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Abstract

Due to combinatorial optimization (CO) problems play an important role in scientific and
industrial world, a number of heuristic algorithms used to manage with CO problems have
been rapidly developed and improved. This paper introduces a novel hybrid algorithm,
called a three-phase search approach with dynamic population size (TPSDP), for solving
a CO problem, named the maximally diverse grouping problem (MDGP). MDGP aims to
assign a given set of elements into a number of groups with size restrictions for the sake
of maximizing the sum of diversity in these groups. MDGP is an NP-hard CO problem,
possessing widespread application and practical importance. The proposed TPSDP devises
the search process into three phases with distinct functions which are iterated: (1) an undi-
rected perturbation phase to improve the population diversity, (2) a restructure phase using
a distinctive crossover operator to increase the information interaction among solutions,
and (3) a directed perturbation phase to discover the adjacent local optima around current
solutions. TPSDP also combines a dynamic population size strategy to reserve limited
computing resources for potential solutions. The results of experiments and the Friedman
test show that the overall performance of the proposed TPSDP is highly competitive with
even better than previous state-of-the-art MDGP algorithms on 500 instances from five
popular benchmark sets. Furthermore, an additional experiment of parameter analysis and

a discussion of critical ingredients are presented.
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Chapter 1

Introduction

The improvement of human social productivity comes from two aspects, one is the dis-
covery of new technologies, and the other is the rational allocation of resources based on
existing technologies to improve resource utilization. With the continuous development of
the world economy, information science and technology has been widely developed and
applied. At present, information technology has been widely used in all walks of life, espe-
cially in the direction of intelligence and large-scale resource integration. The emergence
of various new economic forms and the rise of intelligent applications are driven by the
strong demand of economic development for rational resource allocation after the maturity
of basic technologies.

The problem of resource allocation is usually reduced to an optimization problem after
modeling. Optimization problems can be divided into two categories: one is continuous
variable problems, the other is discrete variable problems. A problem with discrete vari-
ables is called combinatorial. In a problem of continuous variables, it is generally to find
a set of real numbers, or a function; In a combinatorial problem, it is to obtain an object
from an infinite set or a countable infinite set, it may be an integer, a set, a permutation,
or a graph. Generally, these two types of problems have quite different characteristics and
the methods to solve them are also very different. For problems with discrete variables, the
problem of finding the optimal solution from a finite number of solutions is the combina-
torial optimization problem [1]. To put it simply, combinatorial optimization problems are
a class of problems that seek extreme value in discrete state. As a coherent mathematical

discipline, combinatorial optimization problems are relatively young [2]. However, along
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with the industrial and technological revolution and the development of modern manage-
ment science, especially the rapid progress of computer technology and its wide application
in various industries, combinatorial optimization has grown into an independent branch of
operational research.

One reason for the diversity of the root causes of combinatorial optimization is that its
problems directly originate from practice [2]. Typical combinatorial optimization problems
include traveling salesman problem [3], scheduling problem [4], knapsack problem [5],
packing problem [6], maximum clique problem [7], clustering problem [8], graph coloring
problem [9], etc. The definition of the famous traveling salesman problem (TSP) can be
summarized as that a traveling salesman wants to start from his hometown, visit each town
only once, and finally return to his hometown. One of his problems was to find the shortest
path of the trip. A direct application of the TSP is the drilling problem whose solution plays
an important role in economical manufacturing of printed circuit boards [3]. Similarly, the
scheduling problem often encountered in the manufacturing industry can be defined as
allocating limited resources and time to several tasks under certain constraints to satisfy
or optimize one or more performance metrics. In the transportation industry, ships, trains,
aircraft, or trucks often carry loads for different clients. Transportation requests arrive
stochastically over time, and prices are offered or negotiated for transporting loads. This
kind of problem is usually modeled as a knapsack problem, that is, to select the items to
be loaded into a fixed capacity knapsack from a set of given items with known size and
reward, so as to obtain the maximum total return within the capacity limit [5].

The description of these problems is very simple and has strong engineering represen-
tation, but the optimization is very difficult to solve. The main reason is that the algorithms
for solving these problems need extremely long running time and huge storage space, so
that it is impossible to implement them on existing computers, namely the so-called ”com-
bination explosion”. It is the representativeness and complexity of these problems that
arouse people’s interest in the research of combinatorial optimization theory and algo-
rithm. When faced with these combinatorial optimization problems, early researchers still
hoped to calculate the optimal solution and proposed branch-and-bound method [10], cut-

ting plane method [11], dynamic programming approach [12] and other exact algorithms.



3

When the scale of the problem is small, such exact algorithms can find the optimal solution
to such problems in an acceptable time, but when the scale of the problem is large, the com-
putational time spent increases exponentially with the size of the instances, and these exact
algorithms cannot even give a feasible solution. Such problems have been proved to have
NP-hard complexity [13], and it is now generally considered that there are no algorithms
whose upper bound is polynomial in time complexity.

Because this kind of problems exist widely in practice, it is unnecessary to find the
optimal solution in practice. Later researchers abandoned the goal of the strict optimal
solution, and then studied the algorithms available in reality for such problems. In this
process, approximate algorithms [14] were generated. Approximate algorithm refers to an
algorithm that uses approximate methods to solve combinatorial optimization problems,
considering obtain an approximate solution that is close to the optimal solution in polyno-
mial time. The approximate algorithm can ensure that the difference between the compu-
tational result and the optimal result does not exceed a certain constant, but the algorithm
is complex and difficult to program on a computer. Greedy algorithm [15], semi-definite
programming approaches [16], linear programming [17], etc. can be used to construct ap-
proximate algorithms. With the development of computer technology, the study of heuristic
algorithms [18] have gradually flourished. A heuristic algorithm can be defined as an algo-
rithm based on intuition or experience, which gives a feasible solution to the combination
optimization problem to be solved within an acceptable computing cost [19]. Heuristic
algorithms are usually simple and easy to be implemented on computers, but the deviation
between the feasible solution and the optimal solution may not be predictable in advance,
and these heuristic algorithms usually depend on specific problems and are not universal.
At this time, many scientists sought new inspiration for artificial systems from biology.
Some scientists independently developed simulated evolutionary algorithms suitable for
optimization of complex problems in the real world from the mechanism of biological evo-
lution, and a large number of meta-heuristic algorithms [20] appeared one after another. A
meta-heuristic is formally defined as an iterative generation process which guides a subor-
dinate heuristic by combining intelligently different concepts for exploring and exploiting

the search space, learning strategies are used to structure information in order to find effi-
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ciently near-optimal solutions [21]. Meta-heuristic algorithms include but are not restricted
to, ant colony optimization (ACO) [22,23], particle swarm optimization (PSO) [24,25], ar-
tificial bee colony algorithm (ABC) [26], genetic algorithm (GA) [27], simulated annealing
algorithm (SA) [28], tabu search algorithm (TS) [29], iterative local search (ILS) [30], a
series of universal heuristic algorithms inspired by natural phenomena. As a general op-
timization mechanism, the above algorithms can not only solve large-scale problems in a
relatively short time, but also more importantly, the optimization mechanism of such algo-
rithms does not rely too much on the organizational structure information of the algorithm.
Although meta-heuristic algorithms can not guarantee the optimal solution, they can be
applied to a wide range of problems due to their good practicality.

The maximally diverse grouping problem (MDGP) is a combination optimization prob-
lem derived from practice, which requires a grouping scheme that satisfies the constraints
of groups so that the sum of the diversity of all groups is maximized, given that the diversity
matrix of a set of elements is known. The maximally diverse grouping problem has been
shown to be theoretically NP-hard complex, and the scale of instances of MDGP is usually
large, so there is no algorithm that can obtain exact optimal solution in an acceptable time.
At present, researchers of MDGP focus on heuristic algorithms.

This paper presents a novel and effective hybrid algorithm, called a three-phase search
approach with dynamic population size (TPSDP), for solving MDGP. Inspired by the three-
phase local search [31] framework, the TPSDP algorithm iteratively uses the three-phase
with distinct functions to achieve a balance between diversification and intensification in
the search process. In the first phase, TPSDP draws on an undirected perturbation opera-
tor, which is adopted from [32], followed by a local search process. This phase improves
the diversification of solutions. In the second phase, an extended crossover operator based
on [33] is proposed for both equal group size instances and different group size instances.
The second phase improves the information interaction among solutions, and it can be con-
sidered as a transition phase. In the third phase, a novel directed perturbation operator is
proposed to fine-turn current solutions. This operator shifts the search to limited regions
around the current solutions and finds their adjacent promising solutions. This phase inten-

sifies the quality of solutions. In addition, a dynamic population size strategy is utilized to
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improve the efficiency of the algorithm. Experimental results on five widely used MDGP

benchmark sets show that TPSDP has significantly better or at least competitive perfor-

mance compared to the state-of-the-art algorithms, especially on instances with different

group sizes.

ey

2)

3)

The main contributions of this study can be summarized as follows:

TPSDP adopts a time-varying population size strategy to avoid redundant examination
of no-promising solutions and enable promising solutions to be allocated with more
computational resources in a given time budget. Thereby, the dynamic population size

strategy improves the efficiency of the algorithm.

I present an extended crossover operator applied not only to exceptional cases like
the instances with equal group sizes (EGS) but also to the instances with different
group sizes (DGS) in MDGP. The crossover operator maintains the integrity of the part
inherited from the parent solutions as much as possible, thus guaranteeing the quality
of the offspring solutions to some extent. At the same time, the crossover operator also

enhances the information interaction among solutions.

A novel directed perturbation operator is proposed to exploit the neighborhood of
current solutions and find potential neighbor solutions. Additionally, the idea of the
directed perturbation operator is general and can be applied to other algorithms for

MDGTP or other related combinatorial optimization problems.

The remaining parts of this paper are structured as follows: Chapter 2 lists several meta-

heuristic techniques applied to CO problems. The introduction of MDGP is summarized in

Chapter 3. Chapter 4 presents the components of the proposed TPSDP algorithm. Chapter

5 shows the computational results and assessments based on the benchmark instances used

in the recent literature. Analysis of the parameter settings and discussion of the proposed

algorithm are given in Chapter 6. This paper ends with a conclusion in Chapter 7.



Chapter 2

Related work

Meta-heuristics can be said to originate from the Artificial Intelligence and Operations Re-
search communities [20,53,54]. The term meta-heuristics usually refers to the approximate
algorithm for optimization, not specifically expressed for a specific problem. During the
past two decades, due to advances in mathematical programming theory and algorithmic
design, the rapid improvement of computer performance, and the development of com-
plex software, meta-heuristic technology as one of the optimization tools has been greatly
improved. This chapter will introduce several meta-heuristic techniques applied to combi-
natorial optimization (CO) problems in brief.

Variable neighborhood search (VNS) is a meta-heuristic proposed by authors more
than a decade ago [55]. The motivation of this approach can be found in some earlier work,
like [56-59]. The basic idea of VNS is a systematic change of neighborhood, finding a local
optimum in a descent phase and getting out of the corresponding basin in a perturbation
phase. Before generating an initial solution, a set of neighborhood structure should be
defined (see Algorithm 1). The main cycle of VNS contains three phases: shaking, local
search, and move. In the shaking phase, which can also be called perturbation phase, a
solution s’ is randomly selected from the kth neighborhood of the incumbent solution s,
and becomes a new start point of the next iteration. At the end of a round of local search,
the new solution s” is compared with s, and if s” is accepted, the algorithm starts again
with k = 1. Orelse, k is incremented and a new round of shaking phase starts with a distinct
neighborhood.

VNS was originally designed for the approximate solution of CO problems, and later
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extended to tackle mixed integer programming, nonlinear programming and the latest
mixed integer nonlinear programming. Moreover, VNS has been also used as a tool for au-
tomatic graph theory or computer-assisted graph theory. VNS has increasing applications
and pertain to many fields: cluster analysis, vehicle routing, lot-sizing, engineering, biol-
ogy, phylogeny, telecommunication design, location theory, scheduling, network design,
artificial intelligence, pooling problems, reliability, geometry, etc. (see, e.g., [60—67]). The
VNS framework has been also adopted in the proposed TPSDP.

Algorithm 1: Main framework of VNS

1 begin
2 Choose a set of neighborhood structures Ny, k = 1,2,. .., kyax
s « GeneratelnitialS olution();
3 while rerminate condition not met do
4 k—1;
5 while k<k,,,, do
6 s’ « PickAtRandom(N,(s));
7 s" « LocalS earch(s") if (f(s”")<f(s") then
8 s — s
9 k1
10 else
11 ‘ k—k+1
12 end
13 end
14 end
15 end

Simulated annealing (SA) algorithm [68] was first invented in 1983, using a method
similar to hill-climbing, but accepts some deteriorating solutions with an acceptance prob-
ability which is decreasing with time, in order to escape from local minima. The SA al-
gorithm (Algorithm 2) starts from an initial solution and an initial so-called temperature
parameter 7. Then it repeats numbers of iteration until a terminate condition is met. At
each iteration, a solution randomly picked from a neighborhood is sampled and accepted
as a incumbent solution depending on its fitness value and temperature parameter 7. The
temperature 7 is decreased with the search process, therefore, the probability of accepting
a worse solution is high at the beginning of the search and it gradually decreases. This pro-

cess is similar to the annealing process of glasses and metals, which exhibit a low-energy
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configuration when cooled using an appropriate cooling schedule. SA can apply to sev-
eral CO problems, like the quadratic assignment problem (QAP) [69] and the job shop
scheduling (JSS) problem [70], etc. In addition, among the clique partitioning problem I
am studying, the state-of-the-art algorithm in the literature also utilize SA as the framework

of local search.

Algorithm 2: Main framework of SA

1 begin

2 s « GeneratelnitialS olution();

3 T « Ty,

4 while terminate condition not met do
5 s’ « ChooseRandom(N(s));

6 if (f(s") < f(s) then

7 s — s

8 else

9 ‘ Accept s as a new solution with probability p(T, s, s")
10 end

11 Update(T);
12 end

13 end

Tabu search (TS) [71] is a global neighborhood search algorithm, which is one of the
most cited and used meta-heuristic in CO problems. The basic idea of TS is to simulate
the optimization features of human memory function. It avoids circuitous search by local
neighborhood search mechanism and using a short term memory, and releases some for-
bidden high-quality solutions by breaking the aspiration criteria, thus ensuring diverse and
effective exploration to finally achieve the global optimum. The simple TS framework is
shown in Algorithm 3.

The short memory implemented as a tabu list. The main purpose of the tabu list is to
prevent endless cycles in the search process and avoid getting trapped in local optimum. It
is usually used to record the movements of the previous several times and prohibit these
movements from returning in the near future. The tabu list is the core of TS algorithm. The
length of tabu list ((i.e., the tabu tenure) affects the search speed and the quality of solutions.
If the length of the tabu list is too small, the search will focus on small regions of the search

space, and the search process may enter an endless loop. On the contrary, too large tabu list
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forces the search process to explore larger areas, but high-qulity solutions may be skipped
and solutions that cannot be improved will increase the running time of the algorithm.
Therefore, the size of the tabu tenure can make the search divergent or convergent. In a
search process, a dynamic tabu list can lead to a more robust algorithm [72, 73]. When
forbidden solutions contains high-quality unvisited solution, the algorithm should accept
the solution without being restricted by the tabu list. In order to overcome this problem,
the aspiration criterion is defined. The measurement standard is to define a aspiration level
function, which usually selects the fitness value of the optimal solution obtained so far as
the aspiration level function.

Overall, tabu search field is a rich source of ideas, some of which have been and are
being adopted by other meta-heuristics. Furthermore, TS has been successfully applied to
many CO problems, such as the reactive tabu search to the MAXSAT problem [73], the

reactive tabu search to assignment problem [74] and the vehicle routing area [75], etc.

Algorithm 3: Main framework of TS

1 begin

2 s « GeneratelnitialS olution();

3 TabuList < 0;

4 while rerminate condition not met do

5 s « SelectBestOf(N(s)\TabulList);
6 Update(T abulList);

7 end

8 end

Swarm intelligence (SI) algorithm [76] was proposed in 1989. It is inspired by the
collective behavior of schools of fish, flocks of birds, swarm of insects and other biological
aggregation. In the past decades, a number of swarm intelligence algorithm have been
developed. The most successful SI algorithms are ant colony optimization (ACO) and
particle swarm optimization (PSO). ACO is inspired by the behavior of ants in the process
of food search or risk avoidance, while PSO is based on a simplified model of bird flocking
behavior. Here, I will choose PSO for a brief introduction.

As a well-known swarm intelligence algorithms, PSO has attracted great interest with

regard to theoretical value and real-world applications. In PSO (see Algorithm 4), a group
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of particles performs the search process in a given problem space. Each particle maintains
its velocity and position, adjusts its velocity and position with some random perturbation,
and share its current best position with other one or more particles in the swarm to deter-
mine its next position throughout the search space. Once all particle update their respective
positions, the next iteration starts, approaching the region near the optimum. At the end,
the whole swarm probably presses on towards the global optimal at a convergence speed.
Since its simplicity and effectiveness, PSO is widely applied to various CO problems in the

fields of wireless-sensor networks [77], electric power systems [78], and data mining [79].

Algorithm 4: Main framework of standard PSO

1 Create and initial an N D-dimension swarm:;
2 repeat

3 for particlei =1,2,...,N do
4 if f(x;) < f(Ppes;,) then

5 Pbest; = Xi

6 end

7 if f(pbest,-) < f(gbest) then
8 8best = Pbest;

9 end
10 end
11 for particlei =1,2,...,N do
12 Update particle’s velocity;
13 Update particle’s position;
14 end

15 until stopping condition is true;

Evolutionary algorithms (EAs) are methods that modeling the process of natural evo-
lution. They apply the principle of survival on individuals in a population, each of which
represents a potential solution of search space, to purse regions near the perceived opti-
mum. A new set of approximations is arbitrarily initialized, and it evolves towards better
regions of search space by using operators called recombination or crossover, modification
or mutation, and selection.

The most famous among EAs are genetic algorithm (GA) which have been invented
in 1975. GA is a population based optimization problem, which exploits the concept of

survival of the fittest. The basic elements of GA are a population of chromosome, fitness
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function computation, and genetic operators (i.e., selection, crossover, and mutation). The
first step of any GA is to create an initial population. In the canonical genetic algorithm,
each gene or chromosome will be represented as a binary string of length /. It provides
faster and easier implementation of genetic operators. After generating an initial popula-
tion, each string (solution) is evaluated by the evaluation function and given a fitness value.
Then, selection procedure is carried out.

Selection is an significant step in a genetic algorithm that decides which string can
participate in the crossover process. The way to do selection is various, such as roulette
wheel, tournament, rank, boltzmann, and stochastic universal sampling. For example, the
roulette wheel might regard all the string as mapping onto a wheel, where each individual
is represented by a portion of the wheel that proportionally according to its fitness value.
Then spinning the roulette wheel repeatedly, individuals are chosen by stochastic sampling
to select specific solutions that will get involved in formation of the next generation [80].

