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Abstract

There are many existing methods for algorithm improvement, and this paper focuses

on two methods: hybridization and selection operator. In hybridization, spherical

search (SS) is the one of newest proposed meta-heuristic algorithms. SS performs

search effectively in exploration, but due to the lack of local exploitation ability, it

converges slowly and can’t exploit the small region around the current promising so-

lution. This paper proposes a novel optimization algorithm, namely SSGSA, which

is inherited from the SS and gravitational search algorithm (GSA) to combine the

effective exploration and exploitation of each algorithm, respectively. To evaluate the

effectiveness of SSGSA, we compared it with the original SS, original GSA, parti-

cle swarm optimization, and whale optimization algorithm on the IEEE CEC 2017

benchmark function suit. Experimental results show that the proposed new method

outperforms its competitors in terms of convergence speed and solution accuracy. In

selection operator, wind driven optimization (WDO) is a meta-heuristic algorithm

based on swarm intelligence. The original selection method makes it easy to converge

prematurely and trap in local optima. Maintaining population diversity can solve this

problem well. Therefore, we introduce a new fitness-distance balance-based selection

strategy to replace the original selection method, and add chaotic local search with

selecting chaotic map based on memory to further improve the search performance

of the algorithm. A chaotic wind driven optimization with fitness-distance balance

strategy is proposed, called CFDBWDO. In the experimental section, we find the

optimal parameter settings for the proposed CFDBWDO. In order to verify the effect
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of the CFDBWDO, we conduct comparative experiments on the CEC 2017 bench-

mark functions. The experimental results denote that the proposed CFDBWDO has

superior performance. Compared with WDO, CFDBWDO can gradually converge in

function optimization. We further verify the practicality of the proposed CFDBWDO

with six real-world optimization problems, and the obtained results are all better than

other algorithms.
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Chapter 1

Introduction

Nature can be regarded as a huge ecosystem with a large number of subsystems [1–3].

These self-contained environments have existed on the earth for millions of years.

Through millions of years of accumulation and evolution, nature has become the

largest information resource library on the earth, bringing unparalleled inspiration

and strength to many scientists engaged in scientific research [4, 5]. In the past

forty years, researchers have drawn inspiration from various biological systems and

the behavioral characteristics of various organisms in biological systems, and pro-

posed many biological heuristic models, and used these models to develop many

versatile optimization methods, including meta-heuristic algorithms [6, 7]. Since the

early 1970s, many proven effective evolutionary methods [8–10] have been proposed.

For example, ant colony optimization [11–13] is derived from the simulation of ants

flocking process. Genetic algorithm [14] is derived from the simulation of biological

evolution process in nature. Particle swarm optimization [15, 16] is derived from the

simulation of birds flocking process. Other representative ones include gravitational

search algorithm [17, 18], immune algorithm [19, 20], simulated annealing [21], and

grey wolf optimizer [22], etc. Meta-heuristic algorithm has excellent global search

ability, strong adaptability and robustness. It has been successfully applied to many

fields, such as optimization computing [23–28], artificial intelligence [29, 30], pattern

recognition [31,32], image processing [33,34], constrained optimization [35–37], engi-
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neering [38,39] and biology [40,41].

Spherical search (SS) [42] is a new meta-heuristic proposed by Abhishek et al.

in 2019. This algorithm has the advantages of few parameters and can maintain the

diversity of solutions during the optimization process, so it has become a new hot spot

in computational intelligence research. With the continuous in-depth study of the

basic theory and application of the SS, many shortcomings of the algorithm have also

been gradually discovered: it has a slower convergence speed in the later iterations,

and it is not easy to find the optimal solution such that the solution accuracy is low.

It is of great practical significance for improving the performance of the algorithm

and expanding the application field of the algorithm. The issue of balancing the

exploration and exploitation is a very challenging problem, but a well balance can

improve the accuracy and convergence speed of an algorithm. Motivated by this, we

aim to hybridize the spherical search with one of the very effective search algorithms,

gravitational search [17,43,44], which has shown great capacity in exploration search

ability [45–48].

Inherited from spherical and gravitational search dynamics, the proposed SSGSA

is expected to possess a well-balance between the global exploitation search capacity

from SS and local exploration ability from gravitational search algorithm (GSA),

thus being able to find better solutions within reasonable search time. The two

search dynamics are performed in a parallel manner: in the early search phase, SS is

responsible for the whole search space exploitation within a relative wide search area,

aiming to find the most promising area for the latter’s search. Along with the iteration

of evolution, the whole population is divided into two subpopulations: one inherited

from SS perform global exploitation, while the other inherited from GSA utilizes the

gravitational attraction to make all individual more toward the current global optimal

one, thus enabling the search to achieve a good balance between exploitation and
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exploration. Experimental results based on IEEE CEC 2017 benchmark optimization

functions show the effectiveness of fast convergence speed of the proposed method.

The contribution of this improvement method can be summarized as follows: 1)

To our best knowledge, we are for the first time to consider an algorithm inherited

search dynamics from both spherical search and gravitational search, and successfully

utilize both characteristics of each search dynamic, thus achieving an efficient search

ability. 2) This study reveals that the co-evolution of two carefully selected search

algorithms can perform better than each single one, which gives more insights into

the key problems of how to integrate different search dynamics to improve the search

performance of optimization.

Wind driven optimization (WDO) [49] is a meta-heuristic algorithm similar to par-

ticle swarm optimization and is derived from simulating the process that the air par-

ticles continuously move due to different air pressures until air pressure balance [50].

WDO has the advantages of simple structure, few parameters, easy to understand and

program. Since the algorithm was proposed, more and more scholars have paid at-

tention by applying it on many scenarios and improved it from many aspects. In [49],

wind driven optimization was tested on the benchmark functions and applied to the

design for the double-sided Artificial Magnetic Conducting (AMC) surface for the

first time. It simply proves the effectiveness and practicality of WDO. In [51], WDO

was applied to the stub-loaded inverted-F antenna synthesis. It indicates that WDO

performs well on electromagnetics optimization problems. In [52], WDO was applied

to the design of high-impedance metasurfaces. It demonstrates that WDO is a use-

ful tool for designing high-impedance metasurfaces. In [53], it was utilized to solve

unimodal and multimodal functions, and applied to three electromagnetic optimiza-

tion problems. The results show that WDO is better than some common evolutionary

algorithms in electromagnetics on many cases. In [54], the collision avoidance technol-
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ogy and multi-region concept in meteorology were introduced into WDO to maintain

population diversity. Accordingly, a new multi-region and anti-collision wind driven

optimization variant was presented, and the improved algorithm was applied to dy-

namic optimization problems. Comparison between it and the existing methods on

moving peak benchmark illustrates that its search ability needs to be further im-

proved. In [55], wind driven optimization with levy flights (WDOLE) was employed

on global continuous optimization problem. Although WDOLE performs better than

WDO on benchmark functions, it is criticized that just comparing WDO is not enough

to verify the superior performance of WDOLE. In [56], it was shown that WDO had

the worst performance in quadrature mirror filter bank design among the existing

technologies. In [57], a hybrid wind driven optimization and differential evolution

was presented. Although the algorithm can find better solutions, it still has the prob-

lem of premature convergence from the perspective of the convergence graphs, and

the algorithm does not optimize real-world problems and lacks practicality. In [58],

covariance matrix adaptive evolutionary strategy (CMAES) was utilized to update

parameters, and an adaptive wind driven optimization algorithm (AWDO) was pro-

posed. Although AWDO has no parameter settings, the faster convergence speed will

cause the algorithm to easily fall into local optima. In [59], Pareto was embedded

into an adaptive wind driven optimization (MO-AWDO) method to handle multi-

objective optimization problems. Experimental results exhibit that MO-AWDO can

surpass some well-known multi-objective algorithms. In [60], WDO was applied to the

design of switched reluctance motors, which is a multi-objective optimization problem.

In [61], WDO was applied to the estimation of solar photovoltaic parameters. The

results obtained by WDO display better accuracy. In [62], AWDO based on Chenlo’s

model was applied to the extracting the parameters of photovoltaic cell model. It

is an efficient and reliable method. In [63], a hybrid wind driven optimization and
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cuckoo search was used to solve hyperspectral band selection problems. However,

its initialization strategy should be further improved. Following the chronological

order of the literature, we list some references on the improvement and application of

WDO, and provide the comments of the cited papers. To sum up, WDO is effective

in the field of electromagnetic and solar photovoltaic parameter estimation. In the

improvement of WDO, most of them use hybrid algorithm to improve exploration

and exploitation abilities, and it has not changed the selection strategy and working

mechanism of WDO.

The No-Free-Lunch theorem [64, 65] proves that no algorithm performs best for

various optimization problems, which motivates us to improve WDO and solve various

optimization problems more efficiently. In WDO, air particles are easily attracted by

a local optimal point and fall into local optima. Therefore, if the selection strategy

of WDO is not changed, it is difficult to solve this defect. Changing the original

selection strategy to enrich the population diversity and improve the possibility of

different solutions is a way to jump out of the local optimization.

Motivated by this, in this study we try to change the selection method and work-

ing mechanism of the algorithm to improve its search performance. To be specific,

although WDO has few parameters and is easily implemented, when solving optimiza-

tion problems, the convergence speed of the WDO algorithm is too fast to converge

to the local optimal solution prematurely, which makes the entire population lack di-

versity and misses better solutions. Maintaining the diversity of the population is one

of the most important means to avoid premature convergence. Thus, a novel strategy

fitness-distance balance is introduced in this work to maintain population diversity.

In order to further improve the performance of the algorithm, taking advantage of

the randomicity and ergodicity of chaos [45], chaotic local search (CLS) [66, 67] is

also incorporated sophisticately as well, which can well balance the exploration and
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exploitation abilities. Additionally, computational time complexity analysis shows

that CFDBWDO is computationally efficient. Finally, 29 IEEE CEC2017 benchmark

functions are utilized to find the best parameter settings of CFDBWDO and examine

the superior performance of CFDBWDO. Six real-world optimization problems are

optimized to indicate its practicality.

The main contributions of the CFDBWDO are as follows: (1) The WDO algorithm

is prone to fall into local optima. The fitness distance balance strategy is applied to the

WDO, which increases the diversity of the population, jumps out of the local optima,

explores better solutions, and improves the exploration ability of WDO. (2) Chaotic

local search with memory-based selection can make fully use of the performance of

each chaotic map to adaptively choose the best chaotic map for chaotic local search,

which enhances the exploitation ability of WDO, and well balances the exploration

and exploitation abilities to further improve its performance. (3) Aiming at the

disadvantages of the original WDO selection strategy, we replace the original selection

strategy with a new selection strategy FDB, and propose the CFDBWDO algorithm.

Extensive experimental results based on performance comparison with other state-

of-the-art algorithms together with the statistical results show the superiority and

practicality of the proposed CFDBWDO.

This paper is organized as follows: after the introduction, section 2 describes

original SS and WDO. Section 3 introduces the proposed SSGSA and CFDBWDO.

Section 4 conducts several comparative experiments and analyses. Finally, section 5

draws research conclusions and indicates future studies.
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Chapter 2

Meta-heuristic Algorithms

2.1 SS

In SS, the search direction zi of the i-th solution is calculated first, which is generated

by the positions of three random individuals:

z
(k)
i = (x

(k)
t + r

(k)
1 − r

(k)
2 )− x

(k)
i (2.1)

where x
(k)
t is the initial target point, r

(k)
1 and r

(k)
2 are two random solutions in the

population.

In order to balance exploration and exploitation, in SS, the search direction zi of

the top half of the population with a better solution is calculated using the towards-

rand:

z
(k)
i = (x(k)

pi
+ r

(k)
1 − r

(k)
2 )− x

(k)
i (2.2)

where x(k)
pi
,r

(k)
1 and r

(k)
2 are randomly selected and pi ̸=r1 ̸=r2 ̸=i.

For the remaining half of the population, can use towards-best to calculate zi:

z
(k)
i = (x

(k)
pbesti

+ r
(k)
1 − r

(k)
2 )− x

(k)
i (2.3)

where x
(k)
pbesti

is the randomly selected individual in the top p solutions. Therefore,
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the search direction makes a set of better solutions diversified and enhances the

exploration ability. It makes inferior solutions work hard to improve the quality

of the solutions and enhance the exploitation ability of the algorithm.

Finally, use step-size control vector ci and projection matrix Pi to calculate trial

solutions yi:

y
(k)
i = x

(k)
i + c

(k)
i P

(k)
i z

(k)
i (2.4)

where Pi is projection matrix that determines the value of yi on the spherical bound-

ary. Different Pi produces different yi, and the trajectory of yi produces spheri-

cal boundary. P = A′diag(bi)A, where A is orthogonal matrix and diag(bi) is bi-

nary diagonal matrix ( 0 < rank(diag(bi)) < D). ci is step-size control vector and

0.5 < ci < 0.7.

Algorithm 1: SS

1: /* Initialization */
2: while nFES ≤ FES do
3: for i = 1 to N do
4: if i < 0.5 ∗N then
5: zi ← TowardsRand(i)/* Better exploration */
6: else
7: zi ← TowardsBest(i)/* Better exploitation */
8: end if
9: y

(k)
i = x

(k)
i + c

(k)
i P

(k)
i z

(k)
i

10: nFES ← nFES + 1
11: xi ← Selection(xi, yi)
12: end for
13: end while

2.2 WDO

According to the knowledge of atmospheric dynamics, the composition and structure

of the atmosphere are very complex, and any tiny part (air cluster) can be treated as a

“particle”, called air particle. The WDO algorithm takes this abstract air particle as

the research object, assuming that it is in a hydrostatic equilibrium state and satisfies
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the ideal gas state equation. In addition, the horizontal movement in the atmospheric

movement is stronger than the vertical movement, so the WDO algorithm only studies

the horizontal movement of the wind.

