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Abstract

We consider full-truthful Nash implementation, which requires truth
telling by each agent to be a Nash equilibrium of a direct revelation mech-
anism, and every Nash equilibrium outcome of the mechanism to be f -
optimal. We show that restricted monotonicity plus an auxiliary condition
is necessary and sufficient for full-truthful Nash implementation, and that
full-truthful Nash implementation is equivalent to secure implementation
(Saijo et al. (2007)). The equivalence gives us an alternative characteri-
zation of securely implementable social choice functions in terms of re-
stricted monotonicity.

Keywords: Restricted Monotonicity, A Direct Revelation Mechanism, Nash
Implementation, Secure Implementation, Truthful Implementation.
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1 Introduction

The implementation problem is that a mechanism designer, who cannot ob-
serve the true preferences of each agent, devises a mechanism whose equilib-
rium outcomes always coincide with the social goal given by a social choice cor-
respondence. The Nash equilibrium concept has often been used as an equilib-
rium concept in complete information environments, where each agent knows
not only own true preferences but also the true preferences of every other agent,
while the mechanism designer cannot observe agents’ true preferences. In the
seminal paper on Nash implementation, Maskin (1999) showed that monotonic-
ity is necessary for Nash implementation, and that monotonicity plus no veto
power is sufficient for Nash implementation when there are three or more agents.
The gap between necessity and sufficiency for Nash implementation has subse-
quently been closed by Moore and Repullo (1990), Dutta and Sen (1991), Sjöström
(1991), etc.

However, the positive results listed above rely on complicated mechanisms
used in the constructive proofs, where agents are often forced to announce an
outcome, an integer, etc. in addition to a preference profile. Such mechanisms
have been criticized not only for practicability but also for a theoretical reason.
For example, Jackson (1992) criticized such mechanisms for employing an inte-
ger game, because mechanisms involving the integer game fail to satisfy the best
response property regardless of the use of the Nash equilibrium concept.

In response to the criticisms, we consider Nash implementation by a direct
revelation mechanism, i.e., a simple mechanism where agents are required to
report own preferences only.1 Much attention has focused on direct revelation
mechanisms from a practical perspective as well as a theoretical viewpoint, in
particular in designing matching mechanisms. For example, Roth (1984) ana-
lyzed a direct revelation mechanism used for the National Resident Matching
Program, Abdulkadiroğlu and Sönmez (2003) studied direct revelation mecha-
nisms for school choice, and Roth et al. (2004) proposed direct revelation mech-
anisms for kidney exchange. Moreover, direct revelation mechanisms satisfy
self-relevancy (Hurwicz (1960)), the informational decentralization requirement
that each agent should be asked to reveal information about only herself.2 How-
ever, Nash implementation by direct revelation mechanisms has received much
less attention.

Nevertheless, in this paper, we restrict attention to full Nash implementa-
tion by a direct revelation mechanism where truth telling by each agent is a

1In complete information environments, it might be natural to require that agents should an-
nounce a preference profile, i.e., own preferences plus all other agents’ preferences, since agents
can observe the preference profile. However, the requirement is not imposed on mechanisms
considered in this paper. We leave as an open question the characterization of social choice func-
tions that are Nash implemented by mechanisms satisfying the requirement.

2Tatamitani (2001) considered Nash implementation by self-relevant mechanisms, where each
agent is required to announce own preferences plus an outcome and an agent index.
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Nash equilibrium of the mechanism, which we call full-truthful Nash imple-
mentation. The restriction would narrow the class of Nash implementable so-
cial choice functions. In fact, the class of fully-truthfully Nash implementable
social choice functions is limited to the class smaller than that of truthfully Nash
implementable social choice functions, which is equivalent to that of truthfully
dominant strategy implementable social choice functions.