After selection, the construction of the intermediate population is done and crossover
procedure can be executed. The aim of this process is to produce the next population
from the intermediate population and provide diversity for the population. As a tool for
creating the offspring, the crossover operator combines the genetic information of two or
more parents. Picking a random crossover point in the two parents solution, the genetic
information beyond that point will be swapped with each other. Two newly formed strings
will be inserted into the new population.

To maintain the genetic diversity from one population to the next populaton, the ge-
netic algorithm applies a mutation operator. The frequently-used mutation operators are
displacement, simple inversion, and scramble mutation. Put it briefly, the mutation oper-
ator performs mutation on some bit in the population, with some low probability. After
finishing the above three process, the next population will be evaluated. The process of
evaluation, selection, crossover and mutation constitutes one generation in a genetic algo-
rithm execution process.

As an enfficient meta-heuristic, genetic algorithms have been successfully applied in
various CO problems. A few application areas are listed: facility layout problem (FLP)

[81], scheduling [82], inventory control [83], forecasting [84, 85], and supply network de-
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sign [86,87]. In our TPSDP, the crossover operator also plays an important role in solving

MDGP.

Algorithm 5: Main framework of EA

1 begin

2 P < GeneratelnitialPopulation();

3 Evaluate(P);

4 while terminate condition not met do
5 P’ «— Recombine(P);

6 P « Mutate(P’);

7 Evaluate(P”);

8 P « Select(P” U P)

9 end
10 end

Artificial neural networks (ANNs) [88] is also called neural networks (NNs) or con-
nection model for short. It is an algorithmic mathematical model that mimic the behavior
characteristics of animal neural network for distributed parallel information processing.
This kind of networks relies on the complexity of the system, and achieves the purpose of
processing information by adjusting the interconnection between a large number of internal
nodes.

The method of using neural networks to solve CO problems can be traced back to
Hopfield network proposed by Hopfield et al. in 1985 [89]. This neural network is used to
solve TSP and other CO problems. However, the neural network can only learn and solve
the single small-scale TSP instance at a time. For a newly given TSP instance, it needs to
be trained again from the beginning, which has no advantage over traditional algorithms.

The neural networks can really effectively solve the CO problem in 2015. Vinyals et
al. [90] analogized the CO problems to the machine translation process (i.e., sequence-to-
sequence mapping). The input of the neural network is the feature sequence of the problem
(such as the coordinate sequence of the city), and the output of the neural network is the
solution sequence (e.g., the order of visits to cities). According to this idea, Vinyal et al.
improved the classical sequence-to-sequence (Seq2Seq) mapping model in the field of ma-
chine translation, and proposed a pointer network model that can solve CO problems. The

author trained the network in a supervised learning way and achieved high-quality results
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on TSP. The traditional CO algorithms are all solved by ”iterative search”, but Vinyals et
al.’s model can directly output solutions by using neural networks, opening a new research

field of combinatorial optimization.
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Chapter 3

The maximally diverse grouping
problem

The maximally diverse grouping problem (MDGP) is devoted to partitioning a set of ele-
ments (or nodes) into a set of mutually independent groups (or subsets), maximizing the
sum of the diversity between each pair of elements assigned to the same group. Consider
an undirected complete and edge-weight graph G = (V, E, D), where V = {1, 2,..., n} is
the set of n vertices, E = {{i,j} : i,j € V,i # j}is the set of n X (n — 1)/2 edges, and
D = {d;; > 0 : {i,j} € E} is the set of non-negative edge weights. Let g denotes the
g™ group, where g € {1,2,...,m}. The size c, of each group is in a given interval [L,, U,],
where L, and U, denote the lower and upper bounds, respectively. In MDGP, a vertex v € V
can also be called an element, and an edge weight d;; € D represents the diversity between
element i and j. The objective of the MDGP is to maximize the overall edge weights of the

m groups. Mathematically, the MDGP can be formulated as follows:

m n-1 n
maximize Z Z Z d;jXigXjg 3.1
g=1 i=l j=i+l
st Y Xe=1i=12,...n (3.2)
g=1
Li< Y xig<Upg=12,...,m (3.3)

i=1

X €{0,1},i=1,2,...,n;¢=1,2,....m (3.4)
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where x;, 1s a binary variable and takes the value of 1 if element i belongs to the group g,
and the opposite is 0. The Eqs. (2) and (3) are constraints where (2) enforces that each
element will be put into one specific group while constraint (3) guarantees the size of each
group will lie between the lower bound L, and upper bound U,.

MDGP is a combinatorial optimization problem that originated in practice and has
many practical applications. One of the most intuitive and the earliest applications in
practice is the human resource grouping problem, such as the assignment of students to
groups [34-38] and peer review [39]. For instance, in MBA programs [35], it is impor-
tant to assign students to diverse study groups. The general purpose of these tasks is to
create diversity-rich groups that allow the group members to be in a rich interpersonal and
learning environment, which helps to motivate the members and bring out their strengths,
resulting in solid and efficient groups. Other applications include VLSI design [40] and the
storage allocation of large programs onto page memory [41].

MDGP has been widely studied as a topic based on its theoretically proven NP-hard
complexity, and its value for life applications [42]. Several algorithms have been proposed
in the literature that can find an approximate optimal solution within an acceptable time.
These algorithms can be divided into two categories: (1) single point-based local search
algorithms, and (2) hybrid evolutionary algorithms. The first category includes a multistart
algorithm [43], a Weitz-Jelassi (WJ) algorithm [44] which implements a heuristic used to
construct the initial solution, a Lotfi-Cerveny-Weitz (LCW) algorithm [34] which focuses
on constructing the initial solution and simple local search, a tabu search with strategic
oscillation (TS-SO) [45], multi-start simulated annealing (MAS) [46], a variable neighbor-
hood search (VNS) [46], a general variable neighborhood search (GVNS) [47] which is a
variant of VNS, a skewed general variable neighborhood search (SGVNS) [48] which is
an extension of the GVNS, an iterated tabu search (ITS) [49], an iterated maxima search
(IMS) [32], and the latest published neighborhood decomposition-based variable neighbor-
hood search and tabu search (NDHA) [50]. The second category includes a hybrid genetic
algorithm [51], a hybrid steady-state genetic algorithm (HGA) [46], an artificial bee colony
algorithm (ABC) [52], a new hybrid genetic algorithm (NSGGA) [33] that solves only

equal-sized instances. According to the experimental results reported on benchmark in-
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stances, ITS, IMS, NSGGA, and NDHA can be considered as state-of-the-art algorithms
for MDGP.
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Chapter 4

A three-phase search approach with
dynamic population size for MDGP

4.1 General framework

The implementation framework of TPSDP for MDGP is summarized in Algorithm 6. Three
distinct phases control the search behavior of the TPSDP. The first phase, called the undi-
rected perturbation phase, consists of an undirected perturbation operator, which aims to
strongly modify the current solutions to jump out of the current search regions and move
to new regions far away. This process increases the diversity of the population and, at the
same time, prevents premature convergence. Therefore, this phase can also be seen as a
diversification phase. The second phase uses a crossover operator to produce high-quality
offspring solutions, and to retain the parents’ strengths. This phase maintains the diversity
of the population and improves the information interaction among solutions, resulting in
high-quality solutions. The second phase is the transition phase of the algorithm. In the
third phase, a newly proposed directed perturbation operator is used to discover solutions
with better quality in the regions adjacent to the current solutions. The third phase can be
considered as an intensification phase. It should be noticed that each phase follows a local
search in order to find local optimum solutions with higher quality. These processes are
iterated until a termination condition is encountered. In addition, a dynamic population

size strategy is used to improve the efficiency of the TPSDP algorithm.
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Algorithm 6: The main procedure of TPSDP

1 FUHCtion TPSDP (ﬁmamﬁmin, Qmaxa Hmin’ Na, &, tmax)

®w N wn AW N

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36

/* Population Initialization
fori=1top,.. do

S; =InitialSolution();

S'; =LocalSearch(S;);

end
ﬁ = ﬁmax;
0 = Opaxs

while Time() < t,,,, do

/* Undirected Perturbation Phase
Update 7;;

fori=1togdo

S; =UndirectedPerturbation(S ;, n);
S; =LocalSearch(S));

end

if 3 > 1 then

/* Reconstruction Phase
fori=1toSdo

Randomly select an individual j, j # i;
O, = Crossover(S;, S ));

0, =LocalSearch(0;);

if £(O;) > f(S;) then

‘ Si =0y

else if £S1 + a x Dis(S;, 0;) > 1 then
‘ Si= 0

else
‘ Si=85s

end

end
end

/* Directed Perturbation Phase
fori=1toS do
S; =DirectedPerturbation(S ;, n,);
S'; =LocalSearch(S ;);
end

ﬁ: (ﬁmin_ﬁ)* LimeQ) +ﬁ;

tmax

0 = Opax — (Qmax - Qmin) X Time();

tmax

end
return S?’;

37 end

Sort all S according to f and record the best solution S?;

]
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4.2 Population initialization

Algorithm 7: Initial population

1 Function InitialSolution()
V={1,2,...,n};G =0;
for g =1tomdo
\ c, =0;
end
for g =1tomdo
while ¢, < L, do
v =RandomEle(V);
s[v] = &;
Cg =Co+ 1;
V=V\{}
end
end
for g =1tomdo
if ¢, < U, then
| G=Gu{g}h
end
end
while V # @ do
g =RandomEle(G);
v =RandomEle(V);
sivl = g;
Cg =Co+ 1;
V=V\{h
if ¢, = U, then
| G=G\ gk
end
end
29 return s;
30 end

(- B N N

NN NN N NN e e e e e b e e e
A U A WD =S X O N AW N =

[
8 3

TPSDP algorithm uses random initialization to build the initial population due to its
simplicity and generality. The initial population of TPSDP consists of ,,,, solutions. Each
solution is generated by three steps as shown in Algorithm 7. First, fill each group g
(g € {1,2,...,m}) until reaching their lower bound L, with randomly selected elements.

Then, select an unassigned element at random to fill a group whose current size ¢, is not
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reached its upper bound U,. Repeat this process until all elements are assigned. Finally,
each solution is enhanced by a local search. The best one among the population is recorded

as the current best solution S°.

4.3 Double-neighborhood local search method

4.3.1 Solution space of MDGP

For a given MDGP instance with n elements, m groups, and a diversity matrix D = [d;;j],xn,
the solution space searched by the TPSDP algorithm covers solutions formed by assigning
n elements to the m groups, satisfying the restrictions that each group g contains at least
L, and at most U, elements. A solution in search space is expressed by an n-dimensional
vector s, where s[i] (i = 1,2,...,n) refers to a particular group containing the element i.
Additionally, to improve computational efficiency of local search, I introduce an n X m
matrix M such that M[i][g] is used to represent the sum of the diversity between element i

and all elements in the group g:

Millgl= ), dy (4.1)

i,j=1,2,..n:5[jl=¢

where the calculation of matrix M has complexity O(N?).

4.3.2 Double-neighborhood local search

As the basis of the overall algorithm process, the local search introduced in this paper is
the double neighborhood local search used in [32], as detailed in Algorithm 8. As the name
implies, the double neighborhood local search method uses two underlying neighborhoods:
the insertion neighborhood and the swap neighborhood.

The insertion neighborhood is also called the constrained one-move neighborhood in
[32], which is represented by N,. Given a feasible solution S/, the search is realized by
moving an element v from its current group g; to another group g, while following the

constraints on the size of each group in S/. All solutions created in this way are called
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Algorithm 8: Double-neighborhood local search method

1 Function LocalSearch(s, f(s))

2 Initialize M[n][m];

3 imp = true;

4 while imp do

5 imp = flase;

6 forv=1tondo

7 for g = 1tomdo

8 if (s[v] # g) A (csp > Lypy) A (cg < U,) then
9 Af = M[v]llgl — Mv][svIl;
10 if Af > 0 then

B Cspl = Cspv) — 1
12 Co=cCg+1;

13 slvl = g;

14 Ss) = f(s) + Ay
15 Update M;

16 imp = true;

17 end

18 end

19 end
20 end
21 forv=1ton—-1do

22 foru=v+1tondo

23 if s[v] # s[u] then

24 Af = M[v][s[u]] = M[v][s[v]] + M[u][s[v]] — M[u][s[u]] - 2d,.;
25 if Af > 0 then

26 t = s[v];

27 s[v] = s[u];

28 slu]l =t

29 f(s) = f(s) + A;
30 Update M;

31 imp = true;

32 end

33 end

34 end
35 end
36 end
37 return s, f(s);

38 end
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N neighbor solutions of S/, and the set of these neighbor solutions constitutes the N,
neighborhood of 7. It should be noted that since L, = U, for each group in instances with
equal group sizes (EGS), the solutions in these instances do not have N; neighborhood.

S" is used to denote a newly generated solution of S/ after one move of N; neigh-
borhood search. In order to calculate the objective value of the S” efficiently, I apply the
n X m matrix M mentioned above. After the N, neighborhood search, the diversity values
of all groups are unchanged, except for the group g, which eliminates one element, and
the group g, which accepts one element. The difference Af between the objective values
of $" and S/ is only related to the two changed groups. The diversity value of group g,
loses the sum of the diversity between element v and all other elements in group g;, while
the diversity value of group g, gains the sum of the diversity between element v and the
other elements in the group g,. Therefore, the difference Af between the objective values

of " and S/ can now be easily calculated as:

Af = f(S") = f(ST) = MVllg.] — Mvligi] (4.2)

If Af > 0, it means that the quality of the solution is improved after an insertion move.
Then, the element v is moved from g; to g, and the matrix M will be immediately updated

in the following way:

M(jllg:] = M[jlig] —dj

M[jllg2] = M(jl(g21+d,y

4.3)

where j is each element belonging to V (V = {1, 2, ..., n}). Hence, the complexity of updat-
ing the matrix M is O(N).

N, represents another commonly used neighborhood, i.e., swap neighborhood. For a
feasible solution S/, suppose that elements v and u locate in groups g, and g, respectively.
N, neighborhood of S/ is composed of solutions obtained by swapping a single pair of
elements belonging to different groups. That is to say, let element v be in group g, and
element u be in group g,. It is clear that, unlike the N, neighborhood, the group size

of the solution after the N, neighborhood search does not change. Therefore, the swap
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neighborhood applies to the EGS instances as well.

S" is used to denote an N, neighbor solution of /. Like the N; neighborhood search,
the difference Af between the objective values resulting from the swap move is only rel-
evant to the groups g, and g,. For the element v, it is removed from g,, the diversity of
g, decreases by the sum of diversity between element v and other elements in g,. At the
same time, group g, receives the element v, the diversity of group g, increases by the sum
of the diversity between it and the other elements in g,. It is the same process for element

u. Thus, we can find that Af between f(S") and f(S/) can be calculated as:

Af = f(S™ = f(ST) = MD]lg.] - Mg + (Mlullg,] - Mlullg.]) - 2d,, ~ (4.4)

I use the above two neighborhood structures to perform a local search for improv-
ing the quality of solutions in the population. The double-neighborhood local search
method explores both the N; and N, neighborhoods in a deterministic and token-ring way
(N1 - N2 - N1 - N2 —- N1 — N2,...). Moreover, the neighborhood solutions are
accessed in a lexicographical order way when detecting the neighborhoods. Given a current
solution S/, the local search starts with exploration in the N, neighborhood of S/. Once
an improved neighbor solution S” is found, S” is taken as the current solution S/, and the
process continues to examine neighbor solutions within the N, neighborhood of the new
current solution S/. This process is repeated until n X m neighbor solutions are detected
and then transferred to the N, neighborhood. The search behavior in the N, neighborhood
is the same as that in the N, neighborhood, with the difference that the search shifts to the
N; neighborhood after n X (n — 1)/2 neighbor solutions have been visited. The double-
neighborhood local search is performed until no improved solution is found in both N, and

N, neighborhoods.

4.4 Undirected perturbation phase

The proposed TPSDP algorithm employs an undirected perturbation operator derived from

[32] for each input solution, as shown in Algorithm 9. The undirected perturbation proce-
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Algorithm 9: Undirected Perturbation

1 Function UndirectedPerturbation(s,n,)

2 s, =;

3 for n =1 ton, do

4 s, = RandomsS olution(N,(s,) U N1(s,));
5 end

6 return s,;

7 end

dure randomly picks a neighbor solution from N; or N, neighborhood to replace the current
solution 7, times without considering the objective value of the neighbor solution, where
ns represents the strength of undirected perturbation and 7, = 6 2. Different from the way
that fixing the 7, during the whole search process, in this study, I set the value of 6 adap-
tively, dropping from 2.0 to 1.0 for instances with n > 400 and 1.2 to 0.1 for the remaining
instances. According to Eq. (4.5), 8,,.x and 6,,, are maximum and minimum coefficient
values for the strength of strong perturbation, respectively. Time() and t,,,, are current time
and maximum time, respectively. Due to the property of the undirected perturbation opera-
tor, this process increases the diversity of solutions in the population. It strongly modifies a
solution to jump out of the current local optimal region and relocates it to a more distant re-
gion. Afterward, the double-neighborhood local search follows the undirected perturbation

operator to find the local optimal solutions in new regions.

Time()

max

0= Hmax - (emax - Gmm) *

4.5)

4.5 Population reconstruction phase

The population reconstruction phase consists of two ingredients: the offspring generation

and the replacement strategy.

4.5.1 The offspring generation method

After the undirected perturbation phase, each solution S in the population is characterized

by high quality. In order to use valuable parts of solutions to guide the next search, I propose
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Algorithm 10: Crossover operator

1 Function Crossover(py, p;)
S° =0
G={1,2,...,m};
H={1,2,...,n}
fori=1tomdo
if < 0.5 then
\ Select a group g’ with maximum diversity from p;
else
‘ Select a group g’ with maximum diversity from p;;
end
AG = {glU, > ¢y, g € G};
if AG # @ then
Randomly select a group g from AG;
put the elements of g’ into group g of S;
else

e e 9 S Nt A WN

= e e e e e e
A N R W N =S

Select a group g that U, is cloest to cg;

randomly selecte U, elements from g’ and put them into group g of §7;

end

G=G\g

Remove all elements of g from py,p,, and H;

end

Assign each remained element from H randomly to a random group g of S°
whose ¢, < L,;

23 Assign each remained element from H randomly to a random group g of S°

whose ¢, < Uy;

24 return S°¢;

25 end

o
|

-
e

ST )
N = o

a new crossover operator, as shown in Algorithm 10, to generate offspring solutions, which
plays a crucial role in TPSDP. The newly proposed crossover operator extends the former
used in [33] to make it more general, which can be applied not only to exceptional cases
like the EGS instances but also to the DGS instances in MDGP. To be specific, each solution
S in the population is selected as a parent solution (say p;), and the other different parent
solution (say p,) is chosen randomly from the current population. These two solutions are
used to generate a child solution according to the proposed crossover operator. It should
be noticed that the population reconstruction phase is performed only when the current

population size S is greater than 1.
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At the beginning of the crossover process, 1 first prepare two duplicate solutions (p; and
p») of the parent solutions, a set H containing the elements of V, and an empty offspring
solution §°. Then, I select p; and p, with equal probability and define the selected one
as p’. The group with the largest diversity in p’ is picked as a candidate group g’, which
is an important component of p’. To retain as many elements in g’ as possible, priority is
given to select those empty groups in S whose upper bound is greater than the number of
elements in g’. An empty group with the above property is randomly selected among S °,
and the elements of g’ are put in it. If such an empty group does not exist, find an empty
group whose U, is closest to the number of elements in g’, and fill the group with randomly
select U, elements from g’. The elements that have been assigned are removed from the
pP1, P2, and H. Then, the diversity of each group in the parent solutions is recalculated.
The above steps are performed m times. Note that there is a high probability that the
constructed offspring solution S is still illegal, which means that the number of elements
in some groups has not reached their lower bound L,, or there are still elements in H that
have not been assigned yet. In this situation, an adjustment process is implemented as in
the following.