When analyzing the movement of air particles [68,69], we take the air particle per

unit volume as the research object, and then use Newton’s second law and the ideal

gas state equation to obtain:

ρa =
∑

F i (2.5)

P = ρRT (2.6)

where ρ is the air density. a represents acceleration vector. F i is the force acting on

air particle. P is pressure value. R is ideal gas constant. T is temperature.

F i is the force on the air particle, four main forces are considered: (1) Pressure

gradient force (F PG) is generated due to the different pressures in different posi-

tions, which makes the air particles move along the high-pressure position to the

low-pressure position [70, 71], and the direction is from the high-pressure position to

the low-pressure position. (2) Friction force (F F ), its direction is opposite to the

direction of F PG, here is a simplified friction force expression. (3) Gravitational force

(FG) points vertically to the center of the earth. In the three-dimensional coordi-

nate system of physics, it is the force that moves the air particle to the origin of the

coordinate system. Similarly, the problem is mapped to the N dimensions, and grav-

itational force represents the force pointing to the center of the coordinate system.

(4) Coriolis force (F C) is produced by the earth rotation. In WDO, it represents that

the velocity and position of the current dimension are affected by motions in other
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dimensions. Their simplified expressions are as follows:

F PG = −∇PδV (2.7)

F F = −ραu (2.8)

FG = ρδV g (2.9)

F C = −2Ω× u (2.10)

where −∇P represents air pressure gradient, the minus sign indicates the direction

of gradient drop. δV represents finite volume of air. α is the coefficient of friction. u

is velocity vector of air particle. g is gravitational acceleration. Ω is earth rotation.

Bring the above four equations into the right side of Eq. (2.5), and combine the

acceleration equation: a = ∆u
∆t

, Eq. (2.5) can be changed to:

ρ
∆u

∆t
= ρδV g + (−∇PδV ) + (−ραu) + (−2Ω× u) (2.11)

Since the research object is the air particle per unit volume, take δV = 1. For the

sake of simplicity, take ∆t = 1 and substitute into Eq. (2.11) to obtain:

ρ∆u = ρg −∇P − ραu+ (−2Ω× u) (2.12)

Substituting Eq. (2.6) into Eq. (2.12):

Pcur

RT
∆u =

Pcur

RT
g −∇P − Pcur

RT
αu+ (−2Ω× u) (2.13)

where Pcur is the pressure value at the current position. Dividing both sides of Eq.

(2.13) by Pcur

RT
:

∆u = g −∇P RT

Pcur

− αu+

(
−2Ω× uRT

Pcur

)
(2.14)



11

Because ∆u = unew − ucur, unew is the updated velocity vector of air particle,

ucur is the current velocity vector of air particle, Eq. (2.14) can be written as:

unew = g −∇P RT

Pcur

+ (1− α)ucur +

(
−2Ω× uRT

Pcur

)
(2.15)

The direction of the gravitational force is from the current position of air particle to

the center of the coordinate system, and the coordinate of the center of the coordinate

system is 0, so the vector g can be expressed as g = |g| (0− xcur), where xcur is the

current position of air particle. Similarly, the direction of the pressure gradient −∇P

is from the current position to the optimal position, then −∇P can be expressed as

−∇P = |Popt − Pcur| (xopt − xcur), where Popt is the current optimal pressure value.

xopt is the optimal position. Due to the coriolis force (F C), u
other dim
cur indicates that

the velocity of the current dimension is affected by other dimensions, that is, the

velocity in coriolis force is uother dim
cur . And c = −2|Ω|RT [72], where c is a constant.

So Eq. (2.15) can be changed to:

unew =− gxcur + |Popt − Pcur| (xopt − xcur)
RT

Pcur

+ (1− α)ucur +

(
−cuother dim

cur

Pcur

) (2.16)

The pressure values Popt and Pcur in Eq. (2.16) may make the updated velocity

become very large and lack of operability. The pressure values can be replaced by

i, where i is the rank of the air particle based on the pressure value, so the velocity

update equation is:

unew =− gxcur +RT

∣∣∣∣1− 1

i

∣∣∣∣ (xopt − xcur)

+ (1− α)ucur +
cuother dim

cur

i

(2.17)
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Then the position of air particle is updated as follows:

xnew = xcur + (unew ×∆t) (2.18)

where xnew is the updated position, assuming the time interval ∆t = 1.

In order to prevent the moving step of air particle from being too large, the position

is restricted between the upper and lower boundaries of the problem, and the updated

velocity is limited to the range of [−umax, umax] by Eq. (2.19):

u∗
new =

 umax if unew > umax

−umax if unew < −umax

(2.19)

where u∗
new denotes the adjusted velocity limited to maximal velocity, and umax is the

maximal velocity.

WDO derives the velocity and position equations of air particles by applying

Newton’s second law and the ideal gas equation of state. It has fewer adjustable

parameters and is easy to implement. It has the characteristics of strong global

search ability, fast convergence speed and high optimization efficiency.

Some basic information to help understand the proposed algorithm in this paper

is described below:

(1) The population is composed of N individuals, each individual Xi is expressed

as Xi =
(
x1
i , x

2
i , . . . , x

d
i

)
, i ∈ {1, 2, . . . , N}, where xd

i denotes the position of the

ith individual in the dth dimension.

(2) In order to enhance the robustness for dealing with optimization problems, 12

different chaotic maps are used (i.e., J = 12) in this paper. The 12 chaotic maps

are: Logistic map, Piecewise linear chaotic map (PWLCM), Singer map, Sine

map, Gaussian map, Tent map, Bernoulli map, Chebyshev map, Circle map,
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Algorithm 2: WDO

Input: Parameters N , d, Tmax, α, g, RT , c, umax

Output: Optimal solution
1 Initialization: Generate N air particles randomly;
2 Fitness calculation: Calculate fitness of air particle;
3 while k < Tmax (maximum iteration count) do
4 for i = 1 to N do
5 Rank the air particles based on pressure values (fitness values);
6 Update velocity of air particle by Eq. (2.17) and check velocity limits by Eq.

(2.19);
7 Update position of air particle by Eq. (2.18) and check boundaries;
8 Calculate fitness of air particle;
9 if f(Xi) < f(Xopt) then

10 Xopt = Xi;
11 end

12 end
13 k = k + 1;

14 end

Cubic map, Sinusoidal map and Iterative chaotic map with infinite collapses

(ICMIC). The determination equations of these chaotic maps are in reference

[73].

(3) Existing selection strategies include: random selection, greedy selection, proba-

bilistic selection, adaptive selection, fitness-distance balance selection and com-

bined selection, where fitness-distance balance selection is the latest selection

method, and the combined selection includes at least two of the other selection

strategies.
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Chapter 3

Improvement of Meta-heuristic
Algorithms from Hybridization
and Novel Selection Operator

3.1 Proposed SSGSA

Gravitational search algorithm (GSA) is a heuristic optimization algorithm proposed

by Esmat et al. in 2009. It is derived from a swarm intelligence algorithm that

simulates the gravitation in physics. The theory is to treat search particles as a group

of objects moving in space. These objects are attracted by gravitational interaction,

and the movement of objects follows the law of dynamics. A particle with a larger

fitness has a larger inertial mass, so the universal gravitation will cause the objects

to move toward the most massive object, thereby gradually approaching the optimal

solution. GSA has strong local exploitation ability and convergence speed. With the

deepening of the theoretical research of GSA, its application becomes more and more

extensive. In this study, the strong exploitation ability of GSA is incorporated to SS

to improve the quality of solution.

The proposed SSGSA is illustrated in Algorithm 2, where we set the maximum

iteration to be 3000, the population size to be 100. In the first 1500 iterations, the

SS algorithm is used to perform the search, aiming to find a promising search area,
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Algorithm 3: SSGSA

1: /* Initialization */
2: while nFES < FES do
3: for i = 1 to N do
4: if nFES> 1/2FES then
5: if i < 0.5 * N then
6: /* Update The towards− rand Part Of The Population Using SS */
7: else
8: /* Update The towards− best Part Of The Population Using GSA */
9: end if

10: else
11: /* Update The Population Using SS */
12: end if
13: nFES ← nFES + 1
14: xi ← Selection(xi, yi)
15: end for
16: end while

while both search dynamics are utilized in the last 1500 iterations. In the early search

stage, SSGSA is performed via Eqs. (1)-(4). The first half of the population, i.e.,

N/2 better solutions in the population are calculated by towards-rand in SS, and the

last N/2 worse solutions are updated using GSA instead of the original towards-best

via the following evolution:

Its mass Mi(t) is defined as:

Mi(t) =
mi(t)∑N
l=1 ml(t)

(3.1)

mi(t) =
fi(t)− fw(t)

fb(t)− fw(t)
(3.2)

where fi(t) is the fitness of the ith individual at iteration t, fw(t) and fb(t) repre-

sent the worst and best fitness values in the current population, respectively. The

gravitational force F d
ij(t) is generated by Xi and Xj based on mass, formulated as:

F d
ij(t) = G(t)

Mi(t)×Mj(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (3.3)
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where Rij(t) is Euclidean distance between Xi and Xj. ε is a small value. G(t) is a

gravitational constant with time, defined as

G(t) = G0 × e−α t
T (3.4)

where G0 is an initial value, α is a constant, t is current iteration index and T is

maximum iteration count. The total force that acts on Xi in the dth dimension is

obtained as

F d
i (t) =

∑
j∈Kbest,j ̸=i

randj · F d
ij(t) (3.5)

where Kbest is a set of the first K best individuals in the current population, and K

is linearly decreased with t. randj is a random value in the interval [0,1]. Therefore,

the acceleration adi (t) in the dth dimension is

adi (t) =
F d
i (t)

Mi(t)
(3.6)

Finally, the velocity and position of Xi at iteration t+ 1 are performed as

vdi (t+ 1) = randi · vdi (t) + adi (t) (3.7)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (3.8)

where randi is a random variable in the interval [0,1].

Although the towards-best of the SS algorithm and GSA have good local exploita-

tion ability, it can be seen in the following experimental part that GSA can find the

optimal solution better than the towards-best. Therefore, the quality of the SSGSA

solution can be improved.
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3.2 Proposed CFDBWDO

3.2.1 Motivation

WDO is a swarm intelligence-based [74, 75] meta-heuristic algorithm. Swarm intel-

ligence algorithms have two behaviors, exploration and exploitation [76, 77]. Explo-

ration is to randomly generate an individual in the search space to explore a promising

solution that is not neighbor to the current best solution, which helps to jump out

of the current local optima. The exploitation is to search promising solutions in

a small region near the current optimal solution, which conducts local search in a

promising region and accelerates the convergence of the algorithm. The challenging

issue that how to balance exploration and exploitation is the focus of improving the

algorithm. WDO is derived from the simulation of air movement. Due to the dif-

ferent air pressures in different positions, pressure gradient force (F PG) is generated,

which makes the air particles in the high pressure position move to the low pressure

position until the air pressure in each position is equal. The existence of pressure

gradient force enables air particles to find the optimal solution of optimization prob-

lem, but the pressure gradient force usually guides particles to find the local optimal

solution, which makes the population fall into the local optima. This shows that

the pressure gradient force cannot make the particles find a better solution, that is,

the pressure gradient force in WDO can not help particles get rid of local optima,

which easily causes WDO to converge prematurely. Due to the intrinsic search mech-

anism of WDO, the particles can not explore the entire search space, which limits

the exploration and exploitation abilities of WDO and makes it easier to obtain local

optimal solutions. Therefore, on the one hand, in order for particles to skip the local

optimal solution and explore a better solution, it is necessary to maintain popula-

tion diversity and avoid falling into the local optima. This paper introduces a new

selection method fitness distance balance strategy to replace the original pressure
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selection. On the other hand, to balance the exploration and exploitation abilities

of WDO and further optimize the performance of the algorithm, chaotic local search

is incorporated sophisticately. Accordingly, CFDBWDO is proposed based on these

two improvements.

3.2.2 Chaotic local search (CLS) based on memory selection

The chaotic local search (CLS) is to use the chaotic map to search a promising

solution locally around the current best individual to update the best individual.

The mathematical equations of CLS are as follows:

Xopt′(k) = Xopt(k) + r (Ub − Lb)
(
zj(k)− 0.5

)
(3.9)

Xopt(k) =

 Xopt′(k), if f (Xopt′(k)) < f (Xopt(k))

Xopt(k), otherwise
(3.10)

where Xopt(k) is the position of global best individual at the current iteration k,

expressed as Xopt =
(
x1
opt, x

2
opt, . . . , x

d
opt

)
. Xopt′(k) is position of a new individual

generated by chaotic local search. r is the chaotic search radius within (0, 1), where

r = 0.0001. Ub and Lb denote the upper and lower bound vectors of the search space,

respectively. If the value of Xopt′(k) exceeds the boundary value, it is adjusted to

the closest boundary value. zj(k) represents the chaotic sequence at iteration k, and

it is generated by the jth chaotic map randomly chosen from 12 chaotic maps (i.e.,

j ∈ {1, 2, . . . , 12}).

In Eq. (3.10), if the fitness of the updated Xopt′(k) is better than the current best

fitness of Xopt(k), Xopt′(k) will replace Xopt(k), otherwise Xopt(k) remains unchanged.