However, the requirement that truthful revelation by each agent should be a
Nash equilibrium of a direct revelation mechanism would be acceptable from a
theoretical point of view: if a direct revelation mechanism satisfies the require-
ment, then it satisfies the best response property. Moreover, the requirement
would be attractive from a practical standpoint. If there are multiple equilib-
ria in a direct revelation mechanism violating the requirement, then it would be
hard for agents to predict each others’ actions, which could lead to miscoordi-
nation.3 But, since each agent knows the other agents’ true preferences in com-
plete information environments, if truthful reporting by each agent is a Nash
equilibrium of the mechanism, then the truthful Nash equilibrium would be-
come a focal point (Schelling (1960)), and so agents would be able to coordinate
their actions.

One might guess that it is enough to consider not full-truthful Nash imple-
mentation but truthful Nash implementation, if the truthful Nash equilibrium
of a direct revelation mechanism becomes a focal point. However, when consid-
ering truthful Nash implementation, the truthful Nash equilibrium of the mech-
anism could not serve as a focal point.4 This implies that the truthful Nash equi-
librium outcome could not be achieved in practice even if truthful Nash imple-
mentation is possible. So, full-truthful Nash implementation needs to be stud-
ied.

To make practical use of a mechanism that is theoretically constructed for
Nash implementation, it is important to pay attention to the possibility that
agents fail to coordinate their actions. This is because coordination failure could
arise if the mechanism possesses multiple equilibria, as mentioned above and
demonstrated in coordination game experiments (e.g., see Camerer (2003)). In a
mechanism with a focal point, however, agents would be able to coordinate their
actions even if the mechanism has multiple equilibria. This paper thinks about
Nash implementation by a mechanism designed for the purpose of preventing
miscoordination.5 This paper examines a necessary and sufficient condition for
Nash implementation by a “nice” mechanism, which is in contrast to the one

3See Example 1 in Section 3.1 for more details.
4See footnote 9 for more details.
5In addition to thinking of Nash implementation using the idea of a focal point, another way of

avoiding miscoordination is to consider implementation using refinements of Nash equilibrium.
For example, implementation in undominated Nash equilibria was considered by Palfrey and Sri-
vastava (1991), Jackson et al. (1994), Sjöström (1994), etc. However, miscoordination could still
occur if there are multiple undominated Nash equilibria in a mechanism constructed for undom-
inated Nash implementation.
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devised by Maskin (1999).
This paper relates to one by Saijo et al. (2007), who identified a condition

necessary and sufficient for secure implementation, i.e., double implementation
in dominant strategy equilibria and Nash equilibria. We, and independently
Saijo et al. (2007), show the equivalence of full-truthful Nash implementation
and secure implementation. The equivalence tells us that a direct revelation
mechanism satisfying the requirement of truthful revelation by each agent be-
ing a Nash equilibrium of the mechanism is robust with respect to the equilib-
rium concept: the mechanism can implement a social choice function not only
in Nash equilibria but also in dominant strategy equilibria. The equivalence also
indicates that secure implementation, too, has the advantage that agents would
be able to coordinate their actions even if a mechanism used in practice has
multiple equilibria. Moreover, the equivalence gives us an alternative character-
ization of securely implementable social choice functions (Corollary 1). Thus,
the equivalence sheds new light on the structure of secure implementation.

This paper is organized as follows. Section 2 provides notation and defini-
tions. We introduce the revelation principle for full-truthful Nash implementa-
tion in Section 3.1, and study the relationship of full-truthful Nash implemen-
tation to secure implementation in Section 3.2. In Section 4, we identify a nec-
essary and sufficient condition for full-truthful Nash implementation. Section 5
contains some concluding remarks.

2 Notation and Definitions

Let N := {1,2, . . . ,n} be the set of agents, where 2 ≤ n < +∞. Let A be the set of
feasible outcomes.

Each agent i ∈ N has preferences over A, which are represented by a complete
and transitive binary relation Ri . The strict preference relation and indifference
relation associated with Ri are denoted by Pi and Ii , respectively. Let Ri de-
note the set of possible preferences for agent i ∈ N . The domain is denoted by

R :=R1×R2×·· ·×Rn . A preference profile is a list R = (R1,R2, . . . ,Rn) ∈R. It is
assumed that each agent can observe not only her own preferences but also all
other agents’ preferences.

