-Reviews-

アカメガシワ Mallotus japonicus (Euphorbiaceae)の果皮成分

有 澤 宗 久

Constituents of the Pericarps of Mallotus japonicus (Euphorbiaceae)

Munehisa ARISAWA

Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, 2630 Sugitani, Toyama 930–0194, Japan

(Received January 6, 2003)

Rottlerin-like phloroglucinol derivatives isolated from the pericarps of *Mallotus japonicus* MUELL. ARG. (Euphorbiaceae) are reviewed. Chemical structures, cytotoxicity, antitumor and antitumor-promoting effects, antiviral activity, anti-HIV-RT activity, and inhibitory activity of activated macrophages (inhibitory activities of NO, prostaglandin E_2 , tumor necrosis factor- α , and interleukin-6 production) of the phloroglucinol derivatives are described.

Key words----Mallotus japonicus; phloroglucinol derivatives; biological activity; Euphorbiaceae

1. はじめに

アカメガシワ(*Mallotus japonicus* MUELL. ARG.) はトウダイグサ科(Euphorbiaceae)に属する落葉 高木で,熱帯及び温帯アジアに広く分布している. 樹皮は,生薬名を赤芽柏と称し,日本では苦味健胃 薬として胃酸過多,胃潰瘍,胆石症に良いとし,台 湾では民間で癌に用い,中国では胃や十二指腸の潰 瘍に用いられ,葉はお出来や吹き出物に外用され る.樹皮からは bergenin¹⁾及びその誘導体,²⁾多数 のタンニン類³⁻⁶⁾などが単離されており,葉からは rutin,⁷⁾不飽和脂肪族化合物,^{8,9)} valoneic acid dilactone¹⁰⁾ ほか数種のタンニン類³⁻⁵⁾が,果実から は 2種の rottlerin様 phloroglucinol 誘導体,¹¹⁾生理 活性成分として,種子の強心作用成分及びそれらの 配糖体^{12,13)}などの報告がされていた.

ヒト由来の培養がん細胞である KB cell を用いる *in vitro* の細胞増殖抑制スクリーニングを行い,¹⁴⁾ 研究対象を検索していたところ,アカメガシワ果皮 の他,生薬の豨薟草,^{15,16)}サクラソウ科(Primulaceae)のコナスビ(*Lysimachia japonica* THUMB.),¹⁷⁾ ユキノシタ科(Saxifragaceae)のネコノメソウ属 (*Chrysosplenium*)^{18–20)}など数種に顕著な細胞増殖 抑制活性が認められた.

まず、多量の材料が容易に採集可能であったアカ メガシワ果皮から研究に取り組み、培養 KB cell 増 殖抑制活性を指標に分画して得た活性画分から、近 縁植物生薬カマラの成分である rottlerin に類似の phloroglucinol 誘導体を活性成分として単離した。

それらの化学構造,細胞増殖抑制活性,抗腫瘍 性,抗発がんプロモーター活性,抗ウィルス活性, human immunodeficiency virus (HIV) 逆転写酵素 阻害作用,マクロファージ活性化抑制作用などにつ いて検討した結果を纏めて記したものである.

2. 化学成分の構造

一連の rottlerin 様 phloroglucinol 誘導体は Fig. 1 に示した通り、単純な構造である 3-methylphloroacetophenone 誘導体の二重分子化合物ですべてキ レート水酸基を有している。単純構造化合物として は天然から得た最初の例の mallophenone (=2,6dihydroxy-3,5-dimethyl-4-methoxyacetophenone) (1)²⁵⁾ と 2,6-dihydroxy-3-methyl-4-methoxy-acetophenone (2)^{23,11)}があり, mallotophenone (3)²³⁾は methylene を中心とした対称型の典型的二重分子化合物 (5-methylene-*bis*-2,6-dihydroxy-3-methyl-4-methoxyacetophenone) である。化学成分として既に単離構 造決定されており、¹¹⁾後に mallotojaponin (4) と命 名^{21,23)}された誘導体の構造は 3-(3,3-dimethylallyl) -5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxyben-