Then we set a learning iteration count (L) to 50. If the updated best individual

(Xopt′(k)) replaces the original best individual (Xopt(k)), the memory will record a

success, otherwise record a failure. The recording mechanisms are formulated as
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follows:

αk,j =



αk−1,j + 1, if f(Xj
opt′(k)) < f(Xopt(k))&k ≤ L

αk−1,j , if f(Xj
opt′(k)) ≥ f(Xopt(k))&k ≤ L

αk−1,j + 1− (αk−L,j

−αk−L−1,j) , if f(Xj
opt′(k)) < f(Xopt(k))&k > L

αk−1,j − (αk−L,j

−αk−L−1,j) , otherwise

(3.11)

βk,j =



βk−1,j , if f(Xj
opt′(k)) < f(Xopt(k))&k ≤ L

βk−1,j + 1, if f(Xj
opt′(k)) ≥ f(Xopt(k))&k ≤ L

βk−1,j − (βk−L,j

−βk−L−1,j) , if f(Xj
opt′(k)) < f(Xopt(k))&k > L

βk−1,j + 1− (βk−L,j

−βk−L−1,j) , otherwise

(3.12)

where Xj
opt′(k) denotes position of an individual generated by jth chaotic map. αk,j

represents the number of successes. βk,j represents the number of failures of the jth

chaotic map at iteration k. let α0,j = 0, β0,j = 0. If f(Xj
opt′(k)) is less than f(Xopt(k)),

αk−1,j is added with 1, otherwise βk−1,j is added with 1. Since the memory space is

only L, when k is greater than L, it is necessary to subtract αk−L,j from αk,j and

subtract βk−L,j from βk,j to make space for the latest individual (αk+1,j and βk+1,j),

so as to ensure that the memory only records the success and failure times of the last

L iterations.

The selection method of J chaotic maps is described as follows. In L learning

iterations, each chaotic map will be chosen with the same probability 1/J , and the

memory will record the number of successes and failures. After the learning iterations,

the selection probabilities for chaotic maps can be calculated using the number of

successes and failures, shown as follows:

Sk,j =
αk,j

αk,j + βk,j

+ ε (3.13)
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Figure 3.1: CLS with selecting chaotic map based on memory.

Pk,j =
Sk,j∑J
j=1 Sk,j

(3.14)

where Sk,j is the success rate of the jth chaotic map at iteration k, Pk,j is the selection

probability of the jth chaotic map. ε is a constant to prevent the null success rate,

where ε = 0.01. The higher the success rate, the greater the probability of being

selected through roulette wheel, which not only improves the efficiency of choosing

chaotic maps, but also makes full use of the advantages of each chaotic map. There-

fore, it can adaptively choose the best chaotic map to implement the local search, as
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illustrated in Fig. 3.1.

3.2.3 Fitness-distance balance (FDB) selection strategy

Since the WDO algorithm easily converges to the local optimal solution by pressure

selection and misses other better solutions. Population diversity is to explore many

non-neighbor promising individuals in the search space, increase the possibility of

different solutions, avoid falling into local solutions, and improve the solution quality.

In this study, the fitness distance balance strategy [78,79] is used to replace the original

elite selection method. The score is calculated for each individual and the individuals

are ranked based on scores. The higher the score, the greater the contribution of the

individual to solving the problem, the higher the probability of being selected, and

the easier it is for the algorithm to generate a new optimal solution, thus skipping

the local optima, effectively improving the quality of solutions. The following is a

specific introduction to the fitness distance balance strategy.

First we calculate the fitness value of each individual with the following equation:

∀Ni=1Fi =

 if goal is minimization:Fi = 1− norm Gi

if goal is maximization:Fi = norm Gi

(3.15)

where Fi is fitness value, and normGi denotes normalized objective function value of

the ith individual. The fitness vector F created for individuals is given in Eq. (3.16).

F =


f1
...

fN


N×1

(3.16)

Then we use Eq. (3.17) to calculate the distance of each individual from the best
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individual.

∀Ni=1, i ̸= opt,Di

=

√(
x1
i − x1

opt

)2
+
(
x2
i − x2

opt

)2
+ · · ·+

(
xd
i − xd

opt

)2 (3.17)

where Di is the distance value of the ith individual (Xi) from the best individual

(Xopt). The distance vector D created for individuals is given in Eq. (3.18).

D =


d1
...

dN


N×1

(3.18)

Finally, the fitness vector F and distance vector D are used to calculate the score.

∀Ni=1Si = w ∗ normFi + (1− w) ∗ normDi (3.19)

S =


s1
...

sN


N×1

(3.20)

where Si is the score of the ith individual, w is the weight coefficient in the range

of [0.4, 0.6], where w = 0.5, normFi denotes the normalized fitness value, normDi

denotes the normalized distance value of the ith individual, and S is the score vector

of individuals.

This selection method takes into account the fitness and the distance from the

current optimal solution to calculate the score for each individual. According to

the score vector S, the population can be ranked, the individual with high score

who contributes the most to the optimization problem is selected determinedly and

consciously instead of random, greedy or probabilistic selection, even in the later

stages of the iteration. It can also effectively maintain the diversity of the population

and prevent premature convergence.
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Algorithm 4: Steps of fitness-distance balance selection strategy

Input: Parameters N , d, w
Output: Score vector

1 for i = 1 to N do
2 Calculate distance between Xi and Xopt by Eq. (3.17);
3 Create the distance vector by Eq. (3.18);

4 end
5 for i = 1 to N do
6 Normalize fitness and distance vectors within [0, 1];
7 Calculate the score of air particle by Eq. (3.19);
8 Create the score vector by Eq. (3.20);

9 end
10 Rank the air particles based on score vector (S);

It is worth pointing out that FDB is utilized to enrich the diversity of the pop-

ulation for improving the exploration ability, while CLS is used to update the cur-

rent best individual for improving the exploitation ability. Considering these, the

exploration and exploitation abilities of WDO are expected to be improved, and

the resultant chaotic wind driven optimization with fitness distance balance strat-

egy (CFDBWDO) is proposed. In addition, velocity limitation and boundary checks

are not implemented in CFDBWDO to simplify its implementation process. The

flowchart of CFDBWDO is illustrated in Fig. 3.2.

The computational time complexity of CFDBWDO is calculated to analyze the

efficiency of CFDBWDO, where the population size is N , described as follows: (1)

Initialization process needs O(N). (2) CLS takes O(N). (3) FDB costs O(N2). (4)

Updating the velocity and position of air particles requires O(N). (5) Evaluating each

air particle expends O(N). Thus, time complexity of CFDBWDO can be regarded

as O(N2) which is the same as WDO’s. Accordingly, CFDBWDO is computationally

efficient.

3.2.4 Advantages of CFDBWDO

To summarize, the CFDBWDO proposed in this study has the following advantages:
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Algorithm 5: CFDBWDO

Input: Parameters N , d, Tmax, α, g, RT , c, r, L, ε, J , w
Output: Optimal solution

1 Initialization: Generate N air particles randomly;
2 Fitness calculation: Calculate fitness of air particle and obtain the best position
(Xopt);

3 while not met stopping criterion do
4 for j = 1 to J do
5 if k ≤ L then
6 Choose a chaotic map with the same probability 1/J ;
7 else
8 Choose a chaotic map with the selection probability Pk,j ;
9 end

10 end
11 Use CLS to update the current best air particle Xopt by Eq. (3.9) and Eq.

(3.10);
12 if f(Xopt′) < f(Xopt) then
13 Record a success by Eq. (3.11);
14 else
15 Record a failure by Eq. (3.12);
16 end
17 Update chaos success rate and selection probability by Eqs. (3.13) and (3.14);
18 Rank the air particles using FDB (in Algorithm 4);
19 for i = 1 to N do
20 Update velocity and position of air particle by Eqs. (2.17) and (2.18);
21 Calculate fitness of air particle;
22 if f(Xi) < f(Xopt) then
23 Xopt = Xi;
24 end

25 end
26 k = k + 1;

27 end

(1) Fitness distance balance strategy (FDB) is a novel selection strategy, aiming to

improve the exploration performance of the algorithm. According to the scores,

the individuals are ranked, which is different from other selection methods. FDB

strategy calculates the score of each individual in the entire optimization process,

which effectively maintains the diversity of the population and avoids premature

convergence.

(2) At each iteration, the success or failure of a chaotic map is recorded, so that at
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the current iteration the most promising chaotic map can be adaptively selected

from 12 different chaotic maps with the roulette wheel according to current

search performance, which not only fully utilizes the performance of different

chaotic maps to enhance the robustness when dealing with different problems,

but also improves the efficiency of choosing chaotic maps.
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Chapter 4

Experiments

4.1 Experimental setting

In this study, IEEE CEC 2017 [80] benchmark functions are taken to test the per-

formance of the proposed algorithm. F1-F3 are three unimodal functions, shown in

Fig. 4.1. F4-F10 are seven multimodal functions, shown in Fig. 4.2. F11-F20 are ten

hybrid functions, due to they are not defined for 2D, they have no 3D and contour

maps. F21-F30 are ten composition functions, shown in Fig. 4.3. It should be men-

tioned that F2 was excluded because it shows instability in higher dimensions. Thus,

29 IEEE CEC 2017 benchmark functions are used. All functions are minimization

optimization problems [81].

The global parameters setting are as follows: Search space range is in [−100, 100].

The population size is 100. The maximum number of function evaluations (NFEs) is

10000 ∗D, where D is the dimension of functions and set to be 10, 30, 50 or 100. In

order to obtain stable experimental data, each algorithm individually runs 51 times

on each benchmark function.

The experimental results include mean and standard deviation of 51 independent

runs. The mean represents the average performance of algorithm when searching

for the optimal solution, the standard deviation indicates the stability in handling

optimization problems, the two values are connected by the symbol “±”, and the best
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mean and standard deviation values among all compared algorithms are highlighted

in bold.

The mean and standard deviation of 51 independent runs alone cannot fully ex-

plain the superiority of the proposed algorithm, and the statistical test is needed.

The statistical results are calculated by a non-parametric statistical method, i.e.,

Wilcoxon rank-sum test, with the significant level α = 0.05 [82–84]. When p-value

is less than 0.05, it can be considered to reject the null hypothesis, indicating that

there is a significant difference between the two algorithms, where null hypothesis

means that there is no significant difference. Symbol “+” represents that the pro-

posed algorithm is superior to its competitor, symbol “−” suggests that the proposed

algorithm is worse than its competitor. When p-value is greater than 0.05, it can be

considered to accept the null hypothesis, denoting that the two algorithms have the

same optimization performance, and it is recorded as symbol “∼”. w/t/l presents the

number of functions that the proposed algorithm wins, ties and loses to its competi-

tor. All algorithms are executed in MATLAB R2018a and run on a 2.60GHz Intel(R)

Core(TM) i7-9750H CPU with 16GB RAM.

4.2 Comparison between SSGSA and competitive algorithms

To evaluate the performance of SSGSA, we compared it with the SS, GSA, PSO

and WOA. Their parameter settings are shown in Table 4.1. The tested benchmark

functions are the IEEE CEC 2017. The specific experimental conditions are as follows:

the population size is 100, dimension of the optimization is 30, maximum iteration is

3000, and the number of independent runs is 30.

Table 4.2 lists the optimization results of the five algorithms on IEEE CEC 2017

benchmark functions, where the “mean” represents the average of the results of each

question after 3000 iterations, which represents the ability to find optimization, and
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“Std” represents the standard deviation of the results, which represents the robustness

of the algorithm when dealing with problems. In the table, the results are best

highlighted in bold of the 30 benchmark functions. From it, we can find that SSGSA

has the best results of 22, SS has the best results of 5, GSA has three, and PSO

and WOA are all have no best result. Obviously, the SSGSA algorithm achieves the

best results on most benchmark functions, indicating that SSGSA proposed in this

paper has a strong competitive advantage. In the last row of Table 4.2, W/T/L

represents the results of SSGSA compared to other algorithms Win/Tied/Loser when

the significance level is 0.05. Obviously, SSGSA performs significantly better than

other four algorithms.

In order to further explain the superiority of the SSGSA, the experimental results

are made into convergence (Figs. 4.5) and box-and-whisker graphs (Fig. 4.4), re-

spectively [85–87]. From the convergence graphs, it can be seen that the convergence

ability and speed of SSGSA are better than its peers. It is worth noting that the

SSGSA and SS in the convergence graph are almost the same in the first 1500 itera-

tions, and when the iteration number reach 1500, the average optimization value of

SSGSA has a process of decreasing, which is due to the incorporation of the gravi-

tational search inherited from GSA, which is replacing the towards-best population

update mechanism in SS. It is more intuitively to show that SSGSA has a stronger

exploitation ability. From the Box-and-whisker graphs, it can be found that SSGSA

can find better results, which suggests that it has a strong ability to find optimization

results.