I first calculate whether the number of unassigned elements in H can satisfy L, of m
groups in S$°. In the first case, if the number of unassigned elements in H is sufficient, a
random unassigned element is assigned to a random group whose group size has not yet
reached L, in §?. Repeat this process until all m groups satisfy its L,. The remaining
elements are randomly assigned to those groups whose group sizes have not yet reached
their upper bound U,. Repeat this step until all n elements are allocated into S°. In the
second case, if the number of unassigned elements in H is insufficient, randomly selected
an element from a group whose current group size is larger than L, and put it in H. Repeat
this process until the number of unassigned elements can satisfy L, of m groups in S?. The
following element assignment process is the same as the first case.

Figure 4.1 illustrates the process of the proposed crossover operator on a given example.
Suppose that there are 12 elements (i.e., n = 12) and 4 groups (i.e., m = 4) with given upper
and lower bounds. At step 1, p; is selected as p’, group {5, 6, 7, 8} with the largest diversity

is chosen to become the candidate group g’. To retain as many elements in g’ as possible,
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empty group g4 in $° whose U, is greater than c, is randomly selected. Put the elements
5, 6,7, 8 in g4 and remove them from p;, p,, and H. Similarly, I build g,, g;, and g3 of S°
from parents p, and p;, respectively. At the end of these four steps, g3 of S is the only one
group whose current size is smaller than its L,. The unassigned element 3 in H is picked
randomly and placed it in g;. Removing element 3 from p;, p,, and H. The remaining
element 4 in H is then put in g, where c,, is not reached Uy, .

Every time S° is constructed, the double-neighborhood local search will be performed
to find the corresponding local optimal solution S. The composition of the offspring
solutions derived by using this crossover operator will not produce overlapping parts of
elements in groups, which maintains the integrity of the elements in the groups of parent
solutions as much as possible, thus ensuring the quality of the offspring solutions to a
certain extent. On the other hand, this process not only maintains the diversity of the

population but also enhances the intensification of the algorithm at the same time.

4.5.2 Replacement strategy

Whether S can replace the corresponding parent solution p; into the new population de-
pends on the fitness value and the structure of S”. When S has a larger fitness value
than the corresponding parent solution p;, S directly replaces p; into the new population.
Otherwise, in order to maintain the diversity of the population, I retain the deteriorating

offspring S if the following condition is satisfied:

S

o +a x Dis(p,S9) > 1 (4.6)

where f(S) and f(p;) denote the objective values of the offspring solution S and the
corresponding parent solution p;, respectively. « is a parameter, taking a value of 0.05
after detailed testing (see Section 6.1.2). Dis(py, S °"y indicates the distance between p, and

S Generally, the distance between two solutions (S, S2) is defined in the following way:

Gy (11 == g'LiT) A (2101 # 1)) v ((&'10 # 8'1) A (¢210) == &21.1)))|

Dis(S',8?) =
is( ) ey

4.7)
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which estimates the “fraction” of pairs locating in the same group in one solution, but not
in the same group in the other solution, as described in [48].
Note that, the way I use the Eq. (4.6) is quite different from [33], which is applied
to judge whether a local search for a child solution is necessary. I use the formula to

discriminate whether to accept a slightly worse local optimal offspring solution.
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4.6 Directed perturbation phase

To further improve the quality of solutions after the reconstruction phase, a directed pertur-
bation phase, which consists of a directed perturbation operator and the double-neighborhood
local search, is adopted as shown in Algorithm 11. For each solution, I first initialize an
m X m matrix Avg, a 1 X m matrix R, and an empty set U to record the average diversity
contribution of selected m elements to the m groups, the elements that should be reassigned,
and the groups whose group size is less than L, after removing an element, respectively.
Then, for each group, an element who contributes the least diversity value is taken out and
put into R. After that, if the group size c, is less than L,, the group g will be put into the set
U. In order to eliminate the influence caused by the different number of elements in each
group on DGS instances (e.g., the element generates more diversity contribution concern-
ing those groups with a larger number of elements than those groups with a smaller number
of elements), the average diversity contribution of the elements to the groups is calculated.
Eq. (4.8) initializes the average diversity contribution of each element to each group, where
M which is defined in Eq. (4.1) represents the sum of the diversity between each element
and all elements in the group g, D is the matrix of the diversity between two elements, ¢,

denotes the current number of elements of group g.

MI[R[k]1[g] = M[RIk]1[g] — DIR[k]I[R[g]]

MIRIKI]Lg) “8)

Avglkl(g] = k=1,2,....myg=1,2,....,m

Cg

In the process of element reassignment, | prioritize the groups in set U to ensure the
feasibility of the solution. Specifically, a group g is randomly selected in U first. Then,
in terms of matrix Avg, an element in R possesses the greatest contribution to the group
g is placed into this group. Once an element is assigned, the matrix Avg, R, M and U
will be updated immediately. The update process starts by removing the assigned element
from R and removing the group g from U. Then the average contribution of this element

to all groups is automatically changed to 0, and the average contribution of the remaining
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Algorithm 11: Directed Perturbation

1 Function DirectedPerturbation(s,n,)

2 for L=1ton,do

3 Avg = [m][m],R=[m],U =0,G ={1,2,...,m};

4 for g = 1tomdo

5 Find an element i with the lowest diversity contribution in group g;
6 Rigl =1

7 Cg=cCg—1;

8 if ¢, < L, then

9 | U=UuU{gh

10 end
11 end
12 Initialize Avg according to Eq. (4.8);
13 while U # @ do

14 Randomly select a group g, in U;

15 In terms of Avg, find an element R[e] with the largest diversity

contribution to g,;

16 Cq = Cq + 1

17 for k = 1 tomdo

18 if k € G then

19 M[RIk]llg,] = M[RIk]][g,] + DIRIKII[R[e]l;

20 Avglkllg,] = (M[RIk]1[g,] — DIRIKII[RIg 1D/ cg;
21 end
22 end

23 Set the e row of Avg to be 0;

24 s[R[el] = g3

2 U=U\l{g);

26 G=G\l{e};
27 end
28 while G # @ do

29 Randomly select a number e in G;

30 Find a group g* whose size less than U,, and R[e] can bring the largest

diversity contribution to g*;

31 Cor = Cgr + 1

32 for k = 1tomdo

33 if k € G then

34 MIR[k]1[g"] = M[RI[k]1[g"] + DIR[K]I[R[e]];

3 Avglkllg'] = (MIRIK1I[g"] - DIRIKTIRIE /¢y
36 end

37 end

38 Set the e row of Avg to be 0;

» stRlel] = g*;

40 G=G\le};
41 end
42 end
43 return s;

44 end
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unallocated elements to each group is updated. This step is repeated until U is empty. If
there are still elements in R, one element is selected at random, and the group with the
highest average contribution is found according to the matrix Avg. The element is added to
the group if the number of elements in that group does not reach U,. The following update
process of matrix Avg is the same as the above. This step is repeated until R has no more
elements. The above procedure successive runs 7, times to obtain a perturbed solution.
Finally, a local search process is performed for this perturbed solution to exploits the local
optimum.

This directed perturbation operator constructs a slightly perturbed solution and pre-
serves the quality of the current solution as much as possible. Instead of the random search
of the undirected perturbation, the search process with directed perturbation is less destruc-
tive to the solution and locates the solution in a neighborhood closer to the current solution.
This phase can be regarded as the intensification phase of the algorithm in the solution

space.

4.7 Linear decline of population

The local search in the TPSDP algorithm is applied to every solution in the population,
which is very time-consuming. In order to use the limited computing resources efficiently,
I reserve more resources for those more promising solutions by decreasing the population

size, shown as:

Time()

B = Buin = P) * +5 (4.9)

tmax
where 8 and S, are current population size and minimum population size, respectively.

Time() and t,,,, are current time and maximum time, respectively.



33

Chapter 5

Experimental result and comparison

5.1 Experimental setup

To verify the performance of the proposed TPSDP, I test it on different scale benchmark
instances and make comparisons with four state-of-the-art algorithms including ITS [49],
IMS [32], NSGGA [33], and NDHA [50]. Among these reference algorithms, the source
code of ITS, IMS, and NDHA can be obtained from https://www.personalas.ktu.
1t/~ginpalu/, http://www.info.univ-angers. fr/~hao/mdgp.html, http://www.
info.univ-angers. fr/pub/hao/NDHA.html, respectively. It is worth mentioning that
the proposed TPSDP algorithm as well as ITS, IMS, NDHA have been implemented in
the C++ language. Moreover, all of the experiments of the four algorithms were carried
out under the same computing platform, a Windows PC with a configuration of Intel(R)
Core(TM) 17-9700 CPU @ 3.00GHz 8.00GB RAM. Each algorithm was run 20 times for
an instance to obtain statistical results. Regrading NSGGA, I directly use the reported

experimental results in [33] as the comparison data.

5.2 Benchmark instances

I have used the same benchmark instances for our algorithm that have been widely used
in other algorithms for MDGP in the literature, including three small-scale sets and two
large-scale sets. Three small-scale sets and one large-scale set can be found on the website:

https://grafo.etsii.urjc.es/optsicom/mdgp/, and the rest can be downloaded
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from https://grafo.etsii.urjc.es/optsicom/mdp/. Next, the characteristics of
each benchmark set are described in detail.

Ranlnt set: In this set, there are four kinds of instances with different vertex numbers,
ranging from 120 to 960. Each kind has ten EGS instances and ten DGS instances, where
the distances or diversities between the pairs of elements are generated with an integer
uniform distribution in the interval (0, 100). For these instances, the number of groups m
varies from 10 to 24, while the lower and upper bounds are between 2 and 48. Meanwhile,
the EGS instances have the same lower and upper bounds [n/m] for any group g.

RanReal set: This set has the same structure and size as RanInt. The only difference is
the distances d;; between points which are real numbers generated using a uniform distri-
bution between 0 and 100.

Geo set: The main feature of this set is the distances between two elements, which
are calculated as Euclidean distances between pairs of elements with coordinates randomly
generated in [0,10]. The number of coordinates for each element is created randomly in the
2 to 21 range. The structure and size are similar to RanInt and RanReal.

MDG-a set: This set has some dissimilarities from the above sets, which is a large-
scale set with n = 2000, and consists of 11 types of instances, including six types of DGS
instances and five types of EGS instances. Each type comprises 20 instances, and the
distances of pairs of points are the same as Ranlnt, except that the interval is 0 to 10. The

specific characteristics are listed in Table 5.1 below.

Table 5.1: Main information of the instances in MDG-a set.

DGS EGS
n m L, U, L,=U,
2000 50 32 48 -
2000 10 173 227 200
2000 25 51 109 80
2000 50 26 54 40
2000 100 13 27 20
2000 200 6 14 10

MDG-c set: The set that adapted from the instances of maximum diversity problem is a

new set, which is used in [32,50] merely. Two types of instances belong to this set. One of
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them has 20 DGS instances with n = 3000 and m = 50, where the lower and upper bounds
of group sizes are fixed to [0.8n/m] and [1.2n/m], respectively. The other possesses 20
EGS instances with the same numbers of vertices and groups as the DGS instance, except

that the group sizes are set to [n/m]. The edge weights d;; are integers randomly generated

from O to 1000.

5.2.1 Parameter setting

Table 5.2: Setting of parameters.

Parameters Section Description Value

Brnax 4.2 maximum (initial) population size 15

B 4.7 current population size time-variant
Bnin 4.7 minimum (final) population size {1, 2}

s 4.4 strength of undirected perturbation ox

0 4.4 coefficient for strength of undirected perturbation time-variant
Onax 4.4 the maximum value of {1.2, 2}

Ormin 4.4 the minimum value of 6 {0.1, 1}

a 452 a parameter of replacement strategy 0.05

N4 4.6 strength of directed perturbation 3

This section states some necessary parameter settings of the TPSDP algorithm, which
is summarized in Table 5.2. B,..., B, and B, are three parameters with respect to the pop-
ulation size. It is worth noting that § is a time-varying parameter because the population
size in TPSDP decreases with time. Also, notice that the parameter 6, a crucial coefficient
determining the strength of undirected perturbation 7, declines from 1.2 to 0.1 over time
for the instances with n < 400 and from 2.0 to 1.0 for the other instances. The parameter
14 used in the directed perturbation operator is set to 3 applicable to all scale instances. All
the parameter values presented in Table 5.2 are employed in all the following experiments
reported in this work as the default value, although some parameters can be fine-tuned to
produce better results for some instances. Parameters of ITS and IMS follows the recom-
mendation setting in the literature [32,49].

In this paper, I choose the same termination condition as [32,33,50], that is, the termi-
nation condition for all the above algorithms is the cutoff time limit ¢,,,,, which is related

to the size of the instances. The specific settings are: t,,,, = 3 seconds for n = 120, t,,,, =
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20 seconds for n = 240, t,,.. = 120 seconds for n = 480, t,,.. = 600 seconds for n = 960,
tmax = 1200 seconds for n = 2000, and ¢,,,, = 3000 seconds for n = 3000.

5.3 Experimental results and comparison on five bench-
mark sets

In this section, I present the experimental results obtained by TPSDP, ITS, IMS, NSGGA,
and NDHA, and make comparisons to evaluate the performance of the proposed TPSDP.
Tables 5.3-5.8 summarize the computational results of ITS, IMS, NDHA, and TPSDP on
RanlInt, RanReal, and Geo beachmark instances. The data comparison outcomes with
NSGGA on these three benchmark sets are summarized in Tables 5.9-5.11. Moreover, 1
also evaluate the performance of TPSDP on MDG-a and MDG-c benchmark sets, which
were tested in [32, 50]. Refer to Tables 7.1-7.13 for detailed experimental results of all
MDG-a and MDG-c instances. The first column of the tables states the names and some
information of the experimental instances. The data listed in columns f, and columns f,,,
record the best and average values of 20 independent runs on each instance, respectively.
For each instance, the best result among all compared algorithms is shown in bold. The
row ‘Avg’ reflects the average value of each column, and the row ‘#Best’ presents the total
number of the best values obtained by each algorithm in the comparison. In the last row of
the table, p-value is obtained by the Wilcoxon signed-rank test to verify whether there is a
significant difference between TPSDP and comparison algorithms in terms of fj., and f,,,.

Tables 5.3 and 5.4 report the experimental results of ITS, IMS, NDHA, and TPSDP on
Ranlnt instances. On the DGS instances, TPSDP outperforms its peers in terms of f.
and f,,,, obtaining the best result on 26 and 36 out of 40 instances while ITS, IMS and
NDHA obtain 6, 5, 3 and 1, 1, 2 best results, respectively. On the EGS instances, TPSDP is
also ahead of ITS, IMS, and NDHA in both f., and f,,,, and TPSDP produces 26 and 23
best results on 40 instances based on f., and f,,,, respectively. Furthermore, the p-value
smaller than 0.05 also shows that TPSDP is significantly better than reference algorithms
on both DGS and EGS instances. Additionally, these results show that TPSDP works better
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on instances with n = 960 and performs more stable on instances with different group sizes
than those with equal group sizes.

Tables 5.5 and 5.6 report the experimental results of ITS, IMS, NDHA, and TPSDP on
RanReal instances. Results show that the performance of TPSDP on the RanReal instances
is similar to that on the RanlInt instances. On the DGS instances, ITS, IMS, NDHA, and
TPSDP achieve 2, 7, 1, and 30 best results in terms of f;.,, and 0, 1, 2, and 37 best values
in terms of f,,,, respectively. On the equal group sizes instances, TPSDP is also superior
to the comparison algorithms based on fy.; and f,,,, and the small p-value obtained by the
Wilcoxon signed-rank test confirms that TPSDP is significantly better than ITS, IMS, and
NDHA on both DGS and EGS RanReal instances.

The experimental results of ITS, IMS, NDHA, and TPSDP on Geo instances are sum-
marized in Tables 5.7 and 5.8. For the DGS instances, the p-value reveals that TPSDP
performs comparably with ITS and NDHA in terms of f,,,. For the EGS instances, clearly,
ITS shows an overwhelming advantage over TPSDP, IMS, and NDHA.

Tables 5.9-5.11 show the results of comparing NSGGA and TPSDP on the three types of
instances with equal group sizes. From Tables 5.9 and 5.10, we can see that although the p-
value based on f;,, is greater than 0.05, TPSDP finds more best f;.,; than NSGGA on both
EGS and DGS. Furthermore, the p-values based on f,,, show that TPSDP is significantly
better than NSGGA with respect to stability. While on the Geo instances, NSGGA and
TPSDP get the best values on 6 and 34 instances in terms of f.,, and the best values on
4 and 36 instances in terms of f;,,, respectively. Based on the p-value, it is also clear that
TPSDP significantly outperforms NSGGA on Geo instances.

It can be seen from Tables 7.1-7.13 that TPSDP significantly outperforms ITS and IMS,
but performs worse than NDHA on MDG-a and MDG-c sets. Except for one DGS instance
set, TPSDP can find better results compared to ITS and IMS on all instance sets in terms of
both the best and average objective values. It is worth pointing out that, although TPSDP
performs worse than NDHA averagely, it significantly outperforms NDHA on the EGS
instances with n = 2000, m = 100, and n = 2000, m = 200 (Tables 7.10 and 7.11).