An environment is a collection (N , A,R).
Let LCi (a;Ri ) := {b ∈ A | a Ri b } be agent i ’s lower contour set of a ∈ A at Ri ∈

Ri . For each i ∈ N , let MEi (Ā;Ri ) := {
a ∈ Ā

∣∣ a Ri b for all b ∈ Ā
}

be the set of
maximal elements in Ā ⊆ A at Ri ∈Ri .6

A social choice function is a single-valued function f : R → A that assigns a
feasible outcome a ∈ A to each preference profile R ∈ R. Given a social choice
function f , let Oi (R) := {

a ∈ A
∣∣ a = f (R ′

i ,R−i ) for some R ′
i ∈Ri

}
be agent i ’s op-

tion set at R ∈ R. Note that Oi (R) = Oi (R ′
i ,R−i ) for all R ∈ R, all i ∈ N , and all

R ′
i ∈Ri .

6Note that MEi (Ā;Ri ) may be empty.
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Let Mi denote a message space of agent i ∈ N . We call mi ∈ Mi a message of
agent i ∈ N . A mechanism is a pair Γ = (M , g ), where M := M1 × M2 × ·· · × Mn

and g : M → A is an outcome function. A mechanism (M , g ) is called a direct
revelation mechanism if Mi =Ri for all i ∈ N . Given a social choice function f ,
a mechanism (M , g ) is called the associated direct revelation mechanism if Mi =
Ri for all i ∈ N and g = f . A message profile is denoted by m = (m1,m2, . . . ,mn) ∈
M .

A message profile m∗ = (m∗
1 ,m∗

2 , . . . ,m∗
n) ∈ M is a Nash equilibrium of a

mechanism (M , g ) at R ∈ R if, for any i ∈ N , g (m∗
i ,m∗

−i ) Ri g (m′
i ,m∗

−i ) for any
m′

i ∈ Mi . Let NEΓ(R) ⊆ M denote the set of Nash equilibria of a mechanism
Γ = (M , g ) at R ∈ R. A message profile m∗ = (m∗

1 ,m∗
2 , . . . ,m∗

n) ∈ M is a dom-
inant strategy equilibrium of a mechanism (M , g ) at R ∈ R if, for any i ∈ N ,
g (m∗

i ,m′
−i ) Ri g (m′

i ,m′
−i ) for any m′

i ∈ Mi and any m′
−i ∈ M−i . Let DSEΓ(R) ⊆ M

be the set of dominant strategy equilibria of a mechanism Γ= (M , g ) at R ∈R.
Let E -equilibrium be a game theoretic equilibrium concept. Let g (E Γ(R)) :={

a ∈ A
∣∣ a = g (m) for some m ∈ E Γ(R)

}
denote the set of E -equilibrium outcomes

of a mechanism Γ = (M , g ) at R ∈ R, where E Γ(R) ⊆ M denotes the set of E -
equilibria of the mechanism at R ∈ R. A mechanism Γ = (M , g ) implements a
social choice function f in E -equilibria (or E -implements f ) if g (E Γ(R)) = f (R)
for any R ∈R.7 A social choice function is E -implementable (or implementable
in E -equilibria) if there exists a mechanism that E -implements it. A direct reve-
lation mechanism Γ= (R, g ) truthfully implements a social choice function f in

E -equilibria if R ∈ E Γ(R) and g (R) = f (R) for any R ∈ R.8 A social choice func-
tion is truthfully E -implementable if there exists a direct revelation mechanism
which truthfully E -implements it.

A social choice function is directly implementable in Nash equilibria if there
exists a direct revelation mechanism which Nash implements it. A direct revela-
tion mechanism Γ = (R, g ) fully-truthfully implements a social choice function
f in Nash equilibria if R ∈ NEΓ(R) and g (NEΓ(R)) = f (R) for any R ∈R. A social
choice function is fully-truthfully Nash implementable if there exists a direct rev-
elation mechanism which fully-truthfully Nash implements it.

3 Preliminary Results

3.1 The Revelation Principle

We begin by introducing the revelation principle for full-truthful Nash imple-
mentation, which tells us that the class of social choice functions that are fully-
truthfully implementable in Nash equilibria is equivalent to that of social choice
functions which can be fully-truthfully Nash implemented by the associated di-
rect revelation mechanisms.