4.3 Analysis for parameters of CFDBWDO

CFDBWDO combines fitness-distance balance and chaotic local search. The weight

coefficient w of fitness-distance balance determines the respective weights of fitness
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Table 4.1: Parameter settings of algorithms
Algorithm parameters

SSGSA PbestRate = 0.1, rd = 0.95, c = [0.5 0.7], G0 = 100, α = 20

SS PbestRate = 0.1, rd = 0.95, c = [0.5 0.7]

GSA G0 = 100, α = 20

PSO ωf = 0.9, ωf = 0.4, c1f = 0.5,
c1e = 2.5, c2f = 2.5, c2e = 0.5, σ = 0.2

WOA α linearly decreases from 2 to 0

Table 4.2: Experiment results on CEC 2017.
SSGSA SS GSA PSO WOA

Mean Std Mean Std Mean Std Mean Std Mean Std

F1 1.000E+02 1.370E-10 1.000E+02 4.441E-06 + 1.745E+03 6.830E+02 + 5.065E+10 5.452E+09 + 3.367E+06 2.513E+06 +

F2 2.000E+02 2.053E-10 2.000E+02 7.923E-11 − 4.643E+17 1.388E+18 + 1.638E+40 6.905E+40 + 1.136E+20 2.855E+20 +

F3 3.000E+02 3.267E-04 3.000E+02 1.100E-04 + 8.449E+04 4.620E+03 + 1.099E+05 1.496E+04 + 1.547E+05 5.728E+04 +

F4 4.594E+02 3.425E+01 4.508E+02 3.441E+01 ≈ 5.377E+02 1.317E+01 + 9.694E+03 1.502E+03 + 5.508E+02 3.194E+01 +

F5 6.583E+02 1.021E+01 6.668E+02 1.149E+01 + 7.244E+02 2.000E+01 + 9.254E+02 2.170E+01 + 7.860E+02 6.861E+01 +

F6 6.000E+02 7.599E-04 6.000E+02 3.522E-05 ≈ 6.515E+02 3.406E+00 + 6.856E+02 4.003E+00 + 6.688E+02 1.175E+01 +

F7 8.861E+02 9.916E+00 8.923E+02 1.033E+01 + 7.846E+02 1.218E+01 − 2.162E+03 1.502E+02 + 1.243E+03 9.179E+01 +

F8 9.606E+02 1.146E+01 9.681E+02 8.056E+00 + 9.504E+02 1.221E+01 − 1.186E+03 2.314E+01 + 1.003E+03 5.129E+01 +

F9 9.000E+02 8.640E-02 9.000E+02 8.399E-02 ≈ 2.993E+03 3.173E+02 + 1.457E+04 1.413E+03 + 7.051E+03 2.493E+03 +

F10 7.883E+03 2.901E+02 8.092E+03 2.218E+02 + 4.961E+03 4.876E+02 − 8.255E+03 3.185E+02 + 6.071E+03 7.754E+02 −
F11 1.141E+03 2.621E+01 1.159E+03 1.906E+01 + 1.470E+03 9.458E+01 + 7.081E+03 1.071E+03 + 1.441E+03 8.353E+01 +

F12 4.334E+03 2.133E+03 3.848E+03 2.619E+03 ≈ 1.809E+07 3.763E+07 + 5.978E+09 6.379E+08 + 2.919E+07 2.350E+07 +

F13 1.385E+03 3.575E+01 1.402E+03 3.082E+01 + 2.863E+04 5.188E+03 + 2.416E+09 5.538E+08 + 1.413E+05 1.066E+05 +

F14 1.461E+03 4.670E+00 1.469E+03 5.644E+00 + 5.066E+05 1.119E+05 + 6.046E+05 2.662E+05 + 7.675E+05 9.587E+05 +

F15 1.525E+03 6.443E+00 1.542E+03 6.341E+00 + 1.160E+04 1.609E+03 + 1.799E+08 8.672E+07 + 1.016E+05 6.538E+04 +

F16 2.855E+03 1.534E+02 2.951E+03 1.500E+02 + 3.091E+03 3.255E+02 + 4.412E+03 2.786E+02 + 3.407E+03 3.850E+02 +

F17 1.980E+03 7.002E+01 2.040E+03 7.235E+01 + 2.926E+03 2.017E+02 + 3.018E+03 1.784E+02 + 2.571E+03 3.023E+02 +

F18 1.829E+03 2.087E+00 1.838E+03 2.757E+00 + 3.045E+05 1.486E+05 + 8.583E+06 2.806E+06 + 2.485E+06 2.417E+06 +

F19 1.924E+03 2.073E+00 1.929E+03 2.178E+00 + 1.182E+04 3.699E+03 + 3.056E+08 1.148E+08 + 2.133E+06 1.557E+06 +

F20 2.442E+03 9.126E+01 2.509E+03 7.262E+01 + 3.016E+03 1.736E+02 + 2.797E+03 8.485E+01 + 2.699E+03 2.203E+02 +

F21 2.452E+03 1.061E+01 2.463E+03 9.875E+00 + 2.554E+03 2.718E+01 + 2.690E+03 1.897E+01 + 2.554E+03 8.152E+01 +

F22 2.300E+03 0.000E+00 2.300E+03 0.000E+00 ≈ 6.202E+03 2.043E+03 + 7.737E+03 4.874E+02 + 6.315E+03 2.197E+03 +

F23 2.736E+03 6.050E+01 2.804E+03 1.061E+01 + 3.575E+03 1.531E+02 + 3.264E+03 4.177E+01 + 3.072E+03 9.842E+01 +

F24 2.847E+03 3.436E+01 2.960E+03 3.076E+01 + 3.288E+03 5.028E+01 + 3.463E+03 4.598E+01 + 3.193E+03 9.720E+01 +

F25 2.887E+03 2.548E-02 2.887E+03 2.312E-02 ≈ 2.933E+03 1.171E+01 + 6.438E+03 5.840E+02 + 2.951E+03 3.075E+01 +

F26 3.503E+03 3.399E+02 4.219E+03 7.940E+02 + 6.606E+03 1.046E+03 + 9.724E+03 4.602E+02 + 7.425E+03 1.210E+03 +

F27 3.190E+03 8.018E+00 3.187E+03 1.132E+01 ≈ 4.484E+03 3.182E+02 + 3.789E+03 8.610E+01 + 3.350E+03 9.578E+01 +

F28 3.118E+03 4.161E+01 3.114E+03 3.571E+01 ≈ 3.323E+03 5.211E+01 + 6.338E+03 3.743E+02 + 3.301E+03 3.846E+01 +

F29 3.634E+03 9.292E+01 3.726E+03 6.664E+01 + 4.740E+03 2.204E+02 + 5.563E+03 2.920E+02 + 4.694E+03 3.719E+02 +

F30 5.222E+03 1.898E+02 5.158E+03 8.215E+01 ≈ 1.518E+05 7.722E+04 + 2.860E+08 8.559E+07 + 1.099E+07 7.981E+06 +

W/T/L -/-/- 20/9/1 27/0/3 30/0/0 29/0/1

and distance, which influences the exploration performance of the algorithm. The

chaotic search radius r and the learning iteration count L in chaotic local search

determine the search range around the current best individual and the best itera-

tion count for choosing chaotic maps, respectively, which influences the exploitation

performance of the algorithm.

Thus, w, r and L are three important parameters for CFDBWDO. To find the

best parameter setting and achieve the optimal performance of CFDBWDO, the

experiments with different parameters w, r and L are implemented on 29 IEEE



31

Table 4.3: Experimental and statistical results of CFDBWDO with different learning iter-
ation count L on CEC’17 benchmark functions with 30 dimensions.
Parameter F1 F3 F4 F5 F6 F7

L = 25 1.870E+09 ± 1.016E+09 ∼ 1.402E+04 ± 8.541E+03 ∼ 1.302E+03 ± 5.409E+02 + 6.768E+02 ± 4.635E+01 ∼ 6.438E+02 ± 7.205E+00 ∼ 9.748E+02 ± 6.886E+01 ∼
L = 50 1.715E+09 ± 1.125E+09 1.297E+04 ± 8.923E+03 1.216E+03 ± 4.056E+02 6.647E+02 ± 4.392E+01 6.441E+02 ± 6.551E+00 9.790E+02 ± 6.086E+01
L = 75 1.691E+09 ± 1.111E+09 ∼ 1.185E+04 ± 6.199E+03 ∼ 1.273E+03 ± 3.531E+02 + 6.590E+02 ± 4.275E+01 ∼ 6.434E+02 ± 6.337E+00 ∼ 9.944E+02 ± 7.542E+01 ∼
L = 100 2.130E+09 ± 8.862E+08 + 1.285E+04 ± 8.206E+03 ∼ 1.332E+03 ± 4.601E+02 + 6.653E+02 ± 2.980E+01 ∼ 6.442E+02 ± 7.166E+00 ∼ 9.775E+02 ± 6.352E+01 ∼

F8 F9 F10 F11 F12 F13

L = 25 9.243E+02 ± 3.774E+01 ∼ 3.867E+03 ± 1.089E+03 ∼ 6.769E+03 ± 1.302E+03 ∼ 1.471E+03 ± 5.774E+01 ∼ 2.903E+08 ± 1.444E+08 ∼ 4.346E+07 ± 4.925E+07 ∼
L = 50 9.335E+02 ± 4.150E+01 3.887E+03 ± 1.235E+03 6.877E+03 ± 1.308E+03 1.478E+03 ± 6.164E+01 2.881E+08 ± 2.274E+08 3.673E+07 ± 4.328E+07
L = 75 9.258E+02 ± 3.468E+01 ∼ 4.049E+03 ± 1.007E+03 ∼ 6.532E+03 ± 1.373E+03 ∼ 1.479E+03 ± 6.574E+01 ∼ 3.300E+08 ± 2.788E+08 ∼ 3.932E+07 ± 5.532E+07 ∼
L = 100 9.297E+02 ± 3.456E+01 ∼ 3.879E+03 ± 9.596E+02 ∼ 6.507E+03 ± 1.396E+03 ∼ 1.465E+03 ± 6.345E+01 ∼ 3.026E+08 ± 1.303E+08 ∼ 4.536E+07 ± 5.017E+07 ∼

F14 F15 F16 F17 F18 F19

L = 25 4.832E+04 ± 5.719E+04 ∼ 9.076E+04 ± 8.492E+04 ∼ 3.387E+03 ± 4.674E+02 ∼ 2.160E+03 ± 2.104E+02 ∼ 4.695E+05 ± 3.824E+05 ∼ 1.350E+06 ± 2.330E+06 +
L = 50 7.501E+04 ± 1.681E+05 1.301E+05 ± 2.232E+05 3.339E+03 ± 3.396E+02 2.131E+03 ± 1.777E+02 5.697E+05 ± 6.026E+05 7.812E+05 ± 7.791E+05
L = 75 4.341E+04 ± 5.477E+04 ∼ 8.309E+04 ± 1.033E+05 ∼ 3.454E+03 ± 3.896E+02 + 2.115E+03 ± 1.934E+02 ∼ 5.784E+05 ± 5.869E+05 ∼ 8.271E+05 ± 6.432E+05 ∼
L = 100 5.964E+04 ± 1.051E+05 ∼ 2.122E+05 ± 3.292E+05 + 3.352E+03 ± 3.735E+02 ∼ 2.194E+03 ± 1.701E+02 + 5.082E+05 ± 3.938E+05 ∼ 6.757E+05 ± 5.505E+05 ∼

F20 F21 F22 F23 F24 F25

L = 25 2.419E+03 ± 1.352E+02 ∼ 2.504E+03 ± 6.021E+01 ∼ 2.770E+03 ± 7.845E+01 ∼ 3.206E+03 ± 5.223E+01 + 3.394E+03 ± 6.616E+01 ∼ 3.020E+03 ± 6.055E+01 ∼
L = 50 2.443E+03 ± 1.411E+02 2.500E+03 ± 4.858E+01 2.769E+03 ± 8.820E+01 3.183E+03 ± 4.912E+01 3.400E+03 ± 5.943E+01 3.021E+03 ± 4.653E+01
L = 75 2.476E+03 ± 1.599E+02 ∼ 2.504E+03 ± 5.558E+01 ∼ 2.752E+03 ± 9.656E+01 ∼ 3.205E+03 ± 4.886E+01 + 3.394E+03 ± 6.773E+01 ∼ 3.015E+03 ± 5.481E+01 ∼
L = 100 2.488E+03 ± 1.614E+02 ∼ 2.486E+03 ± 6.575E+01 ∼ 2.784E+03 ± 8.437E+01 ∼ 3.171E+03 ± 4.903E+01 ∼ 3.391E+03 ± 6.101E+01 ∼ 3.020E+03 ± 4.869E+01 ∼

F26 F27 F28 F29 F30 w/t/l

L = 25 5.661E+03 ± 1.869E+03 ∼ 3.769E+03 ± 7.025E+01 ∼ 3.512E+03 ± 4.842E+01 ∼ 4.452E+03 ± 3.543E+02 ∼ 8.916E+06 ± 9.185E+06 ∼ 3-26-0
L = 50 5.932E+03 ± 1.910E+03 3.790E+03 ± 9.414E+01 3.529E+03 ± 7.384E+01 4.547E+03 ± 3.827E+02 1.083E+07 ± 1.608E+07 −−
L = 75 6.190E+03 ± 1.826E+03 ∼ 3.771E+03 ± 8.158E+01 ∼ 3.525E+03 ± 7.117E+01 ∼ 4.517E+03 ± 3.581E+02 ∼ 9.002E+06 ± 6.646E+06 ∼ 3-26-0
L = 100 5.980E+03 ± 1.743E+03 ∼ 3.772E+03 ± 8.971E+01 ∼ 3.557E+03 ± 1.426E+02 ∼ 4.317E+03 ± 2.983E+02 − 9.776E+06 ± 8.343E+06 ∼ 4-24-1

