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Summary 

The hypothalamic suprachiasmatic nucleus (SCN) has a pivotal role in the mammalian 

circadian clock.  SCN neurons generate circadian rhythms in action potential firing 

frequencies and neurotransmitter release, and the core oscillation is thought to be driven 

by “clock gene” transcription-translation feedback loops.  Cytosolic Ca2+ mobilization 

followed by stimulation of various receptors has been shown to reset the gene 

transcription cycles in SCN neurons, whereas contribution of steady-state cytosolic Ca2+ 

levels to the rhythm generation is unclear.  Recently, circadian rhythms in cytosolic 

Ca2+ levels have been demonstrated in cultured SCN neurons (Ikeda and others Neuron 

38:252-263, 2003).  The circadian Ca2+ rhythms are driven by the release of Ca2+ from 

ryanodine-sensitive internal stores and resistant to the blockade of action potentials.  

These results raise the possibility that gene translation/transcription loops may interact 

with autonomous Ca2+ oscillations in the production of circadian rhythms in SCN 

neurons. 
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Introduction 

Daily temporal patterns from cellular activities to animal behaviors are largely governed 

by the endogenous clock system, which has been proposed to be driven by gene 

transcription-translation feedback loops.  The circadian oscillations in the “clock 

genes” have been observed in a wide range of systems, from unicellular organisms to 

mammalian cells and from peripheral organs to the central nervous system, although 

their DNA sequences are variable across species (Kondo and Ishiura 1999; Yamazaki 

and others 2000; Panda and others 2002a).  Cytosolic free Ca2+ is a general 

intracellular messenger that regulates diverse cellular processes, including enzymatic 

activities, membrane potentials, secretions, and gene expressions, and is one of the 

candidate intracellular messengers involved in circadian rhythms.  Although the 

contribution of cytosolic Ca2+ signaling in the regulation of the circadian clock has been 

extensively studied in diverse organisms, including unicellular organisms and plants 

(Goto and others 1985; Johnson and others 1995; Hasegawa and others 1999), no 

commonalities in the Ca2+-mediated signaling processes have been described among the 

various circadian clock systems. 

In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is known to have 

a core role in the generation of circadian rhythms because lesions of the SCN result in 

arrhythmic circadian behaviors under time cue-free conditions (Moore and Eichler 

1972; Stephan and Zucker 1972).  In mice SCN, the clock gene products BMAL1 and 

CLOCK are basic helix-loop-helix PAS transcription factors that form heterodimers and 

bind to the E-box enhancers upstream of Per and Cry genes to activate their 

transcription (Antoch and others 1997; King and others 1997; Tei and others 1997; 

Honma and others 1998; Sangoram and others 1998; van der Horst and others 1999; Jin 
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and others 1999; Kume and others 1999).  The protein products PER and CRY form 

heterodimers and translocate into the nucleus to inhibit transactivation by 

CLOCK/BMAL1.  A protein product of Dec gene families recently found in the SCN, 

is also a basic helix-loop-helix PAS transcription factor, and thus is hypothesized to 

organize an additional molecular loop in the SCN clock (Honma and others 2002).  

One cycle of the molecular loop is assumed to generate a circadian cycle, called a “core 

loop” (Shearman and others 2000; Reppert and Weaver 2002; Honma and Honma 

2003). 

The SCN receives glutamatergic projections from retinal ganglion cells, and thus 

the core loop is synchronized to environmental light-dark cycles (12:12 hour cycles 

under common breeding conditions).  In animals maintained in constant darkness or 

even in the in vitro SCN, the core loop maintains a circadian oscillation, demonstrating 

the self-sustained circadian nature of these gene transcription-translation cycles.  A 

light pulse given during the active phase of nocturnal rodents kept in constant darkness 

or glutamate stimulation in the in vitro SCN during the corresponding circadian timing 

(i.e., the subjective night) can reset the core loop oscillations.  Because Ca2+ influx is 

an initial cellular event in response to glutamate stimulation, cytosolic Ca2+ signaling 

has been proposed to be one of the intracellular messengers conveying environmental 

time signals to the endogenous clock, although the mechanism underlying the regulation 

of clock genes by cytosolic Ca2+ is not fully understood. 

