GROUPS OF KNOTS ON TEMPLATES
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1. INTRODUCTION

A template is a kind of branched surface with boundary equipped with smooth expan-
sive semiflow. Birman and Williams [BW1] [BW2] showed that, if a hyperbolic chain-
recurrent set of a flow on a three-manifold is given, there exists a template embedded in
the manifold such that the link of periodic orbits of the flow is in bijective correspondence
with the link of periodic orbits on the template. Furthermore on any finite sublink, this
correspondence is via ambient isotopy. This implies that, to investigate knot types of
periodic orbits of the flow, it is sufficient to investigate those of periodic orbits on the
corresponding template.

In this paper we calculate groups of knots on some kinds of templates in the three
dimensional sphere to show the complexity of periodic orbits of flows.

In §2 we prepare some basic notations and definitions about templates. In §3 we give
some notations about the Lorenz knots, that is, the knots obtained as periodic orbits of
the Lorenz template. Furthermore we calculate some fundamental group which will be
necessary for our result. In §4 we state our main theorem and give its proof.

2. TEMPLATES AND SKELETONS

In [BW2], Birman and Williams proved the existence of knot holders for hyperbolic
chain recurrent sets of flows on three dimensional manifolds. Later knot holders were
renamed templates. Thus we will call them templates in this paper.

Definition 2.1. A template is a compact branched surface with boundary in a three
manifold build locally from two types of charts: joining and splitting. Each chart, as
illustrated in Figure 1, carries a semiflow, endowing the template with an expanding
semiflow, and the gluing maps between charts must respect the semiflow and act linearly
on the edges.

Theorem 2.2. [BW2] Given a flow ¢; on a three dimensional manifold M having a hy-
perbolic chain recurrent set, the link Ly of periodic orbits in the chain recurrent set is in
bijective correspondence with the link of periodic orbits Lt on a particular embedded tem-
plate T C M (with L containing at most two extraneous orbits). On any finite sublink,
this correspondence is via ambient isotopy.

In this paper, we will consider flows and templates in three dimensional sphere 3.
The simplest sort of templates is that build from one joining chart and one splitting
chart. For example, the Lorenz template [BW1] is obtained from the Lorenz attractor,

Date: September 1, 2001.



v oy

(a) (b)

FIGURE 1. (a) a joining chart; (b) a splitting chart.

and the horseshoe template [BW2] is obtained from the index one chain recurrent set of
the suspension flow of Smale’s horseshoe map. See Figure 2.

(b)
FIGURE 2. (a) the Lorenz template; (b) the horseshoe template.

These templates are thought to be made of three parts: one rectangle, say the base
rectangle, and two arms starting from the bottom edge of the base rectangle and arriving
at its top edge. Note that no arm is “knotted” in these templates. The difference is whether
the right hand arm is twisted or not. We generalize them by making arms knotted and
twisted. To describe our generalization, we need some definitions.

Definition 2.3. A template is called to be with two arms if it consists of one joining chart
and one splitting chart, like the Lorenz template and the horseshoe template.

Definition 2.4. A template is called to be orientable if it is orientable as a branched
surface. That is, if a direction transverse to the semiflow is always preserved along the
semiflow.

For example, the Lorenz template is orientable, but the horseshoe template is not.

Definition 2.5. Let T be an orientable template with two arms. It is considered to be
made of one base rectangle R and two arms; the left arm which start from left half of the
bottom edge of R, and the right arm. The orbit of the semiflow through the left edge
(resp. right edge) of its base rectangle R will be a knot in S3, say K; (resp. Ka). Let ¢
(resp. t2) be the linking number of a closed curve on the left (resp. right) arm parallel to
K, (resp. K3) with K (resp. K2). Let Skel(T') be the figure in S* consisting of the base



rectangle R and two knots K3 and K2, accompanied with two numbers t; and t2. We call
Skel(T") the skeleton of T'.