Table 4.4: Experimental and statistical results of CFDBWDO with different parameters w
and r on CEC’17 benchmark functions with 30 dimensions.
Parameters F1 F3 F4 F5 F6 F7

w = 0.5, r = 0.0001 1.715E+09 ± 1.125E+09 1.297E+04 ± 8.923E+03 1.216E+03 ± 4.056E+02 6.647E+02 ± 4.392E+01 6.441E+02 ± 6.551E+00 9.790E+02 ± 6.086E+01
w = 0.4, r = 0.0001 1.904E+09 ± 1.051E+09 ∼ 1.779E+04 ± 7.432E+03 + 1.213E+03 ± 3.258E+02 ∼ 6.598E+02 ± 3.721E+01 ∼ 6.443E+02 ± 7.383E+00 ∼ 9.645E+02 ± 6.443E+01 ∼
w = 0.4, r = 0.0004 1.866E+09 ± 1.054E+09 ∼ 1.787E+04 ± 9.104E+03 + 1.200E+03 ± 2.071E+02 + 6.678E+02 ± 4.740E+01 ∼ 6.439E+02 ± 6.534E+00 ∼ 9.774E+02 ± 8.003E+01 ∼
w = 0.4, r = 0.0007 1.858E+09 ± 1.095E+09 ∼ 1.780E+04 ± 7.957E+03 + 1.187E+03 ± 2.330E+02 ∼ 6.685E+02 ± 4.906E+01 ∼ 6.427E+02 ± 5.602E+00 ∼ 9.565E+02 ± 5.225E+01 −
w = 0.5, r = 0.0004 1.825E+09 ± 1.091E+09 ∼ 1.128E+04 ± 5.613E+03 ∼ 1.211E+03 ± 2.731E+02 ∼ 6.748E+02 ± 5.393E+01 ∼ 6.403E+02 ± 7.187E+00 − 9.721E+02 ± 6.457E+01 ∼
w = 0.5, r = 0.0007 1.788E+09 ± 1.171E+09 ∼ 1.259E+04 ± 8.341E+03 ∼ 1.214E+03 ± 2.360E+02 + 6.756E+02 ± 3.930E+01 ∼ 6.425E+02 ± 8.249E+00 ∼ 9.880E+02 ± 8.240E+01 ∼
w = 0.6, r = 0.0001 2.058E+09 ± 9.568E+08 ∼ 1.585E+04 ± 7.335E+03 + 1.370E+03 ± 5.519E+02 + 6.729E+02 ± 3.972E+01 ∼ 6.434E+02 ± 7.265E+00 ∼ 9.970E+02 ± 6.743E+01 ∼
w = 0.6, r = 0.0004 2.051E+09 ± 8.454E+08 ∼ 1.606E+04 ± 7.687E+03 + 1.218E+03 ± 2.615E+02 + 6.699E+02 ± 4.203E+01 ∼ 6.437E+02 ± 6.674E+00 ∼ 9.924E+02 ± 8.130E+01 ∼
w = 0.6, r = 0.0007 1.984E+09 ± 8.890E+08 ∼ 1.436E+04 ± 6.719E+03 ∼ 1.213E+03 ± 2.427E+02 + 6.790E+02 ± 4.041E+01 + 6.424E+02 ± 7.128E+00 ∼ 9.798E+02 ± 7.060E+01 ∼

F8 F9 F10 F11 F12 F13

w = 0.5, r = 0.0001 9.335E+02 ± 4.150E+01 3.887E+03 ± 1.235E+03 6.877E+03 ± 1.308E+03 1.478E+03 ± 6.164E+01 2.881E+08 ± 2.274E+08 3.673E+07 ± 4.328E+07
w = 0.4, r = 0.0001 9.327E+02 ± 4.726E+01 ∼ 3.986E+03 ± 1.480E+03 ∼ 5.955E+03 ± 1.462E+03 − 1.472E+03 ± 7.606E+01 ∼ 2.395E+08 ± 8.280E+07 − 5.931E+07 ± 5.244E+07 +
w = 0.4, r = 0.0004 9.149E+02 ± 2.865E+01 − 4.020E+03 ± 1.255E+03 ∼ 5.864E+03 ± 1.421E+03 − 1.480E+03 ± 6.822E+01 ∼ 2.562E+08 ± 8.645E+07 ∼ 4.746E+07 ± 5.326E+07 +
w = 0.4, r = 0.0007 9.222E+02 ± 3.187E+01 ∼ 3.594E+03 ± 8.654E+02 ∼ 5.629E+03 ± 1.423E+03 − 1.469E+03 ± 6.293E+01 ∼ 2.900E+08 ± 8.997E+07 ∼ 4.397E+07 ± 3.809E+07 +
w = 0.5, r = 0.0004 9.364E+02 ± 3.923E+01 ∼ 3.744E+03 ± 8.245E+02 ∼ 6.507E+03 ± 1.366E+03 ∼ 1.468E+03 ± 5.369E+01 ∼ 3.645E+08 ± 4.435E+08 ∼ 3.545E+07 ± 4.664E+07 ∼
w = 0.5, r = 0.0007 9.223E+02 ± 3.256E+01 ∼ 3.779E+03 ± 1.019E+03 ∼ 6.545E+03 ± 1.480E+03 ∼ 1.470E+03 ± 5.327E+01 ∼ 2.865E+08 ± 8.179E+07 + 5.994E+07 ± 8.930E+07 ∼
w = 0.6, r = 0.0001 9.364E+02 ± 3.938E+01 ∼ 3.516E+03 ± 1.137E+03 − 6.859E+03 ± 1.390E+03 ∼ 1.455E+03 ± 5.615E+01 − 2.612E+08 ± 2.096E+08 ∼ 4.509E+07 ± 4.504E+07 +
w = 0.6, r = 0.0004 9.406E+02 ± 4.131E+01 ∼ 3.439E+03 ± 9.017E+02 − 7.258E+03 ± 1.195E+03 ∼ 1.478E+03 ± 5.373E+01 ∼ 3.363E+08 ± 4.134E+08 ∼ 6.537E+07 ± 9.956E+07 +
w = 0.6, r = 0.0007 9.282E+02 ± 2.822E+01 ∼ 3.619E+03 ± 9.571E+02 ∼ 7.002E+03 ± 1.338E+03 ∼ 1.466E+03 ± 7.010E+01 ∼ 2.755E+08 ± 1.222E+08 ∼ 3.148E+07 ± 4.194E+07 ∼

F14 F15 F16 F17 F18 F19

w = 0.5, r = 0.0001 7.501E+04 ± 1.681E+05 1.301E+05 ± 2.232E+05 3.339E+03 ± 3.396E+02 2.131E+03 ± 1.777E+02 5.697E+05 ± 6.026E+05 7.812E+05 ± 7.791E+05
w = 0.4, r = 0.0001 4.417E+04 ± 4.896E+04 ∼ 2.162E+05 ± 2.126E+05 + 3.332E+03 ± 3.578E+02 ∼ 2.114E+03 ± 1.560E+02 ∼ 7.041E+05 ± 9.652E+05 ∼ 8.564E+05 ± 6.457E+05 ∼
w = 0.4, r = 0.0004 4.805E+04 ± 4.839E+04 ∼ 6.474E+05 ± 2.198E+06 + 3.322E+03 ± 3.642E+02 ∼ 2.184E+03 ± 1.537E+02 + 6.959E+05 ± 7.586E+05 ∼ 1.112E+06 ± 1.265E+06 +
w = 0.4, r = 0.0007 3.850E+04 ± 3.689E+04 ∼ 2.548E+05 ± 2.884E+05 + 3.339E+03 ± 3.660E+02 ∼ 2.168E+03 ± 1.930E+02 ∼ 5.175E+05 ± 4.445E+05 ∼ 9.323E+05 ± 8.684E+05 ∼
w = 0.5, r = 0.0004 5.110E+04 ± 5.033E+04 ∼ 1.355E+05 ± 1.955E+05 ∼ 3.385E+03 ± 4.693E+02 ∼ 2.150E+03 ± 2.005E+02 ∼ 4.605E+05 ± 3.260E+05 ∼ 7.882E+05 ± 6.982E+05 ∼
w = 0.5, r = 0.0007 3.893E+04 ± 4.083E+04 ∼ 1.378E+05 ± 2.170E+05 ∼ 3.280E+03 ± 3.564E+02 ∼ 2.145E+03 ± 2.101E+02 ∼ 7.100E+05 ± 9.799E+05 ∼ 1.113E+06 ± 2.243E+06 ∼
w = 0.6, r = 0.0001 3.890E+04 ± 5.239E+04 ∼ 1.510E+05 ± 2.088E+05 + 3.415E+03 ± 4.697E+02 ∼ 2.160E+03 ± 1.971E+02 ∼ 6.123E+05 ± 7.282E+05 ∼ 1.285E+06 ± 2.081E+06 +
w = 0.6, r = 0.0004 5.096E+04 ± 8.956E+04 ∼ 2.026E+05 ± 2.960E+05 + 3.543E+03 ± 4.402E+02 + 2.131E+03 ± 1.945E+02 ∼ 7.623E+05 ± 8.087E+05 ∼ 8.922E+05 ± 6.807E+05 ∼
w = 0.6, r = 0.0007 7.012E+04 ± 8.090E+04 ∼ 1.261E+05 ± 1.625E+05 + 3.431E+03 ± 4.657E+02 ∼ 2.142E+03 ± 2.125E+02 ∼ 5.518E+05 ± 4.822E+05 ∼ 1.083E+06 ± 1.016E+06 +

F20 F21 F22 F23 F24 F25

w = 0.5, r = 0.0001 2.443E+03 ± 1.411E+02 2.500E+03 ± 4.858E+01 2.769E+03 ± 8.820E+01 3.183E+03 ± 4.912E+01 3.400E+03 ± 5.943E+01 3.021E+03 ± 4.653E+01
w = 0.4, r = 0.0001 2.412E+03 ± 1.251E+02 ∼ 2.508E+03 ± 5.436E+01 ∼ 2.796E+03 ± 9.723E+01 + 3.182E+03 ± 6.045E+01 ∼ 3.379E+03 ± 6.933E+01 ∼ 3.033E+03 ± 3.688E+01 ∼
w = 0.4, r = 0.0004 2.444E+03 ± 1.422E+02 ∼ 2.512E+03 ± 4.983E+01 ∼ 2.764E+03 ± 8.862E+01 ∼ 3.187E+03 ± 5.820E+01 ∼ 3.391E+03 ± 7.615E+01 ∼ 3.037E+03 ± 3.924E+01 ∼
w = 0.4, r = 0.0007 2.444E+03 ± 1.403E+02 ∼ 2.517E+03 ± 5.273E+01 + 2.855E+03 ± 7.371E+02 ∼ 3.177E+03 ± 4.694E+01 ∼ 3.391E+03 ± 6.922E+01 ∼ 3.033E+03 ± 3.875E+01 ∼
w = 0.5, r = 0.0004 2.457E+03 ± 1.366E+02 ∼ 2.521E+03 ± 4.843E+01 + 2.846E+03 ± 5.290E+02 ∼ 3.191E+03 ± 4.840E+01 ∼ 3.400E+03 ± 6.891E+01 ∼ 3.027E+03 ± 4.867E+01 ∼
w = 0.5, r = 0.0007 2.429E+03 ± 1.325E+02 ∼ 2.497E+03 ± 5.317E+01 ∼ 2.885E+03 ± 8.448E+02 ∼ 3.191E+03 ± 7.042E+01 ∼ 3.393E+03 ± 7.179E+01 ∼ 3.011E+03 ± 5.347E+01 ∼
w = 0.6, r = 0.0001 2.484E+03 ± 1.754E+02 ∼ 2.508E+03 ± 5.550E+01 ∼ 2.777E+03 ± 1.051E+02 ∼ 3.192E+03 ± 4.817E+01 ∼ 3.407E+03 ± 6.995E+01 ∼ 3.023E+03 ± 3.982E+01 ∼
w = 0.6, r = 0.0004 2.461E+03 ± 1.401E+02 ∼ 2.515E+03 ± 5.569E+01 ∼ 2.749E+03 ± 9.141E+01 ∼ 3.187E+03 ± 4.895E+01 ∼ 3.396E+03 ± 5.521E+01 ∼ 3.032E+03 ± 3.714E+01 ∼
w = 0.6, r = 0.0007 2.459E+03 ± 1.596E+02 ∼ 2.515E+03 ± 5.547E+01 ∼ 2.766E+03 ± 8.862E+01 ∼ 3.196E+03 ± 5.421E+01 ∼ 3.397E+03 ± 7.946E+01 ∼ 3.033E+03 ± 4.205E+01 ∼

F26 F27 F28 F29 F30 w/t/l

w = 0.5, r = 0.0001 5.932E+03 ± 1.910E+03 3.790E+03 ± 9.414E+01 3.529E+03 ± 7.384E+01 4.547E+03 ± 3.827E+02 1.083E+07 ± 1.608E+07 −−
w = 0.4, r = 0.0001 6.084E+03 ± 1.714E+03 ∼ 3.757E+03 ± 9.472E+01 − 3.524E+03 ± 6.119E+01 ∼ 4.471E+03 ± 3.305E+02 ∼ 1.005E+07 ± 6.792E+06 + 5-21-3
w = 0.4, r = 0.0004 6.044E+03 ± 1.779E+03 ∼ 3.755E+03 ± 8.696E+01 − 3.516E+03 ± 6.711E+01 ∼ 4.481E+03 ± 3.622E+02 ∼ 1.015E+07 ± 8.550E+06 + 7-19-3
w = 0.4, r = 0.0007 6.160E+03 ± 1.801E+03 ∼ 3.779E+03 ± 7.685E+01 ∼ 3.514E+03 ± 5.798E+01 ∼ 4.487E+03 ± 2.799E+02 ∼ 1.238E+07 ± 8.981E+06 + 5-22-2
w = 0.5, r = 0.0004 6.667E+03 ± 1.695E+03 + 3.764E+03 ± 8.195E+01 ∼ 3.540E+03 ± 1.050E+02 ∼ 4.465E+03 ± 3.459E+02 ∼ 8.397E+06 ± 7.659E+06 ∼ 2-26-1
w = 0.5, r = 0.0007 6.536E+03 ± 1.833E+03 ∼ 3.789E+03 ± 8.057E+01 ∼ 3.524E+03 ± 6.563E+01 ∼ 4.411E+03 ± 3.408E+02 ∼ 1.048E+07 ± 7.484E+06 + 3-26-0
w = 0.6, r = 0.0001 6.196E+03 ± 1.740E+03 ∼ 3.783E+03 ± 7.878E+01 ∼ 3.530E+03 ± 7.561E+01 ∼ 4.508E+03 ± 3.325E+02 ∼ 9.078E+06 ± 6.547E+06 ∼ 5-22-2
w = 0.6, r = 0.0004 6.372E+03 ± 1.959E+03 + 3.770E+03 ± 7.833E+01 ∼ 3.531E+03 ± 7.251E+01 ∼ 4.499E+03 ± 3.825E+02 ∼ 7.560E+06 ± 4.706E+06 ∼ 6-22-1
w = 0.6, r = 0.0007 6.125E+03 ± 1.935E+03 ∼ 3.776E+03 ± 6.675E+01 ∼ 3.532E+03 ± 7.944E+01 ∼ 4.478E+03 ± 3.478E+02 ∼ 1.084E+07 ± 7.960E+06 ∼ 4-25-0

CEC 2017 benchmark functions with 30 dimensions. Four values are set for L, i.e.,

L ∈ {25, 50, 75, 100}. The experimental and statistical results are shown in Ta-

ble 4.3. Three values are set for w and r respectively, i.e., w ∈ {0.4, 0.5, 0.6} and
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Table 4.5: Parameter settings of four WDO variants.
Algorithm Parameters

WDO α = 0.4, g = 0.2, RT = 3, c = 0.4, umax = 0.1

AWDO CMAES updates the α, g, RT , c, umax = 0.3

FDBWDO α = 0.4, g = 0.2, RT = 3, c = 0.4, w = 0.5

CFDBWDO α = 0.4, g = 0.2, RT = 3, c = 0.4, w = 0.5, r = 0.0001, L = 50, ε = 0.01, J = 12

r ∈ {0.0001, 0.0004, 0.0007}. Nine combinations are tested on functions. The results

are displayed in Table 4.4. From these tables, we can find that CFDBWDO with

w = 0.5, r = 0.0001 and L = 50 performs the best.