The core loop in the SCN may regulate diverse physiological events such as 

action potential firing rhythms (Inouye and Kawamura 1979; Green and Gillette 1982) 

and rhythmic secretion of arginine-vasopression and vasoactive intestinal polypeptide 

(Earnest and Sladek 1986; Shinohara and others 1995).  These electrical and humoral 

 3



outputs from SCN neurons may ultimately synchronize circadian behaviors (Silver and 

others 1996a; Aston-Jones and others 2001).  Despite the successful cloning of several 

clock genes, the link between the gene transcription-translation cycles and oscillations 

in physiological activities of SCN neurons is still unclear.  Recent findings that 

cytosolic Ca2+ concentrations oscillate with a circadian profile in SCN neurons (Ikeda 

and others 2003a) raise the possibility that mechanisms underlying Ca2+ homeostasis in 

SCN neurons may be principal targets for clock gene regulation (Honma and Honma 

2003).  If so, cytosolic Ca2+ may be a key intracellular messenger of both input to and 

output from the core of the mammalian circadian clock. 

In this article, recent studies concerning intracellular Ca2+ signaling in SCN 

neurons are reviewed and the technical background underlying the recent findings of 

circadian Ca2+ rhythms in SCN neurons (Ikeda and others 2003a) is described.  Based 

on these, hypothetical interactions between Ca2+ signaling and the core loop are 

discussed with regard to the importance of Ca2+ signaling cascades in the organization 

of circadian rhythms in SCN neurons. 

 

1.  Nocturnal light causes changes in cytosolic calcium levels via 

retinohypothalamic transmission: a key intracellular signal for the 

resetting of the circadian clock 

SCN rhythms are tightly coupled to environmental light-dark cycles via the 

mono-synaptic projection from melanopsin-positive retinal ganglion cells (Gooley and 

others 2001; Berson and others 2002; Hattar and others 2002; Provencio and others 

2002), the retinohypothalamic tract (RHT; Rusak and Zucker 1979; Fig. 1).  The major 

neurotransmitter conveying photic information to the SCN is glutamate (Cahill and 
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Menaker 1989a,b; de Vries and others 1993) although the pituitary adenylate 

cyclase-activating peptide also functions as a secondary neurotransmitter to the SCN 

(Hannibal and others 1997; von Gall and others 1998; for review Hannibal 2002).  All 

three subtypes of glutamate receptors, 

α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), kainate, and 

N-methyl-D-aspartate (NMDA) receptors, are expressed on SCN neurons and may 

function in RHT transmission (Takeuchi and others 1991; Gannon and Rea 1994; Jiang 

and others 1997; Schurov and others 1999; Michel and others 2002; Ikeda and others 

2003b; Moriya and others 2003).  The postsynaptic membrane of glutamate-receptive 

neurons such as this is generally depolarized by Na+/Ca2+ influx via non-NMDA 

receptors, and subsequently depolarized further by Ca2+ influx through NMDA 

receptor-linked channels followed by the glutamate stimulation.  The Ca2+ influx 

through NMDA receptor-linked channels in SCN neurons may be the most critical step 

for clock regulation via RHT transmission, because NMDA receptor antagonists block 

light-pulse-induced phase shifts in locomotor activity rhythms, application of NMDA to 

brain slices containing the SCN during early subjective night produces a delay-shift, and 

application of NMDA during late subjective night produces an advance-shift, similar to 

the circadian profile of light-pulse-induced behavioral phase shifts (Ding and others 

1994). 

SCN neurons also express various other receptors that may interact with the 

glutamatergic system and modulate cytosolic Ca2+ levels.  For example, serotonin 

(5-HT) 1B receptors expressed presynaptically on RHT terminals and 5-HT 1A/7 

receptors expressed postsynaptically on SCN neurons both inhibit RHT transmission 

(Pickard and others 1996, 1999; Jiang and others 2000; Smith and others 2001).  The 
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Ca2+ transient caused by RHT stimulation in acute SCN slices (Flett and Colwell 1999) 

and glutamate-induced Ca2+ influx in cultured SCN neurons (Quintero and McMahon 

1999) are significantly reduced by 5-HT agonists.  Therefore, a 5-HT-induced 

reduction in glutamate-induced Ca2+ responses in SCN neurons may be the mechanism 

by which 5-HT inhibits light-pulse-induced behavioral phase shifts (Pickard and others 