富山医科薬科大学薬学部(〒930-0194 富山市杉谷 2630) e-mail: marisawa@ms.toyama-mpu.ac.jp

^{*}本総説は、平成14年度退官にあたり在職中の業績を 中心に記述されたものである。

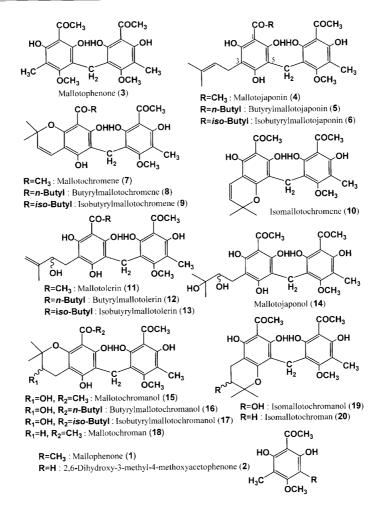


Fig. 1. Structures of Phloroglucinol Derivatives from the Pericarps of M. japonicus

zyl)-phloroacetophenone である. この phloroacetophenone 部に替わる phlorobutyrophenone, phloroisobutyrophenone が, それぞれ butyrylmallotojaponin (5) と isobutyrylmallotojaponin (6) で あり、21,22) 4,5,6のそれぞれの2位水酸基との閉環 体が mallotochromene (7), $^{23)}$ butyrylmallotochromene (8), $^{26)}$ isobutyrylmallotochromene (9) $^{26)}$ \mathcal{C} , 4 の4位水酸基との閉環体が isomallotochromene また, 4, 5, 6 それぞれの 3,3-dime-(10)²⁵⁾である. thylallyl 部の酸化と二重結合の移動が生じたと考え られる mallotolerin (11),^{11,21)} butyrylmallotolerin (12), $^{21,24)}$ isobutyrylmallotolerin (13), $^{21,27)}$ 4 \mathcal{O} allyl 部の酸化体の mallotojaponol (14)²¹⁾が得られてい る. 化合物 7, 8, 9 それぞれの chromene 環の加水 体が mallotochromanol (15),²⁴⁾ butyrylmallotochromanol (16),²¹⁾ isobutyrylmallotochromanol (17)²¹⁾ であり、7 の chromene 環の還元体が mallotochroman (18)²⁵⁾である. 化合物 10 の chromene 環の加 水体が isomallotochromanol (19)²⁷⁾で, 還元体が isomallotochroman (20)²⁵⁾である.

3. 細胞增殖抑制活性

In vitro の細胞毒性あるいは細胞増殖抑制活性試 験にはヒト由来の carcinoma KB, Hep-2, PC-13 cell, マウスの leukemia L5178Y, P-388 cell や melanoma B16 cell などの培養がん細胞を用い, 試験方 法として, crystal violet 法,^{28,29} 3- (4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 法,³⁰⁾ 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[(phenyl-amino) carbonyl]-2*H*-tetrazolium hydroxide (XTT) 法³¹⁾などを利用した.

種々の培養がん細胞に対する phloroglucinol 誘導体の細胞毒性あるいは細胞増殖抑制活性を Table 1 に示した. KB cell に対して, 化合物 3-13 は活性を示し, 3 位に繋がる側鎖部分や環状部分に不飽和結

No. 4

219

Compounds	Carcinoma			Melanoma	Leukemia	
	KB	Hep-2	PC-13	B16	L5178Y	P388
1	>20	>20	>20	>20	>20	>20
2	> 20	> 20	> 20	> 20	>20	>20
3	2.40 ± 0.17	6.30 ± 0.60	3.75 ± 0.24	4.80 ± 0.23	3.65 ± 0.49	10.08 ± 0.58
4	0.58 ± 0.03	0.60 ± 0.04	0.54 ± 0.04	0.70 ± 0.06	0.81 ± 0.08	1.14 ± 0.05
5	0.72 ± 0.07	0.41 ± 0.03	0.91 ± 0.02	0.60 ± 0.03	1.08 ± 0.10	2.85 ± 0.03
6	$0.98 \!\pm\! 0.10$	1.10 ± 0.12	3.05 ± 0.43	1.75 ± 0.92	2.50 ± 0.40	3.00 ± 0.45
7	2.10 ± 0.18	0.72 ± 0.14	0.82 ± 0.02	1.08 ± 0.19	1.26 ± 0.31	1.71 ± 0.31
8	3.03 ± 0.18	1.70 ± 0.25	1.30 ± 0.18	1.29 ± 0.09	2.36 ± 0.32	3.40 ± 0.35
9	0.40 ± 0.03	1.08 ± 0.21	1.77 ± 0.06	1.44 ± 0.05	2.78 ± 0.16	4.03 ± 0.56
10	2.20 ± 0.12	NT	NT	NT	NT	NT
11	1.22 ± 0.12	$1.08\!\pm\!0.08$	1.53 ± 0.12	1.01 ± 0.23	1.61 ± 0.02	2.18 ± 0.04
12	0.95 ± 0.11	$0.91\!\pm\!0.20$	0.63 ± 0.06	2.38 ± 0.24	1.27 ± 0.04	1.22 ± 0.19
13	0.84 ± 0.09	0.93 ± 0.09	1.80 ± 0.43	1.96 ± 0.28	2.50 ± 0.15	3.85 ± 0.06
14	>20	> 20	>20	> 20	>20	>20
15	>20	> 20	> 20	>20	>20	>20
16	13.50 ± 1.10	NT	NT	NT	NT	NT
17	$14.60 \!\pm\! 0.55$	NT	NT	NT	NT	NT
18	8.90 ± 0.40	NT	NT	NT	NT	NT
19	>20	> 20	> 20	>20	>20	>20
20	16.02 ± 0.64	NT	NT	NT	NT	> 20 NT