4.4 Comparison for WDO variants

In order to examine the superiority of CFDBWDO, we compare it with other represen-

tative WDO variants, including the original WDO [49], AWDO [58] and FDBWDO.

These algorithms are tested on 29 IEEE CEC 2017 benchmark functions with different

dimensions. It is notable that AWDO adopted covariance matrix adaptive evolution-

ary strategy (CMAES) to update the parameters, while FDBWDO only introduced

fitness distance balance strategy. The experimental parameter settings of four algo-

rithms are presented in Table 4.5. Note that since there is no velocity limitation in

CFDBWDO and FDBWDO, the parameter umax is removed. The experimental and

statistical results are given in Tables 4.8, 4.9, 4.10 and 4.11.

In Table 4.8, all 29 IEEE CEC 2017 benchmark functions with 10 dimensions are

used. CFDBWDO attains the best mean on 13 benchmark functions. w/t/l illustrates

that CFDBWDO performs significantly better than FDBWDO, AWDO and WDO

on 4, 21 and 13 benchmark functions, respectively. It manifests that CFDBWDO

has excellent performance on benchmark functions with low dimensions. In Table

4.9, all benchmark functions with 30 dimensions are adopted. CFDBWDO gains the

best mean on 10 benchmark functions. Through w/t/l, the number of wins of CFDB-



33

Table 4.6: Friedman test ranking of four WDO variants on IEEE CEC 2017.
Algorithms Dimension=10 Dimension=30 Dimension=50 Dimension=100 Mean Rank

CFDBWDO 1.7586 1.8621 1.6207 1.7931 1.7586
FDBWDO 2 1.7931 1.7931 2 1.8966
AWDO 3.6552 3.2069 3.2759 2.8276 3.2414
WDO 2.5862 3.1379 3.3103 3.3793 3.1034

Table 4.7: Wilcoxon test comparison results for CFDBWDO and WDO variants on IEEE
CEC 2017.

Dimension=10 Dimension=30 Dimension=50 Dimension=100

Algorithm w/t/l Algorithm w/t/l Algorithm w/t/l Algorithm w/t/l

CFDBWDO -/-/- CFDBWDO -/-/- CFDBWDO -/-/- CFDBWDO -/-/-
FDBWDO 4/24/1 FDBWDO 3/26/0 FDBWDO 3/26/0 FDBWDO 4/23/2
AWDO 21/3/5 AWDO 16/3/10 AWDO 14/3/12 AWDO 13/2/14
WDO 13/15/1 WDO 15/13/1 WDO 24/5/0 WDO 22/7/0

WDO in comparison with FDBWDO, AWDO and WDO is 3, 16 and 15, respectively.

It suggests that CFDBWDO has superiority on benchmark functions with medium

dimensions. In Table 4.10, all functions with 50 dimensions are used. CFDBWDO

acquires the best mean on 12 benchmark functions. In the light of w/t/l, CFDBWDO

significantly surpasses three variants of WDO on 3, 14 and 24 benchmark functions,

respectively. The result indicates that CFDBWDO performs excellent performance

on benchmark functions with high dimensions. In Table 4.11, all functions with 100

dimensions are tested. CFDBWDO gets the best mean on 10 benchmark functions.

Statistical results demonstrate that CFDBWDO significantly outperforms the oth-

ers on 4, 13 and 22 benchmark functions, respectively. It proves that CFDBWDO

is able to optimize functions with large dimensions. In addition, when optimizing

these functions with large dimensions, CFDBWDO has similar results compared to

the AWDO.

From Tables 4.8, 4.9, 4.10 and 4.11, it can be summarized below: (1) The compar-

ison between CFDBWDO and WDO denotes that the incorporation of chaotic local

search and fitness distance balance strategy significantly improved WDO. (2) The

comparison between CFDBWDO and FDBWDO suggests that chaotic local search
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Table 4.8: Experimental and statistical results of four WDO variants on CEC’17 benchmark
functions with 10 dimensions.
Algorithm F1 F3 F4 F5 F6 F7

CFDBWDO 2.908E+08 ± 3.218E+08 3.961E+02 ± 1.344E+02 4.266E+02 ± 1.322E+01 5.394E+02 ± 1.370E+01 6.099E+02 ± 3.264E+00 7.406E+02 ± 1.305E+01
FDBWDO 2.459E+08 ± 2.421E+08 ∼ 4.232E+02 ± 1.654E+02 ∼ 4.330E+02 ± 1.871E+01 + 5.384E+02 ± 1.267E+01 ∼ 6.101E+02 ± 3.454E+00 ∼ 7.390E+02 ± 1.346E+01 ∼
AWDO 3.236E+08 ± 7.511E+08 − 2.794E+03 ± 3.883E+03 ∼ 4.375E+02 ± 6.817E+01 − 5.504E+02 ± 1.931E+01 + 6.197E+02 ± 1.103E+01 + 7.638E+02 ± 2.663E+01 +
WDO 5.991E+08 ± 5.133E+08 + 2.888E+04 ± 7.217E+03 + 4.433E+02 ± 2.193E+01 + 5.414E+02 ± 1.407E+01 ∼ 6.122E+02 ± 4.450E+00 + 7.419E+02 ± 1.247E+01 ∼

F8 F9 F10 F11 F12 F13

CFDBWDO 8.189E+02 ± 7.832E+00 9.331E+02 ± 3.330E+01 1.982E+03 ± 3.274E+02 1.127E+03 ± 2.098E+01 3.617E+06 ± 5.576E+06 1.443E+04 ± 1.350E+04
FDBWDO 8.183E+02 ± 5.619E+00 ∼ 9.403E+02 ± 4.464E+01 ∼ 1.969E+03 ± 3.019E+02 ∼ 1.123E+03 ± 1.234E+01 ∼ 2.241E+06 ± 3.211E+06 ∼ 2.184E+04 ± 2.122E+04 +
AWDO 8.385E+02 ± 1.753E+01 + 1.149E+03 ± 2.304E+02 + 2.342E+03 ± 3.245E+02 + 1.256E+03 ± 2.023E+02 + 1.129E+07 ± 2.258E+07 ∼ 1.756E+05 ± 2.619E+05 +
WDO 8.213E+02 ± 7.609E+00 + 9.346E+02 ± 4.636E+01 ∼ 2.123E+03 ± 3.546E+02 + 1.124E+03 ± 1.317E+01 ∼ 6.295E+06 ± 1.468E+07 ∼ 1.724E+04 ± 1.206E+04 +

F14 F15 F16 F17 F18 F19

CFDBWDO 1.551E+03 ± 1.297E+02 1.889E+03 ± 2.802E+02 1.697E+03 ± 7.107E+01 1.752E+03 ± 1.855E+01 9.823E+04 ± 1.337E+05 2.789E+03 ± 1.313E+03
FDBWDO 1.613E+03 ± 2.807E+02 ∼ 1.959E+03 ± 4.058E+02 ∼ 1.705E+03 ± 7.320E+01 ∼ 1.759E+03 ± 2.007E+01 + 6.902E+04 ± 7.118E+04 ∼ 2.740E+03 ± 1.569E+03 ∼
AWDO 1.835E+03 ± 4.463E+02 + 4.425E+03 ± 2.307E+03 + 1.840E+03 ± 1.198E+02 + 1.795E+03 ± 3.726E+01 + 8.558E+05 ± 1.227E+06 + 8.182E+03 ± 7.021E+03 +
WDO 1.596E+03 ± 2.374E+02 + 2.248E+03 ± 5.939E+02 + 1.688E+03 ± 6.070E+01 ∼ 1.752E+03 ± 1.328E+01 ∼ 1.098E+05 ± 1.475E+05 ∼ 2.382E+03 ± 6.249E+02 ∼

F20 F21 F22 F23 F24 F25

CFDBWDO 2.070E+03 ± 2.446E+01 2.206E+03 ± 4.456E+00 2.306E+03 ± 2.080E+01 2.635E+03 ± 1.148E+02 2.514E+03 ± 2.471E+01 2.922E+03 ± 2.005E+01
FDBWDO 2.079E+03 ± 2.770E+01 + 2.205E+03 ± 3.118E+00 ∼ 2.310E+03 ± 2.096E+01 ∼ 2.656E+03 ± 8.513E+01 ∼ 2.519E+03 ± 5.770E+01 ∼ 2.928E+03 ± 2.155E+01 ∼
AWDO 2.121E+03 ± 4.644E+01 + 2.226E+03 ± 3.050E+01 + 2.318E+03 ± 4.185E+01 ∼ 2.655E+03 ± 3.003E+01 − 2.647E+03 ± 1.109E+02 + 2.960E+03 ± 8.386E+01 +
WDO 2.079E+03 ± 2.774E+01 + 2.209E+03 ± 6.303E+00 + 2.309E+03 ± 1.760E+01 ∼ 2.663E+03 ± 7.336E+01 ∼ 2.512E+03 ± 2.598E+01 ∼ 2.928E+03 ± 2.847E+01 ∼

F26 F27 F28 F29 F30 w/t/l

CFDBWDO 3.014E+03 ± 7.525E+01 3.141E+03 ± 9.149E+00 3.205E+03 ± 7.902E+01 3.237E+03 ± 3.703E+01 7.919E+05 ± 8.675E+05 −−
FDBWDO 2.995E+03 ± 7.616E+01 ∼ 3.137E+03 ± 9.069E+00 − 3.210E+03 ± 7.967E+01 ∼ 3.228E+03 ± 2.802E+01 ∼ 9.633E+05 ± 1.066E+06 ∼ 4/24/1
AWDO 3.011E+03 ± 1.722E+02 − 3.126E+03 ± 2.194E+01 − 3.258E+03 ± 1.242E+02 + 3.294E+03 ± 6.209E+01 + 2.380E+06 ± 2.314E+06 + 21/3/5
WDO 3.061E+03 ± 1.168E+02 + 3.134E+03 ± 7.297E+00 − 3.245E+03 ± 8.388E+01 + 3.230E+03 ± 3.680E+01 ∼ 1.322E+06 ± 1.695E+06 ∼ 13/15/1

Table 4.9: Experimental and statistical results of four WDO variants on CEC’17 benchmark
functions with 30 dimensions.
Algorithm F1 F3 F4 F5 F6 F7

CFDBWDO 1.715E+09 ± 1.125E+09 1.297E+04 ± 8.923E+03 1.216E+03 ± 4.056E+02 6.647E+02 ± 4.392E+01 6.441E+02 ± 6.551E+00 9.790E+02 ± 6.086E+01
FDBWDO 1.975E+09 ± 9.744E+08 ∼ 1.370E+04 ± 9.244E+03 ∼ 1.158E+03 ± 2.107E+02 ∼ 6.843E+02 ± 5.479E+01 + 6.429E+02 ± 7.227E+00 ∼ 9.800E+02 ± 7.148E+01 ∼
AWDO 1.462E+09 ± 7.671E+09 − 5.856E+04 ± 3.786E+04 + 1.018E+03 ± 1.342E+03 − 7.862E+02 ± 8.823E+01 + 6.634E+02 ± 1.764E+01 + 1.181E+03 ± 1.525E+02 +
WDO 2.394E+09 ± 2.679E+09 ∼ 1.196E+04 ± 6.232E+03 ∼ 2.206E+03 ± 7.318E+02 + 6.975E+02 ± 6.813E+01 + 6.480E+02 ± 7.280E+00 + 1.024E+03 ± 7.539E+01 +

F8 F9 F10 F11 F12 F13

CFDBWDO 9.335E+02 ± 4.150E+01 3.887E+03 ± 1.235E+03 6.877E+03 ± 1.308E+03 1.478E+03 ± 6.164E+01 2.881E+08 ± 2.274E+08 3.673E+07 ± 4.328E+07
FDBWDO 9.300E+02 ± 3.537E+01 ∼ 3.485E+03 ± 8.605E+02 ∼ 6.513E+03 ± 1.511E+03 ∼ 1.472E+03 ± 5.202E+01 ∼ 2.738E+08 ± 1.443E+08 ∼ 5.875E+07 ± 8.729E+07 ∼
AWDO 1.013E+03 ± 8.869E+01 + 8.655E+03 ± 3.281E+03 + 7.321E+03 ± 1.655E+03 + 3.228E+03 ± 2.426E+03 ∼ 3.675E+08 ± 9.400E+08 − 4.914E+08 ± 1.007E+09 −
WDO 9.395E+02 ± 3.294E+01 ∼ 4.004E+03 ± 1.167E+03 ∼ 7.366E+03 ± 1.256E+03 ∼ 1.523E+03 ± 1.353E+02 + 9.170E+08 ± 6.555E+08 + 2.175E+08 ± 2.350E+08 +

