
A hybrid heuristic algorithm for solving the maximally
diverse grouping problem

by

Xiao Yang

A dissertation

submitted to the Graduate School of Science and Engineering for Education

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Engineering

University of Toyama

Gofuku 3190, Toyama-shi, Toyama 930-8555 Japan

2022

(Submitted December 19, 2022)

ii

Abstract

Due to combinatorial optimization (CO) problems play an important role in scientific and

industrial world, a number of heuristic algorithms used to manage with CO problems have

been rapidly developed and improved. This paper introduces a novel hybrid algorithm,

called a three-phase search approach with dynamic population size (TPSDP), for solving

a CO problem, named the maximally diverse grouping problem (MDGP). MDGP aims to

assign a given set of elements into a number of groups with size restrictions for the sake

of maximizing the sum of diversity in these groups. MDGP is an NP-hard CO problem,

possessing widespread application and practical importance. The proposed TPSDP devises

the search process into three phases with distinct functions which are iterated: (1) an undi-

rected perturbation phase to improve the population diversity, (2) a restructure phase using

a distinctive crossover operator to increase the information interaction among solutions,

and (3) a directed perturbation phase to discover the adjacent local optima around current

solutions. TPSDP also combines a dynamic population size strategy to reserve limited

computing resources for potential solutions. The results of experiments and the Friedman

test show that the overall performance of the proposed TPSDP is highly competitive with

even better than previous state-of-the-art MDGP algorithms on 500 instances from five

popular benchmark sets. Furthermore, an additional experiment of parameter analysis and

a discussion of critical ingredients are presented.

iii

Contents

Abstract ii

1 Introduction 1

2 Related work 6

3 The maximally diverse grouping problem 14

4 A three-phase search approach with dynamic population size for MDGP 17

4.1 General framework . 17

4.2 Population initialization . 19

4.3 Double-neighborhood local search method 20

4.3.1 Solution space of MDGP . 20

4.3.2 Double-neighborhood local search 20

4.4 Undirected perturbation phase . 23

4.5 Population reconstruction phase . 24

4.5.1 The offspring generation method 24

4.5.2 Replacement strategy . 27

4.6 Directed perturbation phase . 30

4.7 Linear decline of population . 32

5 Experimental result and comparison 33

5.1 Experimental setup . 33

5.2 Benchmark instances . 33

5.2.1 Parameter setting . 35

iv

5.3 Experimental results and comparison on five benchmark sets 36

6 Parameter analysis and discussion 48

6.1 Parameter analysis . 48

6.1.1 Influence of the initial population size 48

6.1.2 Influence of the parameter α in the replacement strategy 49

6.1.3 Influence of the dynamic population size 50

6.1.4 Influence of the undirected perturbation strength 52

6.1.5 Influence of the directed perturbation strength 56

6.2 Discussion . 57

6.2.1 Discussion of the method of decreasing the population size 57

6.2.2 Discussion of the importance of components of TPSDP 58

6.2.3 Discussion of rationality of TPSDP 59

7 Conclusion and future works 65

Bibliography 79

Acknowledgements 88

v

List of Figures

4.1 An example of the proposed crossover process. 29

6.1 Influence of the parameter α. 48

6.2 Influence of the parameter α. 49

6.3 Influence of the dynamic population size. 51

6.4 Influence of the strength of the undirected perturbation. 52

6.5 Influence of the strength of the directed perturbation. 56

vi

List of Tables

5.1 Main information of the instances in MDG-a set. 34

5.2 Setting of parameters. 35

5.3 Comparison of the TPSDP algorithm with three best performing algorithms

on the 40 DGS RanInt instances. 38

5.4 Comparison of the TPSDP algorithm with three best performing algorithms

on the 40 EGS RanInt instances. 39

5.5 Comparison of the TPSDP algorithm with three best performing algorithms

on the 40 DGS RanReal instances. 40

5.6 Comparison of the TPSDP algorithm with three best performing algorithms

on the 40 EGS RanReal instances. 41

5.7 Comparison of the TPSDP algorithm with three best performing algorithms

on the 40 DGS Geo instances. 42

5.8 Comparison of the TPSDP algorithm with three best performing algorithms

on the 40 EGS Geo instances. 43

5.9 Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40

EGS RanInt instances. 44

5.10 Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40

EGS RanReal instances. 45

5.11 Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40

EGS Geo instances. 46

5.12 The result via the Friedman test of ITS, IMS, NDHA, and the proposed

TPSDP on total 500 benchmark instances. 47

6.1 Configuration of θ in four TPSDP variants. 52

vii

6.2 Comparison of TPSDP with different strength of the undirected perturbation

on the 36 small-scale instances. 53

6.3 Comparison of TPSDP with different strength of the undirected perturbation

on the 36 large-scale instances. 54

6.4 Comparison of TPSDP with three method of decreasing the population size

on the 36 DGS instances. 60

6.5 Comparison of TPSDP with three method of decreasing the population size

on the 36 EGS instances. 61

6.6 Comparison of seven TPSDP variants on the 24 Geo instances. 62

6.7 Comparison of seven TPSDP variants on the 24 RanReal instances. 63

6.8 Comparison of seven TPSDP variants on the 24 RanInt instances. 64

7.1 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large DGS instances with n = 2000, m = 10, Lg = 173, and Ug = 227. . 66

7.2 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large DGS instances with n = 2000, m = 25, Lg = 51, and Ug = 109. . 67

7.3 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large DGS instances with n = 2000, m = 50, Lg = 26, and Ug = 54. . . 68

7.4 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large DGS instances with n = 2000, m = 50, Lg = 32, and Ug = 48. . . 69

7.5 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large DGS instances with n = 2000, m = 100, Lg = 13, and Ug = 27. . 70

7.6 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large DGS instances with n = 2000, m = 200, Lg = 6, and Ug = 14. . . 71

7.7 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large EGS instances with n = 2000, m = 10. 72

7.8 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large EGS instances with n = 2000, m = 25. 73

7.9 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large EGS instances with n = 2000, m = 50. 74

viii

7.10 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large EGS instances with n = 2000, m = 100. 75

7.11 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large EGS instances with n = 2000, m = 200. 76

7.12 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large DGS instances with n = 3000, m = 50,Lg = 48, and Ug = 72. . . 77

7.13 Comparison of the TPSDP algorithm with three best performing algorithms

on 20 large EGS instances with n = 3000, m = 50. 78

1

Chapter 1

Introduction

The improvement of human social productivity comes from two aspects, one is the dis-

covery of new technologies, and the other is the rational allocation of resources based on

existing technologies to improve resource utilization. With the continuous development of

the world economy, information science and technology has been widely developed and

applied. At present, information technology has been widely used in all walks of life, espe-

cially in the direction of intelligence and large-scale resource integration. The emergence

of various new economic forms and the rise of intelligent applications are driven by the

strong demand of economic development for rational resource allocation after the maturity

of basic technologies.

The problem of resource allocation is usually reduced to an optimization problem after

modeling. Optimization problems can be divided into two categories: one is continuous

variable problems, the other is discrete variable problems. A problem with discrete vari-

ables is called combinatorial. In a problem of continuous variables, it is generally to find

a set of real numbers, or a function; In a combinatorial problem, it is to obtain an object

from an infinite set or a countable infinite set, it may be an integer, a set, a permutation,

or a graph. Generally, these two types of problems have quite different characteristics and

the methods to solve them are also very different. For problems with discrete variables, the

problem of finding the optimal solution from a finite number of solutions is the combina-

torial optimization problem [1]. To put it simply, combinatorial optimization problems are

a class of problems that seek extreme value in discrete state. As a coherent mathematical

discipline, combinatorial optimization problems are relatively young [2]. However, along

2

with the industrial and technological revolution and the development of modern manage-

ment science, especially the rapid progress of computer technology and its wide application

in various industries, combinatorial optimization has grown into an independent branch of

operational research.

One reason for the diversity of the root causes of combinatorial optimization is that its

problems directly originate from practice [2]. Typical combinatorial optimization problems

include traveling salesman problem [3], scheduling problem [4], knapsack problem [5],

packing problem [6], maximum clique problem [7], clustering problem [8], graph coloring

problem [9], etc. The definition of the famous traveling salesman problem (TSP) can be

summarized as that a traveling salesman wants to start from his hometown, visit each town

only once, and finally return to his hometown. One of his problems was to find the shortest

path of the trip. A direct application of the TSP is the drilling problem whose solution plays

an important role in economical manufacturing of printed circuit boards [3]. Similarly, the

scheduling problem often encountered in the manufacturing industry can be defined as

allocating limited resources and time to several tasks under certain constraints to satisfy

or optimize one or more performance metrics. In the transportation industry, ships, trains,

aircraft, or trucks often carry loads for different clients. Transportation requests arrive

stochastically over time, and prices are offered or negotiated for transporting loads. This

kind of problem is usually modeled as a knapsack problem, that is, to select the items to

be loaded into a fixed capacity knapsack from a set of given items with known size and

reward, so as to obtain the maximum total return within the capacity limit [5].

The description of these problems is very simple and has strong engineering represen-

tation, but the optimization is very difficult to solve. The main reason is that the algorithms

for solving these problems need extremely long running time and huge storage space, so

that it is impossible to implement them on existing computers, namely the so-called ”com-

bination explosion”. It is the representativeness and complexity of these problems that

arouse people’s interest in the research of combinatorial optimization theory and algo-

rithm. When faced with these combinatorial optimization problems, early researchers still

hoped to calculate the optimal solution and proposed branch-and-bound method [10], cut-

ting plane method [11], dynamic programming approach [12] and other exact algorithms.

3

When the scale of the problem is small, such exact algorithms can find the optimal solution

to such problems in an acceptable time, but when the scale of the problem is large, the com-

putational time spent increases exponentially with the size of the instances, and these exact

algorithms cannot even give a feasible solution. Such problems have been proved to have

NP-hard complexity [13], and it is now generally considered that there are no algorithms

whose upper bound is polynomial in time complexity.

Because this kind of problems exist widely in practice, it is unnecessary to find the

optimal solution in practice. Later researchers abandoned the goal of the strict optimal

solution, and then studied the algorithms available in reality for such problems. In this

process, approximate algorithms [14] were generated. Approximate algorithm refers to an

algorithm that uses approximate methods to solve combinatorial optimization problems,

considering obtain an approximate solution that is close to the optimal solution in polyno-

mial time. The approximate algorithm can ensure that the difference between the compu-

tational result and the optimal result does not exceed a certain constant, but the algorithm

is complex and difficult to program on a computer. Greedy algorithm [15], semi-definite

programming approaches [16], linear programming [17], etc. can be used to construct ap-

proximate algorithms. With the development of computer technology, the study of heuristic

algorithms [18] have gradually flourished. A heuristic algorithm can be defined as an algo-

rithm based on intuition or experience, which gives a feasible solution to the combination

optimization problem to be solved within an acceptable computing cost [19]. Heuristic

algorithms are usually simple and easy to be implemented on computers, but the deviation

between the feasible solution and the optimal solution may not be predictable in advance,

and these heuristic algorithms usually depend on specific problems and are not universal.

At this time, many scientists sought new inspiration for artificial systems from biology.

Some scientists independently developed simulated evolutionary algorithms suitable for

optimization of complex problems in the real world from the mechanism of biological evo-

lution, and a large number of meta-heuristic algorithms [20] appeared one after another. A

meta-heuristic is formally defined as an iterative generation process which guides a subor-

dinate heuristic by combining intelligently different concepts for exploring and exploiting

the search space, learning strategies are used to structure information in order to find effi-

4

ciently near-optimal solutions [21]. Meta-heuristic algorithms include but are not restricted

to, ant colony optimization (ACO) [22,23], particle swarm optimization (PSO) [24,25], ar-

tificial bee colony algorithm (ABC) [26], genetic algorithm (GA) [27], simulated annealing

algorithm (SA) [28], tabu search algorithm (TS) [29], iterative local search (ILS) [30], a

series of universal heuristic algorithms inspired by natural phenomena. As a general op-

timization mechanism, the above algorithms can not only solve large-scale problems in a

relatively short time, but also more importantly, the optimization mechanism of such algo-

rithms does not rely too much on the organizational structure information of the algorithm.

Although meta-heuristic algorithms can not guarantee the optimal solution, they can be

applied to a wide range of problems due to their good practicality.

The maximally diverse grouping problem (MDGP) is a combination optimization prob-

lem derived from practice, which requires a grouping scheme that satisfies the constraints

of groups so that the sum of the diversity of all groups is maximized, given that the diversity

matrix of a set of elements is known. The maximally diverse grouping problem has been

shown to be theoretically NP-hard complex, and the scale of instances of MDGP is usually

large, so there is no algorithm that can obtain exact optimal solution in an acceptable time.

At present, researchers of MDGP focus on heuristic algorithms.

This paper presents a novel and effective hybrid algorithm, called a three-phase search

approach with dynamic population size (TPSDP), for solving MDGP. Inspired by the three-

phase local search [31] framework, the TPSDP algorithm iteratively uses the three-phase

with distinct functions to achieve a balance between diversification and intensification in

the search process. In the first phase, TPSDP draws on an undirected perturbation opera-

tor, which is adopted from [32], followed by a local search process. This phase improves

the diversification of solutions. In the second phase, an extended crossover operator based

on [33] is proposed for both equal group size instances and different group size instances.

The second phase improves the information interaction among solutions, and it can be con-

sidered as a transition phase. In the third phase, a novel directed perturbation operator is

proposed to fine-turn current solutions. This operator shifts the search to limited regions

around the current solutions and finds their adjacent promising solutions. This phase inten-

sifies the quality of solutions. In addition, a dynamic population size strategy is utilized to

5

improve the efficiency of the algorithm. Experimental results on five widely used MDGP

benchmark sets show that TPSDP has significantly better or at least competitive perfor-

mance compared to the state-of-the-art algorithms, especially on instances with different

group sizes.

The main contributions of this study can be summarized as follows:

(1) TPSDP adopts a time-varying population size strategy to avoid redundant examination

of no-promising solutions and enable promising solutions to be allocated with more

computational resources in a given time budget. Thereby, the dynamic population size

strategy improves the efficiency of the algorithm.

(2) I present an extended crossover operator applied not only to exceptional cases like

the instances with equal group sizes (EGS) but also to the instances with different

group sizes (DGS) in MDGP. The crossover operator maintains the integrity of the part

inherited from the parent solutions as much as possible, thus guaranteeing the quality

of the offspring solutions to some extent. At the same time, the crossover operator also

enhances the information interaction among solutions.

(3) A novel directed perturbation operator is proposed to exploit the neighborhood of

current solutions and find potential neighbor solutions. Additionally, the idea of the

directed perturbation operator is general and can be applied to other algorithms for

MDGP or other related combinatorial optimization problems.

The remaining parts of this paper are structured as follows: Chapter 2 lists several meta-

heuristic techniques applied to CO problems. The introduction of MDGP is summarized in

Chapter 3. Chapter 4 presents the components of the proposed TPSDP algorithm. Chapter

5 shows the computational results and assessments based on the benchmark instances used

in the recent literature. Analysis of the parameter settings and discussion of the proposed

algorithm are given in Chapter 6. This paper ends with a conclusion in Chapter 7.

6

Chapter 2

Related work

Meta-heuristics can be said to originate from the Artificial Intelligence and Operations Re-

search communities [20,53,54]. The term meta-heuristics usually refers to the approximate

algorithm for optimization, not specifically expressed for a specific problem. During the

past two decades, due to advances in mathematical programming theory and algorithmic

design, the rapid improvement of computer performance, and the development of com-

plex software, meta-heuristic technology as one of the optimization tools has been greatly

improved. This chapter will introduce several meta-heuristic techniques applied to combi-

natorial optimization (CO) problems in brief.

Variable neighborhood search (VNS) is a meta-heuristic proposed by authors more

than a decade ago [55]. The motivation of this approach can be found in some earlier work,

like [56–59]. The basic idea of VNS is a systematic change of neighborhood, finding a local

optimum in a descent phase and getting out of the corresponding basin in a perturbation

phase. Before generating an initial solution, a set of neighborhood structure should be

defined (see Algorithm 1). The main cycle of VNS contains three phases: shaking, local

search, and move. In the shaking phase, which can also be called perturbation phase, a

solution s′ is randomly selected from the kth neighborhood of the incumbent solution s,

and becomes a new start point of the next iteration. At the end of a round of local search,

the new solution s′′ is compared with s, and if s′′ is accepted, the algorithm starts again

with k = 1. Or else, k is incremented and a new round of shaking phase starts with a distinct

neighborhood.

VNS was originally designed for the approximate solution of CO problems, and later

7

extended to tackle mixed integer programming, nonlinear programming and the latest

mixed integer nonlinear programming. Moreover, VNS has been also used as a tool for au-

tomatic graph theory or computer-assisted graph theory. VNS has increasing applications

and pertain to many fields: cluster analysis, vehicle routing, lot-sizing, engineering, biol-

ogy, phylogeny, telecommunication design, location theory, scheduling, network design,

artificial intelligence, pooling problems, reliability, geometry, etc. (see, e.g., [60–67]). The

VNS framework has been also adopted in the proposed TPSDP.

Algorithm 1: Main framework of VNS
1 begin
2 Choose a set of neighborhood structures Nk, k = 1, 2, . . . , kmax

s← GeneratelnitialS olution();
3 while terminate condition not met do
4 k ← 1;
5 while k<kmax do
6 s′ ← PickAtRandom(Nk(s));
7 s′′ ← LocalS earch(s′) if (f (s′′)< f (s′) then
8 s← s′′;
9 k ← 1

10 else
11 k ← k + 1
12 end
13 end
14 end
15 end

Simulated annealing (SA) algorithm [68] was first invented in 1983, using a method

similar to hill-climbing, but accepts some deteriorating solutions with an acceptance prob-

ability which is decreasing with time, in order to escape from local minima. The SA al-

gorithm (Algorithm 2) starts from an initial solution and an initial so-called temperature

parameter T . Then it repeats numbers of iteration until a terminate condition is met. At

each iteration, a solution randomly picked from a neighborhood is sampled and accepted

as a incumbent solution depending on its fitness value and temperature parameter T . The

temperature T is decreased with the search process, therefore, the probability of accepting

a worse solution is high at the beginning of the search and it gradually decreases. This pro-

cess is similar to the annealing process of glasses and metals, which exhibit a low-energy

8

configuration when cooled using an appropriate cooling schedule. SA can apply to sev-

eral CO problems, like the quadratic assignment problem (QAP) [69] and the job shop

scheduling (JSS) problem [70], etc. In addition, among the clique partitioning problem I

am studying, the state-of-the-art algorithm in the literature also utilize SA as the framework

of local search.

Algorithm 2: Main framework of SA
1 begin
2 s← GeneratelnitialS olution();
3 T ← T0;
4 while terminate condition not met do
5 s′ ← ChooseRandom(N(s));
6 if (f (s′) ≤ f (s) then
7 s← s′

8 else
9 Accept s′ as a new solution with probability p(T, s, s′)

10 end
11 Update(T);
12 end
13 end

Tabu search (TS) [71] is a global neighborhood search algorithm, which is one of the

most cited and used meta-heuristic in CO problems. The basic idea of TS is to simulate

the optimization features of human memory function. It avoids circuitous search by local

neighborhood search mechanism and using a short term memory, and releases some for-

bidden high-quality solutions by breaking the aspiration criteria, thus ensuring diverse and

effective exploration to finally achieve the global optimum. The simple TS framework is

shown in Algorithm 3.

The short memory implemented as a tabu list. The main purpose of the tabu list is to

prevent endless cycles in the search process and avoid getting trapped in local optimum. It

is usually used to record the movements of the previous several times and prohibit these

movements from returning in the near future. The tabu list is the core of TS algorithm. The

length of tabu list ((i.e., the tabu tenure) affects the search speed and the quality of solutions.

If the length of the tabu list is too small, the search will focus on small regions of the search

space, and the search process may enter an endless loop. On the contrary, too large tabu list

9

forces the search process to explore larger areas, but high-qulity solutions may be skipped

and solutions that cannot be improved will increase the running time of the algorithm.

Therefore, the size of the tabu tenure can make the search divergent or convergent. In a

search process, a dynamic tabu list can lead to a more robust algorithm [72, 73]. When

forbidden solutions contains high-quality unvisited solution, the algorithm should accept

the solution without being restricted by the tabu list. In order to overcome this problem,

the aspiration criterion is defined. The measurement standard is to define a aspiration level

function, which usually selects the fitness value of the optimal solution obtained so far as

the aspiration level function.

Overall, tabu search field is a rich source of ideas, some of which have been and are

being adopted by other meta-heuristics. Furthermore, TS has been successfully applied to

many CO problems, such as the reactive tabu search to the MAXSAT problem [73], the

reactive tabu search to assignment problem [74] and the vehicle routing area [75], etc.

Algorithm 3: Main framework of TS
1 begin
2 s← GeneratelnitialS olution();
3 TabuList ← ∅;
4 while terminate condition not met do
5 s← S electBestO f (N(s)\TabuList);
6 Update(TabuList);
7 end
8 end

Swarm intelligence (SI) algorithm [76] was proposed in 1989. It is inspired by the

collective behavior of schools of fish, flocks of birds, swarm of insects and other biological

aggregation. In the past decades, a number of swarm intelligence algorithm have been

developed. The most successful SI algorithms are ant colony optimization (ACO) and

particle swarm optimization (PSO). ACO is inspired by the behavior of ants in the process

of food search or risk avoidance, while PSO is based on a simplified model of bird flocking

behavior. Here, I will choose PSO for a brief introduction.

As a well-known swarm intelligence algorithms, PSO has attracted great interest with

regard to theoretical value and real-world applications. In PSO (see Algorithm 4), a group

10

of particles performs the search process in a given problem space. Each particle maintains

its velocity and position, adjusts its velocity and position with some random perturbation,

and share its current best position with other one or more particles in the swarm to deter-

mine its next position throughout the search space. Once all particle update their respective

positions, the next iteration starts, approaching the region near the optimum. At the end,

the whole swarm probably presses on towards the global optimal at a convergence speed.

Since its simplicity and effectiveness, PSO is widely applied to various CO problems in the

fields of wireless-sensor networks [77], electric power systems [78], and data mining [79].

Algorithm 4: Main framework of standard PSO
1 Create and initial an N D-dimension swarm;
2 repeat
3 for particle i = 1, 2, . . . ,N do
4 if f (xi) < f (pbesti) then
5 pbesti = xi

6 end
7 if f (pbesti) < f (gbest) then
8 gbest = pbesti
9 end

10 end
11 for particle i = 1, 2, . . . ,N do
12 Update particle’s velocity;
13 Update particle’s position;
14 end
15 until stopping condition is true;

Evolutionary algorithms (EAs) are methods that modeling the process of natural evo-

lution. They apply the principle of survival on individuals in a population, each of which

represents a potential solution of search space, to purse regions near the perceived opti-

mum. A new set of approximations is arbitrarily initialized, and it evolves towards better

regions of search space by using operators called recombination or crossover, modification

or mutation, and selection.

The most famous among EAs are genetic algorithm (GA) which have been invented

in 1975. GA is a population based optimization problem, which exploits the concept of

survival of the fittest. The basic elements of GA are a population of chromosome, fitness

11

function computation, and genetic operators (i.e., selection, crossover, and mutation). The

first step of any GA is to create an initial population. In the canonical genetic algorithm,

each gene or chromosome will be represented as a binary string of length l. It provides

faster and easier implementation of genetic operators. After generating an initial popula-

tion, each string (solution) is evaluated by the evaluation function and given a fitness value.

Then, selection procedure is carried out.

Selection is an significant step in a genetic algorithm that decides which string can

participate in the crossover process. The way to do selection is various, such as roulette

wheel, tournament, rank, boltzmann, and stochastic universal sampling. For example, the

roulette wheel might regard all the string as mapping onto a wheel, where each individual

is represented by a portion of the wheel that proportionally according to its fitness value.

Then spinning the roulette wheel repeatedly, individuals are chosen by stochastic sampling

to select specific solutions that will get involved in formation of the next generation [80].

After selection, the construction of the intermediate population is done and crossover

procedure can be executed. The aim of this process is to produce the next population

from the intermediate population and provide diversity for the population. As a tool for

creating the offspring, the crossover operator combines the genetic information of two or

more parents. Picking a random crossover point in the two parents solution, the genetic

information beyond that point will be swapped with each other. Two newly formed strings

will be inserted into the new population.

To maintain the genetic diversity from one population to the next populaton, the ge-

netic algorithm applies a mutation operator. The frequently-used mutation operators are

displacement, simple inversion, and scramble mutation. Put it briefly, the mutation oper-

ator performs mutation on some bit in the population, with some low probability. After

finishing the above three process, the next population will be evaluated. The process of

evaluation, selection, crossover and mutation constitutes one generation in a genetic algo-

rithm execution process.

As an enfficient meta-heuristic, genetic algorithms have been successfully applied in

various CO problems. A few application areas are listed: facility layout problem (FLP)

[81], scheduling [82], inventory control [83], forecasting [84, 85], and supply network de-

12

sign [86, 87]. In our TPSDP, the crossover operator also plays an important role in solving

MDGP.