Example 2.6. Figure 3 shows an example of a template and its skeleton. In this example,
K is a trefoil knot and K> is a trivial knot, and they are linked. Numbers “3” and “2”
‘written near knots indicate t; and ts respectively.

(a) (b)

FIGURE 3. (a) a template with two arms, and (b) its skeleton.

Remark 2.7. We always assume that K; and K5 are oriented by the direction of the
semiflow. We also assume that the total space S is oriented by left-hand system.

Proposition 2.8. Suppose we are given a figure in S, consisting of one rectangle R
and a two-component link K; U Ko such that K1 N R = “left edge of R” and Ko N R =
“right edge of R”, with two numbers ty and to attached to K1 and Ko respectively. Then
we can make an orientable template such that its skeleton is the given figure.

Definition 2.9. The template as in Proposition 2.8 is denoted by Temp(K; U Ko; t],tg).‘

Proof of Proposition 2.8. Replace a curve K; \ R by a narrow band By such that its long
edges consist of K7 and a curve parallel to K; in a Seifert surface of Ky, and one of its
short edges are glued to the top edge of R and the other to the bottom edge of R. Then
expand linearly the short edge of By attached to the top edge of R to the same length
as the top edge of R. Finally cut R and B; along the top edge of R and twist B; t;-
times. Apply similar operations to K5. Then glue B; to the top edge of R from the front,
and glue By to the top edge of R from the rear. Then we obtain the required template
Temp(KIUKZatlatZ) t



Although templates generally admit linking of K; and K5, we need to restrict our
attention to a special case for our main result.

Definition 2.10. A template with two arms is called splittable if there exists a three ball
B3 in 3 such that K is included in the interior of B3, and K> is included in the interior
of $3\ B3, and B3N R = a “vertial line” of R.

For example, the Lorenz template and the horseshoe template are splittable, but the
template shown in Figure 3 is not splittable since K; and K, are linked.

3. THE LORENZ TEMPLATE

For the investigation of templates like Temp(K; U Ka;t1,t2), the most fundamental
object is the Lorenz template. In this section we consider about the Lorenz template
more precisely.

In this section, let Ty be the Lorenz template. T is thought to be Temp(K; U K>;0,0),
where K; U K3 is the unlink. From the aspect of dynamical systems, we need to remember
how Tj is obtained in [BW1].

First of all we choose a small neighborhood of the Lorenz attractor in S%, which has
a local product structure by local stable manifolds and local unstable manifolds. Then
we obtain the Lorenz template T by shrinking each local stable manifold to a point.
Conversely, when Ty is given, we can re-construct a neighborhood as above by expanding
Tp to the direction normal to Ty in S3. We write this neighborhood as N(7y). Figure 4
shows N(Tp) for the Lorenz template placed in R3. We introduce a coordinate system such
that the cube at the center is [—1,1] x [—1,1] x [-1, 1] and the square B shadowed in Figure
4 at the center is [—1,1] x [-1,1] x {0}. The y-direction is the stable direction of Lorenz
flow, and by shrinking each component of the intersection of N(Tj) and a y-directional line
to a point, we obtain the Lorenz template. The square [—1,1] x [—1,1] x {1} corresponds
to the top edge of R, and [—1,1] x [-1,1] x {=1} corresponds to the bottom edge, and
B = [-1,1] x [-1,1] x {0} corresponds to one of the glue lines of the joining chart and
the splitting chart. We may assume that the neighborhood of the left arm is glued to the
bottom face of the center cube at [—~1,—1/3] x [~1,1] x {—1}, and the neighborhood of
the right arm is glued at [1/3,1] x [—1,1] x {—1}. Note that this coordinate is not the
same as that in the original Lorenz equation.