Table 1. Cytotoxic Activities of Phloroglucinol Derivatives against Various Cultured Cancer Cell Lines (IC₅₀ µg/ml)

Mean \pm SE of three determinations.

合のない化合物 14-20 及び monomeric な 1 と 2 は 活性を示さなかった. 化合物 4-13 がその他の培養 がん細胞に対しても十分な活性を示すのに比べ, 3 は弱い活性であった. 活性発現には 3 位に繋がる不 飽和結合が関与しているものと考察される.³²⁾

4. 抗腫瘍活性^{24,32)}

DdY 系マウスの Ehrlich 腹水癌に対する 4 の延命 効果は認められなかったが, Ehrlich 固形癌に対し て 20 mg/kg/day の投与において T/C 49.5%の抑 制が認められた (Table 2).²⁴⁾ B6D2F₁ 系マウスの L5178Y 白血病に対する 4 の延命効果の検討で, 10 -40 mg/kg/day の投与において延命率 (Increase of life-span) (ILS) が 200%以上の顕著な延命効果 を示した (Table 3).³²⁾ 併用による抗腫瘍活性につ いては, 溶連菌から得られ免疫賦活剤として使用さ れている OK-432 との併用効果を検討した. DdY 系マウスの Ehrlich 腹水癌に対し OK-432 単独投与 では ILS が 14.7%であったのに比べ, 4 の併用で 97% となり (Table 4A), また, B6D2F₁ 系マウス の L5178Y 白血病に対し OK-432 単独投与では ILS が 187%であったのに比べ, 4 の併用で 275%とな

Table 2.	Effect of Compound	4	on	Solid	Tumor	of	Ehrlich
	oma in Mice						

Dose (mg/kg/day)	Mortality	Tumor weight (g) Mean±S.E.	T/C (%)
Control	0/8	1.19 ± 0.18	100
7	0/6	0.93 ± 0.19	78.1
20	0/6	0.59 ± 0.11	49.5

Mouse: Male 5-week-old ddY mice; 6 mice/group (8 mice for control group). Inoculum: Ehrlich carcinoma cells 3×10^6 /head, sc (inguinal region). Treatment: Qd, day 3-8; ip. The compound to be rested was suspended in 0.25% carboxymethylcellulose (CMC) solution. Determination: day 10.

り (Table 4B) 併用効果の有効性を示した.³²⁾

5. 抗発ガンプロモーター活性^{33,34)}

In vitro の発ガンプロモーター抑制活性は 12-*O*tetradecanoylphorbol-13-acetate (TPA) をプロモー ターとし, C3H10T1/2 細胞のリン脂質への ³Hcholine の取り込み阻害作用で検討した. 検討化合 物 2-4, 7, 10, 11, 15, 18, 19 の 9 種すべてに活性が認 められ,中でも 4, 10, 11 が顕著であった.³³⁾ 化合 物 4 の活性は,天然由来の強力な抗発ガンプロモー ター化合物として知られる quercetin, berberine sul-

Dose (mg/kg)	Mean body weight (g)		MST ^a)	$ILS^{b)}$	No. of survivors/
	day 0	day 7	(day)	(%)	tested on 60th day
None	22.1	23.6		16	0/7
10	23.5	24.6	54.5	240	3/7
20	23.5	24.1	60	275	7/7
40	22.6	22.7	49	206	3/7 (Toxic)

Table 3. Effect of Compound 4 on Mouse L5178Y Leukemia in vivo

The experiment was terminated at 60th day after the leukemia cell implantation. a) Median survival time.

b) Increase of life-span = $[MST(treated)/MST(control)] \times 100 - 100$.