Algorithm 5: Main framework of EA
1 begin
2 P← GeneratelnitialPopulation();
3 Evaluate(P);
4 while terminate condition not met do
5 P′ ← Recombine(P);
6 P′′ ←Mutate(P′);
7 Evaluate(P′′);
8 P← Select(P′′ ∪ P)
9 end

10 end

Artificial neural networks (ANNs) [88] is also called neural networks (NNs) or con-

nection model for short. It is an algorithmic mathematical model that mimic the behavior

characteristics of animal neural network for distributed parallel information processing.

This kind of networks relies on the complexity of the system, and achieves the purpose of

processing information by adjusting the interconnection between a large number of internal

nodes.

The method of using neural networks to solve CO problems can be traced back to

Hopfield network proposed by Hopfield et al. in 1985 [89]. This neural network is used to

solve TSP and other CO problems. However, the neural network can only learn and solve

the single small-scale TSP instance at a time. For a newly given TSP instance, it needs to

be trained again from the beginning, which has no advantage over traditional algorithms.

The neural networks can really effectively solve the CO problem in 2015. Vinyals et

al. [90] analogized the CO problems to the machine translation process (i.e., sequence-to-

sequence mapping). The input of the neural network is the feature sequence of the problem

(such as the coordinate sequence of the city), and the output of the neural network is the

solution sequence (e.g., the order of visits to cities). According to this idea, Vinyal et al.

improved the classical sequence-to-sequence (Seq2Seq) mapping model in the field of ma-

chine translation, and proposed a pointer network model that can solve CO problems. The

author trained the network in a supervised learning way and achieved high-quality results

13

on TSP. The traditional CO algorithms are all solved by ”iterative search”, but Vinyals et

al.’s model can directly output solutions by using neural networks, opening a new research

field of combinatorial optimization.

14

Chapter 3

The maximally diverse grouping
problem

The maximally diverse grouping problem (MDGP) is devoted to partitioning a set of ele-

ments (or nodes) into a set of mutually independent groups (or subsets), maximizing the

sum of the diversity between each pair of elements assigned to the same group. Consider

an undirected complete and edge-weight graph G = (V , E, D), where V = {1, 2,..., n} is

the set of n vertices, E = {{i, j} : i, j ∈ V, i , j} is the set of n × (n − 1)/2 edges, and

D = {di j ≥ 0 : {i, j} ∈ E} is the set of non-negative edge weights. Let g denotes the

gth group, where g ∈ {1, 2, ...,m}. The size cg of each group is in a given interval [Lg,Ug],

where Lg and Ug denote the lower and upper bounds, respectively. In MDGP, a vertex v ∈ V

can also be called an element, and an edge weight di j ∈ D represents the diversity between

element i and j. The objective of the MDGP is to maximize the overall edge weights of the

m groups. Mathematically, the MDGP can be formulated as follows:

maximize
m∑

g=1

n−1∑
i=1

n∑
j=i+1

di jxigx jg (3.1)

s.t.
m∑

g=1

xig = 1, i = 1, 2, . . . , n (3.2)

Lg ≤

n∑
i=1

xig ≤ Ug, g = 1, 2, . . . ,m (3.3)

xig ∈ {0, 1}, i = 1, 2, . . . , n; g = 1, 2, . . . ,m (3.4)

15

where xig is a binary variable and takes the value of 1 if element i belongs to the group g,

and the opposite is 0. The Eqs. (2) and (3) are constraints where (2) enforces that each

element will be put into one specific group while constraint (3) guarantees the size of each

group will lie between the lower bound Lg and upper bound Ug.

MDGP is a combinatorial optimization problem that originated in practice and has

many practical applications. One of the most intuitive and the earliest applications in

practice is the human resource grouping problem, such as the assignment of students to

groups [34–38] and peer review [39]. For instance, in MBA programs [35], it is impor-

tant to assign students to diverse study groups. The general purpose of these tasks is to

create diversity-rich groups that allow the group members to be in a rich interpersonal and

learning environment, which helps to motivate the members and bring out their strengths,

resulting in solid and efficient groups. Other applications include VLSI design [40] and the

storage allocation of large programs onto page memory [41].

MDGP has been widely studied as a topic based on its theoretically proven NP-hard

complexity, and its value for life applications [42]. Several algorithms have been proposed

in the literature that can find an approximate optimal solution within an acceptable time.

These algorithms can be divided into two categories: (1) single point-based local search

algorithms, and (2) hybrid evolutionary algorithms. The first category includes a multistart

algorithm [43], a Weitz-Jelassi (WJ) algorithm [44] which implements a heuristic used to

construct the initial solution, a Lotfi-Cerveny-Weitz (LCW) algorithm [34] which focuses

on constructing the initial solution and simple local search, a tabu search with strategic

oscillation (TS-SO) [45], multi-start simulated annealing (MAS) [46], a variable neighbor-

hood search (VNS) [46], a general variable neighborhood search (GVNS) [47] which is a

variant of VNS, a skewed general variable neighborhood search (SGVNS) [48] which is

an extension of the GVNS, an iterated tabu search (ITS) [49], an iterated maxima search

(IMS) [32], and the latest published neighborhood decomposition-based variable neighbor-

hood search and tabu search (NDHA) [50]. The second category includes a hybrid genetic

algorithm [51], a hybrid steady-state genetic algorithm (HGA) [46], an artificial bee colony

algorithm (ABC) [52], a new hybrid genetic algorithm (NSGGA) [33] that solves only

equal-sized instances. According to the experimental results reported on benchmark in-

16

stances, ITS, IMS, NSGGA, and NDHA can be considered as state-of-the-art algorithms

for MDGP.

17

Chapter 4

A three-phase search approach with
dynamic population size for MDGP

4.1 General framework

The implementation framework of TPSDP for MDGP is summarized in Algorithm 6. Three

distinct phases control the search behavior of the TPSDP. The first phase, called the undi-

rected perturbation phase, consists of an undirected perturbation operator, which aims to

strongly modify the current solutions to jump out of the current search regions and move

to new regions far away. This process increases the diversity of the population and, at the

same time, prevents premature convergence. Therefore, this phase can also be seen as a

diversification phase. The second phase uses a crossover operator to produce high-quality

offspring solutions, and to retain the parents’ strengths. This phase maintains the diversity

of the population and improves the information interaction among solutions, resulting in

high-quality solutions. The second phase is the transition phase of the algorithm. In the

third phase, a newly proposed directed perturbation operator is used to discover solutions

with better quality in the regions adjacent to the current solutions. The third phase can be

considered as an intensification phase. It should be noticed that each phase follows a local

search in order to find local optimum solutions with higher quality. These processes are

iterated until a termination condition is encountered. In addition, a dynamic population

size strategy is used to improve the efficiency of the TPSDP algorithm.

18

Algorithm 6: The main procedure of TPSDP
1 Function TPSDP(βmax, βmin, θmax, θmin, ηd, α, tmax)

/* Population Initialization */

2 for i = 1 to βmax do
3 S i =InitialSolution();
4 S i =LocalSearch(S i);
5 end
6 β = βmax;
7 θ = θmax;
8 while Time() < tmax do

/* Undirected Perturbation Phase */

9 Update ηs;
10 for i = 1 to β do
11 S i =UndirectedPerturbation(S i, ηs);
12 S i =LocalSearch(S i);
13 end
14 if β > 1 then

/* Reconstruction Phase */

15 for i = 1 to β do
16 Randomly select an individual j, j , i;
17 Oi = Crossover(S i, S j);
18 Oi =LocalSearch(Oi);
19 if f (Oi) > f (S i) then
20 S i = Oi;
21 else if f (Oi)

f (S i)
+ α × Dis(S i,Oi) > 1 then

22 S i = Oi;
23 else
24 S i = S i;
25 end
26 end
27 end

/* Directed Perturbation Phase */

28 for i = 1 to β do
29 S i =DirectedPerturbation(S i, ηd);
30 S i =LocalSearch(S i);
31 end
32 β = (βmin − β) ∗

Time()
tmax
+ β;

33 θ = θmax − (θmax − θmin) × Time()
tmax

;
34 Sort all S according to f and record the best solution S b;
35 end
36 return S b;
37 end

19

4.2 Population initialization

Algorithm 7: Initial population
1 Function InitialSolution()
2 V = {1, 2, . . . , n}; G = Ø;
3 for g = 1 to m do
4 cg = 0;
5 end
6 for g = 1 to m do
7 while cg < Lg do
8 v =RandomEle(V);
9 s[v] = g;

10 cg = cg + 1;
11 V = V \ {v};
12 end
13 end
14 for g = 1 to m do
15 if cg < Ug then
16 G = G ∪ {g};
17 end
18 end
19 while V , Ø do
20 g =RandomEle(G);
21 v =RandomEle(V);
22 s[v] = g;
23 cg = cg + 1;
24 V = V \ {v};
25 if cg = Ug then
26 G = G \ {g};
27 end
28 end
29 return s;
30 end

TPSDP algorithm uses random initialization to build the initial population due to its

simplicity and generality. The initial population of TPSDP consists of βmax solutions. Each

solution is generated by three steps as shown in Algorithm 7. First, fill each group g

(g ∈ {1, 2, ...,m}) until reaching their lower bound Lg with randomly selected elements.

Then, select an unassigned element at random to fill a group whose current size cg is not

20

reached its upper bound Ug. Repeat this process until all elements are assigned. Finally,

each solution is enhanced by a local search. The best one among the population is recorded

as the current best solution S b.

4.3 Double-neighborhood local search method

4.3.1 Solution space of MDGP

For a given MDGP instance with n elements, m groups, and a diversity matrix D = [di j]n×n,

the solution space searched by the TPSDP algorithm covers solutions formed by assigning

n elements to the m groups, satisfying the restrictions that each group g contains at least

Lg and at most Ug elements. A solution in search space is expressed by an n-dimensional

vector s, where s[i] (i = 1, 2, ..., n) refers to a particular group containing the element i.

Additionally, to improve computational efficiency of local search, I introduce an n × m

matrix M such that M[i][g] is used to represent the sum of the diversity between element i

and all elements in the group g:

M[i][g] =
∑

i, j=1,2,...,n;s[j]=g

di j (4.1)

where the calculation of matrix M has complexity O(N2).

4.3.2 Double-neighborhood local search

As the basis of the overall algorithm process, the local search introduced in this paper is

the double neighborhood local search used in [32], as detailed in Algorithm 8. As the name

implies, the double neighborhood local search method uses two underlying neighborhoods:

the insertion neighborhood and the swap neighborhood.

The insertion neighborhood is also called the constrained one-move neighborhood in

[32], which is represented by N1. Given a feasible solution S f , the search is realized by

moving an element v from its current group g1 to another group g2 while following the

constraints on the size of each group in S f . All solutions created in this way are called

21

Algorithm 8: Double-neighborhood local search method
1 Function LocalSearch(s, f (s))
2 Initialize M[n][m];
3 imp = true;
4 while imp do
5 imp = f lase;
6 for v = 1 to n do
7 for g = 1 to m do
8 if (s[v] , g) ∧ (cs[v] > Ls[v]) ∧ (cg < Ug) then
9 ∆ f = M[v][g] − M[v][s[v]];

10 if ∆ f > 0 then
11 cs[v] = cs[v] − 1;
12 cg = cg + 1;
13 s[v] = g;
14 f (s) = f (s) + ∆;
15 Update M;
16 imp = true;
17 end
18 end
19 end
20 end
21 for v = 1 to n − 1 do
22 for u = v + 1 to n do
23 if s[v] , s[u] then
24 ∆ f = M[v][s[u]] −M[v][s[v]] +M[u][s[v]] −M[u][s[u]] − 2dvu;
25 if ∆ f > 0 then
26 t = s[v];
27 s[v] = s[u];
28 s[u] = t;
29 f (s) = f (s) + ∆;
30 Update M;
31 imp = true;
32 end
33 end
34 end
35 end
36 end
37 return s, f (s);
38 end

22

N1 neighbor solutions of S f , and the set of these neighbor solutions constitutes the N1

neighborhood of S f . It should be noted that since Lg = Ug for each group in instances with

equal group sizes (EGS), the solutions in these instances do not have N1 neighborhood.

S n is used to denote a newly generated solution of S f after one move of N1 neigh-

borhood search. In order to calculate the objective value of the S n efficiently, I apply the

n × m matrix M mentioned above. After the N1 neighborhood search, the diversity values

of all groups are unchanged, except for the group g1, which eliminates one element, and

the group g2, which accepts one element. The difference ∆ f between the objective values

of S n and S f is only related to the two changed groups. The diversity value of group g1

loses the sum of the diversity between element v and all other elements in group g1, while

the diversity value of group g2 gains the sum of the diversity between element v and the

other elements in the group g2. Therefore, the difference ∆ f between the objective values

of S n and S f can now be easily calculated as:

∆ f = f (S n) − f (S f) = M[v][g2] − M[v][g1] (4.2)

If ∆ f > 0, it means that the quality of the solution is improved after an insertion move.

Then, the element v is moved from g1 to g2 and the matrix M will be immediately updated

in the following way:

M[j][g1] = M[j][g1] − d jv

M[j][g2] = M[j][g2] + d jv

(4.3)

where j is each element belonging to V (V = {1, 2, ..., n}). Hence, the complexity of updat-

ing the matrix M is O(N).

N2 represents another commonly used neighborhood, i.e., swap neighborhood. For a

feasible solution S f , suppose that elements v and u locate in groups gv and gu, respectively.

N2 neighborhood of S f is composed of solutions obtained by swapping a single pair of

elements belonging to different groups. That is to say, let element v be in group gu and

element u be in group gv. It is clear that, unlike the N1 neighborhood, the group size

of the solution after the N2 neighborhood search does not change. Therefore, the swap

23

neighborhood applies to the EGS instances as well.

S n is used to denote an N2 neighbor solution of S f . Like the N1 neighborhood search,

the difference ∆ f between the objective values resulting from the swap move is only rel-

evant to the groups gv and gu. For the element v, it is removed from gv, the diversity of

gv decreases by the sum of diversity between element v and other elements in gv. At the

same time, group gu receives the element v, the diversity of group gu increases by the sum

of the diversity between it and the other elements in gu. It is the same process for element

u. Thus, we can find that ∆ f between f (S n) and f (S f) can be calculated as:

∆ f = f (S n) − f (S f) = (M[v][gu] − M[v][gv]) + (M[u][gv] − M[u][gu]) − 2dvu (4.4)

I use the above two neighborhood structures to perform a local search for improv-

ing the quality of solutions in the population. The double-neighborhood local search

method explores both the N1 and N2 neighborhoods in a deterministic and token-ring way

(N1 → N2 → N1 → N2 → N1 → N2, ...). Moreover, the neighborhood solutions are

accessed in a lexicographical order way when detecting the neighborhoods. Given a current

solution S f , the local search starts with exploration in the N1 neighborhood of S f . Once

an improved neighbor solution S n is found, S n is taken as the current solution S f , and the

process continues to examine neighbor solutions within the N1 neighborhood of the new

current solution S f . This process is repeated until n × m neighbor solutions are detected

and then transferred to the N2 neighborhood. The search behavior in the N2 neighborhood

is the same as that in the N1 neighborhood, with the difference that the search shifts to the

N1 neighborhood after n × (n − 1)/2 neighbor solutions have been visited. The double-

neighborhood local search is performed until no improved solution is found in both N1 and

N2 neighborhoods.

4.4 Undirected perturbation phase

The proposed TPSDP algorithm employs an undirected perturbation operator derived from

[32] for each input solution, as shown in Algorithm 9. The undirected perturbation proce-

24

Algorithm 9: Undirected Perturbation
1 Function UndirectedPerturbation(s, ηs)

2 sp = s;
3 for η = 1 to ηs do
4 sp = RandomS olution(N1(sp) ∪ N2(sp));
5 end
6 return sp;
7 end

dure randomly picks a neighbor solution from N1 or N2 neighborhood to replace the current

solution ηs times without considering the objective value of the neighbor solution, where

ηs represents the strength of undirected perturbation and ηs = θ×
n
m . Different from the way

that fixing the ηs during the whole search process, in this study, I set the value of θ adap-

tively, dropping from 2.0 to 1.0 for instances with n > 400 and 1.2 to 0.1 for the remaining

instances. According to Eq. (4.5), θmax and θmin are maximum and minimum coefficient

values for the strength of strong perturbation, respectively. Time() and tmax are current time

and maximum time, respectively. Due to the property of the undirected perturbation opera-

tor, this process increases the diversity of solutions in the population. It strongly modifies a

solution to jump out of the current local optimal region and relocates it to a more distant re-

gion. Afterward, the double-neighborhood local search follows the undirected perturbation

operator to find the local optimal solutions in new regions.

θ = θmax − (θmax − θmin) ∗
Time()

tmax
(4.5)

4.5 Population reconstruction phase

The population reconstruction phase consists of two ingredients: the offspring generation

and the replacement strategy.

4.5.1 The offspring generation method

After the undirected perturbation phase, each solution S i in the population is characterized

by high quality. In order to use valuable parts of solutions to guide the next search, I propose

25

Algorithm 10: Crossover operator
1 Function Crossover(p1, p2)

2 S o = Ø;
3 G = {1, 2, . . . ,m};
4 H = {1, 2, . . . , n};
5 for i = 1 to m do
6 if r < 0.5 then
7 Select a group g′ with maximum diversity from p1;
8 else
9 Select a group g′ with maximum diversity from p2;

10 end
11 AG = {g|Ug ≥ cg′ , g ∈ G};
12 if AG , Ø then
13 Randomly select a group g from AG;
14 put the elements of g′ into group g of S o;
15 else
16 Select a group g that Ug is cloest to cg′;
17 randomly selecte Ug elements from g′ and put them into group g of S o;
18 end
19 G = G \ g;
20 Remove all elements of g from p1,p2, and H;
21 end
22 Assign each remained element from H randomly to a random group g of S o

whose cg < Lg;
23 Assign each remained element from H randomly to a random group g of S o

whose cg < Ug;
24 return S o;
25 end

a new crossover operator, as shown in Algorithm 10, to generate offspring solutions, which

plays a crucial role in TPSDP. The newly proposed crossover operator extends the former

used in [33] to make it more general, which can be applied not only to exceptional cases

like the EGS instances but also to the DGS instances in MDGP. To be specific, each solution

S i in the population is selected as a parent solution (say p1), and the other different parent

solution (say p2) is chosen randomly from the current population. These two solutions are

used to generate a child solution according to the proposed crossover operator. It should

be noticed that the population reconstruction phase is performed only when the current

population size β is greater than 1.

26

At the beginning of the crossover process, I first prepare two duplicate solutions (p1 and

p2) of the parent solutions, a set H containing the elements of V , and an empty offspring

solution S o. Then, I select p1 and p2 with equal probability and define the selected one

as p′. The group with the largest diversity in p′ is picked as a candidate group g′, which

is an important component of p′. To retain as many elements in g′ as possible, priority is

given to select those empty groups in S o whose upper bound is greater than the number of

elements in g′. An empty group with the above property is randomly selected among S o,

and the elements of g′ are put in it. If such an empty group does not exist, find an empty

group whose Ug is closest to the number of elements in g′, and fill the group with randomly

select Ug elements from g′. The elements that have been assigned are removed from the

p1, p2, and H. Then, the diversity of each group in the parent solutions is recalculated.

The above steps are performed m times. Note that there is a high probability that the

constructed offspring solution S o is still illegal, which means that the number of elements

in some groups has not reached their lower bound Lg, or there are still elements in H that

have not been assigned yet. In this situation, an adjustment process is implemented as in

the following.

I first calculate whether the number of unassigned elements in H can satisfy Lg of m

groups in S o. In the first case, if the number of unassigned elements in H is sufficient, a

random unassigned element is assigned to a random group whose group size has not yet

reached Lg in S o. Repeat this process until all m groups satisfy its Lg. The remaining

elements are randomly assigned to those groups whose group sizes have not yet reached

their upper bound Ug. Repeat this step until all n elements are allocated into S o. In the

second case, if the number of unassigned elements in H is insufficient, randomly selected

an element from a group whose current group size is larger than Lg and put it in H. Repeat

this process until the number of unassigned elements can satisfy Lg of m groups in S o. The

following element assignment process is the same as the first case.

Figure 4.1 illustrates the process of the proposed crossover operator on a given example.

Suppose that there are 12 elements (i.e., n = 12) and 4 groups (i.e., m = 4) with given upper

and lower bounds. At step 1, p1 is selected as p′, group {5, 6, 7, 8} with the largest diversity

is chosen to become the candidate group g′. To retain as many elements in g′ as possible,

27

empty group g4 in S o whose Ug is greater than cg′ is randomly selected. Put the elements

5, 6, 7, 8 in g4 and remove them from p1, p2, and H. Similarly, I build g2, g1, and g3 of S o

from parents p2 and p1, respectively. At the end of these four steps, g3 of S o is the only one

group whose current size is smaller than its Lg. The unassigned element 3 in H is picked

randomly and placed it in g3. Removing element 3 from p1, p2, and H. The remaining

element 4 in H is then put in g2 where cg2 is not reached Ug2 .

Every time S o is constructed, the double-neighborhood local search will be performed

to find the corresponding local optimal solution S o′ . The composition of the offspring

solutions derived by using this crossover operator will not produce overlapping parts of

elements in groups, which maintains the integrity of the elements in the groups of parent

solutions as much as possible, thus ensuring the quality of the offspring solutions to a

certain extent. On the other hand, this process not only maintains the diversity of the

population but also enhances the intensification of the algorithm at the same time.

4.5.2 Replacement strategy

Whether S o′ can replace the corresponding parent solution p1 into the new population de-

pends on the fitness value and the structure of S o′ . When S o′ has a larger fitness value

than the corresponding parent solution p1, S o′ directly replaces p1 into the new population.

Otherwise, in order to maintain the diversity of the population, I retain the deteriorating

offspring S o′ if the following condition is satisfied:

f (S o′)
f (p1)

+ α × Dis(p1, S o′) > 1 (4.6)

where f (S o′) and f (p1) denote the objective values of the offspring solution S o′ and the

corresponding parent solution p1, respectively. α is a parameter, taking a value of 0.05

after detailed testing (see Section 6.1.2). Dis(p1, S o′) indicates the distance between p1 and

S o′ . Generally, the distance between two solutions (S 1, S 2) is defined in the following way:

Dis(S 1, S 2) =

∣∣∣∣{(i, j) :
((

g1[i] == g1[j]
)
∧
(
g2[i] , g2[j]

))
∨
((

g1[i] , g1[j]
)
∧
(
g2[i] == g2[j]

))}∣∣∣∣
n2/m

(4.7)

28

which estimates the “fraction” of pairs locating in the same group in one solution, but not

in the same group in the other solution, as described in [48].

Note that, the way I use the Eq. (4.6) is quite different from [33], which is applied

to judge whether a local search for a child solution is necessary. I use the formula to

discriminate whether to accept a slightly worse local optimal offspring solution.

29

Figure 4.1: An example of the proposed crossover process.

p
ar

en
t

:

o
ff

sp
ri

n
g

:

p
ar

en
t

:

re
m

o
v

e
 5

,6
,7

,8

re
m

o
v

e
 1

,9

p
ar

en
t

:

o
ff

sp
ri

n
g

:

p
ar

en
t

:

p
ar

en
t

:

o
ff

sp
ri

n
g

:

p
ar

en
t

:

re
m

o
v

e
 2

,1
1

p
ar

en
t

:

o
ff

sp
ri

n
g

:

p
ar

en
t

:

re
m

o
v

e
 1

0
,1

2

p
ar

en
t

:

o
ff

sp
ri

n
g

:

p
ar

en
t

:

ra
n

d
o

m
ly

 p
ic

k

a
n

 u
n

a
ss

ig
n

e
d

e
le

m
e

n
t

fr
o

m
 H

p
ar

en
t

:

o
ff

sp
ri

n
g

:

p
ar

en
t

:

re
p

e
a

t
th

e

a
b

o
v

e
 s

te
p

 u
n

ti
l

H
 i

s
e

m
p

ty

cr
o
ss

o
v
er

ad
ju

st
m

en
t

30

4.6 Directed perturbation phase

To further improve the quality of solutions after the reconstruction phase, a directed pertur-

bation phase, which consists of a directed perturbation operator and the double-neighborhood

local search, is adopted as shown in Algorithm 11. For each solution, I first initialize an

m × m matrix Avg, a 1 × m matrix R, and an empty set U to record the average diversity

contribution of selected m elements to the m groups, the elements that should be reassigned,

and the groups whose group size is less than Lg after removing an element, respectively.

Then, for each group, an element who contributes the least diversity value is taken out and

put into R. After that, if the group size cg is less than Lg, the group g will be put into the set

U. In order to eliminate the influence caused by the different number of elements in each

group on DGS instances (e.g., the element generates more diversity contribution concern-

ing those groups with a larger number of elements than those groups with a smaller number

of elements), the average diversity contribution of the elements to the groups is calculated.

Eq. (4.8) initializes the average diversity contribution of each element to each group, where

M which is defined in Eq. (4.1) represents the sum of the diversity between each element

and all elements in the group g, D is the matrix of the diversity between two elements, cg

denotes the current number of elements of group g.