Let K¢ be a periodic orbit of the semiflow. By applying an ambient isotopy if necessary,
we may regard Ky as an embedded circle in N(7p) which intersects B on the segment
[—1,1] x {0} x {0}. Assume that KN B consists of n points. We name them by numbers
{1,2,--- ,n}, and arrange them on the segment [~1,1] x {0} x {0} from left to right. The
orbit K is divided into n segments by these points. Then, as in [BW1], Kj is described by
a permutation 7 on {1,2,--- ,n} as follows: When the orbit segment starting from a point
i meets B at a point j, we define 7(i) = j. There exists a unique number p such that the
orbit segment starting from i (¢ = 1,2,--- ,p) runs on the left arm, and the orbit segment
starting from j (j = p+ 1,--- ,n) runs on the right arm. Note that 7 enjoys a property
sa(l) <7w(2) < - <7w(p) > w(n) > w(n—1) > --- >x(p+1). This property implies
that m(p) = n, 7(p+ 1) = 1, and that the set {w(1),--- ,7(p)} completely determines the
permutation 7. For j = p+1,--- ,n, let p; = min{i = 1,2,--- ,p | n(¢) > 7(5)}. Note
that 7(j) < 7(p;) <7w(j+1), and if p; > 2, w(p; — 1) < 7(§) < = (p;).



FIGURE 4

Remark 3.1. In general, if T is an orientable template with two arms, then any orbit is
given by a permutation m which enjoys the same properties as above. But if T is not
orientable, although any orbit corresponds to a permutation, its properties are different
from those in orientable case.

In [BW1], the fundamental group of S3 \ Ko was calculated using these information.
For our purpose their result is not sufficient and we have to calculate the fundamental
groups of N(Tp) \ Ko and its outer boundary.

To calculate them, we fix a base point by = (0,1,0) on B. We choose n loops on B and
4 loops on ON(Ty) as follows.

Definition 3.2. For i = 1,2,---,n, let ; be a loop on B which starts from by, goes
around the point ¢ clockwise, and returns to by. See Figure 5. Let mq, mo, 1,13 be loops
on ON(Tp) as in Figure 6. That is, m is a loop which starts from by, passes through
(-1,1,0), (-1,-1,-1), (-1/3,-1,-1), (-1/3,1,—1), and returns to by. mq starts from
bo, passes through (1/3,1,-1), (1/3,-1,-1), (1,-1,-1), (1,1,0), and returns to by. On
the other hand, /; and l» are loops which go along the arms on the “front face” of ON{(Tp).

B

FIGURE 5

By identifying these loops as elements of fundamental groups with the base point bg,
we have:



FIGURE 6

Theorem 3.3. For the Lorenz template Ty and a periodic orbit Ky on Ty given by a
permutation ™ on {1,2,--- ,n},

(1) m(N(To) \ Ko) has a presentation as follows:
Generators: x1,Xg,"+ ,Ty,l1,l2.
Relations: lflxill =Zrq (1=1,2,---,p),
3 ails = & T 1) T () Tr(e,)  Tr(p—1) T(p)
G=p+1,---,n).
(2) m(ON(Tp)) is generated by ly,l2, m1, me with a relation

m7 T maly = maly *my .
(3) In i (N(To) \ Ko), m1 =x122---Tp and Ma = Tpy1 - Tn.

Proof. (1) It is obvious that 71 (N (Tp)\ Ko) is generated by x1, 22, -+ ,Zn, l1,l2. To obtain
the relations among them, it is sufficient to know how the “push-forward” of each x; along
the orbit segment is represented by x;’s. Note that the “push-forward” is given by I Yasly
ifi <pandl 1;1)]‘[2 if j>p. Fori=1,2,---,p, the “push-forward” of x; is just equal to
Tr(;) since there is no knot segment in front of the segment from z; to z, ;. This gives
the first p relations. For j = p+1,--- ,n, the “push-forward” of z; is a loop on B as in
Figure 7, and it is represented as ;c;(lp):c;(lpul) . "x;(l,;;,-)xW(j)wW(pJ) ©Tr(p—1)Tx(p)- This
completes the proof of (1).

(2) ON(Ip) is a closed surface of genus 2, and loops m1, ma, 1, l> form a system of gen-
erators, which is standard except for their orientations. By taking account of orientation,
the result is obvious.