F14 F15 F16 F17 F18 F19

CFDBWDO 7.501E+04 ± 1.681E+05 1.301E+05 ± 2.232E+05 3.339E+03 ± 3.396E+02 2.131E+03 ± 1.777E+02 5.697E+05 ± 6.026E+05 7.812E+05 ± 7.791E+05
FDBWDO 5.310E+04 ± 5.647E+04 ∼ 3.225E+05 ± 1.595E+06 ∼ 3.354E+03 ± 4.098E+02 ∼ 2.134E+03 ± 1.802E+02 ∼ 6.575E+05 ± 8.319E+05 ∼ 1.597E+06 ± 3.738E+06 +
AWDO 6.005E+05 ± 6.454E+05 + 2.385E+07 ± 5.110E+07 + 3.708E+03 ± 8.925E+02 + 2.593E+03 ± 3.991E+02 + 6.745E+06 ± 9.174E+06 + 3.485E+07 ± 7.881E+07 +
WDO 6.505E+04 ± 5.034E+04 ∼ 3.157E+06 ± 1.244E+07 ∼ 3.763E+03 ± 3.618E+02 + 2.227E+03 ± 2.670E+02 ∼ 1.433E+06 ± 1.821E+06 + 1.983E+06 ± 5.658E+06 ∼

F20 F21 F22 F23 F24 F25

CFDBWDO 2.443E+03 ± 1.411E+02 2.500E+03 ± 4.858E+01 2.769E+03 ± 8.820E+01 3.183E+03 ± 4.912E+01 3.400E+03 ± 5.943E+01 3.021E+03 ± 4.653E+01
FDBWDO 2.407E+03 ± 1.392E+02 ∼ 2.504E+03 ± 5.301E+01 ∼ 2.890E+03 ± 8.072E+02 ∼ 3.200E+03 ± 4.047E+01 + 3.388E+03 ± 6.820E+01 ∼ 3.020E+03 ± 4.911E+01 ∼
AWDO 2.768E+03 ± 1.893E+02 + 2.557E+03 ± 1.045E+02 + 2.740E+03 ± 1.244E+03 − 3.123E+03 ± 1.483E+02 − 3.263E+03 ± 1.680E+02 − 3.185E+03 ± 5.473E+02 −
WDO 2.483E+03 ± 1.605E+02 ∼ 2.534E+03 ± 6.281E+01 + 3.235E+03 ± 2.946E+02 + 3.194E+03 ± 4.012E+01 ∼ 3.398E+03 ± 6.018E+01 ∼ 3.060E+03 ± 8.635E+01 +

F26 F27 F28 F29 F30 w/t/l

CFDBWDO 5.932E+03 ± 1.910E+03 3.790E+03 ± 9.414E+01 3.529E+03 ± 7.384E+01 4.547E+03 ± 3.827E+02 1.083E+07 ± 1.608E+07 −−
FDBWDO 5.651E+03 ± 1.795E+03 ∼ 3.766E+03 ± 7.475E+01 ∼ 3.529E+03 ± 7.753E+01 ∼ 4.479E+03 ± 3.400E+02 ∼ 1.154E+07 ± 1.399E+07 ∼ 3/26/0
AWDO 6.035E+03 ± 2.356E+03 ∼ 3.609E+03 ± 1.987E+02 − 3.555E+03 ± 7.936E+02 − 5.037E+03 ± 6.002E+02 + 5.600E+07 ± 8.321E+07 ∼ 16/3/10
WDO 6.263E+03 ± 1.991E+03 ∼ 3.760E+03 ± 7.255E+01 − 3.857E+03 ± 1.893E+02 + 4.777E+03 ± 3.817E+02 + 2.400E+07 ± 2.789E+07 + 15/13/1

Table 4.10: Experimental and statistical results of four WDO variants on CEC’17 bench-
mark functions with 50 dimensions.
Algorithm F1 F3 F4 F5 F6 F7

CFDBWDO 6.318E+09 ± 3.764E+09 4.406E+04 ± 1.538E+04 2.830E+03 ± 5.282E+02 7.881E+02 ± 6.653E+01 6.547E+02 ± 6.209E+00 1.392E+03 ± 1.541E+02
FDBWDO 6.324E+09 ± 3.898E+09 ∼ 4.419E+04 ± 1.411E+04 ∼ 2.866E+03 ± 5.922E+02 ∼ 7.854E+02 ± 4.881E+01 ∼ 6.544E+02 ± 8.058E+00 ∼ 1.355E+03 ± 1.436E+02 ∼
AWDO 7.360E+09 ± 2.171E+10 − 2.044E+05 ± 4.305E+04 + 1.928E+03 ± 4.977E+03 − 9.251E+02 ± 1.586E+02 + 6.807E+02 ± 1.928E+01 + 1.617E+03 ± 1.878E+02 +
WDO 1.190E+10 ± 8.037E+09 + 5.619E+04 ± 1.693E+04 + 5.105E+03 ± 1.491E+03 + 8.246E+02 ± 6.244E+01 + 6.607E+02 ± 9.067E+00 + 1.492E+03 ± 1.520E+02 +

F8 F9 F10 F11 F12 F13

CFDBWDO 1.110E+03 ± 5.800E+01 1.352E+04 ± 3.996E+03 1.101E+04 ± 2.781E+03 2.573E+03 ± 4.428E+02 3.170E+09 ± 1.417E+09 3.014E+08 ± 4.837E+08
FDBWDO 1.105E+03 ± 6.979E+01 ∼ 1.381E+04 ± 2.392E+03 ∼ 1.034E+04 ± 2.626E+03 ∼ 2.629E+03 ± 5.001E+02 ∼ 3.178E+09 ± 1.200E+09 ∼ 3.646E+08 ± 3.667E+08 +
AWDO 1.301E+03 ± 1.882E+02 + 3.217E+04 ± 1.240E+04 + 1.273E+04 ± 3.014E+03 + 7.983E+03 ± 8.539E+03 ∼ 4.109E+09 ± 1.312E+10 − 1.521E+09 ± 3.723E+09 −
WDO 1.136E+03 ± 6.312E+01 + 1.779E+04 ± 5.182E+03 + 1.262E+04 ± 2.484E+03 + 3.254E+03 ± 1.252E+03 + 9.561E+09 ± 3.841E+09 + 2.123E+09 ± 1.617E+09 +

F14 F15 F16 F17 F18 F19

CFDBWDO 1.700E+06 ± 1.988E+06 2.285E+07 ± 2.365E+07 4.464E+03 ± 6.756E+02 3.084E+03 ± 3.346E+02 3.255E+06 ± 1.829E+06 5.113E+06 ± 8.055E+06
FDBWDO 1.459E+06 ± 1.122E+06 ∼ 3.413E+07 ± 2.842E+07 + 4.602E+03 ± 7.289E+02 ∼ 3.021E+03 ± 3.018E+02 ∼ 3.026E+06 ± 1.294E+06 ∼ 5.701E+06 ± 1.206E+07 ∼
AWDO 6.641E+06 ± 7.101E+06 + 3.622E+08 ± 6.853E+08 − 5.291E+03 ± 1.479E+03 + 4.107E+03 ± 6.650E+02 + 2.837E+07 ± 3.638E+07 + 1.635E+08 ± 3.962E+08 −
WDO 2.251E+06 ± 1.518E+06 + 4.629E+07 ± 8.272E+07 + 5.189E+03 ± 9.958E+02 + 3.225E+03 ± 4.434E+02 ∼ 6.837E+06 ± 6.715E+06 + 8.407E+06 ± 1.262E+07 +

F20 F21 F22 F23 F24 F25

CFDBWDO 3.185E+03 ± 4.011E+02 2.726E+03 ± 1.136E+02 1.205E+04 ± 4.044E+03 3.920E+03 ± 9.225E+01 4.219E+03 ± 1.109E+02 4.257E+03 ± 1.527E+02
FDBWDO 3.184E+03 ± 3.449E+02 ∼ 2.732E+03 ± 1.052E+02 ∼ 1.192E+04 ± 3.976E+03 ∼ 3.933E+03 ± 9.639E+01 ∼ 4.216E+03 ± 1.183E+02 ∼ 4.266E+03 ± 1.723E+02 ∼
AWDO 3.797E+03 ± 4.564E+02 + 2.784E+03 ± 1.790E+02 ∼ 1.475E+04 ± 3.307E+03 + 3.763E+03 ± 2.659E+02 − 3.948E+03 ± 2.956E+02 − 3.965E+03 ± 2.862E+03 −
WDO 3.343E+03 ± 4.386E+02 + 2.773E+03 ± 1.455E+02 + 1.252E+04 ± 3.420E+03 ∼ 3.938E+03 ± 9.726E+01 ∼ 4.249E+03 ± 9.898E+01 ∼ 4.847E+03 ± 5.174E+02 +

F26 F27 F28 F29 F30 w/t/l

CFDBWDO 8.310E+03 ± 3.004E+03 5.388E+03 ± 2.453E+02 4.869E+03 ± 1.662E+02 6.567E+03 ± 5.359E+02 1.951E+08 ± 7.061E+07 −−
FDBWDO 8.401E+03 ± 2.822E+03 ∼ 5.408E+03 ± 2.129E+02 ∼ 4.913E+03 ± 1.542E+02 + 6.495E+03 ± 5.219E+02 ∼ 1.952E+08 ± 7.404E+07 ∼ 3/26/0
AWDO 1.025E+04 ± 4.114E+03 + 4.938E+03 ± 6.243E+02 − 4.090E+03 ± 1.762E+03 − 7.666E+03 ± 3.884E+03 ∼ 4.685E+08 ± 9.958E+08 − 14/3/12
WDO 9.903E+03 ± 2.788E+03 + 5.411E+03 ± 2.167E+02 ∼ 5.727E+03 ± 7.067E+02 + 7.387E+03 ± 7.375E+02 + 2.555E+08 ± 1.480E+08 + 24/5/0
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Table 4.11: Experimental and statistical results of four WDO variants on CEC’17 bench-
mark functions with 100 dimensions.
Algorithm F1 F3 F4 F5 F6 F7

CFDBWDO 2.950E+10 ± 1.085E+10 1.677E+05 ± 4.478E+04 1.256E+04 ± 1.564E+03 1.267E+03 ± 1.487E+02 6.618E+02 ± 5.292E+00 2.644E+03 ± 3.062E+02
FDBWDO 3.268E+10 ± 1.306E+10 ∼ 1.847E+05 ± 4.645E+04 + 1.257E+04 ± 1.578E+03 ∼ 1.236E+03 ± 1.102E+02 ∼ 6.614E+02 ± 6.189E+00 ∼ 2.796E+03 ± 2.762E+02 +
AWDO 2.979E+10 ± 8.275E+10 − 4.105E+05 ± 1.181E+05 + 3.749E+03 ± 1.154E+04 − 1.623E+03 ± 3.860E+02 + 6.940E+02 ± 2.316E+01 + 3.350E+03 ± 4.840E+02 +
WDO 5.822E+10 ± 1.493E+10 + 1.511E+05 ± 2.584E+04 ∼ 1.693E+04 ± 3.517E+03 + 1.329E+03 ± 1.247E+02 + 6.696E+02 ± 8.747E+00 + 2.959E+03 ± 2.527E+02 +

F8 F9 F10 F11 F12 F13

CFDBWDO 1.668E+03 ± 1.679E+02 3.215E+04 ± 5.041E+03 2.276E+04 ± 6.845E+03 3.182E+04 ± 1.068E+04 1.898E+10 ± 4.618E+09 1.134E+09 ± 8.014E+08
FDBWDO 1.639E+03 ± 1.681E+02 ∼ 3.319E+04 ± 7.966E+03 ∼ 2.403E+04 ± 6.100E+03 ∼ 3.219E+04 ± 1.050E+04 ∼ 1.847E+10 ± 4.697E+09 ∼ 1.385E+09 ± 8.671E+08 ∼
AWDO 2.054E+03 ± 3.895E+02 + 6.357E+04 ± 2.732E+04 + 2.738E+04 ± 6.757E+03 + 1.966E+05 ± 8.247E+04 + 7.813E+09 ± 2.898E+10 − 1.657E+09 ± 5.891E+09 −
WDO 1.690E+03 ± 1.443E+02 ∼ 4.305E+04 ± 9.680E+03 + 2.817E+04 ± 4.743E+03 + 3.862E+04 ± 1.193E+04 + 3.704E+10 ± 1.130E+10 + 3.334E+09 ± 1.221E+09 +

F14 F15 F16 F17 F18 F19

CFDBWDO 1.167E+06 ± 1.170E+06 5.306E+07 ± 8.742E+07 1.019E+04 ± 1.447E+03 6.920E+03 ± 2.410E+03 1.775E+06 ± 7.960E+05 2.181E+08 ± 1.518E+08
FDBWDO 9.908E+05 ± 5.071E+05 ∼ 4.990E+07 ± 9.100E+07 ∼ 1.051E+04 ± 1.487E+03 + 7.527E+03 ± 2.427E+03 + 1.539E+06 ± 5.373E+05 − 2.639E+08 ± 1.994E+08 ∼
AWDO 1.730E+07 ± 3.050E+07 ∼ 4.192E+08 ± 2.183E+09 − 1.189E+04 ± 4.420E+03 + 3.634E+04 ± 1.336E+05 + 2.227E+07 ± 4.413E+07 − 5.661E+08 ± 2.284E+09 −
WDO 3.098E+06 ± 4.254E+06 + 5.351E+08 ± 3.297E+08 + 1.184E+04 ± 1.880E+03 + 9.031E+03 ± 2.534E+03 + 4.796E+06 ± 1.051E+07 ∼ 1.131E+09 ± 1.048E+09 +