M[R[k]][g] = M[R[k]][g] − D[R[k]][R[g]]

Avg[k][g] =
M[R[k]][g]

cg
, k = 1, 2, . . . ,m; g = 1, 2, . . . ,m

(4.8)

In the process of element reassignment, I prioritize the groups in set U to ensure the

feasibility of the solution. Specifically, a group g is randomly selected in U first. Then,

in terms of matrix Avg, an element in R possesses the greatest contribution to the group

g is placed into this group. Once an element is assigned, the matrix Avg, R, M and U

will be updated immediately. The update process starts by removing the assigned element

from R and removing the group g from U. Then the average contribution of this element

to all groups is automatically changed to 0, and the average contribution of the remaining

31

Algorithm 11: Directed Perturbation
1 Function DirectedPerturbation(s, ηd)

2 for L = 1 to ηd do
3 Avg = [m][m], R = [m], U = Ø, G = {1, 2, . . . ,m};
4 for g = 1 to m do
5 Find an element i with the lowest diversity contribution in group g;
6 R[g] = i;
7 cg = cg − 1;
8 if cg < Lg then
9 U = U ∪ {g};

10 end
11 end
12 Initialize Avg according to Eq. (4.8);
13 while U , Ø do
14 Randomly select a group gr in U;
15 In terms of Avg, find an element R[e] with the largest diversity

contribution to gr;
16 cgr = cgr + 1;
17 for k = 1 to m do
18 if k ∈ G then
19 M[R[k]][gr] = M[R[k]][gr] + D[R[k]][R[e]];
20 Avg[k][gr] = (M[R[k]][gr] − D[R[k]][R[gr]])/cg;
21 end
22 end
23 Set the eth row of Avg to be 0;
24 s[R[e]] = gr;
25 U = U \ {gr};
26 G = G \ {e};
27 end
28 while G , Ø do
29 Randomly select a number e in G;
30 Find a group g∗ whose size less than Ug, and R[e] can bring the largest

diversity contribution to g∗;
31 cg∗ = cg∗ + 1;
32 for k = 1 to m do
33 if k ∈ G then
34 M[R[k]][g∗] = M[R[k]][g∗] + D[R[k]][R[e]];
35 Avg[k][g∗] = (M[R[k]][g∗] − D[R[k]][R[g∗]])/cg∗;
36 end
37 end
38 Set the eth row of Avg to be 0;
39 s[R[e]] = g∗;
40 G = G \ {e};
41 end
42 end
43 return s;
44 end

32

unallocated elements to each group is updated. This step is repeated until U is empty. If

there are still elements in R, one element is selected at random, and the group with the

highest average contribution is found according to the matrix Avg. The element is added to

the group if the number of elements in that group does not reach Ug. The following update

process of matrix Avg is the same as the above. This step is repeated until R has no more

elements. The above procedure successive runs ηd times to obtain a perturbed solution.

Finally, a local search process is performed for this perturbed solution to exploits the local

optimum.

This directed perturbation operator constructs a slightly perturbed solution and pre-

serves the quality of the current solution as much as possible. Instead of the random search

of the undirected perturbation, the search process with directed perturbation is less destruc-

tive to the solution and locates the solution in a neighborhood closer to the current solution.

This phase can be regarded as the intensification phase of the algorithm in the solution

space.

4.7 Linear decline of population

The local search in the TPSDP algorithm is applied to every solution in the population,

which is very time-consuming. In order to use the limited computing resources efficiently,

I reserve more resources for those more promising solutions by decreasing the population

size, shown as:

β = (βmin − β) ∗
Time()

tmax
+ β (4.9)

where β and βmin are current population size and minimum population size, respectively.

Time() and tmax are current time and maximum time, respectively.

33

Chapter 5

Experimental result and comparison

5.1 Experimental setup

To verify the performance of the proposed TPSDP, I test it on different scale benchmark

instances and make comparisons with four state-of-the-art algorithms including ITS [49],

IMS [32], NSGGA [33], and NDHA [50]. Among these reference algorithms, the source

code of ITS, IMS, and NDHA can be obtained from https://www.personalas.ktu.

lt/˜ginpalu/, http://www.info.univ-angers.fr/˜hao/mdgp.html, http://www.

info.univ-angers.fr/pub/hao/NDHA.html, respectively. It is worth mentioning that

the proposed TPSDP algorithm as well as ITS, IMS, NDHA have been implemented in

the C++ language. Moreover, all of the experiments of the four algorithms were carried

out under the same computing platform, a Windows PC with a configuration of Intel(R)

Core(TM) i7-9700 CPU @ 3.00GHz 8.00GB RAM. Each algorithm was run 20 times for

an instance to obtain statistical results. Regrading NSGGA, I directly use the reported

experimental results in [33] as the comparison data.

5.2 Benchmark instances

I have used the same benchmark instances for our algorithm that have been widely used

in other algorithms for MDGP in the literature, including three small-scale sets and two

large-scale sets. Three small-scale sets and one large-scale set can be found on the website:

https://grafo.etsii.urjc.es/optsicom/mdgp/, and the rest can be downloaded

34

from https://grafo.etsii.urjc.es/optsicom/mdp/. Next, the characteristics of

each benchmark set are described in detail.

RanInt set: In this set, there are four kinds of instances with different vertex numbers,

ranging from 120 to 960. Each kind has ten EGS instances and ten DGS instances, where

the distances or diversities between the pairs of elements are generated with an integer

uniform distribution in the interval (0, 100). For these instances, the number of groups m

varies from 10 to 24, while the lower and upper bounds are between 2 and 48. Meanwhile,

the EGS instances have the same lower and upper bounds [n/m] for any group g.

RanReal set: This set has the same structure and size as RanInt. The only difference is

the distances di j between points which are real numbers generated using a uniform distri-

bution between 0 and 100.

Geo set: The main feature of this set is the distances between two elements, which

are calculated as Euclidean distances between pairs of elements with coordinates randomly

generated in [0,10]. The number of coordinates for each element is created randomly in the

2 to 21 range. The structure and size are similar to RanInt and RanReal.

MDG-a set: This set has some dissimilarities from the above sets, which is a large-

scale set with n = 2000, and consists of 11 types of instances, including six types of DGS

instances and five types of EGS instances. Each type comprises 20 instances, and the

distances of pairs of points are the same as RanInt, except that the interval is 0 to 10. The

specific characteristics are listed in Table 5.1 below.

Table 5.1: Main information of the instances in MDG-a set.
DGS EGS

n m Lg Ug Lg = Ug

2000 50 32 48 -
2000 10 173 227 200
2000 25 51 109 80
2000 50 26 54 40
2000 100 13 27 20
2000 200 6 14 10

MDG-c set: The set that adapted from the instances of maximum diversity problem is a

new set, which is used in [32,50] merely. Two types of instances belong to this set. One of

35

them has 20 DGS instances with n = 3000 and m = 50, where the lower and upper bounds

of group sizes are fixed to [0.8n/m] and [1.2n/m], respectively. The other possesses 20

EGS instances with the same numbers of vertices and groups as the DGS instance, except

that the group sizes are set to [n/m]. The edge weights di j are integers randomly generated

from 0 to 1000.

5.2.1 Parameter setting

Table 5.2: Setting of parameters.
Parameters Section Description Value
βmax 4.2 maximum (initial) population size 15
β 4.7 current population size time-variant
βmin 4.7 minimum (final) population size {1, 2}
ηs 4.4 strength of undirected perturbation θ × n

m
θ 4.4 coefficient for strength of undirected perturbation time-variant
θmax 4.4 the maximum value of θ {1.2, 2}
θmin 4.4 the minimum value of θ {0.1, 1}
α 4.5.2 a parameter of replacement strategy 0.05
ηd 4.6 strength of directed perturbation 3

This section states some necessary parameter settings of the TPSDP algorithm, which

is summarized in Table 5.2. βmax, β, and βmin are three parameters with respect to the pop-

ulation size. It is worth noting that β is a time-varying parameter because the population

size in TPSDP decreases with time. Also, notice that the parameter θ, a crucial coefficient

determining the strength of undirected perturbation ηs, declines from 1.2 to 0.1 over time

for the instances with n ≤ 400 and from 2.0 to 1.0 for the other instances. The parameter

ηd used in the directed perturbation operator is set to 3 applicable to all scale instances. All

the parameter values presented in Table 5.2 are employed in all the following experiments

reported in this work as the default value, although some parameters can be fine-tuned to

produce better results for some instances. Parameters of ITS and IMS follows the recom-

mendation setting in the literature [32, 49].

In this paper, I choose the same termination condition as [32, 33, 50], that is, the termi-

nation condition for all the above algorithms is the cutoff time limit tmax, which is related

to the size of the instances. The specific settings are: tmax = 3 seconds for n = 120, tmax =

36

20 seconds for n = 240, tmax = 120 seconds for n = 480, tmax = 600 seconds for n = 960,

tmax = 1200 seconds for n = 2000, and tmax = 3000 seconds for n = 3000.

5.3 Experimental results and comparison on five bench-

mark sets

In this section, I present the experimental results obtained by TPSDP, ITS, IMS, NSGGA,

and NDHA, and make comparisons to evaluate the performance of the proposed TPSDP.

Tables 5.3-5.8 summarize the computational results of ITS, IMS, NDHA, and TPSDP on

RanInt, RanReal, and Geo beachmark instances. The data comparison outcomes with

NSGGA on these three benchmark sets are summarized in Tables 5.9-5.11. Moreover, I

also evaluate the performance of TPSDP on MDG-a and MDG-c benchmark sets, which

were tested in [32, 50]. Refer to Tables 7.1-7.13 for detailed experimental results of all

MDG-a and MDG-c instances. The first column of the tables states the names and some

information of the experimental instances. The data listed in columns fbest and columns favg

record the best and average values of 20 independent runs on each instance, respectively.

For each instance, the best result among all compared algorithms is shown in bold. The

row ‘Avg’ reflects the average value of each column, and the row ‘#Best’ presents the total

number of the best values obtained by each algorithm in the comparison. In the last row of

the table, p-value is obtained by the Wilcoxon signed-rank test to verify whether there is a

significant difference between TPSDP and comparison algorithms in terms of fbest and favg.

Tables 5.3 and 5.4 report the experimental results of ITS, IMS, NDHA, and TPSDP on

RanInt instances. On the DGS instances, TPSDP outperforms its peers in terms of fbest

and favg, obtaining the best result on 26 and 36 out of 40 instances while ITS, IMS and

NDHA obtain 6, 5, 3 and 1, 1, 2 best results, respectively. On the EGS instances, TPSDP is

also ahead of ITS, IMS, and NDHA in both fbest and favg, and TPSDP produces 26 and 23

best results on 40 instances based on fbest and favg, respectively. Furthermore, the p-value

smaller than 0.05 also shows that TPSDP is significantly better than reference algorithms

on both DGS and EGS instances. Additionally, these results show that TPSDP works better

37

on instances with n = 960 and performs more stable on instances with different group sizes

than those with equal group sizes.

Tables 5.5 and 5.6 report the experimental results of ITS, IMS, NDHA, and TPSDP on

RanReal instances. Results show that the performance of TPSDP on the RanReal instances

is similar to that on the RanInt instances. On the DGS instances, ITS, IMS, NDHA, and

TPSDP achieve 2, 7, 1, and 30 best results in terms of fbest, and 0, 1, 2, and 37 best values

in terms of favg, respectively. On the equal group sizes instances, TPSDP is also superior

to the comparison algorithms based on fbest and favg, and the small p-value obtained by the

Wilcoxon signed-rank test confirms that TPSDP is significantly better than ITS, IMS, and

NDHA on both DGS and EGS RanReal instances.

The experimental results of ITS, IMS, NDHA, and TPSDP on Geo instances are sum-

marized in Tables 5.7 and 5.8. For the DGS instances, the p-value reveals that TPSDP

performs comparably with ITS and NDHA in terms of favg. For the EGS instances, clearly,

ITS shows an overwhelming advantage over TPSDP, IMS, and NDHA.

Tables 5.9-5.11 show the results of comparing NSGGA and TPSDP on the three types of

instances with equal group sizes. From Tables 5.9 and 5.10, we can see that although the p-

value based on fbest is greater than 0.05, TPSDP finds more best fbest than NSGGA on both

EGS and DGS. Furthermore, the p-values based on favg show that TPSDP is significantly

better than NSGGA with respect to stability. While on the Geo instances, NSGGA and

TPSDP get the best values on 6 and 34 instances in terms of fbest, and the best values on

4 and 36 instances in terms of favg, respectively. Based on the p-value, it is also clear that

TPSDP significantly outperforms NSGGA on Geo instances.

It can be seen from Tables 7.1-7.13 that TPSDP significantly outperforms ITS and IMS,

but performs worse than NDHA on MDG-a and MDG-c sets. Except for one DGS instance

set, TPSDP can find better results compared to ITS and IMS on all instance sets in terms of

both the best and average objective values. It is worth pointing out that, although TPSDP

performs worse than NDHA averagely, it significantly outperforms NDHA on the EGS

instances with n = 2000, m = 100, and n = 2000, m = 200 (Tables 7.10 and 7.11).

To more precisely assess the overall performance of ITS, IMS, NDHA, and the pro-

posed TPSDP, the statistical results via the Friedman test based on the average experimen-

38

Table 5.3: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 DGS RanInt instances.

fbest favg

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP
RanInt n120 ds 01 51161.00 51112.00 51138.00 51146.00 51004.70 50907.15 51031.00 51075.85
RanInt n120 ds 02 51441.00 51404.00 51387.00 51372.00 51322.65 51317.65 51322.85 51294.65
RanInt n120 ds 03 50215.00 50245.00 50270.00 50248.00 50140.00 50172.20 50144.45 50192.05
RanInt n120 ds 04 50429.00 50407.00 50404.00 50436.00 50276.20 50325.35 50320.30 50343.85
RanInt n120 ds 05 49872.00 49985.00 49977.00 50008.00 49573.00 49791.95 49806.80 49839.20
RanInt n120 ds 06 49734.00 49589.00 49667.00 49767.00 49556.40 49512.35 49557.25 49602.70
RanInt n120 ds 07 50306.00 50295.00 50281.00 50282.00 49966.60 50188.10 50188.10 50202.85
RanInt n120 ds 08 50434.00 50370.00 50415.00 50385.00 50290.60 50282.50 50267.50 50282.30
RanInt n120 ds 09 50499.00 50375.00 50461.00 50451.00 50319.25 50304.25 50322.25 50363.10
RanInt n120 ds 10 50325.00 50398.00 50390.00 50407.00 50218.10 50271.75 50303.70 50269.30
RanInt n240 ds 01 160371.00 160454.00 160661.00 160596.00 159927.40 160317.35 160082.05 160358.10
RanInt n240 ds 02 160211.00 160257.00 159989.00 160468.00 159724.25 159905.95 159796.75 160277.70
RanInt n240 ds 03 160239.00 160257.00 160300.00 160400.00 159899.10 160092.90 159937.85 160223.05
RanInt n240 ds 04 162728.00 162525.00 162488.00 162619.00 161836.35 162338.95 162110.40 162420.25
RanInt n240 ds 05 160543.00 160732.00 160307.00 160841.00 160296.45 160393.15 160061.45 160605.25
RanInt n240 ds 06 161020.00 161138.00 160962.00 161334.00 160645.15 160925.75 160614.90 161040.55
RanInt n240 ds 07 160109.00 160256.00 160130.00 160412.00 159587.40 159878.80 159612.15 160131.20
RanInt n240 ds 08 158161.00 158046.00 157990.00 158321.00 157736.40 157868.90 157546.45 157980.90
RanInt n240 ds 09 160636.00 160707.00 160430.00 160799.00 160182.10 160449.40 160229.30 160601.10
RanInt n240 ds 10 160301.00 160316.00 160234.00 160299.00 159595.50 159989.70 159835.75 160082.30
RanInt n480 ds 01 390089.00 390642.00 391214.00 390718.00 388985.05 390124.25 389860.25 390362.25
RanInt n480 ds 02 388587.00 389439.00 388638.00 389327.00 387425.90 388783.45 387951.60 388743.45
RanInt n480 ds 03 388457.00 388808.00 387869.00 389098.00 387020.45 388077.00 387383.25 388362.50
RanInt n480 ds 04 391882.00 392160.00 392275.00 392628.00 390850.40 391702.00 391440.00 391846.30
RanInt n480 ds 05 389639.00 390151.00 389139.00 389981.00 388078.30 389183.70 388520.65 389412.40
RanInt n480 ds 06 389192.00 390209.00 389448.00 390088.00 388288.40 389377.00 388779.60 389520.60
RanInt n480 ds 07 388722.00 389817.00 389936.00 390181.00 388045.55 389109.00 388421.70 389347.25
RanInt n480 ds 08 390599.00 391143.00 390112.00 391339.00 389880.90 390561.35 389508.95 390647.10
RanInt n480 ds 09 388224.00 389095.00 388364.00 389116.00 387415.80 388433.90 387496.45 388567.05
RanInt n480 ds 10 393100.00 393993.00 393543.00 394099.00 391335.10 393413.45 392942.90 393694.35
RanInt n960 ds 01 1239428.00 1243806.00 1243362.00 1244347.00 1237394.90 1242271.70 1241600.70 1242857.55
RanInt n960 ds 02 1238326.00 1241678.00 1240757.00 1242006.00 1235097.80 1240288.20 1239093.05 1240869.75
RanInt n960 ds 03 1237944.00 1241600.00 1241494.00 1242461.00 1235989.15 1239866.85 1239749.55 1240896.00
RanInt n960 ds 04 1239235.00 1241705.00 1242837.00 1243122.00 1236199.80 1240629.55 1239765.15 1241778.60
RanInt n960 ds 05 1237695.00 1240913.00 1240818.00 1241729.00 1236010.60 1239506.80 1239388.40 1240418.35
RanInt n960 ds 06 1235240.00 1238838.00 1237770.00 1239217.00 1233381.55 1237157.00 1236371.40 1238029.70
RanInt n960 ds 07 1239372.00 1242947.00 1241256.00 1242811.00 1236525.70 1241470.40 1239950.20 1242246.30
RanInt n960 ds 08 1234859.00 1238152.00 1237880.00 1239231.00 1233181.35 1237022.85 1236461.75 1237830.75
RanInt n960 ds 09 1235805.00 1239264.00 1239270.00 1240150.00 1233212.20 1237940.55 1237314.60 1238889.65
RanInt n960 ds 10 1238526.00 1240861.00 1241881.00 1242428.00 1236035.15 1240015.85 1239162.65 1241035.10
Avg. 459591.40 460602.225 460393.60 460866.70 458561.29 460004.22 459606.35 460313.53
#Best 6 5 3 26 1 1 2 36
p-value 0.000001 0.00002 0.000001 0 0 0

39

Table 5.4: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 EGS RanInt instances.

fbest favg

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP
RanInt n120 ss 01 47909.00 47909.00 47909.00 47909.00 47898.95 47871.30 47903.25 47909.00
RanInt n120 ss 02 47826.00 47826.00 47826.00 47826.00 47810.15 47763.25 47782.35 47822.80
RanInt n120 ss 03 47552.00 47552.00 47552.00 47552.00 47508.05 47445.00 47451.55 47489.10
RanInt n120 ss 04 47611.00 47515.00 47611.00 47547.00 47536.05 47472.60 47488.80 47518.05
RanInt n120 ss 05 47210.00 47142.00 47210.00 47210.00 47131.25 47045.75 47111.90 47137.30
RanInt n120 ss 06 46647.00 46585.00 46647.00 46647.00 46606.95 46524.75 46552.05 46617.75
RanInt n120 ss 07 47142.00 47136.00 47136.00 47142.00 47115.20 47056.45 47062.75 47122.30
RanInt n120 ss 08 47390.00 47356.00 47374.00 47390.00 47372.45 47319.80 47327.80 47357.55
RanInt n120 ss 09 47660.00 47654.00 47660.00 47660.00 47642.90 47602.00 47617.20 47635.10
RanInt n120 ss 10 47807.00 47807.00 47807.00 47807.00 47802.55 47766.50 47773.00 47798.15
RanInt n240 ss 01 155566.00 155400.00 155442.00 155577.00 155310.30 155288.30 155210.20 155440.20
RanInt n240 ss 02 155378.00 155302.00 155142.00 155384.00 155098.50 155104.70 154891.10 155207.25
RanInt n240 ss 03 156398.00 156415.00 156195.00 156415.00 156166.55 156246.70 155999.70 156319.40
RanInt n240 ss 04 156527.00 156564.00 156552.00 156643.00 156370.65 156407.50 156244.10 156513.55
RanInt n240 ss 05 156509.00 156522.00 156466.00 156562.00 156221.40 156320.45 156057.90 156295.70
RanInt n240 ss 06 155564.00 155594.00 155346.00 155601.00 155248.15 155270.10 155047.40 155402.40
RanInt n240 ss 07 155736.00 155707.00 155609.00 155791.00 155482.50 155529.40 155309.05 155678.40
RanInt n240 ss 08 155305.00 155297.00 155076.00 155297.00 154965.95 155039.80 154835.00 155167.95
RanInt n240 ss 09 156043.00 156011.00 156011.00 156043.00 155971.90 155960.50 155865.10 155923.40
RanInt n240 ss 10 155890.00 155952.00 155916.00 155971.00 155691.20 155740.80 155611.65 155854.20
RanInt n480 ss 01 379501.00 379927.00 379131.00 379953.00 378835.30 379370.55 378735.85 379263.95
RanInt n480 ss 02 379733.00 380287.00 379978.00 380180.00 378902.70 379665.60 379136.80 379596.55
RanInt n480 ss 03 378511.00 379303.00 378690.00 378762.00 377888.45 378573.15 377974.65 378291.55
RanInt n480 ss 04 378979.00 379222.00 378726.00 379008.00 378178.45 378712.90 378247.10 378628.00
RanInt n480 ss 05 379627.00 379878.00 378883.00 379883.00 378692.55 379207.30 378485.95 379132.55
RanInt n480 ss 06 379492.00 379313.00 378971.00 379354.00 378519.05 378852.50 378201.45 378835.95
RanInt n480 ss 07 379474.00 380464.00 379606.00 379741.00 378685.95 379363.50 378754.45 379151.40
RanInt n480 ss 08 379542.00 380162.00 379793.00 380161.00 378821.25 379372.40 378763.20 379341.55
RanInt n480 ss 09 378708.00 379065.00 378585.00 379060.00 378016.15 378521.05 377894.15 378410.25
RanInt n480 ss 10 380185.00 380446.00 379904.00 380248.00 379322.60 379892.15 379254.80 379813.25
RanInt n960 ss 01 1218585.00 1219991.00 1222878.00 1220742.00 1216150.40 1218944.85 1219598.50 1219694.55
RanInt n960 ss 02 1216333.00 1219901.00 1219988.00 1220325.00 1215087.40 1218566.25 1218353.30 1219184.35
RanInt n960 ss 03 1217811.00 1220499.00 1220514.00 1221283.00 1216240.95 1219081.55 1219059.70 1220117.65
RanInt n960 ss 04 1217737.00 1220842.00 1220381.00 1220857.00 1216224.10 1219226.10 1218918.05 1219949.50
RanInt n960 ss 05 1216725.00 1219942.00 1221149.00 1220702.00 1215371.95 1218616.60 1218846.45 1219607.40
RanInt n960 ss 06 1218728.00 1220880.00 1221839.00 1221066.00 1216392.80 1219567.75 1219645.30 1220231.30
RanInt n960 ss 07 1218772.00 1220664.00 1220741.00 1221650.00 1216399.05 1219915.20 1219469.35 1220481.15
RanInt n960 ss 08 1218247.00 1220515.00 1221006.00 1221474.00 1216530.40 1219550.20 1219689.85 1220252.95
RanInt n960 ss 09 1216033.00 1218758.00 1220074.00 1219501.00 1214384.10 1217830.65 1218235.55 1218535.95
RanInt n960 ss 10 1217302.00 1218473.00 1218444.00 1219430.00 1214593.45 1217506.05 1217296.45 1218293.50
Avg. 450092.38 450794.45 450794.20 450933.85 449354.72 450277.80 450092.57 450475.57
#Best 13 12 14 26 6 11 0 23
p-value 0.00001 0.001535 0.00097 0.000001 0.001698 0

40

Table 5.5: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 DGS RanReal instances.