1996; Ying and Rusak 1997; for review, Rea 1998).  Similar to postsynaptic 5-HT 

receptors, stimulation of orphanin-FQ/nociceptin receptors, which are expressed on the 

majority of SCN neurons, may activate K+ currents and inhibit NMDA-induced Ca2+ 

influx (Allen and others 1999).  Again, the inhibitory effects of 

orphanin-FQ/nociceptin on NMDA receptors may be the mechanism by which 

orphanin-FQ/nociceptin inhibits light-pulse-induced behavioral phase shifts (Allen and 

others 1999).  These data suggest that changes in glutamate-induced Ca2+ mobilization 

in SCN neurons due to interactions with other receptor systems determine the total 

potency of RHT transmission and magnitude of the circadian phase shifts. 

The majority of SCN neurons synthesize GABA and receive GABA projections, 

and thus GABA is thought to be a principal neurotransmitter within the SCN (Perez de 

la Mora and others 1981; Okamura and others 1986; Decavel and van den Pol 1990; 

Moore and Speh 1993; Buijs and others 1994).  In addition, an indirect retinal input 

onto SCN neurons is mediated via the geniculo-hypothalamic tract (GHT; Harrington 

and Rusak 1989; Zhang and Rusak 1989; Edelstein and Amir 1999), which also releases 

GABA onto SCN neurons (Harrington and others 1987; Moore and Speh 1993).  The 

dominant GABA receptor subtypes in SCN neurons are Cl- permeable ionotropic 

receptors, the GABAA receptors (GABAARs).  Stimulation of GABAARs generally 

triggers influx of Cl- into the cells and membrane hyperpolarization, which inhibits 
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neuronal excitation.  The function of GABAARs in SCN neurons may not be this 

simple, however, because Wagner and others (1997) have observed that activation of 

GABAARs produce depolarization during the day and hyperpolarization during the 

night in adult rat SCN neurons.  This difference in GABAARs function has been 

suggested to be due to a day-night difference in intracellular Cl- concentration that may 

produce GABAAR-mediated Cl- efflux (i.e., depolarization) or Cl- influx (i.e., 

hyperpolarization) in SCN neurons (Wagner and others 1997, 2001).  In dispersed 

cultures of SCN neurons, daily stimulation of GABAARs synchronizes the dissociated 

circadian rhythms in each individual SCN neuron (Liu and Reppert 2000).  This effect 

is not due to an inhibitory action (i.e., decreasing of firing frequency) via GABAARs, 

because the metabotropic GABA receptor (GABABR) agonist baclofen inhibits action 

potential firing both during the subjective day and night without causing a significant 

phase shift (Liu and Reppert 2000).  Our group found that, at least at a particular 

developmental stage, stimulation of GABAAR increases cytosolic Ca2+ during the day 

and decreases cytosolic Ca2+ during the night via an interaction with NMDA receptors 

and/or voltage-sensitive Ca2+ channels (Ikeda and others, 2003b).  Therefore, 

GABAAR-mediated neuronal signaling may also involve cytosolic Ca2+ signaling in the 

regulation of the circadian clock, although further studies are needed to characterize the 

link between GABAAR and cytosolic Ca2+ signaling. 

Ca2+ influx through NMDA receptor-linked channels in SCN neurons may activate 

diverse downstream intracellular signaling cascades that are more closely involved in 

the gene transcription-translation cycles in the SCN.  Light or glutamate receptor 

activation during early subjective night induces circadian phase delay, which is 

proposed to be mediated by ryanodine receptors (Ding and others 1998).  Ryanodine 
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receptors are known to contribute to the amplification of cytosolic Ca2+ signals via the 

release of Ca2+ from ryanodine-sensitive internal Ca2+ stores, called Ca2+-induced Ca2+ 

release (CICR).  Therefore, this cascade is highly Ca2+ dependent.  Rapid gene 

transcription of Per1 following Ca2+/calmodulin-dependent protein kinase (CaMK) 

II-dependent phosphorylation of the cAMP response element binding protein (CREB) is 

the proposed downstream signaling pathway for the circadian phase shifts (Ginty and 

others 1993; Ding and others 1997; von Gall and others 1998; Yokota and others 2001).  