7To simplify notation, we write f (R) instead of
{

f (R)
}
.

8As we focus on social choice functions, truthful E -implementation can be defined as R ∈
E Γ(R) and g (R) = f (R) for any R ∈R, instead of as R ∈ E Γ(R) and g (R) ∈ f (R) for any R ∈R.
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Fact 1 (The Revelation Principle for Full-Truthful Nash Implementation). A
social choice function is fully-truthfully implementable in Nash equilibria if and
only if it is fully-truthfully implemented in Nash equilibria by the associated di-
rect revelation mechanism.

The following example demonstrates that if we give up the requirement of
truthful revelation by each agent being a Nash equilibrium of a direct revelation
mechanism, then there is a social choice function that is directly Nash imple-
mentable but cannot be Nash implemented by the associated direct revelation
mechanism.

Example 1. Consider an environment (N , A,R) such that #N = 2, A = {a,b,c},

R = {R1, R̄1}×{R2, R̄2}, and a Pi b Pi c and c P̄i a P̄i b for all i ∈ N . A social choice
function f is given as follows.

R2 R̄2

f = a a R1

a c R̄1

Then, f cannot be Nash implemented by the associated direct revelation
mechanism Γ= (R, f ) (although it can be truthfully implemented in Nash equi-
libria byΓ). This is because f (NEΓ(R̄1, R̄2)) = {a,c} 6= {c} = f (R̄1, R̄2), since NEΓ(R̄1, R̄2) ={
(R1,R2), (R̄1, R̄2)

}
.

However, another direct revelation mechanism Γ̄ = (R, g ) can Nash imple-
ment f , where g is defined below.

R2 R̄2

g = c a R1

a b R̄1

Since NEΓ̄(R1,R2) = {
(R1, R̄2), (R̄1,R2)

}
, NEΓ̄(R1, R̄2) = {

(R̄1,R2)
}
, NEΓ̄(R̄1,R2) ={

(R1, R̄2)
}
, and NEΓ̄(R̄1, R̄2) = {(R1,R2)}, we have g (NEΓ̄(R1,R2)) = {a} = f (R1,R2),

g (NEΓ̄(R1, R̄2)) = {a} = f (R1, R̄2), g (NEΓ̄(R̄1,R2)) = {a} = f (R̄1,R2), and g (NEΓ̄(R̄1, R̄2)) =
{c} = f (R̄1, R̄2), respectively. Thus, f can be Nash implemented by Γ̄, although it
cannot be Nash implemented by the associated direct revelation mechanism.

However, it should be noted that truth telling by each agent is never a Nash
equilibrium of Γ̄ (whereas it is always a Nash equilibrium of Γ). So, as mentioned
in the introduction, coordination failure could occur when Γ̄ possesses multiple
equilibria. In fact, when the true preference profile is R, Γ̄ has two Nash equi-
libria, (R1, R̄2) and (R̄1,R2). It would be difficult for agents to coordinate their
actions in Γ̄ at R, partly because agents are indifferent between Nash equilib-
rium outcomes g (R1, R̄2) and g (R̄1,R2) since the equilibrium outcomes are the
same by full implementability. However, since each agent knows with certainty
every other agent’s true preferences, and since all Nash equilibrium outcomes
are the same by full implementability, if truthful revelation by each agent is a
Nash equilibrium of Γ̄, then the truthful Nash equilibrium would be salient, and
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so it would serve as a focal point.9 Thus, although Γ̄ can Nash implement f , it
would not be so attractive from a practical viewpoint.10 ■

3.2 The Relationship to Secure Implementation

In this subsection, we explore the relationship of full-truthful Nash implementa-
tion to secure implementation (Saijo et al. (2007)), which is identical with double
implementation in dominant strategy equilibria and Nash equilibria. A mecha-
nism Γ = (M , g ) securely implements a social choice function f if g (DSEΓ(R)) =
g (NEΓ(R)) = f (R) for any R ∈ R. A social choice function is securely imple-
mentable if there exists a mechanism which securely implements it.