Table 4. Antitumor Effects of Combined Use of a and OK-432 in Mice

A. Ehrlich	Ascites Ca	rcinoma		
Agent	Dose (mg/kg)	MST ^{a)} (day)	ILS ^{b)} (%)	No. of survivors/ tested on 60th day
None		17		0/8
4	10	18	5.8	0/6
OK-432	7.5 ^{c)}	19.5	14.7	0/6
4	10			
+	+	33.5	97	0/6
OK-432	7.5			
B. Mose I	_5178Y Leu	kemia		
Agent	Dose (mg/kg)	MST ^{a)} (day)	ILS ^{b)} (%)	No. of survivors/ tested on 60th day
None		16		0/8
4	10	54.5	240	3/6
OK-432	10	46	187	2/6
4	10			
+	+	60	275	6/6

a, b) See footnotes in Table 3. c) Corresponds to 100 KE; one KE (Klinische Einheit) of OK-432 contains 0.1 mg of dried streptococcal cells.

10

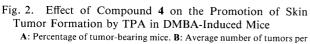
OK-432

Table 5. Effect of 4 and Naturally Occurring Antitumor-Promoting Agents on TPA-Enhanced ³²P_i Incorporation into Phospholipids of Cultured Cells

Condition	$^{32}P_{i}$ Incorporation cmp/mg protein $\times10^{-1}$	Inhibition (%)
Control	1.43	
TPA	845	
TPA + 4	1.58	97.9
TPA+quercetin	5.61	40.5
TPA+berberine sulfate	7.02	20.4
TPA+curcumin	7.18	18.1

HeLa cells were incubated with one of the test compound $(2 \, \mu g/ml)$. After 1 h, ${}^{32}P_i$ (74 kBq/culture) was added with or without TPA (50 nM). Incubation was continued for 4 h, and then the radioactivity incorporated into phospholipid fractions was measured. Data are mean values of duolicate experiments, each of which scarcely deviated (within 2.5%).

fate, curcumin の活性をはるかに凌ぐもので 50% inhibitory dose (ID₅₀) $tat 0.4 \,\mu\text{M}$ (0.2 $\mu\text{g/ml}$) τ s σ た (Table 5).³⁴⁾ ICR 系マウスを用い, 7,12dimethyl-benz[a] anthracene (DMBA)をイニシエー ター. TAP をプロモーターとした二段階皮膚発ガ ン実験における化合物4の発ガン抑制試験の成績は Fig. 2 及び 3 に示した. Figure 2 では control 群は 6 週で発ガンが確認されるのに対し, 162 nmol 投与 群は10週で発ガンが確認され、マウス一匹当たり の腫瘍数の比較においても週を経るに従い差異が認 められる. Figure 3 では control 群は7週で発ガン が確認されるのに対し, 1620 nmol 投与群は 20 週 を経ても発ガンが確認されず、マウス一匹当たりの 腫瘍数の比較においても有意義な抑制効果が確認さ れた. 34)


6. 抗ウイルス活性²⁵⁾

宿主細胞として HeLa 229 細胞を用いて単純ヘル ペス1型ウィルスの増殖抑制効果について検討を行 った. 抗ウィルス活性はプラーク検定法により判定 した. 抗ウィルス剤としての有効性を示す1つの指 標は、細胞毒性と抗ウィルス活性の比である治療係 数で表わされるが、化合物 16 と 20 はそれぞれ 10.9, 9.1 と抜き出た数値を示した(Table 6).²⁵⁾

7. HIV 逆転写酵素阻害作用³⁵⁾

化合物 3, 4, 7, 11 の 4 種について, (rA), · (dT)12-18を template · primer として HIV 逆転写酵 素阻害作用について検討した. 化合物4と7は10 μg/mlの濃度で約70%阻害と強い作用を示し,3と 11 はそれらより弱い阻害作用であった(Fig. 4). 化合物4のHIV 逆転写酵素に対する阻害様式は (rA)_n・(dT)₁₂₋₁₈に関して拮抗型, dTTP に関して は非拮抗型で, Ki 値は 6.1 µM であった.³⁵⁾

mouse \pm SE. \bigcirc = Group treated with DMBA+TPA, O = Group treated with DMBA+TPA+ compound 4 (162 nmol/painting).