To more precisely assess the overall performance of ITS, IMS, NDHA, and the pro-

posed TPSDP, the statistical results via the Friedman test based on the average experimen-
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Table 5.3: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 DGS Ranlnt instances.

f best ﬁw g

Instance ITS IMS NDHA TPSDP ITS IMS ) NDHA TPSDP

RanInt_n120_ds_01 51161.00 51112.00 51138.00 51146.00 51004.70 50907.15 51031.00 51075.85
RanInt_n120_ds 02  51441.00 51404.00 51387.00 51372.00 51322.65 51317.65 51322.85 51294.65
RanInt_n120_ds_ 03  50215.00 50245.00 50270.00 50248.00 50140.00 50172.20 50144.45 50192.05
RanInt_n120_ds_ 04  50429.00 50407.00 50404.00 50436.00 50276.20 50325.35 50320.30 50343.85
RanInt_n120_ds_05  49872.00 49985.00 49977.00 50008.00 49573.00 49791.95 49806.80 49839.20
RanInt_n120_ds_ 06  49734.00 49589.00 49667.00 49767.00 49556.40 49512.35 49557.25 49602.70
RanInt_n120_ds_ 07  50306.00 50295.00 50281.00 50282.00 49966.60 50188.10 50188.10 50202.85
RanInt_n120_ds_ 08  50434.00 50370.00 50415.00 50385.00 50290.60 50282.50 50267.50 50282.30
RanInt_n120_ds_ 09  50499.00 50375.00 50461.00 50451.00 50319.25 50304.25 50322.25 50363.10
RanInt_n120_ds_10  50325.00 50398.00 50390.00 50407.00 50218.10 50271.75 50303.70 50269.30
RanInt_n240_ds_01  160371.00  160454.00  160661.00  160596.00 159927.40  160317.35  160082.05  160358.10
RanInt_n240_ds_ 02  160211.00  160257.00  159989.00  160468.00 15972425  159905.95  159796.75  160277.70
RanInt_n240_ds_ 03  160239.00  160257.00  160300.00  160400.00 159899.10  160092.90  159937.85  160223.05
RanInt_n240_ds_ 04 162728.00  162525.00  162488.00  162619.00 161836.35 16233895 16211040  162420.25
RanInt_n240_ds_ 05 160543.00  160732.00  160307.00  160841.00 160296.45  160393.15  160061.45  160605.25
RanInt_n240_ds_ 06  161020.00  161138.00  160962.00  161334.00 160645.15  160925.75  160614.90  161040.55
RanInt_n240_ds_ 07  160109.00  160256.00  160130.00  160412.00 159587.40  159878.80  159612.15  160131.20
RanInt_n240_ds_ 08  158161.00  158046.00  157990.00  158321.00 157736.40  157868.90  157546.45  157980.90
RanInt_n240_ds 09  160636.00  160707.00  160430.00  160799.00 160182.10  160449.40  160229.30  160601.10
RanInt_n240_ds_10  160301.00  160316.00  160234.00  160299.00 159595.50  159989.70  159835.75  160082.30

RanInt_n480_ds_ 01  390089.00  390642.00  391214.00  390718.00 388985.05  390124.25  389860.25  390362.25
RanInt_n480_ds_ 02  388587.00  389439.00  388638.00  389327.00 38742590  388783.45  387951.60  388743.45
RanInt_n480_ds_ 03  388457.00  388808.00  387869.00  389098.00 387020.45  388077.00  387383.25  388362.50
RanInt_n480_ds_ 04  391882.00  392160.00  392275.00  392628.00 390850.40  391702.00  391440.00  391846.30
RanInt_n480_ds 05 389639.00  390151.00 389139.00  389981.00 388078.30  389183.70  388520.65  389412.40
RanInt n480_ds 06  389192.00  390209.00  389448.00  390088.00 388288.40  389377.00  388779.60  389520.60
RanInt_n480_ds_07  388722.00  389817.00  389936.00  390181.00 388045.55  389109.00  388421.70  389347.25
RanInt n480_ds 08  390599.00  391143.00  390112.00  391339.00 389880.90  390561.35  389508.95  390647.10
RanInt_n480_ds_ 09  388224.00  389095.00  388364.00  389116.00 387415.80 38843390  387496.45  388567.05
RanInt n480_ds_10  393100.00  393993.00  393543.00  394099.00 391335.10 39341345 39294290  393694.35
RanInt_n960_ds_01 1239428.00 1243806.00 1243362.00 1244347.00 123739490 1242271.70 1241600.70 1242857.55
RanInt n960_ds 02 1238326.00 1241678.00 1240757.00 1242006.00 1235097.80  1240288.20 1239093.05 1240869.75
RanInt_n960_ds_03  1237944.00 1241600.00 1241494.00 1242461.00 1235989.15 1239866.85 1239749.55 1240896.00
RanInt n960_ds_ 04 1239235.00 1241705.00 1242837.00 1243122.00 1236199.80 1240629.55 1239765.15 1241778.60
RanInt_n960_ds_05 1237695.00 1240913.00 1240818.00 1241729.00 1236010.60 1239506.80 1239388.40 1240418.35
RanInt .n960_ds 06 1235240.00 1238838.00 1237770.00 1239217.00 1233381.55 1237157.00 1236371.40 1238029.70
RanInt_n960_ds_07 1239372.00 1242947.00 1241256.00 1242811.00 1236525.70  1241470.40 1239950.20 1242246.30
RanInt .n960_ds_ 08 1234859.00 1238152.00 1237880.00 1239231.00 1233181.35 1237022.85 1236461.75 1237830.75
RanInt_n960_ds_09 1235805.00 1239264.00 1239270.00 1240150.00 1233212.20 1237940.55 1237314.60 1238889.65
RanInt .n960_ds_10  1238526.00 1240861.00 1241881.00 1242428.00 1236035.15  1240015.85 1239162.65 1241035.10

Avg. 459591.40 460602.225 460393.60  460866.70 458561.29 46000422  459606.35  460313.53
#Best 6 5 3 26 1 1 2 36
p-value 0.000001 0.00002 0.000001 0 0 0
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Table 5.4: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 EGS Ranlnt instances.

f best f avg

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP

RanInt_n120_ss_01  47909.00 47909.00 47909.00 47909.00 47898.95 47871.30 47903.25 47909.00
RanInt_n120_ss.02  47826.00 47826.00 47826.00 47826.00 47810.15 47763.25 47782.35 47822.80
RanInt_n120_ss.03  47552.00 47552.00 47552.00 47552.00 47508.05 47445.00 47451.55 47489.10
RanInt_n120_ss.04  47611.00 47515.00 47611.00 47547.00 47536.05 47472.60 47488.80 47518.05

RanInt_n120_ss.05  47210.00 47142.00 47210.00 47210.00 47131.25 47045.75 47111.90 47137.30
RanInt_n120_ss.06  46647.00 46585.00 46647.00 46647.00 46606.95 46524.75 46552.05 46617.75
RanInt_n120_ss_07  47142.00 47136.00 47136.00 47142.00 47115.20 47056.45 47062.75 47122.30
RanInt_n120_ss.08  47390.00 47356.00 47374.00 47390.00 47372.45 47319.80 47327.80 47357.55

RanInt_n120_ss_09  47660.00 47654.00 47660.00 47660.00 47642.90 47602.00 47617.20 47635.10
RanInt_n120_ss_.10  47807.00 47807.00 47807.00 47807.00 47802.55 47766.50 47773.00 47798.15

RanInt_n240_ss_ 01  155566.00  155400.00  155442.00  155577.00 155310.30 15528830  155210.20  155440.20
RanInt_n240_ss.02  155378.00  155302.00  155142.00  155384.00 155098.50  155104.70  154891.10  155207.25
RanInt_n240_ss_03  156398.00  156415.00  156195.00  156415.00 156166.55  156246.70  155999.70  156319.40
RanInt_n240_ss_04  156527.00  156564.00  156552.00  156643.00 156370.65  156407.50  156244.10  156513.55
RanInt_n240_ss_05 156509.00  156522.00  156466.00  156562.00 156221.40 15632045  156057.90  156295.70
RanInt_n240_ss_06  155564.00  155594.00  155346.00  155601.00 155248.15  155270.10  155047.40  155402.40
RanInt_n240_ss_ 07  155736.00  155707.00  155609.00  155791.00 155482.50  155529.40  155309.05  155678.40
RanInt_n240_ss_08  155305.00  155297.00  155076.00  155297.00 154965.95  155039.80  154835.00  155167.95
RanInt_n240_ss_09  156043.00 156011.00  156011.00  156043.00 15597190  155960.50  155865.10  155923.40
RanInt_n240_ss_10  155890.00  155952.00  155916.00  155971.00 155691.20  155740.80  155611.65  155854.20

RanInt_n480_ss_.01  379501.00  379927.00  379131.00  379953.00 37883530  379370.55  378735.85  379263.95
RanInt_n480_ss_02  379733.00  380287.00  379978.00  380180.00 378902.70  379665.60  379136.80  379596.55
RanInt_n480_ss_.03  378511.00  379303.00  378690.00  378762.00 377888.45  378573.15  377974.65  378291.55
RanInt_n480_ss_.04  378979.00  379222.00  378726.00  379008.00 378178.45 37871290  378247.10  378628.00
RanInt_n480_ss_05 379627.00  379878.00  378883.00  379883.00 378692.55  379207.30  378485.95  379132.55
RanInt_n480_ss_06  379492.00  379313.00  378971.00  379354.00 378519.05  378852.50  378201.45  378835.95
RanInt_n480_ss_07  379474.00  380464.00  379606.00  379741.00 37868595  379363.50  378754.45  379151.40
RanInt n480_ss 08  379542.00  380162.00 379793.00  380161.00 378821.25  379372.40  378763.20  379341.55
RanInt_n480_ss_09  378708.00  379065.00  378585.00  379060.00 378016.15  378521.05  377894.15  378410.25
RanInt n480_ss_10  380185.00  380446.00  379904.00  380248.00 379322.60  379892.15  379254.80  379813.25
RanInt_n960_ss_ 01 1218585.00 1219991.00 1222878.00 1220742.00 1216150.40 1218944.85 1219598.50 1219694.55
RanInt n960_ss 02 1216333.00 1219901.00 1219988.00 1220325.00 1215087.40  1218566.25 1218353.30 1219184.35
RanInt_n960_ss_ 03  1217811.00 1220499.00 1220514.00 1221283.00 1216240.95 1219081.55 1219059.70 1220117.65
RanInt n960_ss_ 04 1217737.00 1220842.00 1220381.00 1220857.00 1216224.10  1219226.10 1218918.05 1219949.50
RanInt_n960_ss_05 1216725.00 1219942.00 1221149.00 1220702.00 1215371.95 1218616.60 1218846.45 1219607.40
RanInt n960_ss_ 06 1218728.00 1220880.00 1221839.00 1221066.00 1216392.80 1219567.75 1219645.30 1220231.30
RanInt_n960_ss_07 1218772.00 1220664.00 1220741.00 1221650.00 1216399.05 121991520 1219469.35 1220481.15
RanInt .n960_ss_ 08 1218247.00 1220515.00 1221006.00 1221474.00 1216530.40 1219550.20 1219689.85 1220252.95
RanInt_n960_ss_ 09 1216033.00 1218758.00 1220074.00 1219501.00 1214384.10 1217830.65 1218235.55 1218535.95
RanInt .n960_ss_10  1217302.00 1218473.00 1218444.00 1219430.00 1214593.45 1217506.05 1217296.45 1218293.50

Avg. 450092.38  450794.45  450794.20  450933.85 44935472 450277.80  450092.57  450475.57
#Best 13 12 14 26 6 11 0 23
p-value 0.00001 0.001535 0.00097 0.000001 0.001698 0
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Table 5.5: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 DGS RanReal instances.

fben ﬁw g
Instance ITS IMS NDHA TPSDP ITS IMS : NDHA TPSDP
RanReal n120_ds .01  50549.14 50526.74 50529.38 50549.13 50392.28 50319.91 50429.44 50476.93
RanReal n120_ds_02  50904.03 50883.12 50898.02 50926.60 50705.44 50757.67 50761.26 50727.34
RanReal n120_ds_03 ~ 49979.57 49911.88 49996.07 50053.22 49815.68 49837.97 49866.44 49879.67
RanReal n120_ds_04  50349.01 50363.30 50354.01 50342.80 50120.03 50275.47 50250.84 50277.74
RanReal n120_ds_05  49648.26 49642.54 49518.53 49693.57 49139.73 49435.96 49406.94 49450.16
RanReal n120_ds_06  50219.70 50222.67 50242.53 50258.79 50122.13 50108.18 50132.18 50188.09
RanReal n120_ds_ 07  50088.60 50130.76 50286.19 50317.02 49654.84 50078.68 50091.55 50122.98
RanReal n120_ds_ 08  50421.78 50479.49 50471.62 50461.84 50321.84 50333.12 50332.10 50385.19
RanReal n120_ds_.09  50366.51 50335.45 50374.14 50432.83 50279.41 50238.52 50267.87 50317.12
RanReal n120_ds_10  49753.93 49734.02 49762.73 49746.00 49576.61 49628.73 49631.91 49606.57
RanReal_n240_ds_01  160122.83  160136.43  159862.07  160219.45 159579.09 15991534  159652.74  159974.22
RanReal n240_ds_ 02  160502.19  160691.02  160355.79  160831.92 160072.14  160389.78  160118.10  160643.87
RanReal_n240_ds_ 03  159436.63  159547.67  159376.23  159604.83 159121.04  159290.76  159042.91  159419.88
RanReal n240_ds_04 161167.60 16139828  161370.66  161649.58 160607.87  161133.74  160836.86  161304.29
RanReal_n240_ds_ 05 159474.95  159197.44  159064.93  159354.10 158805.89  158908.34  158696.44  159027.11
RanReal n240_ds_ 06  161025.25  161291.73  161008.70  161429.53 160536.87  160885.46  160587.54  161149.94
RanReal_n240_ds_07  159808.12  160125.97  160027.42  160259.15 159322.17  159762.92  159484.60  159995.48
RanReal n240_ds_ 08  158543.83  158617.15  158431.21  158631.89 158193.17  158410.12  158187.21  158429.30
RanReal n240_ds_ 09  159707.67  159837.30  159723.18  159928.39 159229.31 159560.87  159338.42  159690.98
RanReal n240_ds_10  159988.80  160282.32  160253.93  160365.46 159643.18  160070.90  159881.13  160209.78
RanReal n480_ds_ 01  388612.12  388621.76  388561.23  389658.36 386910.54  388163.72  387852.72  388326.45
RanReal n480_ds_ 02  386295.34 38712391  386642.47  387382.94 385139.30  386572.47  385813.67  386673.60
RanReal n480_ds_ 03  387597.43  388634.13  388142.87  388630.06 38677520  388053.62  387282.50  388104.73
RanReal n480_ds_04  389810.19  390853.65  391121.94  391526.90 389097.88  390411.26  390271.95  390762.60
RanReal n480_ds_ 05  387831.00  388290.29  387917.36  388449.32 386849.14  387708.10 38724191  387836.09
RanReal n480_ds_ 06  388715.70  389667.02  389247.42  389711.24 387903.70  389060.85  388394.41  389163.80
RanReal n480_ds_07  388270.09  389179.47  388498.22  389372.07 387361.43  388354.32  387710.23  388561.99
RanReal n480_ds_08 389168.12  389612.75  388584.82  389512.51 387796.59  388828.71  387980.52  388984.07
RanReal n480_ds_09  387008.87  388345.33  386895.25  387715.54 385874.71  387389.04  386391.77  387324.65
RanReal n480_ds_10  392010.85  392996.39  393143.90  393957.60 390519.66  392605.69  392503.87  393089.61
RanReal n960_ds_01 1237439.17 1240609.19 1239896.29 1240917.68 1233783.12  1239177.39 1238296.28 1239891.19
RanReal n960_ds_ 02 1236026.07 1239648.77 1239614.96 1241146.98 1233019.74  1238723.63 1237463.86 1239515.63
RanReal n960_ds_03  1235299.80 1239428.79 1239260.16 1239069.46 1233104.16  1237473.98 1237013.93 1237910.82
RanReal n960_ds_04 1235299.61 1240769.04 1240151.40 1241057.09 1233271.14  1239337.80 1238114.79 1239796.93
RanReal n960_ds_05 1233826.33 1237195.72 1237882.14 1238142.18 1232196.49 1235972.43 1235674.75 1236782.20
RanReal n960_ds_06 1231398.58 1234577.62 1234215.06 1234990.49 1229138.66  1233220.92 1232638.06 1233837.28
RanReal n960_ds_07 1234834.14 1239662.27 1238462.61 1239376.43 1232632.44 1237837.03 1236747.79 1238412.13
RanReal n960_ds_08 1229796.61 1233435.63 1233521.41 1233702.77 1228119.37 1232219.71 1232170.24 1232726.36
RanReal n960_ds_09 1235111.29 1238647.53 1238828.95 1238910.65 1232422.37 1237007.12 1236978.01 1237900.50
RanReal .n960_ds_10  1237652.66 1241302.25 1241190.20 1242260.21 1235929.09 1240293.19 1239156.87 1240658.10
Avg. 458351.56  459548.92 45934215  459763.66 457327.08  458943.84  458567.37  459188.38
#Best 2 7 1 30 0 1 2 37
p-value 0 0.0001 0 0 0 0
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Table 5.6: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 EGS RanReal instances.