F20 F21 F22 F23 F24 F25

CFDBWDO 5.809E+03 ± 8.128E+02 3.983E+03 ± 2.036E+02 2.776E+04 ± 5.759E+03 5.921E+03 ± 1.550E+02 8.987E+03 ± 4.504E+02 7.698E+03 ± 4.597E+02
FDBWDO 5.571E+03 ± 9.897E+02 ∼ 3.994E+03 ± 1.987E+02 ∼ 2.785E+04 ± 6.035E+03 ∼ 5.931E+03 ± 1.763E+02 ∼ 8.927E+03 ± 5.467E+02 ∼ 7.539E+03 ± 3.840E+02 −
AWDO 7.173E+03 ± 9.592E+02 + 3.782E+03 ± 4.596E+02 − 2.975E+04 ± 5.569E+03 + 5.370E+03 ± 7.959E+02 − 7.538E+03 ± 1.302E+03 − 5.953E+03 ± 6.374E+03 −
WDO 6.441E+03 ± 1.004E+03 + 4.185E+03 ± 1.057E+02 + 3.158E+04 ± 4.554E+03 + 5.925E+03 ± 1.830E+02 ∼ 8.959E+03 ± 4.156E+02 ∼ 7.723E+03 ± 1.041E+03 ∼

F26 F27 F28 F29 F30 w/t/l

CFDBWDO 2.350E+04 ± 4.385E+03 8.732E+03 ± 8.241E+02 1.277E+04 ± 9.677E+02 1.317E+04 ± 1.865E+03 2.328E+09 ± 8.172E+08 −−
FDBWDO 2.280E+04 ± 3.857E+03 ∼ 8.839E+03 ± 8.456E+02 ∼ 1.286E+04 ± 9.968E+02 ∼ 1.278E+04 ± 1.716E+03 ∼ 2.388E+09 ± 8.708E+08 ∼ 4/23/2
AWDO 2.818E+04 ± 1.188E+04 + 7.739E+03 ± 1.892E+03 − 7.555E+03 ± 9.010E+03 − 2.167E+04 ± 2.814E+04 ∼ 1.806E+09 ± 5.231E+09 − 13/2/14
WDO 2.810E+04 ± 5.381E+03 + 9.265E+03 ± 5.151E+02 + 1.371E+04 ± 1.393E+03 + 1.335E+04 ± 1.673E+03 ∼ 5.646E+09 ± 1.781E+09 + 22/7/0

Table 4.12: Experimental results of four WDO variants on PEFMSW.
Algorithm Mean Std Best Worst

CFDBWDO 19.62 3.66 11.64 25.11
FDBWDO 20.00 3.22 11.73 24.20
AWDO 29.43 0.83 25.33 29.86
WDO 29.23 1.11 22.43 29.79

can further enhance the performance of the algorithm. (3) The comparison between

CFDBWDO and AWDO shows that chaotic wind driven optimization with fitness

distance balance strategy is better than the previously proposed AWDO employing

covariance matrix adaptive evolutionary strategy (CMAES) to update the α, g, RT

and c.

In order to intuitively determine the best algorithm, the algorithms are ranked by

the Friedman test [88], and the test results are shown in Table 4.6. The smaller the

value obtained, the higher the ranking of the algorithm and the better the perfor-

mance. Accordingly, CFDBWDO is superior to other algorithms.

In order to display the difference between CFDBWDO and other WDO variants,

Figs. 4.6-4.13 depict box-and-whisker diagrams and convergence graphs for functions.

Figs. 4.6, 4.8, 4.10 and 4.12 are box-and-whisker diagrams. Horizontal axis of box-

and-whisker diagram represents four algorithms, and the vertical axis signifies the
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Table 4.13: Experimental results of four WDO variants on SSRPPCD.
Algorithm Mean Std Best Worst

CFDBWDO 1.752957 0.115015 1.46364 1.965598
FDBWDO 1.774544 0.094761 1.561208 2.023126
AWDO 2.507209 0.251714 1.714494 3.174049
WDO 2.766931 0.245221 1.919205 3.312676

Table 4.14: Experimental results of four WDO variants on ELD.
Algorithm Mean Std Best Worst

CFDBWDO 15762.73 311.65 15488.88 17094.55
FDBWDO 15987.99 496.90 15489.65 17364.93
AWDO 16014.53 586.67 15532.57 17586.66
WDO 15914.26 389.34 15532.57 16940.53

error values. The line above the blue box represents the maximum, the line below

the box represents the minimum. The lower edge of the blue box denotes the first

quartile, the red line denotes the second quartile (median), the upper of the box de-

notes the third quartile. The red symbol ”+” displays the outlier value. The median

indicates the average level of sample data. The height of the box indicates the fluc-

tuation of the data. From these box-and-whisker diagrams, it can be seen that the

fitness of AWDO fluctuates the most among the four algorithms, indicating that it is

the most unstable. The fitness of CFDBWDO is relatively the most concentrated and

its medians are also the smallest. Thus, CFDBWDO has superior and more stable

performance. Figs. 4.7, 4.9, 4.11 and 4.13 are convergence graphs. The convergence

curve can intuitively reflect the convergence speed and accuracy of different algo-

rithms, and the ability to escape from local optima. Horizontal axis of convergence

graph expresses NFEs, and the vertical axis shows the logarithm of average optimiza-

tions. From these convergence graphs, it can be observed that WDO and AWDO

converge prematurely, whereas CFDBWDO and FDBWDO gradually converge, and

the curves of CFDBWDO drop even lower. It verifies that the incorporation of fitness

distance balance strategy and chaotic local search into the algorithm can improve the

exploration ability and explore better solutions. Although the convergence trends



37

Table 4.15: Experimental results of four WDO variants on OCNLSTR.
Algorithm Mean Std Best Worst

CFDBWDO 15.37067 1.552393 13.9507 21.07747
FDBWDO 15.72222 1.658071 14.34348 20.86547
AWDO 20.0472 1.982705 14.44839 21.97958
WDO 20.82233 2.140184 13.95148 23.86827

Table 4.16: Experimental results of four WDO variants on TNEP.
Algorithm Mean Std Best Worst

CFDBWDO 223.4118 7.269598 220 258
FDBWDO 225.4171 11.1235 220 262
AWDO 1441.315 876.1988 240 3642
WDO 2401.47 1098.524 258 4671.453

of CFDBWDO and FDBWDO are very close, the average optimization values of

CFDBWDO are smaller than FDBWDO’s, illustrating that the algorithm has been

improved after introducing chaotic local search into FDBWDO.

4.5 Six real-world optimization problems

Parameter estimation for frequency-modulated sound waves (PEFMSW) [89] is a

highly complex multimodal problem where the optimized parameter vector is X =

(a1, ω1, a2, ω2, a3, ω3). The parameter vector is used to generate a sound similar to

target sound, the equations are as follows:

y(t) = a1 sin (ω1tθ + a2 sin (ω2tθ + a3 sin (ω3tθ))) (4.1)

y0(t) = sin((5.0)tθ − (1.5) sin((4.8)tθ + (2.0) sin((4.9)tθ))) (4.2)

where y(t) is the estimated sound wave. y0(t) is the target sound wave and θ =

2π/100. The fitness function is given as:

f(X⃗) =
100∑
t=0

(y(t)− y0(t))
2 (4.3)
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Table 4.17: Experimental results of four WDO variants on CAADP.
Algorithm Mean Std Best Worst

CFDBWDO -11.7621 0.956935 -14.151 -9.84545
FDBWDO -11.545 1.021445 -13.9281 -7.56846
AWDO -9.99738 0.209763 -10.2789 -9.44029
WDO -10.2973 0.100986 -10.4488 -9.99132

Spread spectrum radar poly phase code design (SSRPPCD) [89] is the class of

continuous min–max global optimization problem where the continuous variables are

X = {(x1, ..., xn) ∈ Rn|0 ≤ xj ≤ 2π, j = 1, ..., n}. It is to minimize the biggest mod-

ule in the auto-correlation function samples, and the objective function is piecewise

smooth. The equations are formulated as follows:

min
x∈X

f(x) = max{ϕ1(x), ..., ϕ2m(x)},m = 2n− 1 (4.4)

ϕ2i−1(x) =
n∑

j=i

cos(

j∑
k=|2i−j−1|+1

xk), i = 1, ..., n (4.5)

ϕ2i(x) = 0.5 +
n∑

j=i+1

cos(

j∑
k=|2i−j|+1

xk), i = 1, ..., n− 1 (4.6)

ϕm+i(x) = −ϕi(x), i = 1, ...,m (4.7)

Static economic load dispatch problem (ELD) is to calculate the minimum fuel cost

of generating units in a specific period of operation. The fuel cost includes the cost

of online generating units and various constraint costs. The constraints in this paper

include power balance constraints, capacity limits, ramp rate limits, and prohibited

operating zones. Their specific calculation equations can be referred in [89].

Optimal control of a non-linear stirred tank reactor (OCNLSTR) [89] is a multi-

modal problem. The chemical modeling process is as follows:

ẋ1 = −(2 + u) (x1 + 0.25) + (x2 + 0.5) exp

(
25x1

x1 + 2

)
(4.8)
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ẋ2 = 0.5− x2 − (x2 + 0.5) exp

(
25x1

x1 + 2

)
(4.9)

J =

∫ tf=0.72

0

(
x2
1 + x2

2 + 0.1 · u2
)
dt (4.10)

where u(t) is flow rate. x1 and x2 are dimensionless steady state temperature and

concentration deviation, respectively. The optimization goal is to minimize the per-

formance index J .

The objective of transmission network expansion planning problem (TNEP) is to

minimize the construction cost of new lines, satisfying no overloads. The specific

modeling process of TNEP is in [89].

Circular antenna array design problem (CAADP) [89] achieves sufficient null con-

trol by suppressing sidelobes, maximizing directivity of array pattern, driving the

maxima close to the desired maxima, and penalizing objective function.

These six real-world optimization problems, including PEFMSW, SSRPPCD,

ELD, OCNLSTR, TNEP and CAADP, are used to evaluate the practicality of CFDB-

WDO. The dimensions of six problems are 6, 20, 6, 1, 7 and 12, respectively. The

population size is 100 and all compared algorithms individually run 51 times on each

problem. Experimental results are presented in Tables 4.12, 4.13, 4.14, 4.15, 4.16

and 4.17. The Mean, Std, Best and Worst in tables represent mean value, standard

deviation, best and worst solutions, respectively. The minimum values in columns of

Mean and Best are highlighted in bold.

From Tables 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17, it can be found that CFDBWDO

obtains the best means and solutions on the six problems. In Table 4.16, although

FDBWDO and CFDBWDO have the same best solution, CFDBWDO has a better

mean. Thus, experimental results verify that CFDBWDO has the practicality for

optimizing real-world problems.
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Figure 4.1: 3D and contour maps of F1,F2 and F3.
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Figure 4.2: 3D and contour maps of F6,F8 and F9.
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Figure 4.9: Convergence graphs of four WDO variants on F5, F15, F18 and F19 with 30
dimensions.
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Figure 4.10: Box-and-whisker diagrams of four WDO variants on F3, F9, F16 and F26 with
50 dimensions.
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Figure 4.11: Convergence graphs of four WDO variants on F9, F16, F20 and F26 with 50
dimensions.
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Figure 4.12: Box-and-whisker diagrams of four WDO variants on F3, F7, F16 and F22 with
100 dimensions.
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Chapter 5

Conclusion and future work

By improving SS and WDO, this paper introduces two methods of algorithm im-

provement: algorithm hybrid and selection method. In order to better improve the

exploitation ability of the spherical search, the gravitational search dynamics from

GSA replaces the towards-best in it. Experimental results show that the proposed

SSGSA is effective in terms of search ability and search efficiency. This study pro-

poses chaotic wind driven optimization with fitness distance balance strategy (CFDB-

WDO), which introduces fitness distance balance strategy and memory-based chaotic

local search into WDO to solve the problem of WDO with premature convergence and

trapping in local optima, and CFDBWDO has the same time complexity as WDO.

Experimental results of CFDBWDO and other three WDO variants on twenty-nine

CEC 2017 benchmark functions and six real-world optimization problems indicate

CFDBWDO has superior performance and practicality.

Three valuable findings in the paper are as follows:

(1) The incorporated FDB selection method can indeed help the algorithm escape

from local optima by enriching population diversity, which makes the algorithm

converge gradually and improves the exploration ability.

(2) The effect of CLS on improving the exploitation ability of the algorithm is

limited by comparing the experimental results of CFDBWDO and FDBWDO,
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which clearly verifies the effects of CLS on WDO.

(3) In the large dimensions, CFDBWDO has no significant advantage over AWDO.

The possible reason is that the effect of the algorithm on optimizing functions

with large dimensions needs further improvement.

In future studies, the following worth work can be considered:

(1) SSGSA and CFDBWDO could be attempted to multi-objective optimization

[90], combinatorial optimization [91], neural networks learning [92], solar pho-

tovoltaic parameter estimation [93], electromagnetic [53], optimal bidding strat-

egy [94], and robot technology [95,96].

(2) Improved fitness-distance balance could be applied to other meta-heuristic al-

gorithms to further verify its effectiveness.

(3) The exploitation ability of CFDBWDO could be further improved from other

perspectives in addition to CLS.
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[82] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-

parametric tests for analyzing the evolutionary algorithms’ behaviour: a case

study on the CEC’2005 special session on real parameter optimization,” Journal

of Heuristics, vol. 15, no. 6, p. 617, 2008.
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