Lemma 1 below stems mainly from Proposition 1 (Dasgupta et al. (1979)).

Lemma 1. A social choice function f is securely implemented by the associated
direct revelation mechanism if and only if it is fully-truthfully Nash implemented
by the associated direct revelation mechanism.

Proposition 1 (Dasgupta et al. (1979)). A social choice function is truthfully im-
plemented in Nash equilibria by a direct revelation mechanism if and only if it is
truthfully implemented in dominant strategy equilibria by the same direct reve-
lation mechanism.

Proof of Lemma 1. Let Γ= (R, f ) denote the associated direct revelation mech-
anism.

9When considering truthful Nash implementation, the truthful Nash equilibrium of a direct
revelation mechanism could not be salient, and so it could not be a focal point. This is because,
when considering not full-truthful Nash implementation but truthful Nash implementation, the
mechanism often has an untruthful Nash equilibrium too, whose outcome is not the same as the
truthful Nash equilibrium outcome since full-truthful Nash implementation is impossible. Re-
call that the truthful Nash equilibrium is highlighted since all Nash equilibrium outcomes are the
same by full implementability. In fact, the truthful Nash equilibrium would not be highlighted
if a direct revelation mechanism has an untruthful Nash equilibrium outcome that Pareto dom-
inates the truthful Nash equilibrium outcome. See also Moore and Repullo (1988) for a similar
discussion.

10A direct revelation mechanism Γ̂= (R, g ) can also Nash implement f , where g is as follows.

R2 R̄2

g = a c R1
b a R̄1

This is because NEΓ̂(R1,R2) = {
(R1,R2), (R̄1, R̄2)

}
, NEΓ̂(R1, R̄2) = {

(R̄1, R̄2)
}
, NEΓ̂(R̄1,R2) =

{(R1,R2)}, and NEΓ̂(R̄1, R̄2) = {
(R1, R̄2)

}
. Similar to Γ̄, indeed, truthful reporting by each agent

is not always a Nash equilibrium of Γ̂. But, it is a Nash equilibrium whenever Γ̂ has multiple
equilibria. So, since the truthful Nash equilibrium would become a focal point, miscoordination
would not arise in Γ̂ at R, which is in contrast to Γ̄. Thus, a direct revelation mechanism where
truth telling by each agent is a Nash equilibrium of it whenever it has multiple equilibria would
be appealing from a practical standpoint. This paper leaves open the question of what condition
is necessary and sufficient for Nash implementation by such a mechanism.

8



The if part. Since f is fully-truthfully Nash implemented by Γ, R ∈ NEΓ(R)
and f (NEΓ(R)) = f (R) for all R ∈ R. So, since f is truthfully Nash implemented
by Γ, Proposition 1 implies that it is truthfully dominant strategy implemented
by Γ: R ∈ DSEΓ(R) for all R ∈ R. This implies R ∈ DSEΓ(R) ⊆ NEΓ(R) for all R ∈
R. Hence, f (R) ∈ f (DSEΓ(R)) ⊆ f (NEΓ(R)) for all R ∈ R. Thus, f (DSEΓ(R)) =
f (NEΓ(R)) = f (R) for all R ∈R, because f (NEΓ(R)) = f (R) for all R ∈R.

The only if part. Since f is securely implemented byΓ, f (DSEΓ(R)) = f (NEΓ(R)) =
f (R) for all R ∈R. So, the revelation principle for dominant strategy implemen-
tation implies R ∈ DSEΓ(R) for all R ∈ R, implying R ∈ DSEΓ(R) ⊆ NEΓ(R) for all
R ∈R. Thus, f is fully-truthfully Nash implemented by Γ.

Lemma 1 together with Fact 1 and the revelation principle for secure imple-
mentation (Saijo et al. (2007)) leads to the following equivalence of full-truthful
Nash implementation and secure implementation,11 which sheds another light
on the structure of secure implementation.

Fact 2. A social choice function is securely implementable if and only if it is fully-
truthfully Nash implementable.