(3) is immediate from definitions. O

4. GROUPS OF KNOTS ON SPLITTABLE AND ORIENTABLE TEMPLATES
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FIGURE 7

WITH TWO ARMS.

Periodic orbits of the semiflow on a template are considered as knots. In this section we
state and prove our main result about groups of these knots on splittable and orientable
templates with two arms.

Theorem 4.1. Let T = Temp(K; U Ks;t1,t2) be an splittable and orientable template
with two arms. Let G; be the knot group of K;; that is, G; = m(S® — K;) (i =1,2), and
suppose that G; is presented as
Generators:  Xg, pi, ys(7) (7 = 1,2, ,ny),
Relations:  R;(k) (k=1,2,---,1;),
where \; is the longitude of K; and u; is the meridian of K;, and R;(k) is a relation in
iy i, and yi(j)’s.
Let K be the knot of a periodic orbit on T given by a permutation w on {1,2,--- ,n}.
Then m1(S3\ K) is presented as follows:
Generators: x1,T2, " ,Tn,l1,l2,m1, M2,
Ny i) (= 1,25 j = 1,2, ,mq).
Relations: lflxih =Ty (1=1,2,---,p),
ly gl = T r(p-1) x;(lp‘,)mr(j)mﬁ(pj) * Tr(p—~1)Tr(p)
(.7 =p+1,-- ,71),
myp =212 - Tp, M2 = Tpy1- " Tn,
mf]lflmlll = mglglmg—llz,
A st = 25 s P e ps,
Li=p" N, mi=p; (i=1,2),
Rik) (i =1,2; k=1,2,--- ,17).

Proof. Let Kq be a Lorenz knot given by 7 on the Lorenz template Tp. Then S* \ K is
- regarded as (N(Tp) \ Ko) Uy (S \ N(T)). They are glued by a homeomorphism ¢ : ¥y =
ON(Tp) — Lo = 8(S3\ N(T')), which respects t; and ¢, as twisting. Since T is splittable,
S3\ N(T) is thought to be M; U My, where M; = B3\ (N(K;) U P,) and P, = D? x D!
is a neighborhood of left or right half of the base rectangle R which looks like a “plug”
connecting B3 and ON(K;) (i = 1,2) as in Figure 8.
We first have to calculate 71(M;), and then w1 (S \ N(T)).

Lemma 4.2. 7 (M;) = m(S®\ N(K;)) (i=1,2)



FIGURE 8

Proof. Since M;UP; = B3\ N(K;) and M;NP; = S x D? and the generator of m(S* x D')
is null homotopic in M;, we obtain i (M;) = m1(B3\ N(K;)) by van Kampen’s theorem.
m1(B?\ N(K;)) is apparently equal to 71 (5% \ N(K;)).

O

Lemma 4.3.
(1) m (8% — N(T)) is given by:
Generators: i, i, ¥i(3) (1 =1,2; 1 =1,2,--- ,n;),
Relations:  R;(k) 1 =1,2; k=1,2,--- ,75).
(2) m(8(S®\ N(T))) is generated by A1, Ao, pu1, po with a relation A\ *pihipuyt =
A7 tug apz.
Proof. Since S®\ N(T) = My Upp»\ p2 Mz and B3\ D? is contractible, van Kampen’s
theorem implies (1). (2) is easy because 9(S3 \ N(T')) is a surface of genus 2 obtained
by glueing ON(K,) \ D? and ON(K>) \ D? along a circle representing A7 piAipuy! =
Ay 'y "Aop2. This completes the proof. a

Proof of Theorem 4.1 (continued). Since S3\ K = (N(Tp) \ Ko) Uy (S® \ N(T)), and
both of 7;(N(Tp) \ Ko) and m1(S® \ N(T')) are already calculated, our result is easily
obtained by van Kampen’s theorem because the glueing map ¢ satisfies ¢4 (l;) = u; EDY
and ¢g(m;) = u; (i = 1,2), where ¢4 is the map induced by’ ¢ on the fundamental
groups. O
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