fbest favg

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP
RanReal n120 ds 01 50549.14 50526.74 50529.38 50549.13 50392.28 50319.91 50429.44 50476.93
RanReal n120 ds 02 50904.03 50883.12 50898.02 50926.60 50705.44 50757.67 50761.26 50727.34
RanReal n120 ds 03 49979.57 49911.88 49996.07 50053.22 49815.68 49837.97 49866.44 49879.67
RanReal n120 ds 04 50349.01 50363.30 50354.01 50342.80 50120.03 50275.47 50250.84 50277.74
RanReal n120 ds 05 49648.26 49642.54 49518.53 49693.57 49139.73 49435.96 49406.94 49450.16
RanReal n120 ds 06 50219.70 50222.67 50242.53 50258.79 50122.13 50108.18 50132.18 50188.09
RanReal n120 ds 07 50088.60 50130.76 50286.19 50317.02 49654.84 50078.68 50091.55 50122.98
RanReal n120 ds 08 50421.78 50479.49 50471.62 50461.84 50321.84 50333.12 50332.10 50385.19
RanReal n120 ds 09 50366.51 50335.45 50374.14 50432.83 50279.41 50238.52 50267.87 50317.12
RanReal n120 ds 10 49753.93 49734.02 49762.73 49746.00 49576.61 49628.73 49631.91 49606.57
RanReal n240 ds 01 160122.83 160136.43 159862.07 160219.45 159579.09 159915.34 159652.74 159974.22
RanReal n240 ds 02 160502.19 160691.02 160355.79 160831.92 160072.14 160389.78 160118.10 160643.87
RanReal n240 ds 03 159436.63 159547.67 159376.23 159604.83 159121.04 159290.76 159042.91 159419.88
RanReal n240 ds 04 161167.60 161398.28 161370.66 161649.58 160607.87 161133.74 160836.86 161304.29
RanReal n240 ds 05 159474.95 159197.44 159064.93 159354.10 158805.89 158908.34 158696.44 159027.11
RanReal n240 ds 06 161025.25 161291.73 161008.70 161429.53 160536.87 160885.46 160587.54 161149.94
RanReal n240 ds 07 159808.12 160125.97 160027.42 160259.15 159322.17 159762.92 159484.60 159995.48
RanReal n240 ds 08 158543.83 158617.15 158431.21 158631.89 158193.17 158410.12 158187.21 158429.30
RanReal n240 ds 09 159707.67 159837.30 159723.18 159928.39 159229.31 159560.87 159338.42 159690.98
RanReal n240 ds 10 159988.80 160282.32 160253.93 160365.46 159643.18 160070.90 159881.13 160209.78
RanReal n480 ds 01 388612.12 388621.76 388561.23 389658.36 386910.54 388163.72 387852.72 388326.45
RanReal n480 ds 02 386295.34 387123.91 386642.47 387382.94 385139.30 386572.47 385813.67 386673.60
RanReal n480 ds 03 387597.43 388634.13 388142.87 388630.06 386775.20 388053.62 387282.50 388104.73
RanReal n480 ds 04 389810.19 390853.65 391121.94 391526.90 389097.88 390411.26 390271.95 390762.60
RanReal n480 ds 05 387831.00 388290.29 387917.36 388449.32 386849.14 387708.10 387241.91 387836.09
RanReal n480 ds 06 388715.70 389667.02 389247.42 389711.24 387903.70 389060.85 388394.41 389163.80
RanReal n480 ds 07 388270.09 389179.47 388498.22 389372.07 387361.43 388354.32 387710.23 388561.99
RanReal n480 ds 08 389168.12 389612.75 388584.82 389512.51 387796.59 388828.71 387980.52 388984.07
RanReal n480 ds 09 387008.87 388345.33 386895.25 387715.54 385874.71 387389.04 386391.77 387324.65
RanReal n480 ds 10 392010.85 392996.39 393143.90 393957.60 390519.66 392605.69 392503.87 393089.61
RanReal n960 ds 01 1237439.17 1240609.19 1239896.29 1240917.68 1233783.12 1239177.39 1238296.28 1239891.19
RanReal n960 ds 02 1236026.07 1239648.77 1239614.96 1241146.98 1233019.74 1238723.63 1237463.86 1239515.63
RanReal n960 ds 03 1235299.80 1239428.79 1239260.16 1239069.46 1233104.16 1237473.98 1237013.93 1237910.82
RanReal n960 ds 04 1235299.61 1240769.04 1240151.40 1241057.09 1233271.14 1239337.80 1238114.79 1239796.93
RanReal n960 ds 05 1233826.33 1237195.72 1237882.14 1238142.18 1232196.49 1235972.43 1235674.75 1236782.20
RanReal n960 ds 06 1231398.58 1234577.62 1234215.06 1234990.49 1229138.66 1233220.92 1232638.06 1233837.28
RanReal n960 ds 07 1234834.14 1239662.27 1238462.61 1239376.43 1232632.44 1237837.03 1236747.79 1238412.13
RanReal n960 ds 08 1229796.61 1233435.63 1233521.41 1233702.77 1228119.37 1232219.71 1232170.24 1232726.36
RanReal n960 ds 09 1235111.29 1238647.53 1238828.95 1238910.65 1232422.37 1237007.12 1236978.01 1237900.50
RanReal n960 ds 10 1237652.66 1241302.25 1241190.20 1242260.21 1235929.09 1240293.19 1239156.87 1240658.10
Avg. 458351.56 459548.92 459342.15 459763.66 457327.08 458943.84 458567.37 459188.38
#Best 2 7 1 30 0 1 2 37
p-value 0 0.0001 0 0 0 0

41

Table 5.6: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 EGS RanReal instances.

fbest favg

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP
RanReal n120 ss 01 47363.21 47351.97 47363.21 47363.21 47335.38 47258.23 47266.44 47343.68
RanReal n120 ss 02 47243.16 47188.62 47243.16 47243.16 47198.62 47147.90 47166.87 47197.48
RanReal n120 ss 03 47313.71 47313.71 47313.71 47313.71 47267.06 47237.47 47262.65 47276.01
RanReal n120 ss 04 47546.81 47500.08 47546.81 47546.81 47506.50 47437.26 47483.39 47506.61
RanReal n120 ss 05 46930.19 46930.19 46930.19 46930.19 46866.39 46824.36 46839.07 46868.57
RanReal n120 ss 06 47253.47 47201.28 47240.09 47253.47 47193.81 47144.95 47162.99 47203.13
RanReal n120 ss 07 47085.87 47085.87 47085.87 47085.87 47039.10 47003.77 47008.85 47046.24
RanReal n120 ss 08 47460.13 47460.13 47460.13 47460.13 47452.58 47437.67 47433.37 47455.15
RanReal n120 ss 09 47686.34 47686.34 47686.34 47686.34 47655.54 47649.10 47617.92 47655.52
RanReal n120 ss 10 47415.35 47415.35 47415.35 47415.35 47369.89 47351.76 47360.09 47366.15
RanReal n240 ss 01 155135.02 155223.13 154934.03 155246.47 154936.92 155001.88 154807.85 155041.88
RanReal n240 ss 02 155611.46 155627.77 155341.65 155656.23 155331.24 155356.21 155100.18 155451.66
RanReal n240 ss 03 155546.38 155605.64 155532.55 155782.29 155327.89 155401.30 155216.30 155566.95
RanReal n240 ss 04 155275.08 155300.58 155179.31 155411.09 155069.22 155084.06 154909.21 155235.42
RanReal n240 ss 05 154944.29 154836.75 154640.68 154935.07 154674.58 154708.29 154475.33 154802.65
RanReal n240 ss 06 155581.77 155513.94 155417.40 155671.23 155298.34 155217.34 155064.94 155428.52
RanReal n240 ss 07 155715.34 155673.86 155572.55 155739.51 155458.56 155472.66 155307.99 155515.81
RanReal n240 ss 08 155675.74 155506.95 155382.13 155604.41 155428.80 155400.67 155255.01 155501.73
RanReal n240 ss 09 154884.93 155147.46 155018.41 155174.95 154735.78 154800.48 154587.76 154931.66
RanReal n240 ss 10 155880.48 155867.28 155867.93 155927.91 155674.01 155686.16 155552.37 155776.44
RanReal n480 ss 01 377630.06 378212.60 377501.66 377946.02 376880.41 377497.64 376991.96 377533.30
RanReal n480 ss 02 377249.45 378105.01 377278.62 377578.02 376521.20 377266.26 376682.45 377082.09
RanReal n480 ss 03 378603.39 379144.00 378455.96 378758.45 377970.16 378419.75 377755.01 378240.08
RanReal n480 ss 04 377512.67 377823.71 377323.92 377823.18 376808.86 377388.00 376850.87 377375.04
RanReal n480 ss 05 378147.28 378711.51 378168.88 378476.06 377218.26 377997.49 377618.99 377984.11
RanReal n480 ss 06 378410.82 378958.35 378324.10 379221.05 377786.56 378594.68 377864.65 378558.50
RanReal n480 ss 07 378527.49 379225.64 378387.56 378909.90 377912.85 378640.33 377889.51 378430.61
RanReal n480 ss 08 377789.91 378286.67 377791.70 378423.50 376991.03 377627.27 376965.18 377515.12
RanReal n480 ss 09 377939.10 377934.05 377826.58 378107.96 376793.53 377472.65 376811.27 377334.26
RanReal n480 ss 10 379490.57 379475.22 379011.63 379503.98 378560.47 379074.18 378310.32 378950.56
RanReal n960 ss 01 1213879.02 1216654.49 1217951.51 1217333.22 1212256.16 1215850.63 1216200.99 1216503.80
RanReal n960 ss 02 1215915.21 1218254.67 1218147.35 1218548.34 1213827.33 1217106.92 1216961.03 1217820.76
RanReal n960 ss 03 1214914.09 1217816.69 1219490.53 1217795.42 1213330.54 1216576.31 1216752.11 1217087.01
RanReal n960 ss 04 1215327.26 1218426.41 1219341.10 1219093.41 1214058.92 1217511.37 1217393.22 1217863.43
RanReal n960 ss 05 1213287.33 1216224.83 1217148.08 1216590.16 1211933.09 1214941.99 1215312.48 1215623.14
RanReal n960 ss 06 1214036.77 1217191.24 1216529.75 1217570.75 1212304.52 1215575.71 1215466.99 1216221.44
RanReal n960 ss 07 1214498.99 1217842.82 1218331.43 1218365.27 1212505.91 1216395.22 1216336.89 1217176.97
RanReal n960 ss 08 1213346.03 1216258.57 1216900.19 1216296.06 1211617.39 1215015.22 1214721.77 1215596.32
RanReal n960 ss 09 1214559.97 1217789.79 1218584.31 1218523.66 1213002.89 1216868.88 1217046.05 1217541.00
RanReal n960 ss 10 1217757.59 1218829.25 1220090.49 1219794.66 1214065.84 1217452.85 1217159.40 1218525.96
Avg. 448909.29 449715.06 449718.92 449827.66 448179.15 449197.37 448999.24 449378.37
#Best 12 12 16 25 3 9 0 28
p-value 0.000002 0.002279 0.011773 0 0.0008790 0

42

Table 5.7: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 DGS Geo instances.

fbest favg

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP
Geo n120 ds 01 111922.82 111906.95 111906.46 111867.79 111907.34 111754.41 111721.35 111831.56
Geo n120 ds 02 61916.95 61906.32 61917.89 61893.42 61903.36 61754.30 61910.84 61883.69
Geo n120 ds 03 52083.72 52075.64 52085.12 52069.08 52073.34 52001.65 52076.24 52063.21
Geo n120 ds 04 80801.10 80768.89 80795.31 80734.53 80779.74 80755.46 80771.55 80723.34
Geo n120 ds 05 121775.53 121706.99 121738.78 121675.28 121730.93 121680.82 121693.31 121629.18
Geo n120 ds 06 136875.63 136843.28 136858.61 136809.72 136807.14 136712.26 136733.18 136765.59
Geo n120 ds 07 108576.13 108514.53 108534.53 108476.98 108402.98 108439.54 108446.54 108450.23
Geo n120 ds 08 88230.84 88186.63 88206.52 88160.87 88205.86 88172.55 88183.07 88138.78
Geo n120 ds 09 95492.54 95467.64 95470.01 95430.23 95472.45 95389.38 95344.92 95399.47
Geo n120 ds 10 65559.57 65553.37 65556.61 65530.34 65529.15 65528.71 65532.25 65509.39
Geo n240 ds 01 200357.13 200330.47 200383.83 200324.35 200327.80 200271.23 200354.51 200306.53
Geo n240 ds 02 348500.04 348483.89 348532.13 348401.46 347531.92 348182.61 348177.94 348349.00
Geo n240 ds 03 217176.26 217149.37 217223.32 217126.41 217135.35 216995.12 217172.86 217106.84
Geo n240 ds 04 263843.03 263806.43 263881.19 263777.50 263493.80 263296.25 263323.30 263746.12
Geo n240 ds 05 313398.28 313385.67 313413.22 313322.49 313379.10 313154.89 313383.25 313243.57
Geo n240 ds 06 358633.36 358554.61 358649.94 358469.01 358601.10 358504.96 358520.56 358427.69
Geo n240 ds 07 341992.17 341935.62 341981.48 341844.65 340487.59 341305.63 341392.24 341812.72
Geo n240 ds 08 131024.25 131027.66 131022.83 131030.29 131021.03 131021.13 131018.95 131023.75
Geo n240 ds 09 410563.19 410495.74 410548.77 410421.52 409947.10 410174.19 410405.06 410352.54
Geo n240 ds 10 355254.36 355215.02 355245.86 355088.91 355146.15 354885.41 354694.72 355041.24
Geo n480 ds 01 580908.19 582322.29 582573.07 582325.61 580858.03 581672.00 581146.75 580550.25
Geo n480 ds 02 1089035.81 1089817.97 1090132.22 1089600.18 1088980.33 1088879.45 1089420.63 1087807.40
Geo n480 ds 03 662588.72 664189.65 664476.64 664110.67 661942.55 663269.38 663122.88 661980.97
Geo n480 ds 04 836599.77 836334.15 836597.91 836150.39 836539.29 835905.40 835966.91 835650.75
Geo n480 ds 05 988501.10 988179.39 988428.30 988022.03 987252.28 987590.96 986385.43 987061.64
Geo n480 ds 06 1012582.81 1012248.52 1012585.52 1012102.97 1011818.62 1011846.99 1011153.86 1011316.47
Geo n480 ds 07 864994.16 864673.18 864944.86 864476.17 864831.32 863835.05 863871.48 862767.22
Geo n480 ds 08 587697.46 587736.17 587745.62 587666.11 587330.89 587355.35 587060.44 587306.03
Geo n480 ds 09 666313.37 667228.01 667507.06 667176.41 666274.27 666563.53 666916.58 666554.82
Geo n480 ds 10 932694.79 937346.75 937522.52 937198.86 929618.15 936173.88 935100.17 936038.48
Geo n960 ds 01 3361972.63 3364644.62 3364423.08 3364410.87 3351095.76 3364126.49 3358725.84 3363298.19
Geo n960 ds 02 1719726.15 1723404.86 1722222.03 1723421.56 1716949.23 1722538.96 1720720.97 1722147.18
Geo n960 ds 03 3347824.49 3350874.67 3351678.34 3350670.94 3347718.39 3349888.74 3348209.61 3350369.56
Geo n960 ds 04 3615142.37 3623049.49 3623660.05 3622771.96 3606303.51 3622385.41 3620732.16 3622529.82
Geo n960 ds 05 2342436.81 2341868.22 2342538.16 2341851.12 2342272.41 2341309.18 2339890.95 2341251.76
Geo n960 ds 06 3153310.79 3152726.84 3153473.31 3152437.49 3151011.34 3152510.12 3150985.78 3152341.11
Geo n960 ds 07 1301823.28 1301809.20 1301860.63 1301802.75 1298573.57 1300342.49 1299168.77 1300131.80
Geo n960 ds 08 1721957.65 1723484.60 1723753.93 1723466.90 1720331.72 1723172.95 1723275.13 1723187.11
Geo n960 ds 09 1894819.06 1897519.30 1897882.96 1897475.94 1891535.57 1896604.30 1895275.99 1896043.56
Geo n960 ds 10 2617068.31 2617718.10 2618355.83 2617616.69 2616307.08 2617616.61 2616579.45 2617542.40
Avg. 929049.36 929762.27 929907.86 929680.26 927935.69 929339.19 928864.16 929192.02
#Best 14 1 23 2 10 12 10 7
p-value 0.994638 1 1 0.285258 1 0.10244

43

Table 5.8: Comparison of the TPSDP algorithm with three best performing algorithms on
the 40 EGS Geo instances.

fbest favg

Instance ITS IMS NDHA TPSDP ITS IMS NDHA TPSDP
Geo n120 ss 01 101624.92 101600.29 101609.44 101568.85 101610.31 101584.09 101595.18 101553.75
Geo n120 ss 02 54853.70 54842.74 54859.63 54829.46 54847.90 54832.85 54849.38 54823.16
Geo n120 ss 03 47631.75 47622.06 47632.08 47616.07 47625.37 47615.85 47627.03 47609.63
Geo n120 ss 04 73526.44 73490.60 73498.60 73473.81 73501.84 73477.07 73488.04 73452.80
Geo n120 ss 05 112657.57 112616.05 112645.28 112578.33 112631.45 112595.13 112614.81 112567.32
Geo n120 ss 06 125451.95 125402.63 125414.05 125379.76 125404.08 125374.61 125384.67 125346.91
Geo n120 ss 07 98494.00 98474.71 98484.78 98469.59 98482.96 98457.89 98465.81 98433.13
Geo n120 ss 08 79982.16 79958.56 79983.91 79933.50 79966.43 79941.96 79955.50 79911.62
Geo n120 ss 09 87281.56 87249.92 87252.91 87215.47 87259.19 87233.69 87243.27 87203.11
Geo n120 ss 10 60258.25 60236.79 60255.49 60220.80 60248.59 60227.62 60240.95 60212.13
Geo n240 ss 01 188872.18 188838.69 188864.98 188824.79 188858.62 188825.47 188854.58 188807.34
Geo n240 ss 02 330318.81 330272.45 330290.18 330195.79 330296.37 330248.40 330281.05 330174.32
Geo n240 ss 03 207066.88 207030.05 207080.64 206997.54 207054.99 207019.60 207065.84 206987.04
Geo n240 ss 04 246389.29 246330.95 246385.04 246294.05 246367.64 246321.35 246364.78 246277.25
Geo n240 ss 05 298773.97 298704.73 298748.93 298652.52 298741.92 298685.77 298725.42 298613.53
Geo n240 ss 06 338595.80 338552.44 338600.14 338450.50 338565.37 338511.72 338551.34 338432.34
Geo n240 ss 07 326057.89 326010.51 326058.80 325956.71 326034.03 325984.60 326026.71 325908.09
Geo n240 ss 08 126913.16 126901.38 126901.23 126900.72 126909.40 126897.92 126898.15 126897.78
Geo n240 ss 09 391447.26 391395.02 391413.64 391320.95 391417.04 391353.81 391388.26 391275.90
Geo n240 ss 10 339544.99 339474.11 339541.13 339423.70 339507.36 339448.43 339496.73 339380.71
Geo n480 ss 01 552177.33 552010.90 552203.09 551994.36 552160.76 551992.55 552173.72 551968.13
Geo n480 ss 02 1047453.58 1047211.56 1047397.86 1047080.67 1047390.11 1047134.30 1047331.55 1047008.22
Geo n480 ss 03 633769.72 633572.36 633774.93 633516.84 633738.14 633539.96 633728.79 633483.30
Geo n480 ss 04 789829.74 789616.25 789814.39 789498.20 789783.87 789556.59 789753.20 789451.65
Geo n480 ss 05 945944.75 945666.03 945880.84 945567.35 945895.37 945624.87 945843.90 945511.86
Geo n480 ss 06 966654.45 966378.06 966603.44 966282.28 966585.81 966332.85 966539.33 966218.09
Geo n480 ss 07 827713.64 827467.13 827659.08 827366.82 827658.68 827411.54 827625.55 827312.04
Geo n480 ss 08 556651.12 556480.79 556686.75 556458.51 556634.19 556464.07 556645.73 556438.67
Geo n480 ss 09 636346.80 636195.91 636368.44 636100.10 636324.19 636137.04 636322.68 636074.96
Geo n480 ss 10 883434.68 883151.37 883361.54 883062.80 883368.14 883103.62 883314.48 882995.42
Geo n960 ss 01 3254335.92 3253781.45 3254371.56 3253760.52 3254289.42 3253693.88 3254287.80 3253760.52
Geo n960 ss 02 1663664.99 1663376.22 1663623.98 1663372.45 1663640.24 1663345.03 1663587.64 1663372.45
Geo n960 ss 03 3251594.97 3251016.56 3251614.75 3250909.92 3251527.33 3250953.20 3251530.71 3250909.92
Geo n960 ss 04 3514333.85 3513729.27 3514273.56 3513595.55 3514236.36 3513621.90 3514197.42 3513595.55
Geo n960 ss 05 2264719.61 2264330.22 2264822.68 2264312.03 2264692.77 2264282.64 2264757.80 2264312.03
Geo n960 ss 06 3069667.72 3069147.40 3069651.92 3068999.68 3069588.50 3069052.35 3069597.79 3068999.68
Geo n960 ss 07 1257750.45 1257593.57 1257652.01 1257603.02 1257737.72 1257586.90 1257622.12 1257603.02
Geo n960 ss 08 1674016.12 1673717.34 1673966.10 1673731.89 1673988.06 1673692.51 1673927.01 1673731.89
Geo n960 ss 09 1835490.33 1835159.16 1835509.95 1835179.11 1835443.33 1835119.73 1835454.14 1835179.11
Geo n960 ss 10 2529011.12 2528619.11 2529001.43 2528469.54 2528929.06 2528494.42 2528957.08 2528469.54
Avg. 894757.58 894580.63 894743.98 894529.11 894723.57 894544.44 894707.90 894506.60
#Best 26 0 14 0 30 0 10 0
p-value 1 1 1 1 1 1

44

Table 5.9: Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40 EGS
RanInt instances.

fbest favg

Instance NSGGA TPSDP NSGGA TPSDP
RanInt n120 ss 01 47909 47909 47879.50 47909.00
RanInt n120 ss 02 47826 47826 47770.85 47822.80
RanInt n120 ss 03 47552 47552 47423.65 47489.10
RanInt n120 ss 04 47611 47547 47489.10 47518.05
RanInt n120 ss 05 47148 47210 47106.45 47137.30
RanInt n120 ss 06 46647 46647 46598.35 46617.75
RanInt n120 ss 07 47108 47142 47069.45 47122.30
RanInt n120 ss 08 47390 47390 47353.05 47357.55
RanInt n120 ss 09 47654 47660 47612.95 47635.10
RanInt n120 ss 10 47807 47807 47784.65 47798.15
RanInt n240 ss 01 155463 155577 155303.41 155440.20
RanInt n240 ss 02 155308 155384 155108.34 155207.25
RanInt n240 ss 03 156415 156415 156168.34 156319.40
RanInt n240 ss 04 156616 156643 156458.41 156513.55
RanInt n240 ss 05 156431 156562 156135.05 156295.70
RanInt n240 ss 06 155576 155601 155306.66 155402.40
RanInt n240 ss 07 155789 155791 155524.41 155678.40
RanInt n240 ss 08 155213 155297 154995.75 155167.95
RanInt n240 ss 09 156043 156043 155780.09 155923.40
RanInt n240 ss 10 155909 155971 155724.45 155854.20
RanInt n480 ss 01 380107 379953 379642.00 379263.95
RanInt n480 ss 02 380270 380180 379498.34 379596.55
RanInt n480 ss 03 379225 378762 378785.41 378291.55
RanInt n480 ss 04 379483 379008 378967.84 378628.00
RanInt n480 ss 05 379828 379883 379362.94 379132.55
RanInt n480 ss 06 379444 379354 379044.84 378835.95
RanInt n480 ss 07 380362 379741 379475.69 379151.40
RanInt n480 ss 08 380200 380161 379496.06 379341.55
RanInt n480 ss 09 379568 379060 378785.50 378410.25
RanInt n480 ss 10 380924 380248 379986.09 379813.25
RanInt n960 ss 01 1220366 1220742 1219190.25 1219694.55
RanInt n960 ss 02 1220479 1220325 1219148.38 1219184.35
RanInt n960 ss 03 1220878 1221283 1219528.00 1220117.65
RanInt n960 ss 04 1220275 1220857 1219292.25 1219949.50
RanInt n960 ss 05 1219787 1220702 1218986.38 1219607.40
RanInt n960 ss 06 1221495 1221066 1220032.25 1220231.30
RanInt n960 ss 07 1221294 1221650 1219842.75 1220481.15
RanInt n960 ss 08 1221688 1221474 1219910.25 1220252.95
RanInt n960 ss 09 1218962 1219501 1217971.25 1218535.95
RanInt n960 ss 10 1218750 1219430 1217920.00 1218293.50
Avg. 450920.00 450933.85 450386.48 450475.57
#Best 21 27 9 31
p-value 0.641163 0.035417

45

Table 5.10: Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40
EGS RanReal instances.

fbest favg

Instance NSGGA TPSDP NSGGA TPSDP
RanReal n120 ss 01 47358.79 47363.21 47299.89 47343.68
RanReal n120 ss 02 47243.16 47243.16 47168.50 47197.48
RanReal n120 ss 03 47280.70 47313.71 47210.03 47276.01
RanReal n120 ss 04 47546.82 47546.81 47490.04 47506.61
RanReal n120 ss 05 46922.95 46930.19 46843.10 46868.57
RanReal n120 ss 06 47227.14 47253.47 47154.84 47203.13
RanReal n120 ss 07 47060.41 47085.87 47008.38 47046.24
RanReal n120 ss 08 47460.14 47460.13 47444.02 47455.15
RanReal n120 ss 09 47678.04 47686.34 47590.68 47655.52
RanReal n120 ss 10 47415.35 47415.35 47318.34 47366.15
RanReal n240 ss 01 155241.95 155246.47 154898.16 155041.88
RanReal n240 ss 02 155732.81 155656.23 155312.94 155451.66
RanReal n240 ss 03 155680.11 155782.29 155423.31 155566.95
RanReal n240 ss 04 155398.34 155411.09 155107.42 155235.42
RanReal n240 ss 05 155937.25 154935.07 154647.33 154802.65
RanReal n240 ss 06 155671.22 155671.23 155345.72 155428.52
RanReal n240 ss 07 155550.39 155739.51 155362.50 155515.81
RanReal n240 ss 08 155539.95 155604.41 155367.44 155501.73
RanReal n240 ss 09 155084.09 155174.95 154750.25 154931.66
RanReal n240 ss 10 155927.91 155927.91 155668.47 155776.44
RanReal n480 ss 01 378470.50 377946.02 377748.91 377533.30
RanReal n480 ss 02 377922.50 377578.02 377403.06 377082.09
RanReal n480 ss 03 379060.28 378758.45 378628.19 378240.08
RanReal n480 ss 04 378238.47 377823.18 377640.53 377375.04
RanReal n480 ss 05 378371.41 378476.06 377880.66 377984.11
RanReal n480 ss 06 379059.34 379221.05 378617.50 378558.50
RanReal n480 ss 07 379282.50 378909.90 378883.22 378430.61
RanReal n480 ss 08 378562.09 378423.50 378001.09 377515.12
RanReal n480 ss 09 377883.31 378107.96 377505.94 377334.26
RanReal n480 ss 10 379643.12 379503.98 379221.75 378950.56
RanReal n960 ss 01 1217009.88 1217333.22 1216043.62 1216503.80
RanReal n960 ss 02 1218401.00 1218548.34 1217436.00 1217820.76
RanReal n960 ss 03 1218220.50 1217795.42 1216922.88 1217087.01
RanReal n960 ss 04 1218255.25 1219093.41 1217311.25 1217863.43
RanReal n960 ss 05 1216714.88 1216590.16 1215354.12 1215623.14
RanReal n960 ss 06 1217160.38 1217570.75 1215691.00 1216221.44
RanReal n960 ss 07 1218371.00 1218365.27 1216881.25 1217176.97
RanReal n960 ss 08 1216580.50 1216296.06 1215594.25 1215596.32
RanReal n960 ss 09 1218706.75 1218523.66 1217024.50 1217541.00
RanReal n960 ss 10 1219759.88 1219794.66 1217950.50 1218525.96
Avg. 449865.78 449827.66 449303.79 449378.37
#Best 19 23 9 31
p-value 1 0.03098