fbar favg
Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP
RanReal n120_ss 01  47363.21 47351.97 47363.21 47363.21 47335.38 47258.23 47266.44 47343.68
RanReal n120.ss .02  47243.16 47188.62 47243.16 47243.16 47198.62 47147.90 47166.87 47197.48
RanReal n120_ss 03  47313.71 47313.71 47313.71 47313.71 47267.06 47237.47 47262.65 47276.01
RanReal n120_ss .04  47546.81 47500.08 47546.81 47546.81 47506.50 47437.26 47483.39 47506.61
RanReal n120_ss 05  46930.19 46930.19 46930.19 46930.19 46866.39 46824.36 46839.07 46868.57
RanReal n120_ss .06  47253.47 47201.28 47240.09 47253.47 47193.81 47144.95 47162.99 47203.13
RanReal_n120_ss_ 07  47085.87 47085.87 47085.87 47085.87 47039.10 47003.77 47008.85 47046.24
RanReal n120_ss. 08  47460.13 47460.13 47460.13 47460.13 47452.58 47437.67 47433.37 47455.15
RanReal n120_ss_ 09  47686.34 47686.34 47686.34 47686.34 47655.54 47649.10 47617.92 47655.52
RanReal n120_ss_.10  47415.35 47415.35 47415.35 47415.35 47369.89 47351.76 47360.09 47366.15
RanReal_n240_ss 01  155135.02  155223.13  154934.03  155246.47 154936.92  155001.88  154807.85  155041.88
RanReal n240.ss 02  155611.46  155627.77  155341.65  155656.23 155331.24  155356.21 155100.18  155451.66
RanReal_n240_ss 03  155546.38  155605.64  155532.55  155782.29 155327.89  155401.30  155216.30  155566.95
RanReal n240_ss 04  155275.08  155300.58  155179.31  155411.09 155069.22  155084.06  154909.21  155235.42
RanReal_n240_ss 05 15494429  154836.75  154640.68  154935.07 154674.58  154708.29 15447533  154802.65
RanReal n240_ss 06  155581.77  155513.94  155417.40  155671.23 155298.34  155217.34  155064.94  155428.52
RanReal_n240_ss 07  155715.34  155673.86  155572.55  155739.51 155458.56  155472.66  155307.99  155515.81
RanReal n240_ss 08  155675.74  155506.95  155382.13  155604.41 155428.80  155400.67  155255.01  155501.73
RanReal n240_ss_.09  154884.93 155147.46  155018.41  155174.95 154735.78  154800.48  154587.76  154931.66
RanReal n240_ss_10  155880.48  155867.28  155867.93  155927.91 155674.01 155686.16  155552.37  155776.44
RanReal n480_ss_ 01  377630.06  378212.60 377501.66  377946.02 376880.41  377497.64  376991.96  377533.30
RanReal n480_ss 02  377249.45  378105.01 377278.62  377578.02 376521.20  377266.26  376682.45  377082.09
RanReal n480_ss_.03  378603.39  379144.00  378455.96  378758.45 377970.16  378419.75  377755.01  378240.08
RanReal n480_ss 04  377512.67  377823.71  377323.92  377823.18 376808.86  377388.00  376850.87  377375.04
RanReal n480_ss_ 05 378147.28  378711.51  378168.88  378476.06 377218.26  377997.49  377618.99  377984.11
RanReal n480_ss_ 06  378410.82 37895835  378324.10  379221.05 377786.56  378594.68  377864.65  378558.50
RanReal n480_ss 07  378527.49  379225.64  378387.56  378909.90 377912.85  378640.33  377889.51  378430.61
RanReal n480_ss_ 08 377789.91 378286.67  377791.70  378423.50 376991.03  377627.27  376965.18  377515.12
RanReal n480_ss .09  377939.10  377934.05  377826.58  378107.96 376793.53  377472.65  376811.27  377334.26
RanReal n480_ss_10  379490.57 37947522  379011.63  379503.98 378560.47  379074.18  378310.32  378950.56
RanReal n960_ss 01 1213879.02 1216654.49 1217951.51 1217333.22 1212256.16  1215850.63 1216200.99 1216503.80
RanReal n960_ss_ 02 1215915.21 1218254.67 1218147.35 1218548.34 1213827.33  1217106.92 1216961.03 1217820.76
RanReal n960_ss_ 03  1214914.09 1217816.69 1219490.53 1217795.42 1213330.54 1216576.31 1216752.11 1217087.01
RanReal n960_ss_ 04 1215327.26 1218426.41 1219341.10 1219093.41 1214058.92 1217511.37 1217393.22 1217863.43
RanReal n960_ss 05 1213287.33 1216224.83 1217148.08 1216590.16 1211933.09 1214941.99 1215312.48 1215623.14
RanReal n960_ss_ 06 1214036.77 1217191.24 1216529.75 1217570.75 1212304.52 121557571 1215466.99 1216221.44
RanReal n960_ss_ 07 1214498.99 1217842.82 1218331.43 1218365.27 121250591 1216395.22 1216336.89 1217176.97
RanReal .n960_ss_ 08 1213346.03 1216258.57 1216900.19 1216296.06 1211617.39  1215015.22 1214721.77 1215596.32
RanReal n960_ss_ 09 1214559.97 1217789.79 1218584.31 1218523.66 1213002.89 1216868.88 1217046.05 1217541.00
RanReal n960_ss_10 1217757.59 1218829.25 1220090.49 1219794.66 1214065.84 1217452.85 1217159.40 1218525.96
Avg. 448909.29  449715.06  449718.92  449827.66 448179.15  449197.37  448999.24  449378.37
#Best 12 12 16 25 3 9 0 28
p-value 0.000002 0.002279 0.011773 0 0.0008790 0
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Table 5.7: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 DGS Geo instances.

fben ﬁw g

Instance ITS IMS NDHA TPSDP ITS IMS : NDHA TPSDP

Geo_nl120_ds_ 01  111922.82 111906.95 111906.46 111867.79 111907.34 111754.41 111721.35 111831.56
Geo_nl20_ds 02  61916.95 61906.32 61917.89 61893.42 61903.36 61754.30 61910.84 61883.69
Geo_nl120_ds_03  52083.72 52075.64 52085.12 52069.08 52073.34 52001.65 52076.24 52063.21

Geo_nl120_ds_04  80801.10 80768.89 80795.31 80734.53 80779.74 80755.46 80771.55 80723.34
Geo_nl120_ds_ 05 121775.53 121706.99 121738.78 121675.28 121730.93 121680.82 121693.31 121629.18
Geo_nl20_ds_06 136875.63  136843.28  136858.61 136809.72 136807.14  136712.26  136733.18  136765.59
Geo_nl20_ds_07 108576.13  108514.53  108534.53  108476.98 108402.98  108439.54  108446.54  108450.23
Geo_nl120_ds_08  88230.84 88186.63 88206.52 88160.87 88205.86 88172.55 88183.07 88138.78
Geo_nl20_ds_09  95492.54 95467.64 95470.01 95430.23 95472.45 95389.38 95344.92 95399.47
Geo_nl20_ds_10  65559.57 65553.37 65556.61 65530.34 65529.15 65528.71 65532.25 65509.39
Geo_n240_ds_01  200357.13  200330.47  200383.83  200324.35 200327.80  200271.23  200354.51  200306.53
Geo_n240_ds_ 02  348500.04  348483.89  348532.13  348401.46 347531.92  348182.61  348177.94  348349.00
Geo_n240_ds_ 03 217176.26  217149.37  217223.32 21712641 21713535  216995.12  217172.86  217106.84

Geo_n240_ds_ 04 263843.03  263806.43  263881.19  263777.50 263493.80  263296.25  263323.30  263746.12
Geon240_ds 05 313398.28  313385.67  313413.22 31332249 313379.10  313154.89  313383.25  313243.57

Geo_n240_ds_ 06 358633.36  358554.61  358649.94  358469.01 358601.10  358504.96  358520.56  358427.69
Geon240_ds 07  341992.17  341935.62  341981.48  341844.65 340487.59  341305.63  341392.24  341812.72
Geo_n240_ds_.08  131024.25  131027.66  131022.83  131030.29 131021.03  131021.13  131018.95  131023.75
Geon240_ds 09 410563.19 410495.74  410548.77  410421.52 409947.10  410174.19  410405.06  410352.54
Geo_n240_ds_10  355254.36  355215.02  355245.86  355088.91 355146.15  354885.41  354694.72  355041.24
Geon480_ds_ 01  580908.19 58232229  582573.07  582325.61 580858.03  581672.00 581146.75  580550.25
Geo_n480_ds_02 1089035.81 1089817.97 1090132.22 1089600.18 1088980.33  1088879.45 1089420.63 1087807.40
Geon480_ds_ 03  662588.72  664189.65  664476.64  664110.67 66194255  663269.38  663122.88  661980.97
Geo_n480_ds_04  836599.77  836334.15 83659791  836150.39 836539.29  835905.40  835966.91  835650.75
Geon480_ds_ 05 988501.10  988179.39  988428.30  988022.03 98725228 98759096 98638543  987061.64
Geo_n480_ds_ 06 1012582.81 1012248.52 1012585.52 1012102.97 1011818.62 1011846.99 1011153.86 1011316.47
Geo_n480_ds_07 864994.16  864673.18  864944.86  864476.17 864831.32  863835.05 863871.48  862767.22
Geo_n480_ds_ 08 587697.46  587736.17  587745.62  587666.11 587330.89  587355.35  587060.44  587306.03
Geo_n480_ds_09 666313.37  667228.01  667507.06 667176.41 66627427  666563.53  666916.58  666554.82

Geon480_ds_10  932694.79  937346.75  937522.52  937198.86 929618.15  936173.88  935100.17  936038.48
Geo_n960_ds_01 3361972.63 3364644.62 3364423.08 3364410.87 3351095.76  3364126.49 3358725.84 3363298.19
Geon960_ds_ 02 1719726.15 1723404.86 1722222.03 1723421.56 1716949.23  1722538.96 172072097 1722147.18
Geo_n960_ds_03 3347824.49 3350874.67 3351678.34 3350670.94 3347718.39 3349888.74 3348209.61 3350369.56
Geon960_ds_ 04 3615142.37 3623049.49 3623660.05 3622771.96 3606303.51 3622385.41 3620732.16 3622529.82
Geo_n960_ds_ 05 2342436.81 2341868.22 2342538.16 2341851.12 2342272.41 2341309.18 2339890.95 2341251.76
Geon960_ds_ 06 3153310.79 3152726.84 3153473.31 3152437.49 3151011.34  3152510.12 3150985.78 3152341.11
Geo_n960_ds_07 1301823.28 1301809.20 1301860.63 1301802.75 1298573.57 1300342.49 1299168.77 1300131.80
Geon960_ds 08 1721957.65 1723484.60 1723753.93 1723466.90 1720331.72 172317295 172327513 1723187.11
Geo_n960_ds_09 1894819.06 1897519.30 1897882.96 1897475.94 1891535.57 1896604.30 1895275.99 1896043.56
Geo_n960_ds_10 2617068.31 2617718.10 2618355.83 2617616.69 2616307.08 2617616.61 2616579.45 2617542.40
Avg. 929049.36  929762.27  929907.86  929680.26 927935.69  929339.19  928864.16  929192.02
#Best 14 1 23 2 10 12 10 7
p-value 0.994638 1 1 0.285258 1 0.10244
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Table 5.8: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 EGS Geo instances.

f best fm'g

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP

Geonl20_ss. 01 101624.92  101600.29  101609.44  101568.85 101610.31  101584.09  101595.18  101553.75
Geo_nl20_ss 02  54853.70 54842.74 54859.63 54829.46 54847.90 54832.85 54849.38 54823.16
Geonl20_ss_03  47631.75 47622.06 47632.08 47616.07 47625.37 47615.85 47627.03 47609.63
Geo_nl20_ss 04  73526.44 73490.60 73498.60 73473.81 73501.84 73477.07 73488.04 73452.80
Geonl20_ss.05 112657.57 112616.05 112645.28 112578.33 112631.45 112595.13 112614.81 112567.32
Geonl20_ss 06 125451.95  125402.63  125414.05  125379.76 125404.08  125374.61  125384.67 12534691
Geonl20_ss.07  98494.00 98474.71 98484.78 98469.59 98482.96 98457.89 98465.81 98433.13
Geo_nl20_ss 08  79982.16 79958.56 79983.91 79933.50 79966.43 79941.96 79955.50 79911.62
Geonl20_ss.09  87281.56 87249.92 87252.91 87215.47 87259.19 87233.69 87243.27 87203.11

Geo_nl20_ss_.10  60258.25 60236.79 60255.49 60220.80 60248.59 60227.62 60240.95 60212.13
Geo_n240_ss_ 01 188872.18  188838.69  188864.98  188824.79 188858.62  188825.47  188854.58  188807.34

Geo_n240_ss 02 330318.81  330272.45  330290.18  330195.79 330296.37  330248.40  330281.05  330174.32
Geon240_ss_03  207066.88  207030.05  207080.64 206997.54 207054.99  207019.60  207065.84  206987.04
Geo_n240_ss 04 246389.29 24633095 246385.04  246294.05 246367.64  246321.35  246364.78  246277.25
Geon240_ss.05 298773.97 298704.73  298748.93  298652.52 298741.92  298685.77 29872542  298613.53
Geo_n240_ss_ 06 338595.80  338552.44  338600.14  338450.50 338565.37  338511.72  338551.34  338432.34
Geon240_ss_07 326057.89  326010.51  326058.80  325956.71 326034.03  325984.60  326026.71  325908.09
Geo_n240_ss 08 126913.16  126901.38  126901.23  126900.72 126909.40  126897.92  126898.15  126897.78
Geon240_ss_09 391447.26  391395.02 391413.64  391320.95 391417.04  391353.81  391388.26  391275.90
Geon240_ss_10  339544.99  339474.11  339541.13  339423.70 339507.36  339448.43  339496.73  339380.71
Geon480_ss 01 55217733 55201090  552203.09  551994.36 552160.76  551992.55  552173.72  551968.13
Geo_n480_ss_02 1047453.58 1047211.56 1047397.86 1047080.67 1047390.11 1047134.30 1047331.55 1047008.22
Geon480_ss 03  633769.72 63357236 63377493  633516.84 633738.14 63353996  633728.79  633483.30
Geo_n480_ss_ 04  789829.74  789616.25  789814.39  789498.20 789783.87  789556.59  789753.20  789451.65
Geon480_ss 05 94594475  945666.03  945880.84  945567.35 945895.37  945624.87  945843.90  945511.86
Geon480_ss_06 966654.45 966378.06  966603.44  966282.28 966585.81  966332.85  966539.33  966218.09
Geo_n480_ss 07 827713.64  827467.13  827659.08  827366.82 827658.68  827411.54  827625.55  827312.04
Geon480_ss_08 556651.12  556480.79  556686.75  556458.51 556634.19  556464.07  556645.73  556438.67
Geo_n480_ss 09 636346.80 63619591  636368.44  636100.10 636324.19  636137.04  636322.68  636074.96
Geon480_ss_10  883434.68  883151.37  883361.54  883062.80 883368.14  883103.62  883314.48  882995.42
Geo_n960_ss_ 01 3254335.92 3253781.45 3254371.56 3253760.52 3254289.42  3253693.88 3254287.80 3253760.52
Geon960_ss_02 1663664.99 166337622 1663623.98 1663372.45 1663640.24  1663345.03 1663587.64 1663372.45
Geo_n960_ss_ 03 3251594.97 3251016.56 3251614.75 3250909.92 3251527.33  3250953.20 3251530.71 3250909.92
Geon960_ss_04 3514333.85 3513729.27 3514273.56 3513595.55 3514236.36  3513621.90 3514197.42 3513595.55
Geo_n960_ss_ 05 2264719.61 2264330.22 2264822.68 2264312.03 226469277 2264282.64 2264757.80 2264312.03
Geon960_ss_06 3069667.72 3069147.40 3069651.92 3068999.68 3069588.50 3069052.35 3069597.79 3068999.68
Geo_n960_ss_ 07 1257750.45 1257593.57 1257652.01 1257603.02 1257737.72  1257586.90 1257622.12 1257603.02
Geon960_ss_08 1674016.12 1673717.34 1673966.10 1673731.89 1673988.06 1673692.51 1673927.01 1673731.89
Geo_n960_ss_09 1835490.33 1835159.16 1835509.95 1835179.11 1835443.33  1835119.73 1835454.14 1835179.11
Geon960_ss_10  2529011.12 2528619.11 2529001.43 2528469.54 2528929.06 2528494.42 2528957.08 2528469.54
Avg. 894757.58  894580.63  894743.98  894529.11 894723.57  894544.44  894707.90  894506.60
#Best 26 0 14 0 30 0 10 0
p-value 1 1 1 1 1 1
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Table 5.9: Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40 EGS
Ranlnt instances.

fbest favg
Instance NSGGA TPSDP NSGGA TPSDP
RanInt_n120_ss_01 47909 47909 47879.50 47909.00
RanInt_n120_ss_02 47826 47826 47770.85 47822.80
RanInt_n120_ss_03 47552 47552 47423.65 47489.10
RanInt_n120_ss_04 47611 47547 47489.10 47518.05
RanInt_n120_ss_05 47148 47210 47106.45 47137.30
RanInt_n120_ss_06 46647 46647 46598.35 46617.75
RanInt_n120_ss_07 47108 47142 47069.45 47122.30
RanInt_n120_ss_08 47390 47390 47353.05 47357.55
RanInt_n120_ss_09 47654 47660 47612.95 47635.10
RanInt_n120_ss_10 47807 47807 47784.65 47798.15
RanInt_n240_ss_01 155463 155577 155303.41 155440.20
RanInt_n240_ss_02 155308 155384 155108.34  155207.25
RanlInt_n240_ss_03 156415 156415 156168.34  156319.40
RanInt_n240_ss_04 156616 156643 156458.41 156513.55
RanlInt_n240_ss_05 156431 156562 156135.05  156295.70
RanInt_n240_ss_06 155576 155601 155306.66  155402.40
RanInt_n240_ss_07 155789 155791 155524.41 155678.40
RanInt_n240_ss_08 155213 155297 154995.75  155167.95
RanInt_n240_ss_09 156043 156043 155780.09  155923.40
RanInt_n240_ss_10 155909 155971 155724.45  155854.20
RanInt_n480_ss_01 380107 379953 379642.00 379263.95
RanInt_n480_ss_02 380270 380180 379498.34  379596.55
RanInt_n480_ss_03 379225 378762 378785.41  378291.55
RanInt_n480_ss_04 379483 379008 378967.84  378628.00
RanInt_n480_ss_05 379828 379883 379362.94  379132.55
RanlInt_n480_ss_06 379444 379354 379044.84  378835.95
RanInt_n480_ss_07 380362 379741 379475.69  379151.40
RanInt_n480_ss_08 380200 380161 379496.06  379341.55
RanInt_n480_ss_09 379568 379060 378785.50 378410.25
RanInt_n480_ss_10 380924 380248 379986.09  379813.25
RanInt_n960_ss 01 1220366 1220742 1219190.25 1219694.55
RanInt_n960_ss_02 1220479 1220325 1219148.38 1219184.35
RanInt_n960_ss_ 03 1220878 1221283 1219528.00 1220117.65
RanInt_n960_ss_ 04 1220275 1220857 1219292.25 1219949.50
RanInt_n960_ss 05 1219787 1220702 1218986.38 1219607.40
RanInt_n960_ss 06 1221495 1221066 1220032.25 1220231.30
RanInt_n960_ss_07 1221294 1221650 1219842.75 1220481.15
RanInt_n960_ss 08 1221688 1221474 1219910.25 1220252.95
RanInt_n960_ss 09 1218962 1219501 1217971.25 1218535.95
RanInt_n960_ss_10 1218750 1219430 1217920.00 1218293.50
Avg. 450920.00 450933.85 450386.48  450475.57
#Best 21 27 9 31
p-value 0.641163 0.035417
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Table 5.10: Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40
EGS RanReal instances.