4 Characterizations

In this section, we seek to characterize social choice functions which are fully-
truthfully implementable in Nash equilibria. Invoking the revelation principle
for full-truthful Nash implementation, we restrict attention to the associated di-
rect revelation mechanisms. We begin by identifying a condition, which is nec-
essary for full-truthful Nash implementation by the associated direct revelation
mechanisms.

Restricted monotonicity is a version of monotonicity12 (Maskin (1999)), which
requires the following. Suppose a change from R ∈ R to R ′ ∈ R. Then, for each
agent i ∈ N , if any outcome that was weakly worse for her than f (R) in her op-
tion set at R when her preferences are Ri remains weakly worse for her than f (R)
when her preferences are R ′

i , then f (R) must still be f -optimal at R ′.

Definition 1 (Restricted Monotonicity). A social choice function f satisfies re-
stricted monotonicity if, for all R,R ′ ∈ R, if LCi ( f (R);Ri )∩Oi (R) ⊆ LCi ( f (R);R ′

i )
for all i ∈ N , then f (R ′) = f (R).

Remark 1. Restricted monotonicity is stronger than monotonicity by definition.

The following lemma states that restricted monotonicity is necessary for full-
truthful implementation in Nash equilibria by the associated direct revelation
mechanisms.

11The same equivalence has been obtained independently by Saijo et al. (2007).
12A social choice function f satisfies monotonicity if, for all R,R ′ ∈ R, if LCi ( f (R);Ri ) ⊆

LCi ( f (R);R ′
i ) for all i ∈ N , then f (R ′) = f (R).
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Lemma 2. If a social choice function f is fully-truthfully implemented in Nash
equilibria by the associated direct revelation mechanism, then it satisfies restricted
monotonicity.

Proof. Let Γ = (R, f ) denote the associated direct revelation mechanism. Pick
any R, R̄ ∈R such that LCi ( f (R);Ri )∩Oi (R) ⊆ LCi ( f (R); R̄i ) for all i ∈ N . Since f
is fully-truthfully implemented in Nash equilibria by Γ, we have R ∈ NEΓ(R).

Since R ∈ NEΓ(R), it follows that for all i ∈ N , f (R) Ri f (R ′
i ,R−i ) for all R ′

i ∈
Ri . This implies f (R) ∈ MEi (Oi (R);Ri ) for all i ∈ N . So, LCi ( f (R);Ri )∩Oi (R) =
Oi (R) for all i ∈ N .

Thus, since LCi ( f (R);Ri )∩Oi (R) ⊆ LCi ( f (R); R̄i ) for all i ∈ N , we have Oi (R) ⊆
LCi ( f (R); R̄i ) for all i ∈ N . So, for all i ∈ N , f (R) R̄i f (R ′

i ,R−i ) for all R ′
i ∈ Ri ,

implying R ∈ NEΓ(R̄). Hence, f (R) ∈ f (NEΓ(R̄)), whereas f (NEΓ(R̄)) = f (R̄) be-
cause f is fully-truthfully Nash implemented by Γ. Thus, f (R) ∈ f (NEΓ(R̄)) =
f (R̄). This implies f (R̄) = f (R), since f is a single-valued function.

We are now ready to characterize fully-truthfully implementable social choice
functions in Nash equilibria. Theorem 1 below says that restricted monotonicity
together with an auxiliary condition called individual maximality is both nec-
essary and sufficient for full-truthful Nash implementation. It should be noted
that Theorem 1 holds even when n = 2.

Definition 2 (Individual Maximality). A social choice function f satisfies indi-
vidual maximality if, for all R ∈R, MEi (Oi (R);Ri ) 6= ; for all i ∈ N .

Remark 2. As we focus on Nash implementation by the associated direct revela-
tion mechanisms, imposing individual maximality on a social choice function is
equivalent to requiring the associated direct revelation mechanism to satisfy the
best response property13 (Jackson et al. (1994)). As mentioned by Jackson et al.
(1994), the best response property would be an appropriate restriction in order
for the Nash equilibrium concept to make sense. Theorem 1 shows that the re-
striction is not only part of the sufficient condition but also part of the necessary
condition for a social choice function to be fully-truthfully Nash implementable.