46

Table 5.11: Comparison of the TPSDP algorithm with the NSGGA algorithm on the 40
EGS Geo instances.

fbest favg

Instance NSGGA TPSDP NSGGA TPSDP
Geo n120 ss 01 101590.05 101568.85 101556.17 101553.75
Geo n120 ss 02 54829.43 54829.46 54821.13 54823.16
Geo n120 ss 03 47614.74 47616.07 47611.14 47609.63
Geo n120 ss 04 73466.77 73473.81 73451.27 73452.80
Geo n120 ss 05 112600.88 112578.33 112568.95 112567.32
Geo n120 ss 06 125364.30 125379.76 125337.59 125346.91
Geo n120 ss 07 98433.67 98469.59 98424.72 98433.13
Geo n120 ss 08 79932.39 79933.50 79909.77 79911.62
Geo n120 ss 09 87223.89 87215.47 87203.39 87203.11
Geo n120 ss 10 60220.83 60220.80 60212.07 60212.13
Geo n240 ss 01 188806.19 188824.79 188799.56 188807.34
Geo n240 ss 02 330192.50 330195.79 330144.69 330174.32
Geo n240 ss 03 207001.50 206997.54 206980.47 206987.04
Geo n240 ss 04 246283.41 246294.05 246260.75 246277.25
Geo n240 ss 05 298627.53 298652.52 298606.06 298613.53
Geo n240 ss 06 338426.69 338450.50 338405.97 338432.34
Geo n240 ss 07 325912.34 325956.71 325892.00 325908.09
Geo n240 ss 08 126897.87 126900.72 126895.20 126897.78
Geo n240 ss 09 391266.97 391320.95 391245.62 391275.90
Geo n240 ss 10 339372.19 339423.70 339349.91 339380.71
Geo n480 ss 01 551989.25 551994.36 551960.31 551968.13
Geo n480 ss 02 1047009.75 1047080.67 1046962.69 1047008.22
Geo n480 ss 03 633530.25 633516.84 633468.94 633483.30
Geo n480 ss 04 789459.94 789498.20 789416.94 789451.65
Geo n480 ss 05 945523.81 945567.35 945466.38 945511.86
Geo n480 ss 06 966260.12 966282.28 966169.12 966218.09
Geo n480 ss 07 827324.69 827366.82 827278.19 827312.04
Geo n480 ss 08 556432.38 556458.51 556417.94 556438.67
Geo n480 ss 09 636093.31 636100.10 636062.12 636074.96
Geo n480 ss 10 882980.31 883062.80 882953.12 882995.42
Geo n960 ss 01 3253493.50 3253760.52 3253431.50 3253760.52
Geo n960 ss 02 1663315.88 1663372.45 1663305.75 1663372.45
Geo n960 ss 03 3250801.75 3250909.92 3250692.75 3250909.92
Geo n960 ss 04 3513405.75 3513595.55 3513311.50 3513595.55
Geo n960 ss 05 2264305.00 2264312.03 2264205.50 2264312.03
Geo n960 ss 06 3068891.00 3068999.68 3068806.50 3068999.68
Geo n960 ss 07 1257589.25 1257603.02 1257576.62 1257603.02
Geo n960 ss 08 1673716.88 1673731.89 1673668.00 1673731.89
Geo n960 ss 09 1835104.50 1835179.11 1835071.62 1835179.11
Geo n960 ss 10 2528411.00 2528469.54 2528366.75 2528469.54
Avg. 894492.56 894529.11 894456.72 894506.60
#Best 6 34 4 36
p-value 0.000006 0

47

Table 5.12: The result via the Friedman test of ITS, IMS, NDHA, and the proposed TPSDP
on total 500 benchmark instances.

Algorithm ITS IMS NDHA TPSDP
Average ranking 3.394 2.735 1.951 1.92
p-value 0 0 0.70419

tal results of total 500 instances are summarized in Table 5.12. In the Friedman statistical

test, an algorithm with better performance gets a lower rank. From Table 5.12, it can be

found that TPSDP is competitive with NDHA and performs significantly better than ITS

and IMS according to p-values. Furthermore, it can be seen that TPSDP ranks 1st among

these four algorithms according to the average ranking, which indicates that the proposed

TPSDP is a promising method for solving MDGP.

48

Chapter 6

Parameter analysis and discussion

In this chapter, I analyze the parameter values of some critical components of the TPSDP

algorithm, showing the effect of parameter values on the performance of the algorithm.

Note that each experiment tests only one undetermined parameter simultaneously, keeping

other parameter values as default values during this period. In addition, all the following

experimental data are obtained over 20 independent runs on the selected instances. At

the end of this chapter, some discussions are given to further analyze several details about

TPSDP and find more valid proofs to show its effectiveness.

6.1 Parameter analysis

6.1.1 Influence of the initial population size

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

the value of

2.73

2.732

2.734

2.736

2.738

2.74

2.742

2.744

2.746

2.748

2.75

A
v
er

ag
e

o
b
je

ct
iv

e
v
al

u
es

10
5 (a)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

the value of

2.73

2.732

2.734

2.736

2.738

2.74

2.742

2.744

2.746

2.748

2.75

B
es

t
o
b
je

ct
iv

e
v
al

u
es

10
5 (b)

Figure 6.1: Influence of the parameter α.

49

The algorithm proposed in this paper is based on dynamic population size to solve

MDGP. Therefore, we need to determine the initial (maximum) population size βmax as

well as the final (minimum) population size βmin. The experiment of confirming the initial

population size βmax is based on a subset of MDG-a benchmark instances with n = 2000,

m = 50, Lg = 32, Ug = 48, which has also been used in [32] for parameter discussion. I

adjusted the population size within a reasonable range to determine βmax and to analyze the

impact of different βmax on the performance of the algorithm. Fig. ??(a) and (b) show

the average objective value (Y-axis of (a)) and the best objective value (Y-axis of (b))

for different initial population size βmax (X-axis), respectively. Fig. ??(a) reveals that the

experimental results obtained by the algorithm do not differ much under different βmax, and

the algorithm performs relatively stable. As for the best objective value in Fig. ??(b), the

algorithm finds the best objective value with the highest quality when βmax = 15. Therefore,

I set the value of βmax as 15 under careful consideration.

6.1.2 Influence of the parameter α in the replacement strategy

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

the value of

2.73

2.732

2.734

2.736

2.738

2.74

2.742

2.744

2.746

2.748

2.75

A
v
er

ag
e

o
b
je

ct
iv

e
v
al

u
es

10
5 (a)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

the value of

2.73

2.732

2.734

2.736

2.738

2.74

2.742

2.744

2.746

2.748

2.75

B
es

t
o
b
je

ct
iv

e
v
al

u
es

10
5 (b)

Figure 6.2: Influence of the parameter α.

In the second phase of TPSDP, a replacement strategy guides whether a new generation

offspring solution can replace the corresponding parent solution. Therefore, I need to select

a proper value for the parameter α in Eq. (4.6). I test TPSDP on the same benchmark in-

stance above with parameter α ∈ [0.01, 0.1], the same interval as in [48]. Fig. 6.2 plots the

variation curves of the average objective values (Y-axis of (a)) and the best objective values

50

(Y-axis of (b)) with different α values (X-axis). Fig. 6.2(a) indicates that TPSDP performs

relatively stable in interval [0.01, 0.06], meanwhile TPSDP finds the best objective value

with highest quality in α = 0.05 in Fig. 6.2(b). To conclude, the parameter α is set to 0.05.

6.1.3 Influence of the dynamic population size

To determine the final (minimum) population size βmin, I choose the RanReal set as the

benchmark instance for this experiment. Fig. 6.3 displays the line graphs of the exper-

imental results of the TPSDP algorithm on 40 DGS instances and 40 EGS instances in

RanReal set under different βmin, respectively. The black curves in Fig. 6.3 indicate the

performance of the algorithm on each instance of different scales when the value of βmin

is 1. Note that βmin = 15 means that TPSDP does not have the population linear descent

strategy. The overlap of the four curves on small DGS and EGS instances at n = 120 (Fig.

6.3(a) and Fig. 6.3(b)) indicates that TPSDP is not sensitive to the change of βmin on them.

For n = 240 instances, the black and green curves are lower than the red and blue curves on

the DGS instance (Fig. 6.3(c)), while the black curve is lower than the other three curves

on the EGS instance (Fig. 6.3(d)), which suggests that the population size dropping to 2

or 3 is more suitable for these two instances. However, on the ESG instances at n = 240

(Fig. 6.3(d)), the red curve is slightly higher than the blue curve. On balance, I believe that

βmin = 2 is more appropriate for the small-scale instances with n = 120 and 240.

Fig. 6.3(e) and (f) show the performance comparison of TPSDP with different βmin for

n = 480 instances. From these two figures, it can be seen that there is a large difference

in the effectiveness of TPSDP for the same βmin value on DGS and EGS instances. For

example, when βmin = 1, TPSDP achieves the best performance in the comparison on the

DGS instances (black curve is above the red and blue curve), while it performs poorly on

the EGS instances. In contrast, in Fig. 6.3(g) and (h), unlike the performance on Fig. 6.3(e)

and (f), TPSDP becomes better as the value of βmin decreases. When n = 960, no matter

on different group size and equal group size instances, the performance with βmin = 1 is

significantly better than that with 2 or 3. In Fig. 6.3 (e), (f), (g), and (h), it should be

noticed that, TPSDP without the population decline strategy performs the worst. It reveals

51

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n120_ds

4.94

4.96

4.98

5

5.02

5.04

5.06

5.08

A
v
er

ag
e

o
b
je

ct
iv

e
v
al

u
es

10
4 (a)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n120_ss

4.68

4.69

4.7

4.71

4.72

4.73

4.74

4.75

4.76

4.77

A
v

er
ag

e
o

b
je

ct
iv

e
v

al
u

es

10
4 (b)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n240_ds

1.585

1.59

1.595

1.6

1.605

1.61

1.615

A
v

er
ag

e
o

b
je

ct
iv

e
v

al
u

es

10
5 (c)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n240_ss

1.548

1.55

1.552

1.554

1.556

1.558

A
v

er
ag

e
o

b
je

ct
iv

e
v

al
u

es

10
5 (d)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n480_ds

3.85

3.86

3.87

3.88

3.89

3.9

3.91

3.92

3.93

A
v

er
ag

e
o

b
je

ct
iv

e
v

al
u

es

10
5 (e)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n480_ss

3.765

3.77

3.775

3.78

3.785

3.79

3.795

A
v

er
ag

e
o

b
je

ct
iv

e
v

al
u

es

10
5 (f)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n960_ds

1.228

1.23

1.232

1.234

1.236

1.238

1.24

1.242

A
v

er
ag

e
o

b
je

ct
iv

e
v

al
u

es

10
6 (g)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

1 2 3 4 5 6 7 8 9 10

Instances of RanReal_n960_ss

1.21

1.211

1.212

1.213

1.214

1.215

1.216

1.217

1.218

1.219

A
v

er
ag

e
o

b
je

ct
iv

e
v

al
u

es

10
6 (h)

min
 = 1

min
 = 2

min
 = 3

min
 = 15

Figure 6.3: Influence of the dynamic population size.

52

that the proposed population decline strategy is more effective than static population size

for large-scale instance. Thus, βmin is set to 1 when n > 400.

6.1.4 Influence of the undirected perturbation strength

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

the value of

1.59

1.592

1.594

1.596

1.598

1.6

1.602

1.604

1.606

1.608

1.61

A
v
er

ag
e

o
b
je

ct
iv

e
v
al

u
es

10
5 (a) RanInt_n240_ds_01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

the value of

1.59

1.592

1.594

1.596

1.598

1.6

1.602

1.604

1.606

1.608

1.61

B
es

t
o
b
je

ct
iv

e
v
al

u
es

10
5 (b) RanInt_n240_ds_01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

the value of

1.235

1.236

1.237

1.238

1.239

1.24

1.241

1.242

1.243

1.244

1.245

A
v
er

ag
e

o
b
je

ct
iv

e
v
al

u
es

10
6 (c) RanInt_n960_ds_01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

the value of

1.235

1.236

1.237

1.238

1.239

1.24

1.241

1.242

1.243

1.244

1.245

B
es

t
o
b
je

ct
iv

e
v
al

u
es

10
6 (d) RanInt_n960_ds_01

Figure 6.4: Influence of the strength of the undirected perturbation.

Table 6.1: Configuration of θ in four TPSDP variants.
Algorithm Description the vaule of θ
TPSDP-Fix TPSDP with fixed θ {0.3, 1.9}
TPSDP-Rand TPSDP with θ taking a random value within an interval in each iteration [0.1, 1.2] / [1.0, 2.0]
TPSDP-Inc TPSDP with θ increasing linearly with time in an interval [0.1, 1.2] / [1.0, 2.0]
TPSDP-Dec TPSDP with θ decreasing linearly with time in an interval [1.2, 0.1] / [2.0, 1.0]

In this study, the exploration ability of the proposed TPSDP heavily relies on the undi-

rected perturbation operator. θ as the key parameter controlling the undirected perturbation

53

Table 6.2: Comparison of TPSDP with different strength of the undirected perturbation on
the 36 small-scale instances.

fbest favg

Instance TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec
Geo n120 ds 01 111863.44 111846.69 111857.52 111867.79 111837.46 111823.64 111832.50 111831.56
Geo n120 ds 02 61894.39 61904.69 61899.95 61893.42 61887.09 61885.93 61887.04 61883.69
Geo n120 ds 03 52069.83 52073.59 52068.96 52069.08 52065.89 52063.03 52063.49 52063.21
Geo n240 ds 01 200317.16 200313.71 200320.24 200324.35 200302.92 200297.28 200303.15 200271.23
Geo n240 ds 02 348402.30 348369.13 348380.81 348401.46 348356.50 348332.46 348345.79 348182.61
Geo n240 ds 03 217134.00 217114.48 217134.40 217126.41 217111.48 217098.61 217108.14 216995.12
RanInt n120 ds 01 51171.00 51127.00 51132.00 51146.00 51099.10 51043.35 51047.45 51075.85
RanInt n120 ds 02 51480.00 51332.00 51417.00 51372.00 51351.55 51241.25 51288.95 51294.65
RanInt n120 ds 03 50264.00 50246.00 50242.00 50248.00 50215.60 50161.30 50165.75 50192.05
RanInt n240 ds 01 160630.00 160585.00 160427.00 160596.00 160257.45 160260.75 160204.80 160358.10
RanInt n240 ds 02 160445.00 160286.00 160290.00 160468.00 160155.35 160107.10 160065.50 160277.70
RanInt n240 ds 03 160217.00 160175.00 160232.00 160400.00 160017.35 160046.75 159968.30 160223.05
RanReal n120 ds 01 50560.66 50535.22 50554.32 50549.13 50487.69 50437.03 50450.32 50476.93
RanReal n120 ds 02 50936.27 50803.55 50918.09 50926.60 50766.93 50673.71 50686.23 50727.34
RanReal n120 ds 03 50016.40 49996.07 50053.22 50053.22 49930.35 49854.88 49869.97 49879.67
RanReal n240 ds 01 160183.33 160054.79 160098.40 160219.45 159834.67 159870.11 159802.61 159974.22
RanReal n240 ds 02 160813.52 160745.87 160754.10 160831.92 160506.06 160510.89 160420.42 160643.87
RanReal n240 ds 03 159827.70 159586.93 159453.51 159604.83 159406.48 159309.81 159217.48 159419.88
Geo n120 ss 01 101584.26 101582.53 101573.00 101568.85 101559.17 101560.11 101557.12 101553.75
Geo n120 ss 02 54836.06 54831.20 54830.60 54829.46 54825.81 54821.64 54823.20 54823.16
Geo n120 ss 03 47617.78 47617.22 47615.53 47616.07 47611.12 47611.56 47610.80 47609.63
Geo n240 ss 01 188813.95 188812.08 188817.50 188824.79 188806.46 188807.20 188807.87 188807.34
Geo n240 ss 02 330196.39 330195.11 330184.95 330195.79 330173.45 330166.38 330164.22 330174.32
Geo n240 ss 03 207002.67 207005.67 207009.95 206997.54 206990.24 206987.60 206989.56 206987.04
RanInt n120 ss 01 47909.00 47909.00 47909.00 47909.00 47876.65 47909.00 47903.90 47909.00
RanInt n120 ss 02 47826.00 47826.00 47826.00 47826.00 47803.30 47825.85 47817.10 47822.80
RanInt n120 ss 03 47552.00 47552.00 47552.00 47552.00 47486.10 47514.10 47505.45 47489.10
RanInt n240 ss 01 155516.00 155565.00 155550.00 155577.00 155166.55 155349.00 155307.80 155440.20
RanInt n240 ss 02 155356.00 155356.00 155378.00 155384.00 155021.95 155210.70 155149.70 155207.25
RanInt n240 ss 03 156415.00 156415.00 156415.00 156415.00 155925.10 156293.35 156193.55 156319.40
RanReal n120 ss 01 47363.21 47363.21 47363.21 47363.21 47325.02 47342.87 47327.26 47343.68
RanReal n120 ss 02 47243.16 47243.16 47243.16 47243.16 47187.05 47204.68 47196.32 47197.48
RanReal n120 ss 03 47313.71 47313.71 47313.71 47313.71 47248.25 47286.91 47274.42 47276.01
RanReal n240 ss 01 155178.33 155209.64 155203.48 155246.47 154819.78 155055.10 154916.56 155041.88
RanReal n240 ss 02 155549.49 155633.66 155641.95 155656.23 155316.08 155451.55 155381.43 155451.66
RanReal n240 ss 03 155609.44 155755.96 155617.45 155782.29 155319.13 155545.54 155465.45 155566.95
Avg. 122419.68 122396.72 122396.61 122427.73 122279.20 122304.47 122281.10 122327.54
#Best 19 9 10 20 13 9 2 13
p-value 0.706381 0.000155 0.002854 0.107325 0.045247 0.00198

54

Table 6.3: Comparison of TPSDP with different strength of the undirected perturbation on
the 36 large-scale instances.

fbest favg

Instance TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec TPSDP-Fix TPSDP-Rand TPSDP-Inc TPSDP-Dec
Geo n480 ds 01 582292.22 582287.80 582288.05 582325.61 580966.93 580621.81 580813.85 580550.25
Geo n480 ds 02 1089249.81 1089621.80 1089607.60 1089600.18 1088343.32 1088334.42 1088343.06 1087807.40
Geo n480 ds 03 664108.21 664097.19 664126.97 664110.67 662452.96 662074.21 662436.61 661980.97
Geo n960 ds 01 3364355.99 3364433.85 3364298.36 3364410.87 3363851.70 3363298.36 3363548.29 3363298.19
Geo n960 ds 02 1723405.65 1723412.21 1723421.36 1723421.56 1722649.21 1722543.19 1722242.16 1722147.18
Geo n960 ds 03 3350671.59 3350635.84 3350675.75 3350670.94 3350547.22 3350346.75 3350563.74 3350369.56
RanInt n480 ds 01 390529.00 390925.00 390652.00 390718.00 389886.45 390348.90 390023.05 390362.25
RanInt n480 ds 02 389286.00 389472.00 389097.00 389327.00 388324.70 388607.40 388511.05 388743.45
RanInt n480 ds 03 388829.00 389190.00 388478.00 389098.00 387740.75 388091.35 388031.35 388362.50
RanInt n960 ds 01 1244412.00 1244163.00 1242919.00 1244347.00 1242835.90 1242449.40 1242095.05 1242857.55
RanInt n960 ds 02 1241596.00 1241630.00 1241519.00 1242006.00 1240518.25 1240632.55 1240279.75 1240869.75
RanInt n960 ds 03 1242506.00 1241526.00 1241411.00 1242461.00 1240584.15 1240271.20 1239876.95 1240896.00
RanReal n480 ds 01 388420.39 388699.88 389035.23 389658.36 387893.20 388185.89 388117.48 388326.45
RanReal n480 ds 02 387369.53 387259.20 386800.32 387382.94 386209.74 386437.34 386340.20 386673.60
RanReal n480 ds 03 388553.72 388529.60 388642.13 388630.06 387679.14 387942.76 387809.79 388104.73
RanReal n960 ds 01 1241028.37 1240636.08 1240431.95 1240917.68 1239625.89 1239434.48 1238675.74 1239891.19
RanReal n960 ds 02 1240188.45 1240698.20 1239382.87 1241146.98 1239065.73 1239217.37 1238429.71 1239515.63
RanReal n960 ds 03 1239246.15 1238929.69 1237666.62 1239069.46 1237905.28 1237748.58 1237164.61 1237910.82
Geo n480 ss 01 552010.33 551991.18 551992.51 551994.36 551967.96 551970.21 551971.27 551968.13
Geo n480 ss 02 1047074.05 1047070.47 1047106.34 1047080.67 1046997.53 1047014.55 1047014.34 1047008.22
Geo n480 ss 03 633516.54 633504.14 633516.55 633516.84 633481.35 633479.49 633484.04 633483.30
Geo n960 ss 01 3253684.64 3253661.38 3253682.11 3253760.52 3253561.75 3253580.05 3253559.54 3253760.52
Geo n960 ss 02 1663365.47 1663380.98 1663381.31 1663372.45 1663347.62 1663360.16 1663354.88 1663372.45
Geo n960 ss 03 3250912.00 3250893.64 3250897.45 3250909.92 3250793.85 3250817.72 3250812.06 3250909.92
RanInt n480 ss 01 379673.00 379503.00 379999.00 379953.00 378485.80 378971.75 379298.60 379263.95
RanInt n480 ss 02 379526.00 379889.00 380160.00 380180.00 378830.10 379369.05 379443.50 379596.55
RanInt n480 ss 03 378362.00 378793.00 378795.00 378762.00 377763.45 378115.25 378330.70 378291.55
RanInt n960 ss 01 1220755.00 1220781.00 1219814.00 1220742.00 1219599.80 1219349.95 1218856.75 1219694.55
RanInt n960 ss 02 1220221.00 1219811.00 1219518.00 1220325.00 1219193.10 1218969.65 1218549.00 1219184.35
RanInt n960 ss 03 1221107.00 1220420.00 1220654.00 1221283.00 1219942.75 1219367.60 1219252.85 1220117.65
RanReal n480 ss 01 377407.10 378399.41 377882.61 377946.02 376814.89 377382.42 377352.89 377533.30
RanReal n480 ss 02 377007.52 377680.41 377570.07 377578.02 376329.17 376992.31 376899.89 377082.09
RanReal n480 ss 03 378000.20 378514.99 378653.23 378758.45 377388.28 378042.57 378042.17 378240.08
RanReal n960 ss 01 1217570.56 1217671.97 1216768.40 1217333.22 1216484.81 1216173.71 1215807.84 1216503.80
RanReal n960 ss 02 1218634.04 1218579.18 1218594.13 1218548.34 1217491.75 1217570.30 1217008.15 1217820.76
RanReal n960 ss 03 1218177.48 1218266.83 1217961.70 1217795.42 1217306.93 1216899.92 1216562.84 1217087.01
Avg. 1126195.89 1126248.86 1126038.88 1126365.04 1125357.26 1125389.24 1125247.33 1125544.05
#Best 7 10 7 12 7 1 5 23
p-value 0.007052 0.077155 0.000502 0.006415 0.000139 0.000752

55

strength needs to be analyzed in detail. Therefore, this section analyzes the impact of θ

on TPSDP under different strategies. Four strategies are considered to control the value of

θ: fixed, random, increase, and decrease. To determine the values for these strategies, I

test the influence of different θ (within a reasonable range) on a small-scale instance (i.e.,

RanInt n240 ds 01), and a large-scale instance (i.e., RanInt n960 ds 01). The computa-

tional results are shown in Fig. 6.4(a), (b) and Fig. 6.4(c), (d), respectively.