Therefore, an increase in cytosolic Ca2+ and CaMK II activation during early subjective 

night may be the signal that produces phase-delays in SCN neurons. 

Although day-night or circadian variations in the magnitude of NMDA-induced 

Ca2+ responses have been proposed in SCN neurons (Colwell 2001; Pennartz and others 

2001; Ikeda and others 2003b), no differences have been found in the responsiveness 

during the night.  Consistently, CREB phosphorylation in SCN neurons is triggered by 

light or glutamate stimulation during both early and late subjective night (von Gall and 

others 1998).  The response to light or glutamate, however, is opposite (i.e., delay 

versus advance) for stimulation during early or late subjective night.  This difference 

may be explained in part at the level of intracellular messengers, because phase-advance 

due to late subjective night stimulation is insensitive to ryanodine receptor blockade but 

is sensitive to activation of cyclic GMP-dependent protein kinase (PKG; Prosser and 

others 1989; Weber and others 1995; Mathur and others 1996; Ding and others 1998; 

Tischkau and others 2003).  PKG can be activated by nitric oxide (NO), the production 

of which is upregulated by NMDA-induced cytosolic Ca2+ mobilization (Garthwaite and 

others 1988; Knowles and others 1989; Bredt and Snyder 1989, 1990), thus, the PKG 

cascades may be activated as “secondary” or “indirect” signaling cascades downstream 

 8



from glutamate-induced Ca2+ mobilization.  The difference in the downstream 

signaling sequences followed by the cytosolic Ca2+ mobilization may produce 

differential clock responses depending on the particular circadian time window (for 

review, Gillette and Tischkau 1999; Gillette and Mitchell 2002). 

 

2.  Technical issues in the estimation of the circadian dynamics of 

cytosolic Ca2+ levels in SCN neurons 

Despite the large number of reports suggesting the involvement of intracellular 

Ca2+ responses (i.e., receptor-mediated changes in intracellular Ca2+ concentration) in 

the regulation of the SCN clock, information is still limited about steady-state 

intracellular Ca2+ levels in SCN neurons.  Whether or not the basal level of 

intracellular Ca2+ oscillates with a circadian profile is a fundamental question, but is 

technically more difficult to address. 

The circadian time-dependent cytosolic Ca2+ levels in SCN cells were first 

estimated using fura-2 acetoxymethyl ester (AM)-based Ca2+ imaging in acute 

hypothalamic slices from rats, and the population mean cytosolic Ca2+ in SCN cells was 

found to be higher during the day than during the night (Colwell 2000).  It was 

proposed that action potentials and voltage-gated Ca2+ channel activation drive the 

circadian variations in cytosolic Ca2+ levels because the day-night or circadian 

difference in cytosolic Ca2+ was blocked by the voltage-gated Na+-channel blocker 

tetrodotoxin (TTX) and the voltage-sensitive Ca2+-channel blocker methoxyverapamil 

(Colwell 2000).  Using a similar experimental strategy, however, our group observed 

neither the day-night difference in the population mean cytosolic Ca2+ nor the effect of 

TTX on the cytosolic Ca2+ levels in SCN cells (Ikeda and others 2003b).  In contrast, 
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we observed significant effects of extracellular Mg2+ on baseline cytosolic Ca2+ levels 

both during the day and night (Ikeda and others 2003b).  We observed later, however, 

that the effect of Mg2+ was caused by the differential dissociate constant of fura-2 to 

Ca2+ in the presence or absence of Mg2+, not physiological processes (Ikeda, 

unpublished data).  Both of these Ca2+ imaging experiments involved staining 

hypothalamic slices with membrane permeable fura-2 AM, which does not distinguish 

neuronal and glial Ca2+ responses (Colwell 2000; Ikeda and others 2003b).  In addition, 

both of these studies compared different SCN cells sampled in different slices during 

either the day or night, because fura-2 can not be used to follow cytosolic Ca2+ of single 

cells over a complete circadian cycle.  Therefore, a part of the controversy may be due 

to these experimental difficulties. 