fbest favg
Instance NSGGA TPSDP NSGGA TPSDP
RanReal n120_ss_01  47358.79 47363.21 47299.89 47343.68
RanReal n120_ss_ 02  47243.16 47243.16 47168.50 47197.48
RanReal n120_ss.03  47280.70 47313.71 47210.03 47276.01
RanReal n120_ss_. 04  47546.82 47546.81 47490.04 47506.61
RanReal n120_ss_05  46922.95 46930.19 46843.10 46868.57
RanReal n120_ss. 06  47227.14 47253.47 47154.84 47203.13
RanReal n120_ss 07  47060.41 47085.87 47008.38 47046.24
RanReal n120_ss_08  47460.14 47460.13 47444.02 47455.15
RanReal n120_ss.09  47678.04 47686.34 47590.68 47655.52
RanReal n120_ss_.10  47415.35 47415.35 47318.34 47366.15
RanReal n240_ss_ 01  155241.95  155246.47 154898.16  155041.88
RanReal n240_ss_02  155732.81 155656.23 15531294  155451.66
RanReal n240_ss_ 03  155680.11 155782.29 155423.31 155566.95
RanReal n240_ss_ 04  155398.34  155411.09 155107.42  155235.42
RanReal n240_ss 05 155937.25 154935.07 154647.33  154802.65
RanReal n240_ss_06 155671.22  155671.23 155345.72  155428.52
RanReal_ n240_ss_ 07 155550.39  155739.51 155362.50  155515.81
RanReal n240_ss_08 155539.95 155604.41 155367.44  155501.73
RanReal_n240_ss_09 155084.09  155174.95 154750.25  154931.66
RanReal n240_ss_10  155927.91 15592791 155668.47  155776.44
RanReal_ n480_ss_01  378470.50  377946.02 37774891  377533.30
RanReal n480_ss 02 377922.50  377578.02 377403.06 377082.09
RanReal n480_ss_03  379060.28  378758.45 378628.19  378240.08
RanReal n480_ss_. 04 378238.47  377823.18 377640.53  377375.04
RanReal n480_ss_05 378371.41  378476.06 377880.66  377984.11
RanReal n480_ss_. 06 379059.34  379221.05 378617.50 378558.50
RanReal_ n480_ss_07 379282.50  378909.90 378883.22  378430.61
RanReal n480_ss_ 08 378562.09  378423.50 378001.09 377515.12
RanReal n480_ss_.09 377883.31  378107.96 377505.94  377334.26
RanReal n480_ss_10  379643.12  379503.98 379221.75  378950.56
RanReal n960_ss_ 01 1217009.88 1217333.22 1216043.62 1216503.80
RanReal n960_ss_02 1218401.00 1218548.34 1217436.00 1217820.76
RanReal n960_ss_ 03 1218220.50 1217795.42 1216922.88 1217087.01
RanReal n960_ss_04 1218255.25 1219093.41 1217311.25 1217863.43
RanReal n960_ss 05 1216714.88 1216590.16 1215354.12 1215623.14
RanReal n960_ss_ 06 1217160.38 1217570.75 1215691.00 1216221.44
RanReal n960_ss_ 07 1218371.00 1218365.27 1216881.25 1217176.97
RanReal n960_ss_08 1216580.50 1216296.06 1215594.25 1215596.32
RanReal n960_ss_. 09 1218706.75 1218523.66 1217024.50 1217541.00
RanReal n960_ss_10 1219759.88 1219794.66 1217950.50 1218525.96
Avg. 449865.78  449827.66 449303.79  449378.37
#Best 19 23 9 31
p-value 1 0.03098
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Table 5.11: Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40
EGS Geo instances.

fbest favg
Instance NSGGA TPSDP NSGGA TPSDP
Geonl20_ss 01 101590.05 101568.85 101556.17  101553.75
Geo_nl20_ss_ 02  54829.43 54829.46 54821.13 54823.16
Geonl20_ss 03  47614.74 47616.07 47611.14 47609.63
Geonl20_ss 04  73466.77 73473.81 73451.27 73452.80
Geonl20_ss 05 112600.88 112578.33 112568.95  112567.32
Geonl20_ss 06 125364.30  125379.76 125337.59  125346.91
Geonl20_ss 07  98433.67 98469.59 98424.72 98433.13
Geo.nl20_ss 08  79932.39 79933.50 79909.77 79911.62
Geo_nl120_ss_ 09  87223.89 87215.47 87203.39 87203.11
Geonl20_ss_10  60220.83 60220.80 60212.07 60212.13
Geo_n240_ss_ 01 188806.19  188824.79 188799.56  188807.34
Geo_n240_ss 02 330192.50  330195.79 330144.69  330174.32
Geo_n240_ss.03  207001.50 206997.54 206980.47  206987.04
Geo_n240_ss 04 246283.41  246294.05 246260.75  246277.25
Geon240.ss 05 298627.53  298652.52 298606.06  298613.53
Geon240_ss 06 338426.69  338450.50 33840597  338432.34
Geo_n240_ss 07 325912.34  325956.71 325892.00  325908.09
Geo_n240.ss 08 126897.87  126900.72 126895.20  126897.78
Geon240.ss 09 39126697  391320.95 391245.62  391275.90
Geo_n240_ss_10  339372.19  339423.70 33934991  339380.71
Geond480_ss 01 551989.25  551994.36 551960.31  551968.13
Geo_n480_ss_02 1047009.75 1047080.67 1046962.69 1047008.22
Geo.n480_ss 03  633530.25 633516.84 633468.94  633483.30
Geo_n480_ss_ 04 789459.94  789498.20 789416.94  789451.65
Geon480_ss_ 05 945523.81  945567.35 945466.38  945511.86
Geon480.ss 06 966260.12  966282.28 966169.12  966218.09
Geon480_ss 07 827324.69  827366.82 827278.19  827312.04
Geo_n480_ss 08 556432.38  556458.51 556417.94  556438.67
Geon480_ss 09 636093.31 636100.10 636062.12  636074.96
Geon480_ss_10  882980.31  883062.80 882953.12  882995.42
Geo_n960_ss_ 01 3253493.50 3253760.52 3253431.50 3253760.52
Geon960_ss 02 1663315.88 1663372.45 1663305.75 1663372.45
Geo_n960_ss_03 3250801.75 3250909.92 3250692.75 3250909.92
Geon960_ss 04 3513405.75 3513595.55 3513311.50 3513595.55
Geo_n960_ss_05 2264305.00 2264312.03 2264205.50 2264312.03
Geo.n960_ss 06 3068891.00 3068999.68 3068806.50 3068999.68
Geon960_ss 07 1257589.25 1257603.02 1257576.62 1257603.02
Geon960_ss 08 1673716.88 1673731.89 1673668.00 1673731.89
Geon960_ss 09 1835104.50 1835179.11 1835071.62 1835179.11
Geo_n960_ss_10 2528411.00 2528469.54 2528366.75 2528469.54
Avg. 894492.56  894529.11 894456.72  894506.60
#Best 6 34 4 36
p-value 0.000006 0
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Table 5.12: The result via the Friedman test of ITS, IMS, NDHA, and the proposed TPSDP
on total 500 benchmark instances.

Algorithm ITS IMS NDHA TPSDP
Average ranking 3.394 2.735 1.951 1.92
p-value 0 0 0.70419

tal results of total 500 instances are summarized in Table 5.12. In the Friedman statistical
test, an algorithm with better performance gets a lower rank. From Table 5.12, it can be
found that TPSDP is competitive with NDHA and performs significantly better than ITS
and IMS according to p-values. Furthermore, it can be seen that TPSDP ranks 1* among
these four algorithms according to the average ranking, which indicates that the proposed

TPSDP is a promising method for solving MDGP.
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Chapter 6

Parameter analysis and discussion

In this chapter, I analyze the parameter values of some critical components of the TPSDP
algorithm, showing the effect of parameter values on the performance of the algorithm.
Note that each experiment tests only one undetermined parameter simultaneously, keeping
other parameter values as default values during this period. In addition, all the following
experimental data are obtained over 20 independent runs on the selected instances. At
the end of this chapter, some discussions are given to further analyze several details about

TPSDP and find more valid proofs to show its effectiveness.

6.1 Parameter analysis

6.1.1 Influence of the initial population size

5 (a) 5 (b)
2.75 <10 ; ; ; ; ; ; ; 275210 ; ; ; ;
2748 F g 2748 F e
o //8 —O— a o

» (Cal ~o T 4
% 2746 2.746 7 ©
= o ~ 2
—_ N Sy —— A ST~
S 27— SO © T O—o__~ ) = 2744
o < g
= 2742 7 272t
51 2
% 274 'g 274
© 2738 g 2738
& Z
5 2736 & 2736
> m
<C 2734 2734 ¢

2732 g 2732

073 . . . . . . . . 073 . . . . . . . .

001 002 003 004 005 006 007 008 009 0.1 001 002 003 004 005 006 007 008 009 0.1
the value of « the value of «
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The algorithm proposed in this paper is based on dynamic population size to solve
MDGP. Therefore, we need to determine the initial (maximum) population size (., as
well as the final (minimum) population size ,,;,. The experiment of confirming the initial
population size 3, is based on a subset of MDG-a benchmark instances with n = 2000,
m = 50, L, = 32, U, = 48, which has also been used in [32] for parameter discussion. I
adjusted the population size within a reasonable range to determine f3,,,, and to analyze the
impact of different S,,,, on the performance of the algorithm. Fig. ??(a) and (b) show
the average objective value (Y-axis of (a)) and the best objective value (Y-axis of (b))
for different initial population size S,,,, (X-axis), respectively. Fig. ??(a) reveals that the
experimental results obtained by the algorithm do not differ much under different 3,,,,, and
the algorithm performs relatively stable. As for the best objective value in Fig. ??(b), the
algorithm finds the best objective value with the highest quality when S,,,, = 15. Therefore,

I set the value of 8,,,, as 15 under careful consideration.

6.1.2 Influence of the parameter « in the replacement strategy
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Figure 6.2: Influence of the parameter a.

In the second phase of TPSDP, a replacement strategy guides whether a new generation
offspring solution can replace the corresponding parent solution. Therefore, I need to select
a proper value for the parameter « in Eq. (4.6). I test TPSDP on the same benchmark in-
stance above with parameter @ € [0.01, 0.1], the same interval as in [48]. Fig. 6.2 plots the

variation curves of the average objective values (Y-axis of (a)) and the best objective values
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(Y-axis of (b)) with different « values (X-axis). Fig. 6.2(a) indicates that TPSDP performs
relatively stable in interval [0.01, 0.06], meanwhile TPSDP finds the best objective value

with highest quality in @ = 0.05 in Fig. 6.2(b). To conclude, the parameter « is set to 0.05.

6.1.3 Influence of the dynamic population size

To determine the final (minimum) population size S,,,, I choose the RanReal set as the
benchmark instance for this experiment. Fig. 6.3 displays the line graphs of the exper-
imental results of the TPSDP algorithm on 40 DGS instances and 40 EGS instances in
RanReal set under different 8,,,, respectively. The black curves in Fig. 6.3 indicate the
performance of the algorithm on each instance of different scales when the value of £,
is 1. Note that §,,;, = 15 means that TPSDP does not have the population linear descent
strategy. The overlap of the four curves on small DGS and EGS instances at n = 120 (Fig.
6.3(a) and Fig. 6.3(b)) indicates that TPSDP is not sensitive to the change of 3,,;, on them.
For n = 240 instances, the black and green curves are lower than the red and blue curves on
the DGS instance (Fig. 6.3(c)), while the black curve is lower than the other three curves
on the EGS instance (Fig. 6.3(d)), which suggests that the population size dropping to 2
or 3 is more suitable for these two instances. However, on the ESG instances at n = 240
(Fig. 6.3(d)), the red curve 1s slightly higher than the blue curve. On balance, I believe that
Bmin = 2 1s more appropriate for the small-scale instances with n = 120 and 240.

Fig. 6.3(e) and (f) show the performance comparison of TPSDP with different 3,,;, for
n = 480 instances. From these two figures, it can be seen that there is a large difference
in the effectiveness of TPSDP for the same f3,,;,, value on DGS and EGS instances. For
example, when S,,;,, = 1, TPSDP achieves the best performance in the comparison on the
DGS instances (black curve is above the red and blue curve), while it performs poorly on
the EGS instances. In contrast, in Fig. 6.3(g) and (h), unlike the performance on Fig. 6.3(e)
and (f), TPSDP becomes better as the value of 3,,;, decreases. When n = 960, no matter
on different group size and equal group size instances, the performance with 3, = 1 is
significantly better than that with 2 or 3. In Fig. 6.3 (e), (), (g), and (h), it should be

noticed that, TPSDP without the population decline strategy performs the worst. It reveals
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that the proposed population decline strategy is more effective than static population size

for large-scale instance. Thus, 5, is set to 1 when n > 400.

6.1.4 Influence of the undirected perturbation strength
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Figure 6.4: Influence of the strength of the undirected perturbation.

Table 6.1: Configuration of 8 in four TPSDP variants.

Algorithm Description the vaule of 8
TPSDP-Fix  TPSDP with fixed {0.3, 1.9}
TPSDP-Rand TPSDP with 6 taking a random value within an interval in each iteration [0.1, 1.2]/[1.0, 2.0]
TPSDP-Inc TPSDP with 0 increasing linearly with time in an interval [0.1,1.2]/[1.0, 2.0]
TPSDP-Dec  TPSDP with 6 decreasing linearly with time in an interval [1.2,0.1]/[2.0, 1.0]

In this study, the exploration ability of the proposed TPSDP heavily relies on the undi-

rected perturbation operator. 6 as the key parameter controlling the undirected perturbation
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Table 6.2: Comparison of TPSDP with different strength of the undirected perturbation on
the 36 small-scale instances.

fhe st favg
Instance TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec
Geo_n120_ds_01 111863.44 111846.69 111857.52 111867.79 111837.46 111823.64 111832.50 111831.56
Geo_n120_ds_02 61894.39 61904.69 61899.95 61893.42 61887.09 61885.93 61887.04 61883.69
Geo_n120_ds_03 52069.83 52073.59 52068.96 52069.08 52065.89 52063.03 52063.49 52063.21
Geo_n240_ds_01 200317.16 200313.71 200320.24 200324.35 200302.92 200297.28 200303.15 200271.23
Geo_n240_ds_02 348402.30 348369.13 348380.81 348401.46 348356.50 348332.46 348345.79 348182.61
Geo_n240_ds 03 217134.00 217114.48 217134.40 217126.41 217111.48 217098.61 217108.14 216995.12
RanInt_.n120_ds 01 51171.00 51127.00 51132.00 51146.00 51099.10 51043.35 51047.45 51075.85
RanlInt_n120_ds_02 51480.00 51332.00 51417.00 51372.00 51351.55 51241.25 51288.95 51294.65
RanInt n120_ds_03 50264.00 50246.00 50242.00 50248.00 50215.60 50161.30 50165.75 50192.05
Ranlnt_n240_ds 01 160630.00 160585.00 160427.00 160596.00 160257.45 160260.75 160204.80 160358.10
RanInt_n240_ds_02 160445.00 160286.00 160290.00 160468.00 160155.35 160107.10 160065.50 160277.70
RanInt_n240_ds_03 160217.00 160175.00 160232.00 160400.00 160017.35 160046.75 159968.30 160223.05
RanReal n120.ds 01  50560.66 50535.22 50554.32 50549.13 50487.69 50437.03 50450.32 50476.93
RanReal n120_ds_02  50936.27 50803.55 50918.09 50926.60 50766.93 50673.71 50686.23 50727.34
RanReal n120.ds 03  50016.40 49996.07 50053.22 50053.22 49930.35 49854.88 49869.97 49879.67
RanReal n240.ds 01  160183.33 160054.79 160098.40 160219.45 159834.67 159870.11 159802.61 159974.22
RanReal n240_ds_ 02  160813.52 160745.87 160754.10 160831.92 160506.06 160510.89 160420.42 160643.87
RanReal n240_ds_03  159827.70 159586.93 159453.51 159604.83 159406.48 159309.81 159217.48 159419.88
Geo_n120_ss_01 101584.26 101582.53 101573.00 101568.85 101559.17 101560.11 101557.12 101553.75
Geo_nl120_ss_02 54836.06 54831.20 54830.60 54829.46 54825.81 54821.64 54823.20 54823.16
Geo_n120_ss_03 47617.78 47617.22 47615.53 47616.07 47611.12 47611.56 47610.80 47609.63
Geo_n240_ss 01 188813.95 188812.08 188817.50 188824.79 188806.46 188807.20 188807.87 188807.34
Geo_n240_ss_02 330196.39 330195.11 330184.95 330195.79 330173.45 330166.38 330164.22 330174.32
Geo_n240_ss_03 207002.67 207005.67 207009.95 206997.54 206990.24 206987.60 206989.56 206987.04
RanInt_n120_ss_01 47909.00 47909.00 47909.00 47909.00 47876.65 47909.00 47903.90 47909.00
RanlInt_n120_ss_02 47826.00 47826.00 47826.00 47826.00 47803.30 47825.85 47817.10 47822.80
RanInt_n120_ss_-03 47552.00 47552.00 47552.00 47552.00 47486.10 47514.10 47505.45 47489.10
RanlInt_n240_ss 01 155516.00 155565.00 155550.00 155577.00 155166.55 155349.00 155307.80 155440.20
RanInt_n240_ss_02 155356.00 155356.00 155378.00 155384.00 155021.95 155210.70 155149.70 155207.25
RanInt_n240_ss_03 156415.00 156415.00 156415.00 156415.00 155925.10 156293.35 156193.55 156319.40
RanReal n120_ss_01 47363.21 47363.21 47363.21 47363.21 47325.02 47342.87 47327.26 47343.68
RanReal n120.ss 02  47243.16 47243.16 47243.16 47243.16 47187.05 47204.68 47196.32 47197.48
RanReal n120_ss_03 47313.71 47313.71 47313.71 47313.71 47248.25 47286.91 47274.42 47276.01
RanReal n240_ss 01  155178.33 155209.64 155203.48 155246.47 154819.78 155055.10 154916.56 155041.88
RanReal n240.ss 02  155549.49 155633.66 155641.95 155656.23 155316.08 155451.55 155381.43 155451.66
RanReal n240.ss 03  155609.44 155755.96 155617.45 155782.29 155319.13 155545.54 155465.45 155566.95
Avg. 122419.68 122396.72 122396.61 122427.73 122279.20 122304.47 122281.10 122327.54
#Best 19 9 10 20 13 9 2 13
p-value 0.706381 0.000155 0.002854 0.107325 0.045247 0.00198
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Table 6.3: Comparison of TPSDP with different strength of the undirected perturbation on
the 36 large-scale instances.