One observes from Fig. 6.4 that the performance of the proposed TPSDP is significantly

influenced by the value of θ. First, small values of θ corresponding to a slight perturbation

generally lead to a high performance on small-scale instances (Fig. 6.4(a) and (b)). In

contrast, large values of θ corresponding to a violent perturbation are more appropriate for

large-scale instances (Fig. 6.4(c) and (d)). Furthermore, from Fig. 6.4, we can also observe

that the best performance of TPSDP occurs when θ reaches 0.3 and 1.9 for n = 240 and

n = 960 instances, respectively, according to the obtained average and best objective values.

Therefore, the first strategy sets the fixed θ value to 0.3 for the instances with n < 400 and

1.9 for other instances. Moreover, for the remaining three strategies, I decide to set the

variation range of θ as [0.1, 1.2] for the instances with n < 400, and [1.0, 2.0] for other

instances.

To find the most suitable strategy of θ, the proposed TPSDP adopts these four different

strategies to compare on some test instances. Table 6.1 lists detailed information of each

strategy. The test instances select the first three instances of RanInt, RanReal, and Geo

benchmarks. Tables 6.2 and 6.3 show the comparison results obtained by each strategy

on small-scale and large-scale instances, respectively. As Table 6.2 indicates, on small-

scale DGS and EGS instances, TPSDP-fix and TPSDP-Dec obtain significant advantages in

comparison with the other two strategies. Although the p-value obtained by the Wilcoxon

signed-rank test greater than 0.05 confirms no significant difference between them, TPSDP-

Dec is slightly better than TPSDP-fix in terms of #Best and Avg. Hence, in this study, θ

linearly decreases in the interval [1.2, 0.1] with time for the instances with n < 400.

Table 6.3 shows that, for the large-scale DGS and EGS instances, TPSDP-Dec signifi-

cantly outperforms the other three strategies. Among them, in terms of the p-value of fbest,

although TPSDP-rand has achieved similar performance to TPSDP-Dec, the TPSDP-rand

56

has inferior stability. In terms of favg, the p-values from the Wilcoxon signed-rank tests are

reported, which suggests that TPSDP-Dec is significantly better than the other strategies.

Therefore, θ of our algorithm linearly decreases in the interval [2.0, 1.0] with time for the

instances with n > 400.

6.1.5 Influence of the directed perturbation strength

1 2 3 4 5 6 7 8 9 10

Strength of directed perturbation
d

2.73

2.732

2.734

2.736

2.738

2.74

2.742

2.744

2.746

2.748

2.75

A
v
er

ag
e

o
b
je

ct
iv

e
v
al

u
es

10
5 (a)

1 2 3 4 5 6 7 8 9 10

Strength of directed perturbation
d

2.73

2.732

2.734

2.736

2.738

2.74

2.742

2.744

2.746

2.748

2.75

B
es

t
o
b
je

ct
iv

e
v
al

u
es

10
5 (b)

Figure 6.5: Influence of the strength of the directed perturbation.

The last parameter to be determined is the strength ηd of the directed perturbation operator

in TPSDP. Like above, the benchmark instances are still the subset of m = 50, Lg = 32,

Ug = 48 in MDG-a. The X-axis in Fig. 6.5 represents the value of ηd to be tested, while the

Y-axis in Fig. 6.5(a) and (b) represent the average objective value and the best objective

value, respectively. From Fig. 6.5(a), it can be observed that the curve has fluctuation, and

the algorithm performs the best when the value of ηd is 3. Furthermore, it can be found in

Fig. 6.5(b) that there is a large difference between the best objective values in the interval

[1, 4], and the best objective value with the highest quality corresponds to a value of ηd =

3. Therefore, ηd is set to 3 in the proposed TPSDP in terms of the overall performance.

57

6.2 Discussion

6.2.1 Discussion of the method of decreasing the population size

For making more effective use of limited computing resources, TPSDP adopts a popula-

tion linear decline strategy such that the population decreases with time. In this section, I

discuss the way in which solutions to be discarded when the population is reduced. Three

different strategies including TPSDP-O, TPSDP-OD, and TPSDP-D are considered. In

TPSDP-O, only the objective value of the solutions is considered, i.e., the solution with

the smallest objective value is discarded. TPSDP-OD considers both the objective value

and the distance between solutions and the optimal solution, i.e., a solution with the lowest

value calculated by Eq. (4.6) is discarded. In TPSDP-D, only the distance between solu-

tions is considered. To be specific, the distance from each solution to the optimal solution

is calculated by Eq. (4.7), and the one closest to the optimal solution is discarded. These

three strategies are used in TPSDP, and then tested on 72 instances to verify which one is

the best.

Tables 6.4 and 6.5 disclose the comparison results obtained by TPSDP-O, TPSDP-OD,

and TPSDP-D on the given instances. Results on 36 DGS instances reported in Table 6.4

show that TPSDP-O can find the best value on 14 instances in terms of fbest, which is

better than 12 of TPSDP-OD, and 10 of TPSDP-D. In terms of favg, TPSDP-O is tied with

TPSDP-D, but superior to TPSDP-OD, and they yield the best results on 14, 8, and 14

instances, respectively. Tables 6.5 indicates that for the EGS instances, TPSDP-O can find

the best fbest and favg results on 19 and 16 instances, which is better than that of TPSDP-OD

and TPSDP-D, respectively. Although there is no significant difference among these three

strategies on both DGS and EGS instances according to p-value, TPSDP-O can find the

best solution on most of instances, and has lower computational complexity compared with

TPSDP-OD and TPSDP-O. Therefore, TPSDP-O is adopted in the proposed population

decrease strategy.

58

6.2.2 Discussion of the importance of components of TPSDP

In this part, some discussions are given to further analyze the importance of each phase

of the proposed TPSDP. Experimental results of seven different algorithms, including the

proposed TPSDP and six variants that adopt only one or two phases, on Geo, RanReal, and

RanInt instances are listed in Tables 6.6, 6.7 and 6.8, respectively. For simplisity, phases 1,

2, and 3 represent the undirected perturbation phase, population reconstruction phase, and

directed perturbation phase, respectively. To more precisely assess the performance of each

algorithm, I use the Friedman test as a statistical analysis method to give a statistical result

and rank each one according to their experimental results. The average ranking of seven

algorithms on the given test instances are records in the row ‘ Average ranking’, where the

lower rank, the better performance on the test instances. In the last row of the table, p-value

is obtained by the Friedman test to verify whether there is a significant difference between

the top-1 algorithm and its peers in terms of favg.

Table 6.6 summarizes the experimental results of TPSDP and its variants on Geo in-

stances. From it, it can be found that algorithms with high exploitation ability like ‘phase

2+3’ and ‘phase 3’ can obtain best values on more instances, confirming the indispensabil-

ity of phase 2 and phase 3 for Geo-type benchmark instances. Furthermore, ‘phase 2+3’

and TPSDP get the 1st and 2rd rank among all algorithms, indicating that the algorithm

consists of ‘phase 2+3’ gets the best performance, followed by TPSDP.

Tables 6.7 and 6.8 report the experimental results of TPSDP and its variants on Ran-

Real and RanInt instances. Contrary to the performance of Geo instances, phase1 plays

a more important role in these two test sets. Moreover, for large-scale instances, simpler

and exploration-biased algorithms, such as ‘phase 1+2’, ‘phase 1+3’, tend to yield more

best values than other variants. The proposed TPSDP, which balances exploration and ex-

ploitation, is outstanding in small-scale instances. Besides, although the p-values of the

second, third and fifth algorithms are greater than 0.05, which shows that TPSDP is not

significantly different from these algorithms, the lowest rank indicates that TPSDP has the

best performance on all instances.

According to Tables 6.6, 6.7 and 6.8, it can be concluded that TPSDP is the best per-

59

forming algorithm overall on these three benchmark sets. Each phase in the algorithm has

its importance, and the three phases complement each other to enhance the performance of

the proposed TPSDP.

6.2.3 Discussion of rationality of TPSDP

As described in [32], in MDGP, high-quality local optimum solutions are not uniformly

distributed but tend to cluster in the same or neighbor regions. Therefore, the distance

between high-quality local optimum solutions in a particular region is generally small,

which reveals that it is necessary to enhance the ability of the algorithm to exploit nearby

better local optimum solutions in the current region. Moreover, the local optimum solutions

located in distinct regions are usually far away from each other, which means that the search

algorithm must have the ability to explore from one region across to another more distant

region if it wants to search for higher quality solutions in other regions.

Based on the above facts, the rationality of the TPSDP algorithm is evident. In the

first phase, since the initial input solutions are already local optimal in their respective

current regions, the undirected perturbation operator helps them jump out of their respec-

tive regions and move to other distant regions. This process expands the search scope of

the algorithm in the solution space and reinforces the exploration capability of the algo-

rithm. The directed perturbation operator used in the third phase is less perturbative than

the undirected perturbation and focuses more on exploiting better local optimum solutions

clustered around the local optima. This phase aims to strengthen the local exploitation ca-

pability of the algorithm. The second phase is equivalent to the transition phase between

the first phase and the third phase. The crossover process of each solution in the population

can facilitate the interaction of information between different local optimal solutions, and

thus visit more promising regions. The iterative execution of the three phases addresses the

tradeoff between diversification and intensification of the algorithm search process, thus

allowing the TPSDP algorithm to search for higher-quality solutions.

60

Table 6.4: Comparison of TPSDP with three method of decreasing the population size on
the 36 DGS instances.

fbest favg

Instance TPSDP-O TPSDP-OD TPSDP-D TPSDP-O TPSDP-OD TPSDP-D
Geo n120 ds 01 111856.62 111852.28 111866.09 111829.61 111825.34 111831.59
Geo n120 ds 02 61897.26 61892.77 61899.54 61885.03 61884.62 61885.69
Geo n120 ds 03 52069.58 52072.80 52068.88 52062.79 52062.32 52063.21
Geo n240 ds 01 200330.83 200318.64 200328.60 200304.96 200302.45 200302.75
Geo n240 ds 02 348387.33 348396.91 348384.95 348344.29 348346.62 348354.41
Geo n240 ds 03 217136.17 217116.89 217122.69 217110.07 217101.41 217107.41
Geo n480 ds 01 582295.29 582333.25 582318.38 580879.66 580664.81 580864.34
Geo n480 ds 02 1089645.66 1089611.96 1089590.66 1088735.39 1088307.00 1088300.34
Geo n480 ds 03 664113.65 664082.35 664089.51 661709.64 661715.99 661708.67
Geo n960 ds 01 3364324.33 3364430.73 3364314.77 3363512.42 3363600.33 3363155.90
Geo n960 ds 02 1723413.83 1723425.49 1723421.37 1722434.21 1722608.26 1722124.33
Geo n960 ds 03 3350750.01 3350706.53 3350669.34 3349845.47 3350584.08 3350099.90
RanReal n120 ds 01 50601.64 50552.98 50595.30 50478.89 50490.51 50481.80
RanReal n120 ds 02 50839.04 50932.09 50929.62 50746.99 50748.02 50728.66
RanReal n120 ds 03 49952.03 49955.07 49955.00 49866.08 49861.11 49878.16
RanReal n240 ds 01 160248.01 160177.97 160236.88 159967.54 159958.67 159972.94
RanReal n240 ds 02 160935.80 160829.53 160794.19 160649.22 160588.65 160617.09
RanReal n240 ds 03 159735.48 159584.04 159723.06 159397.52 159358.04 159344.21
RanReal n480 ds 01 388727.06 389012.98 388877.51 388151.16 388347.98 388389.65
RanReal n480 ds 02 387456.01 387315.75 387734.96 386645.62 386680.26 386765.37
RanReal n480 ds 03 389035.97 388649.74 388725.83 388224.90 388060.05 388146.62
RanReal n960 ds 01 1240505.69 1240797.08 1242177.36 1239589.88 1239723.89 1239765.30
RanReal n960 ds 02 1240487.47 1240751.33 1240976.92 1239232.07 1239299.70 1239596.09
RanReal n960 ds 03 1239399.76 1238677.02 1239279.59 1238111.31 1238031.49 1238355.87
RanInt n120 ds 01 51146.00 51140.00 51161.00 51075.85 51067.45 51074.55
RanInt n120 ds 02 51426.00 51388.00 51480.00 51274.15 51303.95 51294.65
RanInt n120 ds 03 50258.00 50260.00 50258.00 50190.35 50187.40 50205.65
RanInt n240 ds 01 160673.00 160720.00 160543.00 160463.10 160399.70 160350.70
RanInt n240 ds 02 160439.00 160432.00 160467.00 160260.20 160207.90 160217.90
RanInt n240 ds 03 160360.00 160320.00 160393.00 160191.55 160174.10 160104.35
RanInt n480 ds 01 391004.00 391430.00 391161.00 390400.35 390511.25 390414.75
RanInt n480 ds 02 389889.00 389601.00 389428.00 388978.40 388816.25 388835.05
RanInt n480 ds 03 389145.00 388923.00 389142.00 388264.95 388211.80 388210.50
RanInt n960 ds 01 1244260.00 1243736.00 1244438.00 1243067.75 1242760.30 1242851.75
RanInt n960 ds 02 1242579.00 1242121.00 1242386.00 1240864.90 1240717.60 1240924.55
RanInt n960 ds 03 1241504.00 1243611.00 1242981.00 1240433.50 1240516.70 1240834.55
Avg. 633800.76 633809.95 633886.64 633199.44 633195.17 633198.87
#Best 14 12 10 14 8 14
p-value 0.2004 1 0.427554 0.819799

61

Table 6.5: Comparison of TPSDP with three method of decreasing the population size on
the 36 EGS instances.

fbest favg

Instance TPSDP-O TPSDP-D TPSDP-OD TPSDP-O TPSDP-OD TPSDP-D
Geo n120 ss 01 101595.35 101571.83 101573.32 101557.88 101554.91 101554.31
Geo n120 ss 02 54828.04 54827.33 54834.26 54820.82 54822.35 54821.55
Geo n120 ss 03 47618.29 47613.68 47614.15 47611.03 47610.13 47610.67
Geo n240 ss 01 188818.23 188820.82 188817.06 188807.90 188807.03 188808.35
Geo n240 ss 02 330201.63 330217.66 330211.60 330165.08 330170.40 330167.82
Geo n240 ss 03 207000.90 207005.11 207003.60 206988.39 206988.15 206990.73
Geo n480 ss 01 552017.42 551990.49 551991.84 551975.01 551967.91 551968.73
Geo n480 ss 02 1047039.66 1047083.26 1047056.54 1047003.95 1047012.66 1047007.24
Geo n480 ss 03 633501.32 633515.29 633518.44 633478.65 633483.96 633485.82
Geo n960 ss 01 3253623.12 3253651.40 3253669.94 3253562.37 3253570.07 3253574.79
Geo n960 ss 02 1663389.17 1663378.93 1663373.45 1663357.67 1663351.44 1663352.30
Geo n960 ss 03 3250931.07 3250920.09 3250846.24 3250815.34 3250825.72 3250798.55
RanReal n120 ss 01 47363.21 47363.21 47363.21 47339.88 47334.16 47333.78
RanReal n120 ss 02 47243.16 47243.16 47243.16 47205.03 47203.74 47199.82
RanReal n120 ss 03 47313.71 47313.71 47313.71 47272.67 47284.89 47276.32
RanReal n240 ss 01 155246.47 155241.93 155214.65 155082.72 155064.22 155039.51
RanReal n240 ss 02 155670.84 155656.23 155585.69 155494.41 155466.29 155496.25
RanReal n240 ss 03 155765.30 155704.75 155699.22 155575.34 155544.05 155543.41
RanReal n480 ss 01 378237.23 378306.93 378623.12 377583.69 377708.85 377501.85
RanReal n480 ss 02 377656.61 377846.64 377768.66 377144.60 377241.93 377324.90
RanReal n480 ss 03 378781.51 378705.63 378644.02 378168.56 378245.86 378250.78
RanReal n960 ss 01 1218220.05 1217601.56 1217667.28 1216601.20 1216700.76 1216641.42
RanReal n960 ss 02 1219277.34 1220101.38 1218916.60 1217968.76 1217979.31 1218033.57
RanReal n960 ss 03 1218593.64 1218555.78 1218608.23 1217429.29 1217149.45 1217385.24
RanInt n120 ss 01 47909.00 47909.00 47909.00 47909.00 47909.00 47903.80
RanInt n120 ss 02 47826.00 47826.00 47826.00 47825.05 47824.25 47823.00
RanInt n120 ss 03 47552.00 47552.00 47552.00 47477.35 47485.15 47484.65
RanInt n240 ss 01 155526.00 155577.00 155588.00 155450.10 155432.75 155412.65
RanInt n240 ss 02 155358.00 155378.00 155358.00 155230.55 155261.05 155175.20
RanInt n240 ss 03 156415.00 156415.00 156415.00 156328.35 156288.60 156289.90
RanInt n480 ss 01 380081.00 379887.00 379999.00 379357.75 379419.45 379411.80
RanInt n480 ss 02 380581.00 380218.00 380737.00 379793.80 379768.10 379546.70
RanInt n480 ss 03 378997.00 379288.00 379114.00 378448.45 378426.15 378562.15
RanInt n960 ss 01 1220727.00 1221176.00 1220768.00 1219704.65 1219714.25 1219798.90
RanInt n960 ss 02 1220336.00 1220325.00 1220270.00 1219444.90 1219265.10 1219282.20
RanInt n960 ss 03 1221586.00 1221301.00 1221632.00 1220065.60 1219849.45 1219943.50
Avg. 615078.53 615085.80 615064.61 614723.49 614714.77 614716.73
#Best 19 16 15 16 11 10
p-value 0.78067 0.819799 0.928219 0.555763

62

Table 6.6: Comparison of seven TPSDP variants on the 24 Geo instances.
favg

Instance TPSDP phase1 + 2 phase1 + 3 phase2 + 3 phase1 phase2 phase3
Geo n120 ds 01 111831.56 111830.66 111546.42 111841.41 111313.91 111857.53 111248.40
Geo n120 ds 02 61883.69 61882.08 61739.78 61887.50 61863.92 61866.16 61628.89
Geo n120 ds 03 52063.21 52064.27 51808.16 52068.54 51923.28 52060.92 51740.77
Geo n240 ds 01 200306.53 200299.12 199868.24 200321.90 199980.36 200283.11 199778.62
Geo n240 ds 02 348349.00 348345.58 347389.26 348364.26 347580.05 348418.44 346769.33
Geo n240 ds 03 217106.84 217107.65 216944.08 217126.21 217024.98 217070.47 216766.51
Geo n480 ds 01 580550.25 581189.85 580665.88 578604.17 581036.63 577297.27 579288.71
Geo n480 ds 02 1087807.40 1088822.38 1088333.07 1085402.88 1088670.21 1084225.18 1085326.78
Geo n480 ds 03 661980.97 662813.32 661511.11 660176.24 662318.04 659698.33 660358.85
Geo n960 ds 01 3363298.19 3363227.35 3363233.57 3351189.58 3363432.32 3346451.50 3349293.02
Geo n960 ds 02 1722147.18 1722166.75 1722346.80 1718740.12 1722610.64 1716501.14 1717001.96
Geo n960 ds 03 3350369.56 3350414.89 3350491.80 3341812.31 3350441.01 3340560.26 3340423.82
Geo n120 ss 01 101553.75 101558.07 101555.72 101564.93 101562.28 101517.38 101571.09
Geo n120 ss 02 54823.16 54820.35 54822.05 54826.97 54822.64 54815.82 54829.05
Geo n120 ss 03 47609.63 47611.53 47611.53 47614.17 47611.04 47605.02 47613.75
Geo n240 ss 01 188807.34 188803.99 188810.56 188823.10 188806.01 188801.10 188828.23
Geo n240 ss 02 330174.32 330162.32 330170.67 330192.18 330170.42 330156.19 330197.32
Geo n240 ss 03 206987.04 206983.13 206993.41 206998.68 206990.75 206984.23 207003.81
Geo n480 ss 01 551968.13 551949.81 551972.32 552010.25 551952.80 551786.34 552005.70
Geo n480 ss 02 1047008.22 1046966.50 1047020.38 1047104.07 1046969.50 1046528.48 1047088.69
Geo n480 ss 03 633483.30 633463.71 633488.16 633513.28 633470.01 633231.74 633519.02
Geo n960 ss 01 3253760.52 3253473.10 3253560.02 3253733.54 3253486.97 3252719.64 3253755.38
Geo n960 ss 02 1663372.45 1663317.55 1663350.39 1663443.68 1663321.37 1663155.93 1663448.39
Geo n960 ss 03 3250909.92 3250721.32 3250810.36 3251005.74 3250721.13 3250017.66 3251010.85
Avg. 962006.34 962083.14 961918.49 960765.24 962003.34 960150.41 960437.37
#Best 1 3 1 7 2 2 8
Average ranking 3.4583 4.0833 4 2.5833 4.08333 5.9167 3.875
p-value 0.160581 0.016157 0.023103 - 0.016157 0.000000 0.038333

63

Table 6.7: Comparison of seven TPSDP variants on the 24 RanReal instances.
favg

Instance TPSDP phase1 + 2 phase1 + 3 phase2 + 3 phase1 phase2 phase3
RanReal n120 ds 01 50476.93 50457.95 50434.49 50235.90 50393.46 50119.42 49445.37
RanReal n120 ds 02 50727.34 50647.20 50730.95 50482.04 50744.93 50334.21 49811.73
RanReal n120 ds 03 49879.67 49840.79 49864.56 49722.59 49856.85 49665.63 48901.63
RanReal n240 ds 01 159974.22 159911.38 159912.32 159094.66 159884.99 158671.87 156906.62
RanReal n240 ds 02 160643.87 160607.73 160417.83 159813.12 160279.28 159146.97 157367.89
RanReal n240 ds 03 159419.88 159321.42 159266.43 158571.05 159246.94 158253.49 156644.47
RanReal n480 ds 01 388326.45 387979.90 388427.09 382494.84 388105.64 374302.49 382691.31
RanReal n480 ds 02 386673.60 386229.39 386797.82 380619.88 386275.74 373188.26 380994.76
RanReal n480 ds 03 388104.73 387679.09 388187.85 382147.71 387508.04 374506.22 382543.27
RanReal n960 ds 01 1239891.19 1239877.23 1239622.00 1226878.50 1240187.54 1202857.12 1224837.86
RanReal n960 ds 02 1239515.63 1239735.32 1239622.33 1225129.68 1239860.81 1204259.10 1225481.82
RanReal n960 ds 03 1237910.82 1238315.83 1238279.22 1224390.38 1238258.24 1202591.78 1224838.11
RanReal n120 ss 01 47343.68 47329.92 47298.59 46998.16 47256.51 46600.96 46766.73
RanReal n120 ss 02 47197.48 47202.90 47174.81 46861.17 47165.42 46536.49 46868.29
RanReal n120 ss 03 47276.01 47283.19 47266.45 47010.85 47244.20 46631.55 46887.51
RanReal n240 ss 01 155041.88 155090.59 155002.80 153808.11 155023.28 152953.38 153560.78
RanReal n240 ss 02 155451.66 155490.10 155378.64 154237.95 155339.97 153287.80 153856.33
RanReal n240 ss 03 155566.95 155555.63 155474.56 154225.62 155475.45 153363.70 153807.15
RanReal n480 ss 01 377533.30 376880.99 377571.01 375729.29 376767.27 364968.68 375857.25
RanReal n480 ss 02 377082.09 376584.86 377105.88 375278.37 376527.54 364357.94 374476.06
RanReal n480 ss 03 378240.08 377637.78 378246.49 376648.86 377433.12 366317.01 376687.69
RanReal n960 ss 01 1216503.80 1216532.90 1216439.09 1209137.30 1216786.63 1184058.73 1210441.27
RanReal n960 ss 02 1217820.76 1217729.74 1217828.43 1212651.32 1217809.63 1183602.14 1213017.91
RanReal n960 ss 03 1217087.01 1217231.53 1217411.70 1211737.69 1217288.48 1183808.16 1211735.95
Avg. 454320.38 454214.72 454323.39 450579.38 454196.66 441849.30 450184.49
#Best 7 5 8 0 4 0 0
Average ranking 2.0417 2.5 2.3333 5.4167 3.125 6.75 5.8333
p-value - 0.462359 0.639994 0 0.082352 0 0

64

Table 6.8: Comparison of seven TPSDP variants on the 24 RanInt instances.
favg

Instance TPSDP phase1 + 2 phase1 + 3 phase2 + 3 phase1 phase2 phase3
RanInt n120 ds 01 51075.85 51048.80 51049.75 50868.55 51029.25 50713.90 49871.85
RanInt n120 ds 02 51294.65 51266.50 51293.70 51069.15 51279.80 50994.75 50375.15
RanInt n120 ds 03 50192.05 50158.75 50181.80 50027.50 50175.80 49890.65 49077.05
RanInt n240 ds 01 160358.10 160383.60 160340.55 159318.30 160271.90 158786.95 157544.80
RanInt n240 ds 02 160277.70 160244.50 160104.45 159314.80 159927.95 159040.40 157089.00
RanInt n240 ds 03 160223.05 160122.95 160130.55 159173.55 160097.05 158767.05 156816.25
RanInt n480 ds 01 390362.25 389970.60 390592.50 383944.55 389983.05 375807.80 384366.05
RanInt n480 ds 02 388743.45 388476.20 389079.95 383277.80 388214.75 375324.20 382117.60
RanInt n480 ds 03 388362.50 387679.00 388289.70 381820.70 387652.45 374105.05 381989.10
RanInt n960 ds 01 1242857.55 1243067.85 1243189.80 1228315.80 1243191.15 1206882.55 1229971.90
RanInt n960 ds 02 1240869.75 1241168.80 1240956.00 1227200.60 1241082.05 1203859.05 1226079.65
RanInt n960 ds 03 1240896.00 1240787.20 1240661.25 1227297.25 1240742.05 1204952.25 1226001.95
RanInt n120 ss 01 47909.00 47909.00 47894.25 47586.05 47893.70 47181.25 47423.15
RanInt n120 ss 02 47822.80 47814.80 47819.50 47471.90 47781.80 47060.05 47382.80
RanInt n120 ss 03 47489.10 47457.40 47454.60 47233.50 47441.70 46827.25 47135.05
RanInt n240 ss 01 155440.20 155446.85 155403.70 154322.10 155341.30 152930.35 153800.70
RanInt n240 ss 02 155207.25 155259.40 155167.15 153838.50 155129.70 152942.40 153586.35
RanInt n240 ss 03 156319.40 156343.35 156285.55 155106.05 156221.30 153640.00 154188.75
RanInt n480 ss 01 379263.95 378716.45 379319.75 377559.75 378557.25 366746.55 377004.90
RanInt n480 ss 02 379596.55 379254.40 379733.90 377345.40 379089.85 366459.15 376733.90
RanInt n480 ss 03 378291.55 377899.75 378545.35 376848.10 378024.10 365596.10 376488.70
RanInt n960 ss 01 1219694.55 1219886.10 1219929.25 1214135.05 1219905.90 1185752.05 1214104.80
RanInt n960 ss 02 1219184.35 1219497.75 1219487.40 1213667.05 1219441.75 1185538.70 1213840.75
RanInt n960 ss 03 1220117.65 1220216.70 1219878.40 1214731.05 1219894.55 1186619.75 1214050.85
Avg. 455493.72 455419.86 455532.87 451728.04 455348.76 442767.43 451126.71
#Best 10 8 6 0 1 0 0
Average ranking 1.9375 2.3958 2.25 5.1667 3.4167 6.75 6.0833
p-value - 0.462359 0.61629 0 0.017695 0 0

65

Chapter 7

Conclusion and future works

The paper presented a three-phase search approach with dynamic population size (TPSDP)

for solving the maximally diverse grouping problem (MDGP). The three phases of TPSDP

coordinate with each other and help achieve a desirable balance between diversification

and intensification during the search process. Moreover, TPSDP also integrates a decline

of population size strategy to avoid the waste of computing resources on non-promising so-

lutions and ensures the algorithm is more effective. Extensive computational results based

on widely used benchmark sets (RanInt, RanReal, Geo, MDG-a, and MDG-c) indicated

that TPSDP is highly competitive compared to best-performing MDGP algorithms. Also,

TPSDP significantly outperforms its peers, especially on the small-scale instances, but only

performs worse than NDHA on the large-scale instances. Furthermore, to illuminate the

adequacy of the TPSDP algorithm, I carried out some experiments to analyze the influ-

ence of some crucial parameters. Also, I discussed the importance and rationality of the

structure of the proposed algorithm.