More fundamental and theoretical problems, however, may underlie the analysis 

of steady-state cytosolic Ca2+ levels using conventional Ca2+ imaging techniques.  In 

general, high-affinity Ca2+ dyes, such as fura-2 (Kd = 135 nM in Mg2+-free buffer and Kd 

= 224 nM in 1 mM Mg2+ buffer), if the cells are thoroughly loaded (bath application at 

3-10 mM), may reduce the baseline cytosolic Ca2+ levels because their affinity range is 

similar to that of the commonly used Ca2+ chelator BAPTA (Kd = 160 nM in Mg2+-free 

buffer and Kd = 700 nM in 1 mM Mg2+ buffer) and is higher than the physiological 

baseline cytosolic Ca2+ concentration.  Reduction of the dye concentration and 

observation of dimmer cells with a more sensitive imaging setup may increase the 

accuracy of the estimated baseline Ca2+ levels, but such precise control of intracellular 

dye concentrations is theoretically difficult due to the unknown dye-leakage rate from 

the cells and dye-uptake rate into the organelles.  Alternatively, use of low-affinity 

Ca2+ dyes, such as BTC (Kd = 7 µM), may reduce the Ca2+ chelating artifacts, but these 
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dyes are not sensitive enough to be used for detection of nanomolar levels of cytosolic 

Ca2+.  Therefore, conventional Ca2+ dyes may not be useful in the estimation of the 

steady-state levels of Ca2+ in SCN neurons. 

Nevertheless, circadian rhythmic changes in cytosolic Ca2+ have been successfully 

observed in tobacco and Arabidopsis plants (Johnson and others 1995; Wood and others 

2001) using the Ca2+-sensing protein sensor aequorin.  Aequorin is a jellyfish protein 

used to detect a wide range of cytosolic Ca2+ concentrations (0.1-100 µM) via its 

chemi-luminescence.  Aequorin is not exported, secreted, compartmentalized, nor 

sequestered within cells, and is thus suitable for the long-term measurement of cytosolic 

Ca2+.  Also, photon-counting analysis of aequorin chemi-luminescence enables 

cytosolic Ca2+ measurement using a smaller number of sensor molecules and may avoid 

Ca2+ chelating problems such as those described with conventional dye imaging.  

Despite the advantageous characteristics of aequorin for the long-term monitoring of 

cytosolic Ca2+ in tobacco and Arabidopsis seedlings (millimeter to centimeter in length), 

it has not been successfully used in SCN neurons (the cell body is less than 10 µm 

diameter), presumably due to the limited spatial resolution of chemi-luminescence 

signals. 

To examine progressive changes in free Ca2+ concentration in single SCN neurons 

over multiple circadian cycles, our group used the Ca2+-sensitive fluorescent protein 

cameleon (Miyawaki and others 1997, 1999).  The cameleon used (YC2.1) was 

constructed with cyan-shifted and yellow-shifted green fluorescent proteins linked to 

opposite ends of the Ca2+ binding region of calmodulin.  Cytosolic Ca2+ levels are 

estimated from the reciprocal emission intensity changes at 480 nm and 535 nm (i.e., 

F535 nm/F480 nm ratio) produced by the fluorescent resonance energy transfer (FRET) 
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in the Ca2+-bound cameleon molecule.  Although the primary dissociation constant of 

YC2.1 (Kd1 = 100 nM) is higher than that of fura-2, a single YC2.1 molecule is much 

brighter.  This enables the visualization of single neurons using a smaller number of 

sensor molecules, and may avoid Ca2+ chelating artifacts.  YC2.1 has been 

successfully used in primary cultures of hippocampal and cortical neurons (Miyawaki 

and others 1999; Tsuchiya and others 2002).  Also, YC2.1 has been stably expressed in 

C. elegans neurons (Kerr and others 2000), demonstrating its applicability for long-term 

monitoring of neuronal cytosolic Ca2+.  Using SCN slice cultures transfected with 

YC2.1 cDNA linking to a neuron-specific enolase promoter (Sakimura and others 1995), 

our group finally succeeded in the continuous monitoring of steady-state cytosolic Ca2+ 

levels in single SCN neurons over entire circadian periods (Ikeda and others 2003a: Fig. 