8. マクロファージ活性化抑制作用

マクロファージの異常活性化は、様々な病態形成 や症状悪化に関与し、活性酸素、一酸化窒素 (NO)、プロスタグランジン (PG)、腫瘍壊死因子 (TNF)-α、インターロイキン (IL)類などを産生す る.マクロファージ活性化抑制作用として、NO 産 生抑制作用、PGE2 産生抑制作用、サイトカイニン 産生抑制作用などについて検討した。

NO 産生抑制作用は lipopolysaccharide (LPS) と インターフェロン (IFN)-y で活性化したマウスの RAW 264.7 細胞を用いて検討した. 化合物 2-4, 7, 10, 12, 15, 17-19 の 10 種のうち, 2 と 18 以外の 8 種に抑制活性が認められ, とりわけ 10 (IC₅₀ 14.3

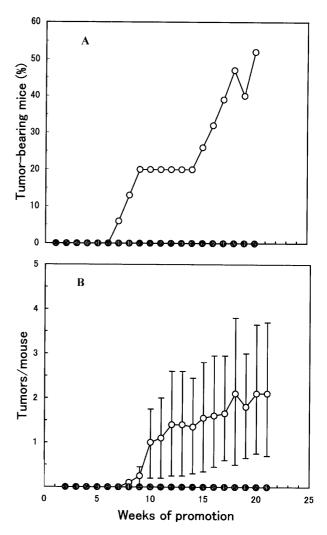


Fig. 3. Effect of Compound 4 on the Promotion of Skin Tumor Formation by TPA in DMBA-Initiated Mice Experimental condition was the same as described in the legend for Fig.
2, except the dose of compound 4 (1620 nmol/ painting).

μM) と **19** (IC₅₀ 10.7 μM) は強い抑制活性を示し た. また, 化合物 **4**, **10**, **15**, **19** は **30** μM で 16 時間 継続的な抑制作用を示した.³⁶⁾ この作用機序は誘導 型合成酵素 (iNOS) の mRNA 発現を抑制するこ とにより iNOS 蛋白の誘導を抑制することと, iNOS の酵素活性への阻害作用に基づくことを明ら かとした.³⁶⁾

PGE₂ 産生抑制作用は LPS で活性化したマウス の RAW 264.7 細胞を用いて検討した. 化合物 3, 4, 8, 10, 15, 17, 19 の 7 種について作用を検討したとこ ろすべてに抑制活性が認められ, そのうち化合物 19 が IC₅₀ 1.0 µM と最も強い活性を示した. その作 用機序は,炎症,血管透過性亢進,発熱,発痛に関 与しているとされる^{38,39)} PG エンドペルオキシド H

Compound	Cytotoxicity ID ₅₀ (ng/ml)	Anti-HSV-1 activity ED ₅₀ (ng/ml)	The rapeutic index ID_{50}/ED_{50}		
1	14800	6180	2.4		
2	34000	18600	1.8		
3	25200	5600	4.5		
4	365	185	2.0		
5	362	165	2.2		
6	340	88	3.9		
7	5500	3180	1.7		
8	3680	2080	1.8		
9	2200	1140	1.9		
10	285	116	2.5		
11	470	154	3.1		
12	342	196	1.7		
13	2450	890	2.8		
15	21200	19200	1.1		
16	2500	230	10.9		
17	6900	6600	1.0		
18	49100	48000	1.0		
19	2640	655	4.0		
20	8800	970	9.1		

Table 6. Cytotoxicity and Anti-HSV-1 Activity of Phloroglucinol Derivatives

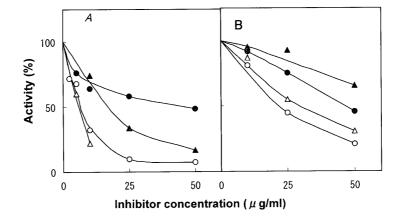


Fig. 4. Effects of Phloroglucinol Derivatives on the Activity of HIV-1 Reverse Transcriptase Reverse transcriptase activity was measured with each of (rA)_n ⋅ (dT)₁₂₋₁₈ (A) and initiated MS-2 phage RNA (B) in the presence of various concentrations of each phloroglucinol derivatives as indicated in figure, by determining the incorporation of [³H] dTMP. The compounds tested and symbols used are: 3 (▲), 4 (○), 7 (△) and 11 (④). The 100% values were 5.8 (A) and 2.7 (B) pmol.