Theorem 1. A social choice function f is fully-truthfully implementable in Nash
equilibria if and only if it satisfies restricted monotonicity and individual maxi-
mality.

Proof. Let Γ= (R, f ) denote the associated direct revelation mechanism.

The if part. Step 1: f (R) ∈ MEi (Oi (R);Ri ) for all R ∈R and all i ∈ N .

Suppose to the contrary that f (R) 6∈ MEi (Oi (R);Ri ) for some R ∈R and some i ∈
N . Let b ∈ A be such that b ∈ MEi (Oi (R);Ri ).14 Then, b 6= f (R). Since b ∈ Oi (R),
b = f (R̄i ,R−i ) for some R̄i ∈Ri .

13A mechanism (M , g ) satisfies the best response property if, for all R ∈ R, all i ∈ N , and all
m−i ∈ M−i , there exists mi ∈ Mi such that g (mi ,m−i ) Ri g (m′

i ,m−i ) for all m′
i ∈ Mi .

14It should be noted that MEi (Oi (R);Ri ) 6= ; by individual maximality.
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Since f (R̄i ,R−i ) = b ∈ MEi (Oi (R);Ri ), we have LCi ( f (R̄i ,R−i );Ri )∩Oi (R) =
Oi (R). Since LCi ( f (R̄i ,R−i ); R̄i )∩Oi (R) ⊆Oi (R) and LCi ( f (R̄i ,R−i );Ri )∩Oi (R) =
Oi (R), we obtain LCi ( f (R̄i ,R−i ); R̄i )∩Oi (R) ⊆Oi (R) = LCi ( f (R̄i ,R−i );Ri )∩Oi (R).
Hence, it follows from Oi (R) =Oi (R̄i ,R−i ) that LCi ( f (R̄i ,R−i ); R̄i )∩Oi (R̄i ,R−i ) ⊆
LCi ( f (R̄i ,R−i );Ri )∩Oi (R̄i ,R−i ). Thus, we have LCi ( f (R̄i ,R−i ); R̄i )∩Oi (R̄i ,R−i ) ⊆
LCi ( f (R̄i ,R−i );Ri )∩Oi (R̄i ,R−i ) ⊆ LCi ( f (R̄i ,R−i );Ri ). So, since LC j ( f (R̄i ,R−i );R j )∩
O j (R̄i ,R−i ) ⊆ LC j ( f (R̄i ,R−i );R j ) for all j 6= i , restricted monotonicity implies
f (R) = f (R̄i ,R−i ), which contradicts f (R) 6= b = f (R̄i ,R−i ).

Step 2: f satisfies strategy-proofness.15

Since f (R) ∈ MEi (Oi (R);Ri ) for all R ∈ R and all i ∈ N by Step 1, it follows that
f (R) Ri f (R ′

i ,R−i ) for all R ∈ R, all i ∈ N , and all R ′
i ∈ Ri . Thus, f satisfies

strategy-proofness.

Step 3: f is fully-truthfully Nash implementable.

Pick any R ∈ R. Since f satisfies strategy-proofness by Step 2, R ∈ DSEΓ(R),
implying R ∈ NEΓ(R).

Suppose R̄ ∈ NEΓ(R). Then, for any i ∈ N , f (R̄) Ri f (R ′
i , R̄−i ) for any R ′

i ∈Ri .
This implies f (R̄) ∈ MEi (Oi (R̄);Ri ) for all i ∈ N , implying LCi ( f (R̄);Ri )∩Oi (R̄) =
Oi (R̄) for all i ∈ N . Since LCi ( f (R̄); R̄i )∩Oi (R̄) ⊆Oi (R̄) and LCi ( f (R̄);Ri )∩Oi (R̄) =
Oi (R̄) for all i ∈ N , we have LCi ( f (R̄); R̄i )∩Oi (R̄) ⊆Oi (R̄) = LCi ( f (R̄);Ri )∩Oi (R̄)
for all i ∈ N . This implies LCi ( f (R̄); R̄i )∩Oi (R̄) ⊆ LCi ( f (R̄);Ri )∩Oi (R̄) ⊆ LCi ( f (R̄);Ri )
for all i ∈ N . Therefore, restricted monotonicity implies f (R) = f (R̄). So, f (R) =
f (R̄) for any R̄ ∈ NEΓ(R). This implies f (NEΓ(R)) = f (R). Thus, f (NEΓ(R)) =
f (R) for all R ∈R.