Soest favg

Instance TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec
Geo_n480_ds_01 582292.22 582287.80 582288.05 582325.61 580966.93 580621.81 580813.85 580550.25
Geo_n480_ds_02 1089249.81 1089621.80  1089607.60  1089600.18 1088343.32  1088334.42 1088343.06  1087807.40
Geo_n480_ds 03 664108.21 664097.19 664126.97 664110.67 662452.96 662074.21 662436.61 661980.97
Geo_n960_ds 01 3364355.99  3364433.85  3364298.36  3364410.87 3363851.70  3363298.36  3363548.29  3363298.19
Geo-n960_ds_02 1723405.65 172341221 1723421.36  1723421.56 1722649.21 1722543.19 1722242.16  1722147.18
Geo_n960_ds_03 3350671.59  3350635.84  3350675.75 3350670.94 3350547.22  3350346.75  3350563.74 3350369.56
RanlInt n480_ds 01 390529.00 390925.00 390652.00 390718.00 389886.45 390348.90 390023.05 390362.25
RanInt_n480_ds_02 389286.00 389472.00 389097.00 389327.00 388324.70 388607.40 388511.05 388743.45
RanInt_n480_ds_03 388829.00 389190.00 388478.00 389098.00 387740.75 388091.35 388031.35 388362.50
RanlInt n960_ds 01 1244412.00  1244163.00  1242919.00  1244347.00 1242835.90 124244940  1242095.05 1242857.55
RanInt_n960_ds_02 1241596.00 1241630.00 1241519.00  1242006.00 1240518.25 1240632.55 1240279.75  1240869.75
RanInt_n960_ds_03 1242506.00  1241526.00  1241411.00  1242461.00 1240584.15 1240271.20  1239876.95 1240896.00
RanReal n480.ds 01  388420.39 388699.88 389035.23 389658.36 387893.20 388185.89 388117.48 388326.45
RanReal n480_ds_02  387369.53 387259.20 386800.32 387382.94 386209.74 386437.34 386340.20 386673.60
RanReal n480_ds_03  388553.72 388529.60 388642.13 388630.06 387679.14 387942.76 387809.79 388104.73
RanReal n960_ds 01 1241028.37  1240636.08 1240431.95  1240917.68 1239625.89 1239434.48  1238675.74 1239891.19
RanReal n960_ds 02 1240188.45 1240698.20  1239382.87 1241146.98 1239065.73 1239217.37 1238429.71  1239515.63
RanReal n960_ds_03  1239246.15 1238929.69  1237666.62  1239069.46 1237905.28 1237748.58 1237164.61  1237910.82
Geo_n480_ss_01 552010.33 551991.18 551992.51 551994.36 551967.96 551970.21 551971.27 551968.13
Geo_n480_ss 02 1047074.05 1047070.47  1047106.34  1047080.67 1046997.53  1047014.55 1047014.34  1047008.22
Geo_n480_ss_03 633516.54 633504.14 633516.55 633516.84 633481.35 633479.49 633484.04 633483.30
Geo-n960_ss_01 3253684.64  3253661.38  3253682.11  3253760.52 3253561.75  3253580.05  3253559.54  3253760.52
Geo_n960_ss_02 1663365.47 1663380.98  1663381.31  1663372.45 1663347.62 1663360.16 1663354.88 166337245
Geo-n960_ss_03 3250912.00  3250893.64  3250897.45  3250909.92 3250793.85  3250817.72  3250812.06  3250909.92
RanlInt_n480_ss_01 379673.00 379503.00 379999.00 379953.00 378485.80 378971.75 379298.60 379263.95
RanlInt n480_ss_02 379526.00 379889.00 380160.00 380180.00 378830.10 379369.05 379443.50 379596.55
RanlInt n480_ss_03 378362.00 378793.00 378795.00 378762.00 377763.45 378115.25 378330.70 378291.55
RanInt_n960_ss_01 1220755.00  1220781.00  1219814.00 1220742.00 1219599.80  1219349.95 1218856.75  1219694.55
RanlInt n960_ss_02 1220221.00  1219811.00  1219518.00 1220325.00 1219193.10  1218969.65 1218549.00 1219184.35
RanlInt n960_ss_03 1221107.00  1220420.00  1220654.00 1221283.00 1219942.75 1219367.60  1219252.85 1220117.65
RanReal n480_ss_01  377407.10 378399.41 377882.61 377946.02 376814.89 377382.42 377352.89 377533.30
RanReal n480_ss 02  377007.52 377680.41 377570.07 377578.02 376329.17 376992.31 376899.89 377082.09
RanReal n480_ss 03 378000.20 378514.99 378653.23 378758.45 377388.28 378042.57 378042.17 378240.08
RanReal n960_ss 01 1217570.56  1217671.97 1216768.40  1217333.22 1216484.81 1216173.71 1215807.84  1216503.80
RanReal n960_ss 02 1218634.04  1218579.18 1218594.13  1218548.34 1217491.75 1217570.30  1217008.15 1217820.76
RanReal n960_ss 03  1218177.48  1218266.83  1217961.70  1217795.42 1217306.93  1216899.92 1216562.84  1217087.01
Avg. 1126195.89  1126248.86  1126038.88  1126365.04 1125357.26  1125389.24 1125247.33  1125544.05
#Best 7 10 7 12 7 1 5 23
p-value 0.007052 0.077155 0.000502 0.006415 0.000139 0.000752
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strength needs to be analyzed in detail. Therefore, this section analyzes the impact of 6
on TPSDP under different strategies. Four strategies are considered to control the value of
0: fixed, random, increase, and decrease. To determine the values for these strategies, I
test the influence of different 6 (within a reasonable range) on a small-scale instance (i.e.,
RanInt_n240_ds_01), and a large-scale instance (i.e., RanInt.n960_ds_01). The computa-
tional results are shown in Fig. 6.4(a), (b) and Fig. 6.4(c), (d), respectively.

One observes from Fig. 6.4 that the performance of the proposed TPSDP is significantly
influenced by the value of 6. First, small values of 6 corresponding to a slight perturbation
generally lead to a high performance on small-scale instances (Fig. 6.4(a) and (b)). In
contrast, large values of 6 corresponding to a violent perturbation are more appropriate for
large-scale instances (Fig. 6.4(c) and (d)). Furthermore, from Fig. 6.4, we can also observe
that the best performance of TPSDP occurs when 6 reaches 0.3 and 1.9 for n = 240 and
n = 960 instances, respectively, according to the obtained average and best objective values.
Therefore, the first strategy sets the fixed 6 value to 0.3 for the instances with n < 400 and
1.9 for other instances. Moreover, for the remaining three strategies, I decide to set the
variation range of 6 as [0.1, 1.2] for the instances with n < 400, and [1.0, 2.0] for other
instances.

To find the most suitable strategy of 6, the proposed TPSDP adopts these four different
strategies to compare on some test instances. Table 6.1 lists detailed information of each
strategy. The test instances select the first three instances of RanInt, RanReal, and Geo
benchmarks. Tables 6.2 and 6.3 show the comparison results obtained by each strategy
on small-scale and large-scale instances, respectively. As Table 6.2 indicates, on small-
scale DGS and EGS instances, TPSDP-fix and TPSDP-Dec obtain significant advantages in
comparison with the other two strategies. Although the p-value obtained by the Wilcoxon
signed-rank test greater than 0.05 confirms no significant difference between them, TPSDP-
Dec is slightly better than TPSDP-fix in terms of #Best and Avg. Hence, in this study, 6
linearly decreases in the interval [1.2, 0.1] with time for the instances with n < 400.

Table 6.3 shows that, for the large-scale DGS and EGS instances, TPSDP-Dec signifi-
cantly outperforms the other three strategies. Among them, in terms of the p-value of f,,

although TPSDP-rand has achieved similar performance to TPSDP-Dec, the TPSDP-rand
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has inferior stability. In terms of f,,,, the p-values from the Wilcoxon signed-rank tests are
reported, which suggests that TPSDP-Dec is significantly better than the other strategies.
Therefore, 6 of our algorithm linearly decreases in the interval [2.0, 1.0] with time for the

instances with n > 400.

6.1.5 Influence of the directed perturbation strength
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Figure 6.5: Influence of the strength of the directed perturbation.

The last parameter to be determined is the strength n, of the directed perturbation operator
in TPSDP. Like above, the benchmark instances are still the subset of m = 50, L, = 32,
U, = 48 in MDG-a. The X-axis in Fig. 6.5 represents the value of 7, to be tested, while the
Y-axis in Fig. 6.5(a) and (b) represent the average objective value and the best objective
value, respectively. From Fig. 6.5(a), it can be observed that the curve has fluctuation, and
the algorithm performs the best when the value of 7, is 3. Furthermore, it can be found in
Fig. 6.5(b) that there is a large difference between the best objective values in the interval
[1, 4], and the best objective value with the highest quality corresponds to a value of 1, =

3. Therefore, 1, is set to 3 in the proposed TPSDP in terms of the overall performance.



57

6.2 Discussion

6.2.1 Discussion of the method of decreasing the population size

For making more effective use of limited computing resources, TPSDP adopts a popula-
tion linear decline strategy such that the population decreases with time. In this section, I
discuss the way in which solutions to be discarded when the population is reduced. Three
different strategies including TPSDP-O, TPSDP-OD, and TPSDP-D are considered. In
TPSDP-O, only the objective value of the solutions is considered, i.e., the solution with
the smallest objective value is discarded. TPSDP-OD considers both the objective value
and the distance between solutions and the optimal solution, i.e., a solution with the lowest
value calculated by Eq. (4.6) is discarded. In TPSDP-D, only the distance between solu-
tions is considered. To be specific, the distance from each solution to the optimal solution
is calculated by Eq. (4.7), and the one closest to the optimal solution is discarded. These
three strategies are used in TPSDP, and then tested on 72 instances to verify which one is
the best.

Tables 6.4 and 6.5 disclose the comparison results obtained by TPSDP-O, TPSDP-OD,
and TPSDP-D on the given instances. Results on 36 DGS instances reported in Table 6.4
show that TPSDP-O can find the best value on 14 instances in terms of f.,, Which is
better than 12 of TPSDP-OD, and 10 of TPSDP-D. In terms of f,,, TPSDP-O is tied with
TPSDP-D, but superior to TPSDP-OD, and they yield the best results on 14, 8, and 14
instances, respectively. Tables 6.5 indicates that for the EGS instances, TPSDP-O can find
the best fj., and f,,, results on 19 and 16 instances, which is better than that of TPSDP-OD
and TPSDP-D, respectively. Although there is no significant difference among these three
strategies on both DGS and EGS instances according to p-value, TPSDP-O can find the
best solution on most of instances, and has lower computational complexity compared with
TPSDP-OD and TPSDP-O. Therefore, TPSDP-O is adopted in the proposed population

decrease strategy.
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6.2.2 Discussion of the importance of components of TPSDP

In this part, some discussions are given to further analyze the importance of each phase
of the proposed TPSDP. Experimental results of seven different algorithms, including the
proposed TPSDP and six variants that adopt only one or two phases, on Geo, RanReal, and
Ranlnt instances are listed in Tables 6.6, 6.7 and 6.8, respectively. For simplisity, phases 1,
2, and 3 represent the undirected perturbation phase, population reconstruction phase, and
directed perturbation phase, respectively. To more precisely assess the performance of each
algorithm, I use the Friedman test as a statistical analysis method to give a statistical result
and rank each one according to their experimental results. The average ranking of seven
algorithms on the given test instances are records in the row ° Average ranking’, where the
lower rank, the better performance on the test instances. In the last row of the table, p-value
is obtained by the Friedman test to verify whether there is a significant difference between
the top-1 algorithm and its peers in terms of f,,.

Table 6.6 summarizes the experimental results of TPSDP and its variants on Geo in-
stances. From it, it can be found that algorithms with high exploitation ability like ‘phase
243’ and ‘phase 3’ can obtain best values on more instances, confirming the indispensabil-
ity of phase 2 and phase 3 for Geo-type benchmark instances. Furthermore, ‘phase 2+3’
and TPSDP get the 1% and 2" rank among all algorithms, indicating that the algorithm
consists of ‘phase 243’ gets the best performance, followed by TPSDP.

Tables 6.7 and 6.8 report the experimental results of TPSDP and its variants on Ran-
Real and Ranlnt instances. Contrary to the performance of Geo instances, phasel plays
a more important role in these two test sets. Moreover, for large-scale instances, simpler
and exploration-biased algorithms, such as ‘phase 1+2°, ‘phase 1+3’, tend to yield more
best values than other variants. The proposed TPSDP, which balances exploration and ex-
ploitation, is outstanding in small-scale instances. Besides, although the p-values of the
second, third and fifth algorithms are greater than 0.05, which shows that TPSDP is not
significantly different from these algorithms, the lowest rank indicates that TPSDP has the
best performance on all instances.

According to Tables 6.6, 6.7 and 6.8, it can be concluded that TPSDP is the best per-
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forming algorithm overall on these three benchmark sets. Each phase in the algorithm has

its importance, and the three phases complement each other to enhance the performance of

the proposed TPSDP.

6.2.3 Discussion of rationality of TPSDP

As described in [32], in MDGP, high-quality local optimum solutions are not uniformly
distributed but tend to cluster in the same or neighbor regions. Therefore, the distance
between high-quality local optimum solutions in a particular region is generally small,
which reveals that it is necessary to enhance the ability of the algorithm to exploit nearby
better local optimum solutions in the current region. Moreover, the local optimum solutions
located in distinct regions are usually far away from each other, which means that the search
algorithm must have the ability to explore from one region across to another more distant
region if it wants to search for higher quality solutions in other regions.

Based on the above facts, the rationality of the TPSDP algorithm is evident. In the
first phase, since the initial input solutions are already local optimal in their respective
current regions, the undirected perturbation operator helps them jump out of their respec-
tive regions and move to other distant regions. This process expands the search scope of
the algorithm in the solution space and reinforces the exploration capability of the algo-
rithm. The directed perturbation operator used in the third phase is less perturbative than
the undirected perturbation and focuses more on exploiting better local optimum solutions
clustered around the local optima. This phase aims to strengthen the local exploitation ca-
pability of the algorithm. The second phase is equivalent to the transition phase between
the first phase and the third phase. The crossover process of each solution in the population
can facilitate the interaction of information between different local optimal solutions, and
thus visit more promising regions. The iterative execution of the three phases addresses the
tradeoff between diversification and intensification of the algorithm search process, thus

allowing the TPSDP algorithm to search for higher-quality solutions.
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Table 6.4: Comparison of TPSDP with three method of decreasing the population size on
the 36 DGS instances.

fbest .favg
Instance TPSDP-O TPSDP-OD TPSDP-D TPSDP-O TPSDP-OD TPSDP-D
Geo_nl120_ds_01 111856.62 111852.28 111866.09 111829.61 111825.34 111831.59
Geo_n120_ds_02 61897.26 61892.77 61899.54 61885.03 61884.62 61885.69
Geo_n120.ds_03 52069.58 52072.80 52068.88 52062.79 52062.32 52063.21
Geo_n240_ds_01 200330.83  200318.64  200328.60 200304.96  200302.45 200302.75
Geo_n240_ds_02 348387.33  348396.91 348384.95 348344.29 348346.62  348354.41
Geo_n240_ds_03 217136.17  217116.89  217122.69 217110.07  217101.41 217107.41
Geo_n480_ds_01 58229529  582333.25  582318.38 580879.66  580664.81 580864.34
Geo_n480_ds_02 1089645.66  1089611.96  1089590.66 1088735.39  1088307.00 1088300.34
Geo_n480_ds_03 664113.65  664082.35 664089.51 661709.64  661715.99  661708.67
Geo_n960_ds_01 3364324.33  3364430.73 3364314.77 336351242 3363600.33 3363155.90
Geo_n960_ds_02 1723413.83  1723425.49 1723421.37 172243421 1722608.26 1722124.33
Geo_n960_ds_03 3350750.01 3350706.53 3350669.34 334984547 3350584.08 3350099.90
RanReal n120_ds_ 01  50601.64 50552.98 50595.30 50478.89 50490.51 50481.80
RanReal n120.ds 02  50839.04 50932.09 50929.62 50746.99 50748.02 50728.66
RanReal n120.ds_ 03  49952.03 49955.07 49955.00 49866.08 49861.11 49878.16
RanReal n240_ds_ 01  160248.01 160177.97 160236.88 159967.54 159958.67 159972.94
RanReal n240_ds_ 02  160935.80 160829.53 160794.19 160649.22 160588.65 160617.09
RanReal n240_ds_03  159735.48 159584.04 159723.06 159397.52 159358.04 159344.21
RanReal n480_ds_01  388727.06  389012.98 388877.51 388151.16  388347.98  388389.65
RanReal n480_ds_ 02  387456.01 387315.75 387734.96 386645.62  386680.26  386765.37
RanReal n480_ds_ 03  389035.97  388649.74 388725.83 38822490  388060.05 388146.62
RanReal n960_ds_01 1240505.69 1240797.08 1242177.36 1239589.88  1239723.89 1239765.30
RanReal n960_ds_02 1240487.47 1240751.33  1240976.92 1239232.07 1239299.70  1239596.09
RanReal n960_ds_03 1239399.76 1238677.02 1239279.59 1238111.31 1238031.49 1238355.87
RanInt_n120_ds_01 51146.00 51140.00 51161.00 51075.85 51067.45 51074.55
RanInt_n120_ds_02 51426.00 51388.00 51480.00 51274.15 51303.95 51294.65
RanInt_n120_ds_03 50258.00 50260.00 50258.00 50190.35 50187.40 50205.65
RanInt_n240_ds_01 160673.00  160720.00  160543.00 160463.10  160399.70  160350.70
RanInt_n240_ds_02 160439.00 160432.00  160467.00 160260.20 160207.90 160217.90
RanInt_n240_ds_03 160360.00 160320.00  160393.00 160191.55 160174.10 160104.35
RanInt_n480_ds_01 391004.00  391430.00  391161.00 390400.35 390511.25  390414.75
RanInt_n480_ds_02 389889.00 389601.00  389428.00 388978.40  388816.25 388835.05
RanInt_n480_ds_03 389145.00  388923.00  389142.00 388264.95 388211.80  388210.50
RanInt_n960_ds_01 1244260.00 1243736.00 1244438.00 1243067.75 124276030 1242851.75
RanlInt_n960_ds_02 1242579.00 1242121.00 1242386.00 1240864.90 1240717.60 1240924.55
RanInt_n960_ds_03 1241504.00 1243611.00 1242981.00 1240433.50 1240516.70  1240834.55
Avg. 633800.76 633809.95  633886.64 633199.44 633195.17  633198.87
#Best 14 12 10 14 8 14

p-value 0.2004 1 0.427554  0.819799
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Table 6.5: Comparison of TPSDP with three method of decreasing the population size on
the 36 EGS instances.

