if and only if

1 + l2r−1 + l2(2r−1) − lr−1 − l3r−2 6≡ 1 + l2r−1 − lr−1 (mod p)

holds. The last congruence is equivalent to

l2(2r−1) − l3r−2 = l4r−2 − l3r−2 = l3r−2(lr − 1) 6≡ 0 (mod p).

Since l ≡ rp (mod tp), p | tp, l ≡ rp (mod p). We assumed rr
p 6≡ 1 (mod p), lr 6≡ 1

(mod p) indeed holds.
We have

(Ul|Gr)(z) 6≡ (Vl|Gr)(z) (mod p).

There is an n with 1 ≤ n ≤ κ(p, r)l = ((2r+1)/4)p(p+1)Q4(Q+1)l such that (n, l) = 1
and

up,l(n) = M(r)H(r, nl) 6≡ 0 (mod p).

(Note also that vr,l(n) = 0 since (n, l) = 1).
We can plainly see that there is a positive fundamental discriminant Dl = dllp such

that p - M(r)H(r,Dl) = M(r)L(1 − r, χDl
). As we see in the proof of lemma 2.2, if

(p− 1)/2 - r then p - wr(D), thus p - ξr(Dl) holds.

Corollary 3.2. Under the same assumptions of the theorem 3.1, namely, let
r ∈ N be an even natural number, p > 3 a prime which satisfies (p− 1)/2 - r. Suppose
there is a fundamental discriminant D0 prime to p such that |B(r, χD0)|p = 1. Then
the following inequality holds:

#{0 < D < X| p - ξr(D)} À
√

X

log X
(X À 0).

Proof. What we should prove is that Dl = dllp is different for each prime l ≡ rp

(mod tp) (notations are the same as in the proof of theorem 3.1). This is the same as
the proof of theorem 1 of Ono (loc. cit.), so we omit this.

Corollary 3.3. For any prime p ≥ 7, the following inequality holds:
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1.

#{0 < D < X| p - ξ2(D)} À
√

X

log X
(X À 0).

2.

#{0 < D < X| p - ξ4(D)} À
√

X

log X
(X À 0).

Proof. (1). Since any prime p ≥ 7 satisfies (p− 1)/2 - 2, it is enough to show that
there is a fundamental discriminant D0 coprime to p such that |B(2, χD0)|p = 1. We
can take D0 = 8 so that B(2, χ8) = 2.

(2). Since for any prime p ≥ 7 satisfies (p − 1)/2 - 4, taking D0 = 5, we see
B(4, χ5) = −8.

A version of Lichtenbaum conjecture (proved by Wiles [Wil90]) asserts that the
special values of Dedekind zeta functions at negative integers are intimately connected
with arithmetic of number fields. To state the relation between them, we need some
notations.

For a number field K and a prime p, we denote the ring of p-integers in K by
OK [1/p]. Let µpm(n) be the n-th Tate twist of the étale sheaf of pm-th roots of unity
on the étale site (OK [1/p])ét. Let H2

ét(OK [1/p],Zp(n)) = lim←−m
H2

ét(OK [1/p], µpm(n)) be
the second étale cohomology group (the projective limit are taken with respect to the
map induced by the p-th power map µpm+1(n) → µpm(n)). For any rational numbers
a, b ∈ Q and for a prime p, we denote a ∼p b when if a/b is a p-adic unit.

Then the relation alluded above is:

wn(K)ζK(1− n) ∼p #H2
ét(OK [1/p],Zp(n))

for any totally real number field K, an even natural number n and for any odd prime p.
We thus have, for an even natural number n and a positive fundamental discriminant
D,

ξn(D) ∼p #H2
ét(OD[1/p],Zp(n)).

It is plain to see the following corollary:

Corollary 3.4. Under the same assumptions of theorem 3.1, the following in-
equality holds:

#{0 < D < X|H2
ét(OD[1/p],Zp(n)) = {0}} À

√
X

log X
(X À 0).

By corollary 3.3, for any prime p ≥ 7 and for n = 2, 4, without any other assump-
tions, we have

#{0 < D < X|H2
ét(OD[1/p],Zp(n)) = {0}} À

√
X

log X
(X À 0).
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Quillen’s conjecture predicts that the following isomorphism between the p-part of
the 2m− 2-th algebraic K-group K2m−2(OD) of OD and H2

ét(OK [1/p],Zp(m)) holds for
all even integers m ≥ 2 (cf. Soulé [Sou79, I.1]):

(3.7) p-torsion part of K2m−2(OK) ∼= H2
ét(OK [1/p],Zp(m)).

We see the corollary which extends Byeon’s theorem mentioned in the introduction:

Corollary 3.5. Under the same assumptions on p and n as in the theorem 3.1,
and assuming the isomorphism (3.7),

#{0 < D < X | p - #K2n−2(OD)} À
√

X

log X
(X À 0)

holds.
By corollary 3.3, for any prime p ≥ 7 and for m = 2, 6, only assuming the isomor-

phism (3.7) we have

#{0 < D < X | p - #Km(OD)} À
√

X

log X
(X À 0).

Remark. It may be interesting to consider, for a given odd prime p and natural
number n, how often p does not divide ξn(D) while discriminant D varies. As we saw
in this paper, if n is even, this question is equivalent (up to Quillen’s conjecture (3.7))
to the growth of

#{0 < D < X| p - #K2n−2(OD)} (X →∞).

Further we can ask whether these quantities have density in the set of fundamen-
tal discriminants similar to the Cohen-Lenstra heuristics (1.1), (1.2) referred in the
introduction.

Let us define a ratio d(r, p, X) by

d(r, p,X) :=
#{0 < D < X| p - ξr(D)}

#{0 < D < X} ,

for even positive integer r, a prime p and positive number X. Numerical computation
shows that

d(4, 11, 25210001) = 0.899236, d(4, 13, 25210001) = 0.917296,

d(4, 17, 25210000) = 0.937675, d(4, 19, 25210001) = 0.94455,

d(4, 23, 25210001) = 0.954569.

These values seems rather near to the (1− (1/p)) times right hand side of (1.2), namely
the right hand side of (1.1), but the author do not have any reason.
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Remark. One can consider indivisibility of (algebraic part of) special values of
zeta or L-functions not only for quadratic fields but for quadratic twists of, for example, a
Galois representation associated to an elliptic curve or a modular form. For indivisibility
of central critical values of modular L-functions, see Chida [Chi04] and papers cited
therein.
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