The only if part. By Fact 1, if f is fully-truthfully Nash implementable, then it
is fully-truthfully Nash implemented by Γ. So, Lemma 2 implies that f satisfies
restricted monotonicity.

Since f is fully-truthfully Nash implemented by Γ, it follows that R ∈ NEΓ(R)
for all R ∈ R. So, for all R ∈ R and all i ∈ N , f (R) Ri f (R ′

i ,R−i ) for all R ′
i ∈ Ri .

Hence, for all R ∈ R, f (R) ∈ MEi (Oi (R);Ri ) for all i ∈ N . Thus, f satisfies indi-
vidual maximality.

Corollary 1 below follows directly from Fact 2 and Theorem 1.

Corollary 1. A social choice function is securely implementable if and only if it
satisfies restricted monotonicity and individual maximality.

Corollary 1 provides an alternative characterization of securely implementable
social choice functions. In contrast to the characterization by Saijo et al. (2007),
our characterization has the advantage of using a version of monotonicity, a
well-known property in implementation theory.

15A social choice function f satisfies strategy-proofness if, for all R ∈R and all i ∈ N , there is no
R ′

i ∈Ri such that f (R ′
i ,R−i ) Pi f (R).
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We end this section by briefly discussing in certain environments the redun-
dancy of individual maximality in characterizing fully-truthfully Nash imple-
mentable social choice functions. The following is due to Dasgupta et al. (1979).

Proposition 2 (Dasgupta et al. (1979)). Suppose that R is rich.16 Then, if a social
choice function satisfies monotonicity, then it satisfies strategy-proofness.

Proposition 2 together with Remark 1 implies that restricted monotonicity
implies strategy-proofness if R is rich. So, restricted monotonicity implies indi-
vidual maximality if R is rich. In addition, if A is finite, then individual maximal-
ity is automatically satisfied by the completeness and transitivity of preferences
regardless of whether or not R is rich. Thus, we have the following corollary.

Corollary 2. Suppose that either (i) A is finite or (ii) R is rich. Then, a social
choice function is fully-truthfully Nash implementable (or securely implementable)
if and only if it satisfies restricted monotonicity.

5 Conclusion

In this paper, we have shown that restricted monotonicity together with individ-
ual maximality is both necessary and sufficient for full-truthful Nash implemen-
tation. By showing the equivalence of full-truthful Nash implementation and
secure implementation, we have also provided an alternative characterization
of securely implementable social choice functions. Our characterization shines
new light on the structure of securely implementable social choice functions in
terms of restricted monotonicity.

This paper has considered Nash implementation by a “nice” mechanism,
which is in contrast to the one devised by Maskin (1999). It is true that the re-
quirement of truth telling by each agent being a Nash equilibrium of a direct
revelation mechanism is appealing. But, as demonstrated in Example 1, the
requirement restricts the class of social choice functions that are Nash imple-
mented by direct revelation mechanisms. Direct revelation mechanisms have
been received a great deal of attention in practical mechanism design, particu-
larly in the design of matching mechanisms. So, an interesting topic for further
research would be to identify a necessary and sufficient condition for Nash im-
plementation by a different direct revelation mechanism in which agents can
coordinate their actions.

16A domain R is rich (Dasgupta et al. (1979)) if, for any i ∈ N , any Ri ,R ′
i ∈Ri , and any a,b ∈ A,

if (i) a Ri b implies a R ′
i b and (ii) a Pi b implies a P ′

i b, then there exists R ′′
i ∈ Ri such that

LCi (a;Ri ) ⊆ LCi (a;R ′′
i ) and LCi (b;R ′

i ) ⊆ LCi (b;R ′′
i ). Examples of rich domains are found in Das-

gupta et al. (1979).
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