合成酵素 (PGHS)-2 の mRNA 発現を阻害して
 PGHS-2 蛋白の誘導を抑制する機序により, PGE₂
 産生抑制作用が現れるものと結論された.³⁷⁾

サイトカイニン産生抑制作用は TNF-α 及び IL-6 の産生抑制作用で検討した.⁴⁰⁾ TNF-α 抑制作用は化 合物 2-4, 10, 15, 17, 19 の 7 種のうち 2 を除いてす べて濃度依存的に抑制作用を示し,中でも化合物 19 は IC₅₀ 0.7 μM と最も強く,作用は 16 時間継続 的であった.さらに,この作用機序は TNF-α の mRNA 発現を抑制して, TNF-αの産生を抑制する ことによると結論づけた. IL-6の産生抑制作用は 前述の7種のうち2と17を除いてすべて濃度依存 的に抑制作用を示し,中でも化合物19はIC₅₀0.3 μ M と最も強く,作用は16時間継続的でTNF-α抑 制作用と同様の傾向を示し,作用機序もIL-6の mRNA発現を抑制することにより,その産生を抑 制していると考察された.

9. おわりに

アカメガシワ果皮成分の研究は細胞増殖抑制成分 の探索から始まり、その化学成分である phloroglucinol 誘導体をして種々の生理活性研究へ展開し 有意義な成果をもたらした.中でも mallotojaponin (4) は L5178Y 白血病に対し顕著な延命効果を有 し、また、溶連菌免疫賦活剤の OK-432 との併用効 果の有効性を示し、さらに、4 は *in vitro* 及び *in vivo* の発ガンプロモーター抑制活性試験において 顕著な抑制活性があり、抗癌剤あるいは癌の化学予 防剤としての有用性を示している.種々行ったマク ロファージ活性化抑制作用の検討で、isomallotochromanol (19) は著しい抑制活性を示し、消 炎薬としての応用が期待される.

本稿で述べてきたデータは、これらの phloroglucinol 誘導体が抗腫瘍薬、ガン予防薬又は炎症治 療薬などの開発にとって有意義なリード化合物群で あることを示唆している.

謝辞 本稿を纏めるに際し、これまで快く協同 研究して戴いた各研究機関の代表的な協力者の方々 を列挙し、感謝の意を表します。

元金沢大学がん研究所所長 越村三郎先生,京都 府立医科大学 西野輔翼教授,愛知がん研究所 中根 英雄博士,本学薬学部 林利光教授,本学医学部 林 京子博士,日本大学薬学部 北中進教授,埼玉県衛 生研究所 石井里枝博士,第一薬品工業 K.K.研究所 藤田章夫博士.

REFERENCES

- Honma K., J. Agr. Chem. Soc. Jpn., 15, 394– 396 (1939).
- Yoshida T., Seno K., Takama Y., Okuda T., *Phytochemistry*, 21, 1180–1182 (1982).
- 3) Saijo R., Nonaka G., Nishioka I., *Phyto-chemistry*, **28**, 2443–2446 (1989).
- 4) Okuda T., Seno K., *Tetrahedron Lett.*, 139–142 (1978).
- 5) Saijo R., Nonaka G., Nishioka I., Chem. Pharm. Bull., 37, 2063–2070 (1989).
- Saijo R., Nonaka G., Nishioka I., Chen I.-S., Hwang T.-H., *Chem. Pharm. Bull.*, 37, 2940– 2947 (1989).
- 7) Shibata K., Shimokoriyama M., J. Chem.

Soc. Jpn., 20, 36-37 (1949).