The ideas of the population-based method and the framework of the three-phase search

approach are rather general. It is practicable to use these two methods to solve other CO

problems, such as the clique partitioning problem (CPP) what I am studying. For the

purpose of proposing more general and understandable algorithms and solving large-scale

problems more effectively, further research could be done in the theoretical explanation of

the working principle of heuristic search and designing more efficient and effective local

search.

66

Table 7.1: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large DGS instances with n = 2000, m = 10, Lg = 173, and Ug = 227.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
10

17
3

22
7

11
34

78
8

11
35

64
0

11
35

96
4

11
35

77
2

11
34

06
8.

30
11

34
97

7.
10

11
35

45
5.

30
11

35
43

6.
05

M
D

G
-a

22
10

17
3

22
7

11
34

34
0

11
35

17
2

11
35

86
8

11
35

54
5

11
33

85
8.

05
11

34
68

0.
25

11
35

16
2.

65
11

35
13

6.
00

M
D

G
-a

23
10

17
3

22
7

11
34

01
3

11
34

87
1

11
35

12
1

11
35

30
3

11
33

48
5.

95
11

34
39

6.
25

11
34

68
5.

60
11

34
82

7.
20

M
D

G
-a

24
10

17
3

22
7

11
34

30
8

11
35

26
4

11
35

58
4

11
35

56
7

11
33

83
2.

65
11

34
77

9.
35

11
35

12
2.

35
11

35
08

8.
85

M
D

G
-a

25
10

17
3

22
7

11
35

10
7

11
35

85
9

11
36

22
5

11
36

09
8

11
34

29
5.

70
11

35
34

2.
50

11
35

50
4.

50
11

35
61

7.
00

M
D

G
-a

26
10

17
3

22
7

11
34

16
7

11
35

33
0

11
35

37
3

11
35

44
9

11
33

68
9.

60
11

34
80

8.
30

11
34

88
0.

35
11

35
01

3.
35

M
D

G
-a

27
10

17
3

22
7

11
34

39
2

11
34

82
5

11
35

62
4

11
35

62
3

11
33

47
2.

15
11

34
42

6.
50

11
34

73
8.

15
11

34
73

1.
80

M
D

G
-a

28
10

17
3

22
7

11
34

56
4

11
35

37
0

11
35

83
0

11
35

50
5

11
33

78
0.

15
11

34
84

2.
90

11
35

12
7.

60
11

35
05

5.
85

M
D

G
-a

29
10

17
3

22
7

11
34

70
1

11
35

79
9

11
35

97
8

11
35

92
5

11
34

08
6.

40
11

35
02

9.
00

11
35

32
0.

90
11

35
23

4.
35

M
D

G
-a

30
10

17
3

22
7

11
34

52
3

11
35

15
2

11
35

48
6

11
35

46
8

11
33

76
5.

65
11

34
71

2.
40

11
34

87
3.

25
11

35
06

8.
95

M
D

G
-a

31
10

17
3

22
7

11
35

23
3

11
36

06
4

11
36

02
6

11
36

11
9

11
34

39
5.

90
11

35
35

1.
50

11
35

58
0.

25
11

35
74

9.
20

M
D

G
-a

32
10

17
3

22
7

11
34

59
6

11
35

50
4

11
35

84
7

11
35

54
9

11
34

04
1.

75
11

35
05

7.
80

11
35

23
5.

95
11

35
19

9.
65

M
D

G
-a

33
10

17
3

22
7

11
35

31
7

11
35

21
7

11
35

54
4

11
35

33
1

11
33

82
5.

30
11

34
73

3.
50

11
35

15
7.

65
11

34
94

8.
75

M
D

G
-a

34
10

17
3

22
7

11
34

69
2

11
35

49
6

11
35

89
0

11
35

75
6

11
34

16
5.

85
11

35
14

8.
75

11
35

52
7.

75
11

35
33

8.
75

M
D

G
-a

35
10

17
3

22
7

11
34

48
6

11
35

40
2

11
35

67
0

11
35

31
7

11
33

77
3.

20
11

34
75

3.
55

11
35

09
9.

55
11

35
00

4.
45

M
D

G
-a

36
10

17
3

22
7

11
34

42
8

11
35

36
4

11
35

84
6

11
35

47
5

11
33

97
5.

75
11

34
90

2.
10

11
35

24
3.

05
11

35
07

9.
95

M
D

G
-a

37
10

17
3

22
7

11
35

19
5

11
35

95
3

11
36

59
0

11
35

95
8

11
34

20
8.

20
11

35
38

0.
60

11
35

80
6.

55
11

35
57

6.
70

M
D

G
-a

38
10

17
3

22
7

11
34

87
2

11
35

77
7

11
36

12
3

11
35

67
9

11
34

25
3.

95
11

35
10

4.
85

11
35

51
0.

45
11

35
34

2.
20

M
D

G
-a

39
10

17
3

22
7

11
34

27
2

11
35

34
0

11
35

72
4

11
35

56
1

11
33

66
7.

75
11

34
74

5.
10

11
35

07
3.

45
11

34
88

7.
85

M
D

G
-a

40
10

17
3

22
7

11
34

90
4

11
36

11
7

11
36

59
3

11
36

47
3

11
34

55
1.

85
11

35
63

1.
90

11
35

97
2.

50
11

35
97

6.
25

A
vg

.
11

34
64

4.
90

11
35

47
5.

80
11

35
84

5.
30

11
35

67
3.

65
11

33
95

9.
71

11
34

94
0.

21
11

35
25

3.
89

11
35

21
5.

66

#B
es

t
0

0
17

3
0

0
14

6

p-
va

lu
e

0.
00

00
82

0.
00

03
15

1
0.

00
00

82
0.

00
00

82
1

67

Table 7.2: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large DGS instances with n = 2000, m = 25, Lg = 51, and Ug = 109.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
25

51
10

9
54

00
45

54
12

75
54

18
57

54
14

41
53

95
89

.0
0

54
06

16
.5

0
54

12
92

.2
0

54
08

84
.5

5

M
D

G
-a

22
25

51
10

9
53

99
96

54
10

35
54

17
75

54
12

98
53

94
31

.7
5

54
04

24
.0

0
54

12
56

.2
5

54
08

43
.6

5

M
D

G
-a

23
25

51
10

9
53

98
71

54
07

92
54

14
95

54
10

41
53

93
49

.7
0

54
04

23
.7

0
54

10
63

.3
0

54
06

38
.3

5

M
D

G
-a

24
25

51
10

9
54

00
67

54
10

17
54

17
22

54
11

01
53

95
59

.7
0

54
06

37
.9

5
54

12
78

.8
0

54
08

28
.6

5

M
D

G
-a

25
25

51
10

9
53

99
85

54
11

11
54

18
08

54
13

57
53

96
28

.1
0

54
06

97
.4

5
54

14
74

.6
5

54
09

15
.7

0

M
D

G
-a

26
25

51
10

9
53

98
57

54
09

86
54

16
61

54
11

66
53

95
33

.8
5

54
05

57
.3

5
54

12
88

.9
5

54
08

71
.2

5

M
D

G
-a

27
25

51
10

9
53

96
92

54
08

49
54

14
78

54
08

64
53

92
38

.4
5

54
03

75
.3

5
54

10
99

.6
0

54
06

21
.8

0

M
D

G
-a

28
25

51
10

9
54

00
98

54
12

60
54

17
30

54
13

17
53

95
12

.3
0

54
05

71
.7

5
54

12
39

.9
0

54
08

22
.6

0

M
D

G
-a

29
25

51
10

9
54

02
20

54
08

89
54

15
92

54
12

08
53

96
89

.4
0

54
05

69
.3

0
54

13
49

.0
5

54
08

67
.1

5

M
D

G
-a

30
25

51
10

9
54

01
05

54
08

38
54

18
49

54
10

43
53

94
44

.0
0

54
05

14
.1

5
54

13
05

.7
5

54
07

84
.3

5

M
D

G
-a

31
25

51
10

9
54

03
20

54
10

95
54

18
79

54
14

74
53

97
17

.7
0

54
07

68
.1

5
54

14
51

.2
0

54
10

58
.2

0

M
D

G
-a

32
25

51
10

9
54

01
34

54
10

32
54

16
35

54
12

15
53

97
23

.5
0

54
06

50
.4

5
54

11
67

.3
5

54
08

85
.9

0

M
D

G
-a

33
25

51
10

9
54

00
39

54
08

63
54

18
34

54
14

39
53

94
42

.5
0

54
05

20
.4

0
54

12
32

.4
5

54
08

93
.1

0

M
D

G
-a

34
25

51
10

9
54

03
16

54
08

43
54

16
01

54
12

30
53

96
91

.3
5

54
05

46
.5

0
54

12
79

.1
5

54
09

85
.6

5

M
D

G
-a

35
25

51
10

9
54

01
08

54
09

77
54

18
36

54
15

81
53

94
86

.3
5

54
04

05
.6

0
54

11
77

.2
5

54
08

67
.9

5

M
D

G
-a

36
25

51
10

9
53

99
50

54
10

45
54

17
29

54
14

46
53

95
34

.4
0

54
04

97
.2

0
54

12
67

.8
5

54
09

04
.2

0

M
D

G
-a

37
25

51
10

9
54

03
64

54
13

39
54

19
31

54
16

51
53

99
14

.4
0

54
07

50
.0

0
54

13
97

.6
5

54
10

07
.2

0

M
D

G
-a

38
25

51
10

9
53

99
87

54
12

84
54

16
86

54
14

17
53

94
87

.0
5

54
06

89
.4

0
54

13
99

.7
0

54
09

18
.4

0

M
D

G
-a

39
25

51
10

9
53

99
93

54
11

24
54

14
77

54
12

05
53

94
19

.0
0

54
04

80
.5

0
54

10
26

.8
5

54
07

60
.1

0

M
D

G
-a

40
25

51
10

9
54

02
77

54
13

82
54

20
67

54
15

73
53

98
46

.9
5

54
09

51
.1

5
54

16
67

.3
5

54
11

60
.4

0

A
vg

.
54

00
71

.2
0

54
10

51
.8

0
54

17
32

.1
0

54
13

03
.3

5
53

95
61

.9
7

54
05

82
.3

4
54

12
85

.7
6

54
08

75
.9

6

#B
es

t
0

0
20

0
0

0
20

0

p-
va

lu
e

0.
00

00
82

0.
00

00
82

1
0.

00
00

82
0.

00
00

82
1

68

Table 7.3: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large DGS instances with n = 2000, m = 50, Lg = 26, and Ug = 54.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
50

26
54

29
12

99
29

25
39

29
34

96
29

27
35

29
09

87
.3

0
29

22
96

.9
5

29
30

91
.4

5
29

25
62

.8
0

M
D

G
-a

22
50

26
54

29
19

03
29

25
90

29
34

28
29

29
15

29
11

08
.7

5
29

22
83

.1
5

29
29

69
.8

0
29

26
30

.2
0

M
D

G
-a

23
50

26
54

29
15

83
29

26
13

29
32

77
29

27
97

29
10

54
.6

0
29

22
41

.7
5

29
29

33
.4

5
29

24
96

.5
0

M
D

G
-a

24
50

26
54

29
13

69
29

24
85

29
33

28
29

29
51

29
10

26
.4

5
29

22
39

.9
0

29
29

58
.1

5
29

25
97

.6
5

M
D

G
-a

25
50

26
54

29
15

23
29

27
66

29
32

64
29

29
01

29
10

75
.9

5
29

24
03

.3
5

29
30

46
.3

0
29

25
96

.1
5

M
D

G
-a

26
50

26
54

29
15

78
29

25
15

29
34

03
29

29
81

29
11

10
.1

5
29

23
17

.6
0

29
30

29
.9

5
29

26
18

.3
5

M
D

G
-a

27
50

26
54

29
12

81
29

26
91

29
32

57
29

28
57

29
10

18
.7

5
29

22
66

.7
0

29
28

25
.1

5
29

24
82

.3
5

M
D

G
-a

28
50

26
54

29
14

09
29

25
11

29
33

55
29

28
61

29
09

89
.4

0
29

22
73

.4
5

29
30

80
.4

0
29

25
95

.5
5

M
D

G
-a

29
50

26
54

29
13

96
29

27
70

29
33

87
29

29
76

29
10

42
.0

5
29

23
20

.9
0

29
30

79
.8

0
29

26
92

.6
0

M
D

G
-a

30
50

26
54

29
15

36
29

27
70

29
35

24
29

30
00

29
11

49
.3

5
29

23
24

.2
0

29
29

98
.1

0
29

25
46

.6
5

M
D

G
-a

31
50

26
54

29
15

93
29

27
82

29
33

80
29

33
29

29
11

98
.2

0
29

24
24

.4
0

29
31

85
.3

5
29

27
43

.1
0

M
D

G
-a

32
50

26
54

29
16

07
29

26
55

29
34

26
29

28
51

29
11

02
.2

5
29

23
24

.9
5

29
27

47
.0

5
29

25
95

.8
5

M
D

G
-a

33
50

26
54

29
14

91
29

25
26

29
31

71
29

28
50

29
10

56
.5

5
29

23
54

.8
5

29
30

03
.6

0
29

25
55

.3
5

M
D

G
-a

34
50

26
54

29
16

01
29

25
46

29
35

15
29

29
63

29
11

05
.8

5
29

23
00

.3
5

29
31

38
.4

5
29

26
92

.7
5

M
D

G
-a

35
50

26
54

29
14

78
29

28
01

29
33

70
29

28
27

29
10

60
.8

5
29

22
58

.0
0

29
29

22
.5

0
29

25
71

.5
0

M
D

G
-a

36
50

26
54

29
16

55
29

25
06

29
32

58
29

28
40

29
11

48
.0

0
29

22
77

.1
0

29
30

08
.4

0
29

25
61

.0
0

M
D

G
-a

37
50

26
54

29
15

28
29

27
36

29
33

78
29

28
72

29
11

82
.7

0
29

23
69

.2
0

29
30

36
.4

5
29

26
51

.9
0

M
D

G
-a

38
50

26
54

29
14

68
29

27
89

29
34

77
29

29
26

29
11

20
.5

5
29

23
20

.2
0

29
30

18
.3

0
29

26
39

.0
0

M
D

G
-a

39
50

26
54

29
13

53
29

25
70

29
32

60
29

28
34

29
10

48
.1

0
29

22
26

.6
5

29
28

47
.6

0
29

25
52

.6
5

M
D

G
-a

40
50

26
54

29
16

14
29

28
85

29
34

28
29

29
46

29
12

12
.8

5
29

24
44

.0
0

29
32

25
.5

5
29

27
42

.5
0

A
vg

.
29

15
13

.2
5

29
26

52
.3

0
29

33
69

.1
0

29
29

10
.6

0
29

10
89

.9
3

29
23

13
.3

8
29

30
07

.2
9

29
26

06
.2

2

#B
es

t
0

0
20

0
0

0
20

0

p-
va

lu
e

0.
00

00
82

0.
00

00
7

1
0.

00
00

82
0.

00
00

82
1

69

Table 7.4: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large DGS instances with n = 2000, m = 50, Lg = 32, and Ug = 48.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
50

32
48

27
29

80
27

43
16

27
49

75
27

48
01

27
27

14
.1

5
27

39
77

.6
0

27
45

91
.4

5
27

44
46

.5
5

M
D

G
-a

22
50

32
48

27
30

28
27

43
57

27
49

23
27

44
90

27
26

01
.5

0
27

40
21

.9
0

27
45

56
.1

0
27

43
31

.1
5

M
D

G
-a

23
50

32
48

27
31

64
27

44
42

27
48

05
27

45
20

27
26

39
.0

5
27

39
98

.1
0

27
44

82
.0

5
27

42
53

.2
5

M
D

G
-a

24
50

32
48

27
31

42
27

44
53

27
50

24
27

46
98

27
26

62
.1

5
27

39
70

.6
0

27
45

79
.1

5
27

44
31

.0
5

M
D

G
-a

25
50

32
48

27
30

57
27

45
60

27
50

95
27

45
78

27
26

91
.9

0
27

41
31

.8
0

27
46

52
.5

5
27

43
49

.5
5

M
D

G
-a

26
50

32
48

27
32

31
27

42
71

27
47

86
27

48
40

27
26

71
.9

5
27

40
03

.0
0

27
45

36
.9

5
27

44
18

.7
5

M
D

G
-a

27
50

32
48

27
28

59
27

43
03

27
46

22
27

46
49

27
25

54
.4

0
27

39
33

.7
0

27
44

39
.6

0
27

43
11

.0
0

M
D

G
-a

28
50

32
48

27
32

17
27

41
75

27
48

93
27

46
47

27
26

22
.6

5
27

39
66

.8
5

27
45

71
.3

5
27

42
83

.8
5

M
D

G
-a

29
50

32
48

27
31

58
27

42
78

27
48

53
27

46
47

27
27

52
.9

5
27

40
40

.4
5

27
45

53
.5

0
27

43
49

.4
0

M
D

G
-a

30
50

32
48

27
31

19
27

43
98

27
49

90
27

48
00

27
26

68
.1

0
27

39
66

.7
0

27
45

97
.2

5
27

43
70

.9
0

M
D

G
-a

31
50

32
48

27
30

67
27

44
40

27
49

26
27

46
41

27
27

03
.1

5
27

41
07

.3
0

27
47

20
.1

0
27

45
16

.5
0

M
D

G
-a

32
50

32
48

27
32

01
27

43
81

27
48

86
27

46
89

27
25

82
.9

5
27

39
75

.8
0

27
43

83
.9

5
27

43
62

.5
0

M
D

G
-a

33
50

32
48

27
31

55
27

44
37

27
50

54
27

46
23

27
26

90
.4

5
27

40
42

.1
0

27
45

73
.7

5
27

43
68

.7
5

M
D

G
-a

34
50

32
48

27
32

49
27

43
34

27
49

36
27

45
51

27
26

77
.6

0
27

40
81

.1
5

27
46

46
.7

5
27

43
83

.8
5

M
D

G
-a

35
50

32
48

27
30

30
27

41
59

27
47

94
27

45
33

27
26

62
.9

0
27

39
49

.8
0

27
44

54
.7

0
27

42
48

.9
5

M
D

G
-a

36
50

32
48

27
31

03
27

42
40

27
49

18
27

47
45

27
26

70
.9

0
27

40
32

.6
5

27
45

97
.7

0
27

43
20

.7
5

M
D

G
-a

37
50

32
48

27
32

92
27

42
88

27
51

42
27

45
81

27
27

11
.2

5
27

40
49

.7
5

27
46

78
.2

5
27

43
66

.9
0

M
D

G
-a

38
50

32
48

27
34

26
27

43
81

27
49

66
27

46
53

27
27

99
.2

5
27

40
43

.7
0

27
45

37
.1

0
27

44
10

.8
5

M
D

G
-a

39
50

32
48

27
31

30
27

42
14

27
47

43
27

44
72

27
26

60
.6

0
27

39
49

.7
0

27
44

40
.0

0
27

42
99

.0
5

M
D

G
-a

40
50

32
48

27
32

89
27

44
28

27
50

67
27

47
96

27
28

27
.2

0
27

41
33

.8
0

27
47

01
.7

5
27

45
08

.2
0

A
vg

.
27

31
44

.8
5

27
43

42
.7

5
27

49
19

.9
0

27
46

47
.7

0
27

26
78

.2
5

27
40

18
.8

2
27

45
64

.7
0

27
43

66
.5

9

#B
es

t
0

0
18

2
0

0
20

0

p-
va

lu
e

0.
00

00
82

0.
00

00
82

1
0.

00
00

82
0.

00
00

82
1

70

Table 7.5: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large DGS instances with n = 2000, m = 100, Lg = 13, and Ug = 27.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
10

0
13

27
15

93
85

16
02

13
16

09
55

16
05

69
15

90
11

.0
5

15
99

11
.5

5
16

06
86

.5
5

16
03

53
.4

5

M
D

G
-a

22
10

0
13

27
15

91
87

16
02

13
16

09
11

16
05

19
15

89
56

.7
5

15
99

25
.8

0
16

06
12

.9
0

16
03

46
.1

0

M
D

G
-a

23
10

0
13

27
15

93
59

16
00

35
16

09
83

16
05

83
15

89
98

.4
5

15
98

50
.2

0
16

05
75

.8
0

16
03

10
.7

5

M
D

G
-a

24
10

0
13

27
15

93
72

16
01

01
16

08
14

16
05

48
15

90
00

.9
5

15
99

20
.2

5
16

05
94

.2
5

16
03

46
.5

5

M
D

G
-a

25
10

0
13

27
15

93
19

16
01

67
16

08
03

16
06

00
15

89
96

.7
0

15
99

04
.5

5
16

05
69

.6
0

16
04

14
.7

5

M
D

G
-a

26
10

0
13

27
15

92
49

16
01

25
16

09
27

16
06

06
15

89
97

.2
0

15
99

20
.6

0
16

06
27

.6
5

16
03

90
.7

0

M
D

G
-a

27
10

0
13

27
15

92
84

16
00

99
16

08
67

16
04

95
15

89
45

.7
5

15
98

58
.6

0
16

04
83

.9
0

16
03

05
.1

5

M
D

G
-a

28
10

0
13

27
15

93
58

16
01

57
16

09
97

16
04

72
15

89
98

.1
0

15
99

23
.7

5
16

06
01

.3
0

16
03

14
.6

0

M
D

G
-a

29
10

0
13

27
15

92
26

16
01

92
16

08
88

16
05

98
15

90
32

.5
5

15
98

77
.6

5
16

05
72

.0
0

16
03

89
.7

0

M
D

G
-a

30
10

0
13

27
15

93
42

16
01

51
16

08
13

16
05

10
15

89
60

.1
5

15
99

45
.9

0
16

05
85

.5
0

16
03

15
.1

0

M
D

G
-a

31
10

0
13

27
15

93
54

16
01

25
16

11
00

16
06

00
15

90
86

.9
0

15
99

83
.0

0
16

07
25

.4
5

16
04

10
.8

0

M
D

G
-a

32
10

0
13

27
15

94
66

16
00

62
16

08
02

16
04

63
15

90
57

.2
5

15
99

00
.7

5
16

04
24

.7
0

16
03

24
.0

5

M
D

G
-a

33
10

0
13

27
15

93
95

16
02

10
16

10
64

16
05

12
15

89
79

.0
0

15
99

10
.1

5
16

06
52

.0
0

16
03

71
.0

5

M
D

G
-a

34
10

0
13

27
15

93
32

16
01

04
16

07
91

16
05

56
15

90
07

.1
0

15
99

27
.4

5
16

05
64

.4
5

16
04

01
.2

0

M
D

G
-a

35
10

0
13

27
15

93
84

16
01

03
16

08
63

16
05

30
15

89
75

.0
5

15
98

93
.1

5
16

05
73

.9
0

16
02

96
.3

5

M
D

G
-a

36
10

0
13

27
15

93
54

16
01

23
16

10
00

16
05

63
15

90
28

.9
0

15
98

72
.0

5
16

06
79

.0
0

16
04

06
.3

5

M
D

G
-a

37
10

0
13

27
15

93
75

16
00

93
16

08
71

16
06

44
15

90
19

.2
5

15
99

04
.5

5
16

06
19

.2
0

16
04

38
.9

0

M
D

G
-a

38
10

0
13

27
15

94
27

16
01

43
16

07
96

16
05

73
15

90
42

.0
5

15
99

12
.8

5
16

05
23

.6
5

16
03

62
.5

0

M
D

G
-a

39
10

0
13

27
15

94
50

16
00

97
16

08
12

16
04

35
15

89
79

.5
0

15
98

37
.3

5
16

04
40

.4
5

16
03

20
.2

5

M
D

G
-a

40
10

0
13

27
15

96
14

16
02

31
16

10
47

16
05

96
15

91
13

.3
0

15
99

55
.2

0
16

07
02

.9
5

16
04

16
.7

0

A
vg

.
15

93
61

.6
0

16
01

37
.2

0
16

09
05

.2
0

16
05

48
.6

0
15

90
09

.3
0

15
99

06
.7

7
16

05
90

.7
6

16
03

61
.7

5

#B
es

t
0

0
20

0
0

0
20

0

p-
va

lu
e

0.
00

00
82

0.
00

00
82

1
0.