2). 

 

3.  Circadian rhythms in cytosolic calcium concentration in SCN neurons:  

what the message tells us. 

Circadian rhythms are observed in cytosolic Ca2+ concentration in approximately 

two thirds (64%) of the population of cultured SCN neurons with a trough at 

approximately 120 nM and peak at approximately 440 nM (Ikeda and others 2003a).  

The circadian periods are generally synchronized among cells in the organotypic culture, 

but the phases are slightly advanced or delayed (Fig. 2).  The average peak in Ca2+ is 

4-5 hours before the peak in action potential firing, recorded simultaneously using a 

multiple-electrode-array dish.  The circadian cytosolic Ca2+ rhythm is specific to SCN 

neurons because neurons and glial cells located outside of the SCN exhibit no changes 

in cytosolic Ca2+ levels.  The circadian cytosolic Ca2+ rhythm is driven by the release 
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of Ca2+ from ryanodine-sensitive Ca2+ stores because ryanodine and 8-bromo-cyclic 

ADP ribose significantly damp the cytosolic Ca2+ rhythm.  Inositol 

(1,4,5)-trisphosphate (IP3)-sensitive Ca2+ stores are present in SCN neurons (Kopp and 

others 1999; Ikeda and others 2000), but the contribution of this Ca2+ store in the 

generation of the circadian cytosolic Ca2+ rhythm appears to be small, because the 

Ca2+-ATPase inhibitor, thapsigargin, has little effect on the circadian cytosolic Ca2+ 

rhythm.  The circadian cytosolic Ca2+ rhythm is also resistant to TTX, which blocks 

action potential firing in SCN neurons.  Moreover, the circadian cytosolic Ca2+ rhythm 

is resistant to nimodipine, which blocks L-type Ca2+ channels and is reported to reduce 

action potential firing in SCN neurons (Pennartz and others 2002).  These findings 

suggest that Ca2+ influx through the plasma membrane is not the primary mechanism 

underlying the generation of the circadian cytosolic Ca2+ rhythm. 

The observation that the circadian cytosolic Ca2+ rhythm is TTX-resistant raises the 

possibility that some of the clock genes regulate the circadian cytosolic Ca2+ rhythm 

(Fig. 3A).  Therefore, screening of gene function in this regard is a critical next step 

toward a more complete understanding of the mechanisms underlying the circadian 

clock.  An important aspect to remember in this process of discovery, is that for many 

genes, the converse will be true; the Ca2+ rhythms regulate the gene transcription cycles, 

because cytosolic Ca2+ is a transcriptional regulator for numerous genes.  Using DNA 

microarrays, not only the known clock genes but also hundreds of other genes have 

been shown to oscillate with a circadian profile in the SCN (Panda and others 2002b; 

Ueda and others 2002; for review, Delaunay and Laudet 2002).  It is unlikely that all 

these genes oscillate by their transcription-translation feedback loops.  Rather, it is 

more plausible that many of these gene transcription rhythms are driven by the circadian 
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cytosolic Ca2+ rhythm (Fig. 3B). 

Consequently, this raises the specific question as to whether the known clock gene 

oscillations are under the influence of circadian cytosolic Ca2+ rhythms or vice versa.  

As described above, glutamate-induced Ca2+ influx together with ryanodine-receptor 

mediated amplification of Ca2+ signals and resultant CREB phosphorylation by CaMKII 

have been proposed to be the primary signaling pathway for resetting the clock gene 

(Ginty and others 1993; Ding and others 1997, 1998; von Gall and others 1998; 

Yamaguchi and others 2000; Yokota and others 2001).  Despite the evidence for 

cytosolic Ca2+-mediated control of clock gene transcription, the current model 

explaining the core circadian oscillations is based primarily on the feedback regulations 

of clock gene transcriptions by their own translational products with reciprocal 

interactions of different clock gene products (Shearman and others 2000; Reppert and 