- Noda T., Take T., Watanabe T., Abe J., Bull. Chem. Soc. Jpn., 43, 2174–2176 (1970).
- 9) Suga T., Shishibori T., Nakaya K., *Phyto-chemistry*, **19**, 232–233 (1980).
- Schmidt O., Komarek E., Justus Liebigs Ann. Chem., 591, 156-176 (1955).
- 11) Shigematsu N., Kouno I., Kawano N., *Phytochemistry*, **22**, 323–325 (1983).
- 12) Okabe K., Inoue K., Yamauchi T., Chem. Pharm. Bull., 24, 108–113 (1976).
- 13) Okabe K., Yamauchi T., *Chem. Pharm. Bull.*,
 24, 2886–2888 (1976).
- 14) Arisawa M., Natural Medicines, 48, 338–347 (1994).
- Arisawa M., Nimura M., Ikeda A., Hayashi T., Morita N., Momose Y., Takeda R., Nakanishi S., *Planta Medica*, 52, 38-41 (1986).
- Arisawa M., Nimura M., Fujita A., Hayashi T., Morita N., Koshimura S., *Planta Medica*, 52, 297–299 (1986).
- Arisawa M., Ohmura K., Kobayashi A., Morita N., *Chem. Pharm. Bull.*, **37**, 2431–2434 (1989).
- 18) Arisawa M., Hayashi T., Shimizu M., Morita N., Bai H., Kuze S., Ito Y., *J. Nat. Prod.*, 54, 898–901 (1991).
- Arisawa M., Bai H., Shimizu S., Koshimura S., Tanaka M., Sasaki T., Morita N., *Chem. Pharm. Bull.*, 40, 3274–3276 (1992).
- Arisawa M., Takeshima Y., Bai H., Hayashi T., Morita N., Shoyakugaku Zasshi, 47, 334– 337 (1993).
- 21) Arisawa M., Fujita A., Morita N., J. Nat. Prod., 53, 638-643 (1990).
- 22) Kouno I., Shigematsu N., Iwagami M., Kawano N., *Phytochemistry*, **24**, 620–621 (1985).
- Arisawa M., Fujita A., Suzuki R., Hayashi T., Morita N., Kawano N., Koshimura S., *J. Nat. Prod.*, 48, 455–459 (1985).
- Arisawa M., Fujita A., Saga M., Hayashi T., Morita N., Kawano N., Koshimura S., *J. Nat. Prod.*, 49, 298–302 (1986).
- 25) Arisawa M., Fujita A., Hayashi T., Hayashi K., Ochiai H., Morita N., *Chem. Pharm. Bull.*, 38, 1624–1626 (1990).
- Fujita A., Hayashi T., Arisawa M., Shimizu M., Morita N., Kikuchi T., Tezuka Y., J. Nat.

224

Prod., **51**, 708–812 (1988).

- 27) Arisawa M., Fujita A., Hayashi T., Morita N., Kikuchi T., Tezuka Y., *Chem. Pharm. Bull.*, 38, 698–700 (1990).
- 28) Smith C. G., Lummis W. L., Grady J. E., Cancer Res., 19, 843-846, 847-853 (1959).
- 29) Grady J. E., Lummis W. L., Smith C. G., Cancer Res., 20, 1114–1117 (1960).
- Mosmann T., J. Immunol. Method, 65, 55–63 (1983).
- 31) Scudiero D. A., Shoemaker R. H., Paull K. D., Monks A., Tierney S., Nofzinger T. H., Currens M. J., Seniff D., Boyd M. R., *Cancer Res.*, 48, 4827–4833 (1988).
- 32) Arisawa M., Fujita A., Morita N., Koshimura
 S., *Planta Medica*, 56, 377–379 (1990).
- 33) Arisawa M., Fujita A., Morita N., Okuyama T., Nishino H., J. Nat. Prod., 54, 1409–1412 (1991).
- 34) Satomi Y., Arisawa M., Nishino H., Iwashima

A., Oncology, 51, 215-219 (1994).

- 35) Nakane H., Arisawa M., Fujita A., Koshimura S., Ono K., FEBS Lett., 286, 83-85 (1991).
- Ishii R., Horie M., Saito K., Arisawa M., Kitanaka S., *Biochim. Biophys. Acta*, **1568**, 74 -82 (2001).
- 37) Ishii R., Horie M., Saito K., Arisawa M., Kitanaka S., *Biochim. Biophys. Acta*, 1571, 115-123 (2002).
- Vane J. R., Mitchell J. A., Appleton I., Tomlinson A., Bishop-Bailey D., Croxtall J., Willoughby A. D., Proc. Natl. Acad. Sci. U.S.A., 91, 2046–2050 (1994).
- Crofford L. J., Wilder R. L., Ristimaki A. P., Sano H., Remmers E. F., Epps H. R., Hla T., *J. Clin. Invest.*, 93, 1095–1101 (1994).
- 40) Ishii R., Horie M., Saito K., Arisawa M., Kitanaka S., *Biochim. Biophys. Acta*, 1620, 108-118 (2003).