fbest .ﬂtvg

Instance TPSDP-O TPSDP-D TPSDP-OD TPSDP-O TPSDP-OD TPSDP-D
Geo_n120_ss_01 101595.35  101571.83 101573.32 101557.88 101554.91 101554.31
Geo_nl120_ss_02 54828.04 54827.33 54834.26 54820.82 54822.35 54821.55
Geo_nl120_ss_03 47618.29 47613.68 47614.15 47611.03 47610.13 47610.67
Geo_n240_ss_01 188818.23  188820.82 188817.06 188807.90 188807.03 188808.35
Geo_n240_ss_02 330201.63  330217.66  330211.60 330165.08 33017040  330167.82
Geo_n240_ss_03 207000.90  207005.11 207003.60 206988.39 206988.15 206990.73
Geo_n480_ss_01 55201742  551990.49 551991.84 551975.01 551967.91 551968.73
Geo_n480_ss_02 1047039.66 1047083.26 1047056.54 1047003.95 1047012.66 1047007.24
Geo_n480_ss_03 633501.32  633515.29  633518.44 633478.65 633483.96  633485.82
Geo_n960_ss_01 3253623.12  3253651.40 3253669.94 3253562.37 3253570.07 3253574.79
Geo_n960_ss_02 1663389.17 1663378.93 1663373.45 1663357.67 1663351.44 1663352.30
Geo_n960_ss_03 3250931.07 3250920.09 3250846.24 3250815.34  3250825.72 3250798.55
RanReal n120_ss_ 01  47363.21 47363.21 47363.21 47339.88 47334.16 47333.78
RanReal n120_ss 02  47243.16 47243.16 47243.16 47205.03 47203.74 47199.82
RanReal n120_ss 03  47313.71 47313.71 47313.71 47272.67 47284.89 47276.32
RanReal n240_ss_ 01  155246.47  155241.93 155214.65 155082.72 155064.22 155039.51
RanReal n240_ss 02 155670.84  155656.23 155585.69 155494.41 155466.29 155496.25
RanReal n240_ss 03  155765.30  155704.75 155699.22 155575.34 155544.05 155543.41
RanReal n480_ss_.01  378237.23  378306.93 378623.12 377583.69  377708.85  377501.85
RanReal n480_ss 02 377656.61  377846.64  377768.66 377144.60  377241.93  377324.90
RanReal n480_ss 03  378781.51  378705.63 378644.02 378168.56  378245.86  378250.78
RanReal n960_ss_ 01 1218220.05 1217601.56 1217667.28 1216601.20 1216700.76 1216641.42
RanReal n960_ss_ 02 1219277.34 1220101.38 1218916.60 1217968.76  1217979.31 1218033.57
RanReal n1960_ss_.03 1218593.64 1218555.78 1218608.23 1217429.29 121714945 1217385.24
RanInt_n120_ss_01 47909.00 47909.00 47909.00 47909.00 47909.00 47903.80
RanInt_n120_ss_02 47826.00 47826.00 47826.00 47825.05 47824.25 47823.00
RanInt_n120_ss_03 47552.00 47552.00 47552.00 47477.35 47485.15 47484.65
RanInt_n240_ss_01 155526.00  155577.00 155588.00 155450.10 155432.75 155412.65
RanInt_n240_ss_02 155358.00  155378.00 155358.00 155230.55 155261.05 155175.20
RanInt_n240_ss_03 156415.00  156415.00 156415.00 156328.35 156288.60 156289.90
RanInt_n480_ss_01 380081.00 379887.00  379999.00 379357.75 37941945  379411.80
RanInt_n480_ss_02 380581.00  380218.00  380737.00 379793.80  379768.10  379546.70
RanInt_n480_ss_03 378997.00  379288.00  379114.00 378448.45 378426.15  378562.15
RanInt_n960_ss_01 1220727.00 1221176.00 1220768.00 1219704.65 1219714.25 1219798.90
RanInt_n960_ss_02 1220336.00 1220325.00 1220270.00 121944490 1219265.10 1219282.20
RanInt_n960_ss_03 1221586.00 1221301.00 1221632.00 1220065.60 1219849.45 1219943.50
Avg. 615078.53  615085.80  615064.61 61472349  614714.77 614716.73
#Best 19 16 15 16 11 10

p-value 0.78067 0.819799 0.928219 0.555763




62

Table 6.6: Comparison of seven TPSDP variants on the 24 Geo instances.

favg
Instance TPSDP phasel +2  phasel +3  phase2 + 3 phasel phase2 phase3
Geonl20.ds 01 111831.56 111830.66  111546.42  111841.41 11131391 111857.53  111248.40
Geonl20.ds 02  61883.69 61882.08 61739.78 61887.50 61863.92 61866.16 61628.89
Geonl20.ds 03  52063.21 52064.27 51808.16 52068.54 51923.28 52060.92 51740.77
Geo_n240.ds_ 01 200306.53  200299.12  199868.24  200321.90  199980.36  200283.11  199778.62
Geo n240.ds 02 348349.00  348345.58  347389.26  348364.26  347580.05  348418.44  346769.33
Geo_n240.ds_ 03 217106.84  217107.65  216944.08  217126.21 21702498 21707047  216766.51
Geo_n480.ds 01  580550.25  581189.85 580665.88  578604.17  581036.63  577297.27  579288.71
Geo_n480.ds_ 02 1087807.40 1088822.38 1088333.07 1085402.88 1088670.21 1084225.18 1085326.78
Geon480.ds_ 03 661980.97 662813.32 661511.11 660176.24  662318.04  659698.33  660358.85
Geon960_ds_ 01 3363298.19 3363227.35 3363233.57 3351189.58 3363432.32 3346451.50 3349293.02
Geon960 ds 02 1722147.18 1722166.75 1722346.80 1718740.12 1722610.64 1716501.14 1717001.96
Geo_n960_ds_ 03 3350369.56 3350414.89 3350491.80 3341812.31 3350441.01 3340560.26 3340423.82
Geonl20ss 01 101553.75  101558.07  101555.72  101564.93  101562.28  101517.38  101571.09
Geonl20.ss_02  54823.16 54820.35 54822.05 54826.97 54822.64 54815.82 54829.05
Geonl20ss_03  47609.63 47611.53 47611.53 47614.17 47611.04 47605.02 47613.75
Geon240.ss_.01  188807.34  188803.99  188810.56  188823.10  188806.01  188801.10  188828.23
Geo n240.ss 02 33017432  330162.32  330170.67  330192.18 330170.42  330156.19  330197.32
Geo_n240.ss 03  206987.04  206983.13  206993.41  206998.68  206990.75  206984.23  207003.81
Geon480_ss_.01  551968.13  551949.81  551972.32  552010.25 551952.80 551786.34  552005.70
Geo_n480.ss_02 1047008.22 1046966.50 1047020.38 1047104.07 1046969.50 1046528.48 1047088.69
Geon480.ss_03 63348330 633463.71  633488.16  633513.28  633470.01  633231.74  633519.02
Geon960_ss_01  3253760.52 3253473.10 3253560.02 3253733.54 3253486.97 3252719.64 3253755.38
Geon960.ss_02 1663372.45 1663317.55 1663350.39 1663443.68 1663321.37 1663155.93 1663448.39
Geo_n960_ss_.03  3250909.92 3250721.32 3250810.36 3251005.74 3250721.13 3250017.66 3251010.85
Avg. 962006.34  962083.14 961918.49  960765.24  962003.34  960150.41  960437.37
#Best 1 3 1 7 2 2 8
Average ranking 3.4583 4.0833 4 2.5833 4.08333 5.9167 3.875
p-value 0.160581 0.016157 0.023103 - 0.016157 0.000000 0.038333
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Table 6.7: Comparison of seven TPSDP variants on the 24 RanReal instances.

favg
Instance TPSDP phasel +2  phasel +3  phase2 + 3 phasel phase2 phase3
RanReal n120_ds 01  50476.93 50457.95 50434.49 50235.90 50393.46 50119.42 49445.37
RanReal n120_ds_02  50727.34 50647.20 50730.95 50482.04 50744.93 50334.21 49811.73
RanReal n120_ds_03  49879.67 49840.79 49864.56 49722.59 49856.85 49665.63 48901.63
RanReal n240_ds_01  159974.22  159911.38 15991232  159094.66  159884.99  158671.87  156906.62
RanReal n240 ds 02 160643.87 160607.73  160417.83  159813.12  160279.28  159146.97  157367.89
RanReal n240_ds_ 03  159419.88  159321.42  159266.43  158571.05  159246.94  158253.49  156644.47
RanReal n480_ds_ 01 388326.45  387979.90  388427.09  382494.84  388105.64 374302.49  382691.31
RanReal n480_ds_02 386673.60  386229.39  386797.82 380619.88  386275.74  373188.26  380994.76
RanReal n480_ds_03  388104.73  387679.09  388187.85  382147.71  387508.04  374506.22  382543.27
RanReal n1960_ds_01 1239891.19 1239877.23 1239622.00 1226878.50 1240187.54 1202857.12 1224837.86
RanReal n960_ds 02 1239515.63 123973532 1239622.33 1225129.68 1239860.81 1204259.10 1225481.82
RanReal n960_ds_ 03 1237910.82 1238315.83 1238279.22 1224390.38 1238258.24 1202591.78 1224838.11
RanReal n120_ss 01  47343.68 47329.92 47298.59 46998.16 47256.51 46600.96 46766.73
RanReal n120_ss 02  47197.48 47202.90 47174.81 46861.17 4716542 46536.49 46868.29
RanReal n120_ss.03  47276.01 47283.19 47266.45 47010.85 4724420 46631.55 46887.51
RanReal n240_ss_ 01  155041.88  155090.59  155002.80  153808.11  155023.28  152953.38  153560.78
RanReal n240 ss 02  155451.66  155490.10  155378.64 15423795  155339.97  153287.80  153856.33
RanReal n240 ss 03  155566.95  155555.63  155474.56  154225.62  155475.45  153363.70  153807.15
RanReal n480_ss 01 37753330 376880.99  377571.01  375729.29  376767.27 364968.68  375857.25
RanReal n480_ss_ 02  377082.09  376584.86  377105.88  375278.37  376527.54 364357.94  374476.06
RanReal n480_ss_.03  378240.08  377637.78  378246.49 376648.86  377433.12  366317.01  376687.69
RanReal n960_ss_.01  1216503.80 1216532.90 1216439.09 1209137.30 1216786.63 1184058.73 1210441.27
RanReal n1960_ss_ 02 1217820.76 1217729.74 1217828.43 1212651.32 1217809.63 1183602.14 1213017.91
RanReal n960_ss 03 1217087.01 1217231.53 1217411.70 1211737.69 1217288.48 1183808.16 1211735.95
Avg. 454320.38 45421472 45432339  450579.38  454196.66  441849.30  450184.49
#Best 7 5 8 0 4 0 0
Average ranking 2.0417 2.5 2.3333 5.4167 3.125 6.75 5.8333
p-value - 0.462359 0.639994 0 0.082352 0 0
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Table 6.8: Comparison of seven TPSDP variants on the 24 RanlInt instances.

favg
Instance TPSDP phasel +2  phasel +3  phase2 + 3 phasel phase? phase3
RanInt n120_ds_01  51075.85 51048.80 51049.75 50868.55 51029.25 50713.90 49871.85
RanInt n120_ds 02  51294.65 51266.50 51293.70 51069.15 51279.80 50994.75 50375.15
RanInt n120_ds 03  50192.05 50158.75 50181.80 50027.50 50175.80 49890.65 49077.05
RanInt n240_ds 01  160358.10  160383.60  160340.55  159318.30  160271.90  158786.95  157544.80
RanInt 240 ds 02 160277.70  160244.50  160104.45  159314.80  159927.95  159040.40  157089.00
RanInt n240_ds_03  160223.05 160122.95  160130.55 159173.55 160097.05  158767.05  156816.25
RanInt n480_ds_ 01  390362.25  389970.60  390592.50  383944.55  389983.05 375807.80  384366.05
RanInt n480_ds 02  388743.45  388476.20  389079.95  383277.80  388214.75 37532420  382117.60
RanInt n480_ds 03  388362.50  387679.00 388289.70  381820.70  387652.45 374105.05  381989.10
RanInt n960_ds 01 1242857.55 1243067.85 1243189.80 1228315.80 1243191.15 1206882.55 1229971.90
RanInt 1960 ds 02 1240869.75 1241168.80 1240956.00 1227200.60 1241082.05 1203859.05 1226079.65
RanInt n960_ds_03  1240896.00 1240787.20 1240661.25 1227297.25 1240742.05 1204952.25 1226001.95
RanInt n120_ss. 01  47909.00 47909.00 47894.25 47586.05 47893.70 47181.25 47423.15
RanInt n120_ss_ 02  47822.80 47814.80 47819.50 47471.90 47781.80 47060.05 47382.80
RanInt n120_ss. 03  47489.10 47457.40 47454.60 47233.50 47441.70 46827.25 47135.05
RanInt n240_ss_ 01  155440.20 155446.85  155403.70  154322.10 = 155341.30  152930.35  153800.70
RanInt n240.ss 02 155207.25  155259.40  155167.15  153838.50  155129.70  152942.40  153586.35
RanInt n240_ss_ 03  156319.40  156343.35  156285.55  155106.05  156221.30  153640.00  154188.75
RanInt n480_ss_01  379263.95  378716.45 379319.75  377559.75  378557.25 366746.55  377004.90
RanInt n480_ss_ 02  379596.55  379254.40  379733.90 37734540  379089.85  366459.15  376733.90
RanInt n480_ss_ 03  378291.55  377899.75  378545.35 376848.10  378024.10  365596.10  376488.70
RanInt n960_ss_ 01 1219694.55 1219886.10 1219929.25 1214135.05 1219905.90 1185752.05 1214104.80
RanInt n960_ss_ 02  1219184.35 1219497.75 1219487.40 1213667.05 1219441.75 1185538.70 1213840.75
RanInt n960_ss_ 03  1220117.65 1220216.70 1219878.40 1214731.05 1219894.55 1186619.75 1214050.85
Avg. 455493.72  455419.86  455532.87  451728.04  455348.76  442767.43  451126.71
#Best 10 8 6 0 1 0 0
Average ranking 1.9375 2.3958 2.25 5.1667 3.4167 6.75 6.0833
p-value - 0.462359 0.61629 0 0.017695 0 0
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Chapter 7

Conclusion and future works

The paper presented a three-phase search approach with dynamic population size (TPSDP)
for solving the maximally diverse grouping problem (MDGP). The three phases of TPSDP
coordinate with each other and help achieve a desirable balance between diversification
and intensification during the search process. Moreover, TPSDP also integrates a decline
of population size strategy to avoid the waste of computing resources on non-promising so-
lutions and ensures the algorithm is more effective. Extensive computational results based
on widely used benchmark sets (RanInt, RanReal, Geo, MDG-a, and MDG-c) indicated
that TPSDP is highly competitive compared to best-performing MDGP algorithms. Also,
TPSDP significantly outperforms its peers, especially on the small-scale instances, but only
performs worse than NDHA on the large-scale instances. Furthermore, to illuminate the
adequacy of the TPSDP algorithm, I carried out some experiments to analyze the influ-
ence of some crucial parameters. Also, I discussed the importance and rationality of the
structure of the proposed algorithm.

The ideas of the population-based method and the framework of the three-phase search
approach are rather general. It is practicable to use these two methods to solve other CO
problems, such as the clique partitioning problem (CPP) what I am studying. For the
purpose of proposing more general and understandable algorithms and solving large-scale
problems more effectively, further research could be done in the theoretical explanation of
the working principle of heuristic search and designing more efficient and effective local

search.
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Table 7.2: Comparison of the TPSDP algorithm with three best performing algorithms on

= 109.

20 large DGS instances with n = 2000, m
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Comparison of the TPSDP algorithm with three best performing algorithms on

Table 7.3
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Comparison of the TPSDP algorithm with three best performing algorithms on

20 large DGS instances with n = 2000, m

Table 7.4

50, L, = 32, and U, = 48.
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Table 7.5: Comparison of the TPSDP algorithm with three best performing algorithms on

100, L, =

20 large DGS instances with n = 2000, m

13, and U, = 27.
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Comparison of the TPSDP algorithm with three best performing algorithms on

20 large DGS instances with n = 2000, m

Table 7.6

200, Ly = 6,and U, = 14.
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Comparison of the TPSDP algorithm with three best performing algorithms on

Table 7.8

25.

20 large EGS instances with n = 2000, m
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Comparison of the TPSDP algorithm with three best performing algorithms on

Table 7.9

= 50.

20 large EGS instances with n = 2000, m
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Comparison of the TPSDP algorithm with three best performing algorithms on

Table 7.10

20 large EGS instances with n = 2000, m = 100.
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Comparison of the TPSDP algorithm with three best performing algorithms on

Table 7.11

= 200.

7800000 780000°0  T80000°0 TLEOD0'0 9200000  90000°0 anpea-d

0T 0 0 0 LT v 0 0 1sog#
€I'EST8L 6L°ESISL 0T9T8IL 0060LL — S6'PSESL STEIE8L OTLL69L SI'ESELL EIN%
S9°6878L S6'08I8L 00°0989L 00°€EILL 18€8L 95€8L €969L G8ELL 0l 0 00T OFe-DAN
OI'SPTSL 08°0SI8L S99I89L OFTSOLL 0£€8L SSE8L STE9L LEELL 0l 0l 00T 6£e-DAN
0E'8ET8L SP'9918L SO0ISYL STHTILL 66€8L SSE8L 8069L STYLL 0l 0 00T 8¢ e-DANW
S6'6LT8L SY'ELISL SEHYS9L  SL'SLOLL T6SSL TEE8L 6169L 68TLL 0l 01 00T LET-DANW
S0°09Z8L SS0SI8L 06+189L 01'860LL L6ESL POE8L LE6IL 10€LL 0l 0l 00T 9¢e-DAN
S8°SST8L 09°6VISL O01'TES9L 0SE90LL PTYSL 98T8L LE6IL 08€LL 0l 01 00T SE£e-DAN
SO'PSTSL 09°TLISL SI'ST8IL OL9EILL 8GE8L 99¢8L TL69L LIELL 0l 0l 00T vEe-DANW
06'9VT8L SI'S6I8L 08°€T8IL S6'ELOLL THESL ThESL 1€69L S0ELL 0l 0l 00T €£eDANW
08°0bT8L SSTEISL STSISIL  09'8FOLL TIESL LTTYL YE69L 96TLL 0l 0I 00T TE€e-DANW
ST'TLI8L SSI918L 0£0S89L SSTIILL 0THSL 79¢8L 6669L I1SELL 0l 0l 00T I¢£e-DAN
0T°79T8L S6'9VISL  Ov'SE89L  SI6SILL SOVSL L6T8L LY69L OLYLL 0l 0 00T O¢e-DANW
08°S978L 0ST9I8L SL'6E89L 08°LSOLL PIYSL LLTSL 6£69L S9TLL 0l 0l 00T 6TeDAN
0S'IFTSL 00'LSISL SETE89L OTSLOLL €6£8L €0€8L 6769L YEELL 0l 0l 00T 8Te-DANW
09°78I8L SSHTISL OV +9L9L 00°8E0LL 0FE8L LYESL €989L CIELL 0l 0 00T LTEDANW
00°€LT8L SS'LPISL 0TEE89L SOEPILL pLESL S6T8L SE69L T8YLL 0l 0l 00T 9Te-DANW
SYLYTISL STOIISL 06'6Y89L SSLTILL PrESL LETSL 6169L 9LELL 0l 0 00T STEeDAW
S$'9PT8L SLLTISL OV'€T89L S9HEOLL €0V8L 67€8L €T0LL LISLL 0l 0I 00 VTe-DAW
SPYPTSL  SSTIS08L  S6°'S089L  OL'LIOLL TSESL 00T8L €069L LTTLL 0l 0l 00T €Te-DANW
08'PST8L SS'0SISL SLLISIL SL'EOILL 6bE8L 8€€8L 0069L €EELL 0l 0 00T TTEeDAW
0S°0978L 09°TLISL OV +T89L SL'OVOLL 0LESL 17€8L 1769L YSELL 0l 01 00T ITe-DAN
ddSdL VHAN SINI SILI ddSdl VHAN SINI SLI n 1 w ydexn

Savf 1saqf quejsuy

20 large EGS instances with n = 2000, m



77

Comparison of the TPSDP algorithm with three best performing algorithms on

20 large DGS instances with n = 3000, m

Table 7.12

50,L, = 48, and U, = 72.
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Comparison of the TPSDP algorithm with three best performing algorithms on

Table 7.13

= 50.

20 large EGS instances with n = 3000, m
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