Weaver 2002).  The model is reasonable because the core SCN oscillation was 

proposed to be TTX-resistant (Schwartz and others 1987) and the circadian rhythms in 

cytosolic Ca2+ estimated in acute SCN slices using conventional fura-2 imaging were 

proposed to be TTX-dependent (Colwell 2000).  Based on these earlier data, the 

involvement of TTX-sensitive Ca2+ levels in the regulation of the core circadian loop 

would be ruled out.  Nevertheless, based on the recent demonstration of a 

TTX-resistant circadian cytosolic Ca2+ rhythm in cultured SCN neurons (Ikeda and 

others 2003a), and the fact that this rhythm is driven by the Ca2+ release from 

ryanodine-sensitive internal Ca2+ stores (i.e., the same machinery that activates Per1 

transcription following glutamate stimulation) and phase-advanced to the 

luciferase-reported circadian rhythms of Per1 transcriptions (Yamaguchi and others 

2001), it is likely that circadian oscillations in at least one known clock gene are under 
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the strong influence of circadian cytosolic Ca2+ rhythms. 

 

4.  Sedative nuclear Ca2+ levels in SCN neurons: a characteristic common 

to all clock cells? 

One of the advantages of protein sensor-based Ca2+ imaging is that the sensor 

can be designed to travel into specific organelles by fusion of the sensor protein to 

organelle-transferring proteins.  Using nucleus-targeted cameleon, nuclear Ca2+ 

dynamics were studied in SCN neurons (Ikeda and others 2003a).  We found that 

nuclear Ca2+ is mobilized as well as cytosolic Ca2+ after pharmacological stimulation of 

NMDA receptors in SCN neurons, suggesting that the nuclear targeted YC2.1 is 

functional in SCN neurons.  There is no evidence, however, of circadian rhythms in 

nuclear Ca2+ concentration.  The nuclear Ca2+ concentration is steady at approximately 

35 nM, suggesting a sedative nature of nuclear Ca2+ in SCN neurons.  In general, 

nuclear Ca2+ levels have been described to parallel cytosolic Ca2+ levels, due to Ca2+ 

permeable pores and an absence of an active Ca2+ transport system on the nuclear 

membrane (Brini and others 1993, 1994).  The compartmentalization of cytosolic and 

nuclear Ca2+ has been described in several cell types, however.  For example, using 

nucleus-targeted and untargeted aequorin, Badminton and others (1995) demonstrated a 

smaller Ca2+ response in the nucleus than that in the cytosol of COS7 cells, suggesting 

“theoretical” nuclear Ca2+ barriers. 

One possible mechanism underlying the reduced nuclear Ca2+ levels in SCN 

neurons may be Ca2+ buffering proteins, such as calbindin-D28k (CB) and calretinin 

(CR), that are expressed on SCN neurons in a species-specific manner (Silver and 

others 1996b, 1999; Mahoney and others 2000).  The hypothalamic cultures used for 
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the cameleon Ca2+ imaging experiments had significant levels of CB and CR expression 

in the SCN (Ikeda and Allen 2003; Ikeda and others 2003a).  Both of these 

Ca2+-binding proteins have high affinity for Ca2+ (Kd = 300 nM for CB and 250 nM for 

CR; Cheung and others 1993) close to the range of circadian cytosolic Ca2+ variations in 

SCN neurons.  The molecular sizes of CB and CR are small enough to distribute in the 

nucleus as well as in the cytosol in SCN neurons.  Therefore, these Ca2+-binding 

proteins may buffer both cytosolic and nuclear Ca2+.  More importantly, CB may not 

be evenly distributed inside the SCN neurons throughout the circadian cycles, because 

the number of nuclear CB-positive SCN neurons is greater during the subjective day 

than during the subjective night (Hamada and others 2003).  Thus, it is likely that a 

Ca2+-buffering system may contribute to the circadian dynamics of cytosolic Ca2+ 

concentrations and/or stabilization of nuclear Ca2+ levels in SCN neurons.  A 

high-capacity Ca2+-buffering system in SCN neurons may prevent undesirable phase 

shifts via general levels of neuronal excitation and contribute to the stabilization of 

circadian oscillations. 

The intracellular Ca2+ dynamics described in tobacco seedlings by Wood and 

others (2001) are similar to the intracellular Ca2+ dynamics in SCN neurons; there are 

circadian rhythms in cytosolic Ca2+, but not in nuclear Ca2+ concentration.  Although 

Ca2+ homeostasis in plant cells is different from that in mammalian cells, the presence 

of circadian rhythms in cytosolic Ca2+ and a stable nuclear Ca2+ concentration across 

circadian cycles may be a common characteristic for a wide variety of cells with a 

critical role in circadian clock regulation. 
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Figure legends 

Figure 1.  A schematic illustration of the cellular signaling processes underlying 

circadian phase-shifts (i.e., resetting) caused by nocturnal light.  Environmental light 

stimulation of retinal ganglion cells activates SCN neurons via the glutamatergic 

retinohypothalamic tract (RHT).  Glutamate (Glu) released at the pre-synaptic 

terminus may be negatively regulated by serotonin 1B receptors (5HT1BR).  Both 

AMPA/kinate glutamate receptors (non-NMDAR) and NMDA receptors (NMDAR) are 

expressed on SCN neurons, and Ca2+ influx through NMDAR may have a critical role 

in RHT-SCN transmission.  NMDAR-mediated Ca2+ responses at the post-synaptic 

membrane are also negatively regulated by 5HT1A/7R and orphanin-FQ/nociceptin 

receptors (OFQ/NR).  The intracellular Ca2+ activation of ryanodine receptors (RyR) 

triggers further Ca2+ release from ryanodine-sensitive internal Ca2+ stores.  This 

process may activate Ca2+/calmodulin-dependent protein kinases II (CaMKII).  The 

translocation of activated CaMKII (aCaMKII) or direct activation of CaMKII by 

nuclear Ca2+ mobilization triggers phosphorylation of the cAMP response element 

binding protein (CREB).  Phosphorylated CREB (pCREB) is a potent transcription 

factor for the clock genes, such as Per1.  Increase of cytosolic Ca2+ late in the 

subjective night may activate additional Ca2+-dependent signaling cascades (grey) via 

nitric oxide synthase (NOS), nitric oxide (NO), and protein kinase G (PKG) that has 

been proposed to produce advance shifts in the circadian clock. 

 

Figure 2.  An example of a recording of the cytosolic Ca2+ concentration in an 

organotypic slice culture of SCN.  Upper panels denote virtual color cytosolic Ca2+ 

levels.  Yellow-green spots on the first panel indicate the approximate location of cell 
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bodies of SCN neurons that expressed cameleon Ca2+ sensors.  Temporal changes in 

cytosolic Ca2+ levels in four neurons (circled in the top left panel) were plotted in the 

bottom panel.  Synchronous circadian oscillations were observed in the cytosolic Ca2+ 

concentrations in these neurons, although the circadian phases among them were 

slightly advanced or delayed. 

 

Figure 3. A. A schematic illustration of the cellular output processes for the autonomous 

circadian cycles of clock genes.  The oscillations in gene transcription/translation 

cycles may generate circadian rhythms in cytosolic Ca2+ concentrations presumably via 

the effects on release of Ca2+ from ryanodine-sensitive internal Ca2+ stores.  The 

hypothetical targets for clock gene regulation are located at ryanodine receptors (RyR) 

and mitochondria (Mt), which indirectly modulate RyR activity via cyclic ADP ribose 

(cADPR).  The circadian rhythms in cytosolic Ca2+ concentrations may cause rhythmic 

neurotransmitter release and action potential firing rhythms in SCN neurons, although 

several other intermediate steps may be involved.  B.  The circadian cytosolic Ca2+ 

rhythms may be involved in the generation of gene transcriptional cycles in SCN 

neurons, because Ca2+ release from ryanodine-sensitive internal Ca2+ stores is a 

principal signaling process for the resetting of clock gene oscillations by nocturnal light 

(see Fig. 1 for details).  This raises the possibility that circadian cytosolic Ca2+ rhythms 

may mediate not only the output signaling processes from the clock gene oscillations, 

but also the input signaling processes that generate clock gene oscillations in SCN 

neurons. 
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