00
00

82
0.

00
00

82
1

71

Table 7.6: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large DGS instances with n = 2000, m = 200, Lg = 6, and Ug = 14.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
20

0
6

14
88

81
6

88
91

7
89

16
6

88
71

1
88

59
6.

05
88

75
6.

20
88

98
5.

10
88

53
4.

90

M
D

G
-a

22
20

0
6

14
88

68
8

88
90

7
89

31
2

88
69

3
88

55
2.

00
88

74
0.

25
89

02
8.

80
88

53
2.

90

M
D

G
-a

23
20

0
6

14
88

71
1

88
88

2
89

14
4

88
78

8
88

55
0.

75
88

74
5.

30
88

94
3.

15
88

54
4.

00

M
D

G
-a

24
20

0
6

14
88

79
8

88
85

5
89

27
4

88
60

9
88

53
7.

10
88

75
8.

35
88

96
9.

10
88

51
0.

40

M
D

G
-a

25
20

0
6

14
88

73
7

88
94

3
89

28
3

88
66

5
88

57
2.

10
88

77
9.

85
88

94
7.

70
88

53
7.

95

M
D

G
-a

26
20

0
6

14
88

78
0

88
88

1
89

48
2

88
74

6
88

60
7.

70
88

76
4.

05
89

00
0.

35
88

57
7.

05

M
D

G
-a

27
20

0
6

14
88

70
4

88
85

5
89

17
2

88
50

6
88

53
0.

30
88

72
0.

85
88

92
3.

70
88

43
4.

90

M
D

G
-a

28
20

0
6

14
88

84
1

88
91

4
89

32
3

88
64

9
88

60
6.

6
88

74
3.

70
89

03
3.

20
88

53
8.

15

M
D

G
-a

29
20

0
6

14
88

82
0

89
08

5
89

30
7

88
57

4
88

51
3.

85
88

74
0.

40
88

92
2.

40
88

49
5.

65

M
D

G
-a

30
20

0
6

14
88

66
6

88
87

7
89

23
9

88
62

6
88

52
5.

15
88

76
6.

45
88

98
2.

80
88

52
8.

95

M
D

G
-a

31
20

0
6

14
88

77
2

88
95

8
89

13
8

88
65

8
88

57
1.

3
88

80
5.

35
89

02
1.

15
88

54
3.

80

M
D

G
-a

32
20

0
6

14
88

78
3

88
93

1
89

28
1

88
67

5
88

57
0.

45
88

81
6.

70
89

06
7.

35
88

52
2.

75

M
D

G
-a

33
20

0
6

14
88

80
3

88
88

8
89

32
9

88
66

5
88

55
1.

95
88

79
2.

95
89

04
5.

25
88

55
3.

80

M
D

G
-a

34
20

0
6

14
88

67
6

88
93

1
89

18
3

88
66

6
88

54
6.

35
88

78
3.

10
88

96
8.

70
88

56
1.

40

M
D

G
-a

35
20

0
6

14
88

77
4

88
93

8
89

25
3

88
68

1
88

57
9.

35
88

77
8.

10
89

03
0.

85
88

55
5.

80

M
D

G
-a

36
20

0
6

14
88

72
9

89
00

6
89

35
8

88
64

8
88

59
1.

6
88

85
5.

85
88

99
8.

05
88

50
5.

90

M
D

G
-a

37
20

0
6

14
88

73
8

89
00

8
89

35
7

88
65

4
88

54
7.

75
88

84
3.

90
88

94
5.

90
88

55
0.

40

M
D

G
-a

38
20

0
6

14
88

74
5

89
03

4
89

51
6

88
65

8
88

52
5.

4
88

85
9.

50
89

06
9.

90
88

54
1.

50

M
D

G
-a

39
20

0
6

14
88

86
0

89
00

8
89

29
3

88
73

3
88

57
1.

4
88

79
6.

25
89

00
7.

45
88

51
9.

65

M
D

G
-a

40
20

0
6

14
88

73
4

88
97

5
89

21
6

88
71

4
88

55
3.

4
88

81
9.

35
89

01
5.

55
88

58
2.

15

A
vg

.
88

75
8.

75
88

93
9.

65
89

28
1.

30
88

66
5.

95
88

56
0.

03
88

78
3.

32
88

99
5.

32
88

53
3.

60

#B
es

t
0

0
20

0
0

0
20

0

p-
va

lu
e

1
1

1
1

1
1

72

Table 7.7: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large EGS instances with n = 2000, m = 10.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
10

20
0

20
0

11
15

95
6

11
16

73
6

11
17

42
5

11
17

03
1

11
15

36
9.

15
11

16
25

5.
05

11
16

82
7.

75
11

16
57

2.
10

M
D

G
-a

22
10

20
0

20
0

11
15

64
9

11
16

53
9

11
16

91
1

11
17

02
4

11
15

24
7.

65
11

16
14

1.
60

11
16

52
1.

65
11

16
39

9.
30

M
D

G
-a

23
10

20
0

20
0

11
15

44
0

11
16

25
9

11
16

73
3

11
16

45
8

11
14

99
4.

40
11

15
85

0.
75

11
16

13
1.

20
11

16
13

1.
10

M
D

G
-a

24
10

20
0

20
0

11
16

11
4

11
16

80
5

11
16

90
6

11
16

92
8

11
15

39
0.

75
11

16
17

0.
55

11
16

38
6.

25
11

16
50

3.
25

M
D

G
-a

25
10

20
0

20
0

11
16

51
1

11
17

13
6

11
17

36
6

11
17

26
7

11
15

68
7.

45
11

16
44

8.
00

11
16

95
0.

95
11

16
81

7.
65

M
D

G
-a

26
10

20
0

20
0

11
15

88
1

11
16

68
8

11
16

98
6

11
16

75
8

11
15

24
7.

15
11

15
98

0.
55

11
16

44
2.

90
11

16
34

0.
20

M
D

G
-a

27
10

20
0

20
0

11
15

35
2

11
16

29
9

11
16

75
9

11
16

53
9

11
14

91
2.

05
11

15
79

9.
90

11
16

19
4.

95
11

15
96

4.
60

M
D

G
-a

28
10

20
0

20
0

11
15

61
9

11
16

61
0

11
17

12
8

11
16

88
1

11
15

14
5.

90
11

16
04

8.
90

11
16

69
9.

00
11

16
43

6.
75

M
D

G
-a

29
10

20
0

20
0

11
16

07
3

11
16

81
3

11
17

33
8

11
17

24
9

11
15

43
3.

90
11

16
39

6.
05

11
16

89
0.

00
11

16
71

1.
30

M
D

G
-a

30
10

20
0

20
0

11
15

72
5

11
16

38
4

11
16

74
2

11
16

69
0

11
15

22
5.

45
11

16
04

4.
75

11
16

40
4.

80
11

16
38

7.
15

M
D

G
-a

31
10

20
0

20
0

11
16

32
5

11
17

44
9

11
17

74
4

11
17

26
7

11
15

80
3.

25
11

16
74

9.
35

11
17

17
1.

65
11

17
00

5.
70

M
D

G
-a

32
10

20
0

20
0

11
16

29
2

11
16

61
2

11
17

31
9

11
17

02
8

11
15

43
7.

25
11

16
23

2.
20

11
16

61
7.

00
11

16
59

3.
15

M
D

G
-a

33
10

20
0

20
0

11
15

53
5

11
16

59
4

11
17

24
5

11
16

79
1

11
15

05
5.

75
11

16
09

7.
35

11
16

48
4.

35
11

16
35

3.
30

M
D

G
-a

34
10

20
0

20
0

11
16

10
0

11
16

96
5

11
17

28
6

11
17

09
9

11
15

58
7.

95
11

16
43

2.
75

11
16

84
8.

95
11

16
64

1.
80

M
D

G
-a

35
10

20
0

20
0

11
15

50
4

11
16

52
1

11
16

75
0

11
16

70
9

11
15

04
3.

60
11

15
94

2.
60

11
16

41
0.

15
11

16
37

5.
50

M
D

G
-a

36
10

20
0

20
0

11
15

99
8

11
16

63
4

11
16

83
8

11
16

72
3

11
15

20
0.

45
11

16
06

5.
75

11
16

44
2.

15
11

16
36

5.
00

M
D

G
-a

37
10

20
0

20
0

11
16

44
2

11
17

09
3

11
17

75
8

11
17

44
0

11
15

85
8.

45
11

16
48

9.
40

11
16

99
6.

30
11

16
95

1.
95

M
D

G
-a

38
10

20
0

20
0

11
16

14
7

11
16

79
7

11
17

32
0

11
17

20
9

11
15

41
8.

90
11

16
40

0.
90

11
16

80
4.

10
11

16
67

3.
15

M
D

G
-a

39
10

20
0

20
0

11
15

61
7

11
16

70
7

11
17

17
3

11
17

06
4

11
14

99
5.

10
11

15
91

8.
15

11
16

40
4.

45
11

16
26

4.
95

M
D

G
-a

40
10

20
0

20
0

11
16

53
3

11
17

22
3

11
17

91
2

11
17

76
9

11
16

04
4.

15
11

16
81

0.
95

11
17

36
0.

25
11

17
24

0.
85

A
vg

.
11

15
94

0.
65

11
16

74
3.

20
11

17
18

1.
95

11
16

99
6.

20
11

15
35

4.
94

11
16

21
3.

78
11

16
64

9.
44

11
16

53
6.

44

#B
es

t
0

0
18

2
0

0
19

1

p-
va

lu
e

0.
00

00
82

0.
00

02
04

1
0.

00
00

82
0.

00
00

82
1

73

Table 7.8: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large EGS instances with n = 2000, m = 25.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
25

80
80

48
69

34
48

77
47

48
82

54
48

78
70

48
61

30
.7

0
48

72
86

.0
5

48
79

07
.6

5
48

75
16

.6
5

M
D

G
-a

22
25

80
80

48
65

82
48

74
44

48
81

52
48

77
82

48
60

18
.5

5
48

71
62

.5
5

48
76

77
.1

5
48

73
78

.3
0

M
D

G
-a

23
25

80
80

48
64

86
48

73
78

48
79

96
48

76
54

48
58

21
.3

0
48

71
77

.1
0

48
76

14
.9

5
48

72
56

.4
5

M
D

G
-a

24
25

80
80

48
66

53
48

75
60

48
81

52
48

77
40

48
60

88
.4

0
48

72
54

.8
5

48
77

62
.2

5
48

73
89

.6
0

M
D

G
-a

25
25

80
80

48
67

06
48

77
28

48
81

49
48

78
64

48
61

35
.9

0
48

73
74

.1
5

48
78

46
.3

5
48

74
99

.0
5

M
D

G
-a

26
25

80
80

48
66

48
48

75
50

48
83

16
48

77
10

48
60

47
.5

0
48

71
76

.8
5

48
78

04
.8

5
48

74
00

.0
5

M
D

G
-a

27
25

80
80

48
63

11
48

72
38

48
78

77
48

75
41

48
56

94
.1

5
48

69
61

.6
5

48
75

55
.4

0
48

72
16

.8
0

M
D

G
-a

28
25

80
80

48
65

34
48

74
55

48
80

98
48

78
35

48
60

46
.5

5
48

71
69

.7
5

48
77

98
.2

0
48

74
12

.5
5

M
D

G
-a

29
25

80
80

48
65

91
48

76
39

48
81

50
48

77
67

48
60

69
.9

5
48

73
03

.3
0

48
78

79
.9

0
48

73
79

.2
5

M
D

G
-a

30
25

80
80

48
63

66
48

76
06

48
81

36
48

76
17

48
58

80
.0

0
48

71
88

.2
5

48
77

23
.6

0
48

73
34

.0
0

M
D

G
-a

31
25

80
80

48
68

25
48

77
32

48
85

32
48

79
31

48
63

35
.1

0
48

75
01

.1
5

48
80

79
.1

5
48

76
74

.7
0

M
D

G
-a

32
25

80
80

48
65

86
48

77
29

48
83

19
48

77
82

48
61

11
.4

5
48

72
64

.4
0

48
78

84
.7

0
48

73
64

.4
0

M
D

G
-a

33
25

80
80

48
64

29
48

75
29

48
83

49
48

75
81

48
59

01
.8

0
48

72
38

.0
0

48
78

56
.8

5
48

73
57

.9
0

M
D

G
-a

34
25

80
80

48
66

83
48

75
30

48
84

13
48

78
86

48
61

58
.0

5
48

73
38

.8
5

48
78

99
.3

5
48

75
05

.8
0

M
D

G
-a

35
25

80
80

48
67

21
48

75
37

48
81

86
48

76
63

48
59

03
.3

5
48

71
34

.9
5

48
77

61
.8

0
48

73
52

.4
0

M
D

G
-a

36
25

80
80

48
68

07
48

74
74

48
82

24
48

78
29

48
60

09
.6

0
48

71
43

.0
0

48
77

49
.5

0
48

75
09

.5
0

M
D

G
-a

37
25

80
80

48
67

21
48

76
52

48
84

14
48

78
24

48
61

89
.4

5
48

73
38

.3
5

48
79

60
.7

5
48

74
70

.8
5

M
D

G
-a

38
25

80
80

48
65

75
48

75
76

48
84

12
48

76
86

48
61

05
.3

5
48

72
77

.6
5

48
78

74
.8

0
48

73
98

.9
0

M
D

G
-a

39
25

80
80

48
65

25
48

74
50

48
83

41
48

76
09

48
59

76
.7

0
48

71
52

.9
5

48
77

69
.0

5
48

73
62

.3
0

M
D

G
-a

40
25

80
80

48
68

98
48

78
90

48
84

81
48

82
99

48
61

26
.1

0
48

75
36

.8
5

48
80

98
.2

5
48

77
99

.2
5

A
vg

.
48

66
29

.0
5

48
75

72
.2

0
48

82
47

.5
5

48
77

73
.5

0
48

60
37

.5
0

48
72

49
.0

3
48

78
25

.2
3

48
74

28
.9

4

#B
es

t
0

0
20

0
0

0
20

0

p-
va

lu
e

0.
00

00
82

0.
00

00
82

1
0.

00
00

82
0.

00
00

82
1

74

Table 7.9: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large EGS instances with n = 2000, m = 50.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
50

40
40

26
42

98
26

56
70

26
60

07
26

60
81

26
35

51
.4

5
26

53
41

.9
0

26
57

51
.6

0
26

57
18

.7
0

M
D

G
-a

22
50

40
40

26
43

59
26

56
05

26
61

89
26

59
89

26
36

09
.8

0
26

52
91

.1
0

26
56

89
.1

5
26

56
03

.5
0

M
D

G
-a

23
50

40
40

26
40

06
26

55
67

26
60

29
26

57
98

26
36

88
.3

5
26

52
94

.4
0

26
56

47
.9

0
26

56
02

.5
5

M
D

G
-a

24
50

40
40

26
40

27
26

55
64

26
61

25
26

59
57

26
35

63
.7

5
26

52
57

.2
5

26
57

02
.6

5
26

57
21

.7
0

M
D

G
-a

25
50

40
40

26
42

08
26

56
31

26
61

02
26

60
13

26
37

03
.2

5
26

53
57

.5
0

26
57

54
.7

0
26

57
17

.2
0

M
D

G
-a

26
50

40
40

26
44

21
26

54
40

26
63

76
26

59
73

26
37

36
.0

5
26

52
39

.7
0

26
57

84
.4

5
26

56
81

.1
0

M
D

G
-a

27
50

40
40

26
41

31
26

54
74

26
58

64
26

59
72

26
34

85
.5

0
26

51
05

.6
0

26
55

52
.6

0
26

56
31

.4
5

M
D

G
-a

28
50

40
40

26
41

68
26

55
35

26
61

72
26

59
78

26
37

23
.3

0
26

52
85

.6
0

26
56

91
.2

0
26

57
03

.4
5

M
D

G
-a

29
50

40
40

26
40

96
26

56
59

26
61

80
26

59
86

26
37

75
.1

0
26

53
46

.1
0

26
57

90
.6

0
26

56
74

.0
5

M
D

G
-a

30
50

40
40

26
43

29
26

55
38

26
59

15
26

59
42

26
36

89
.5

0
26

53
10

.1
0

26
56

02
.7

5
26

56
54

.4
5

M
D

G
-a

31
50

40
40

26
42

74
26

57
79

26
63

56
26

61
86

26
37

55
.0

0
26

54
59

.9
5

26
58

36
.8

0
26

58
44

.9
5

M
D

G
-a

32
50

40
40

26
41

89
26

54
48

26
62

06
26

60
33

26
36

94
.7

0
26

52
43

.6
0

26
57

27
.5

5
26

57
14

.5
5

M
D

G
-a

33
50

40
40

26
41

25
26

55
90

26
62

76
26

58
40

26
38

08
.0

5
26

53
31

.1
0

26
56

91
.3

0
26

56
44

.0
0

M
D

G
-a

34
50

40
40

26
43

05
26

55
95

26
60

02
26

59
72

26
37

02
.5

5
26

53
98

.1
5

26
57

77
.2

0
26

57
35

.6
5

M
D

G
-a

35
50

40
40

26
41

71
26

55
43

26
60

53
26

57
98

26
37

01
.7

0
26

52
54

.8
5

26
56

97
.8

0
26

55
63

.8
5

M
D

G
-a

36
50

40
40

26
43

35
26

55
73

26
60

58
26

60
06

26
37

00
.8

0
26

53
05

.6
5

26
56

39
.3

5
26

56
53

.1
5

M
D

G
-a

37
50

40
40

26
40

41
26

56
14

26
60

44
26

58
42

26
36

86
.8

5
26

52
71

.6
0

26
57

48
.2

5
26

57
08

.6
5

M
D

G
-a

38
50

40
40

26
40

39
26

56
27

26
60

89
26

58
90

26
36

13
.7

5
26

53
01

.8
0

26
57

20
.4

0
26

56
73

.2
0

M
D

G
-a

39
50

40
40

26
41

28
26

55
42

26
60

30
26

59
90

26
36

31
.3

0
26

52
68

.7
5

26
56

94
.0

0
26

56
74

.3
0

M
D

G
-a

40
50

40
40

26
42

25
26

57
03

26
62

05
26

60
91

26
38

12
.0

5
26

54
33

.2
0

26
58

90
.0

5
26

58
46

.5
5

A
vg

.
26

41
93

.7
5

26
55

84
.8

5
26

61
13

.9
0

26
59

66
.8

5
26

36
81

.6
4

26
53

04
.9

0
26

57
19

.5
2

26
56

88
.3

5

#B
es

t
0

0
17

3
0

0
14

6

p-
va

lu
e

0.
00

00
82

0.
00

00
82

1
0.

00
00

82
0.

00
00

82
1

75

Table 7.10: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large EGS instances with n = 2000, m = 100.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
10

0
20

20
14

45
28

14
51

12
14

55
26

14
61

61
14

38
74

.9
5

14
48

75
.1

5
14

51
97

.4
5

14
59

75
.3

5
M

D
G

-a
22

10
0

20
20

14
42

58
14

50
92

14
56

27
14

61
44

14
37

99
.9

5
14

48
40

.7
0

14
52

14
.4

5
14

59
62

.3
0

M
D

G
-a

23
10

0
20

20
14

42
97

14
51

20
14

54
44

14
61

68
14

38
73

.6
0

14
48

53
.4

0
14

50
98

.7
5

14
59

35
.4

0
M

D
G

-a
24

10
0

20
20

14
41

69
14

50
53

14
55

74
14

62
34

14
39

35
.0

5
14

48
90

.8
5

14
52

15
.9

0
14

59
26

.3
5

M
D

G
-a

25
10

0
20

20
14

44
00

14
51

57
14

54
76

14
61

52
14

39
58

.7
0

14
49

12
.5

5
14

52
05

.0
5

14
59

64
.4

0
M

D
G

-a
26

10
0

20
20

14
45

12
14

51
50

14
55

31
14

62
93

14
40

16
.4

5
14

49
71

.2
5

14
51

91
.9

5
14

59
93

.8
0

M
D

G
-a

27
10

0
20

20
14

43
22

14
49

74
14

54
08

14
60

51
14

38
49

.6
0

14
48

07
.7

5
14

51
49

.5
0

14
58

62
.7

0
M

D
G

-a
28

10
0

20
20

14
43

60
14

50
78

14
55

01
14

61
23

14
39

38
.8

0
14

48
70

.0
0

14
52

00
.6

5
14

59
53

.5
0

M
D

G
-a

29
10

0
20

20
14

42
30

14
52

56
14

55
28

14
61

57
14

39
40

.2
0

14
48

93
.9

0
14

52
27

.7
5

14
59

64
.8

0
M

D
G

-a
30

10
0

20
20

14
40

42
14

52
18

14
54

49
14

62
65

14
38

38
.4

0
14

48
73

.2
5

14
52

06
.3

0
14

59
76

.8
0

M
D

G
-a

31
10

0
20

20
14

42
78

14
50

92
14

56
72

14
61

14
14

40
21

.2
5

14
49

31
.8

5
14

52
77

.5
5

14
59

65
.6

5
M

D
G

-a
32

10
0

20
20

14
45

21
14

51
60

14
54

72
14

61
82

14
39

09
.6

5
14

48
87

.0
5

14
51

62
.1

0
14

59
88

.4
0

M
D

G
-a

33
10

0
20

20
14

42
83

14
52

44
14

56
50

14
62

19
14

39
67

.4
0

14
49

04
.7

5
14

52
32

.1
0

14
59

70
.6

0
M

D
G

-a
34

10
0

20
20

14
44

32
14

51
96

14
54

82
14

62
53

14
40

13
.3

0
14

48
78

.0
0

14
51

95
.5

5
14

59
81

.7
5

M
D

G
-a

35
10

0
20

20
14

41
97

14
51

54
14

54
73

14
61

16
14

38
71

.3
5

14
48

46
.1

5
14

51
72

.4
5

14
59

23
.7

0
M

D
G

-a
36

10
0

20
20

14
44

36
14

52
74

14
56

41
14

63
23

14
39

99
.2

5
14

48
81

.4
5

14
51

85
.0

0
14

59
16

.7
5

M
D

G
-a

37
10

0
20

20
14

41
41

14
51

94
14

55
24

14
61

30
14

39
16

.3
0

14
49

31
.6

0
14

52
13

.1
0

14
59

56
.9

0
M

D
G

-a
38

10
0

20
20

14
44

16
14

52
43

14
56

07
14

61
07

14
40

36
.5

5
14

49
33

.2
5

14
52

76
.5

5
14

59
68

.4
5

M
D

G
-a

39
10

0
20

20
14

43
21

14
50

37
14

57
06

14
60

88
14

39
25

.8
5

14
48

11
.9

0
14

51
91

.2
5

14
59

37
.4

0
M

D
G

-a
40

10
0

20
20

14
42

66
14

51
68

14
55

65
14

63
29

14
39

93
.5

0
14

49
22

.6
5

14
52

42
.6

5
14

60
05

.6
0

A
vg

.
14

43
20

.4
5

14
51

48
.6

0
14

55
42

.8
0

14
61

80
.4

5
14

39
34

.0
1

14
48

85
.8

7
14

52
02

.8
0

14
59

56
.5

3
#B

es
t

0
0

0
20

0
0

0
20

p-
va

lu
e

0.
00

00
82

0.
00

00
7

0.
00

00
76

0.
00

00
82

0.
00

00
82

0.
00

00
82

76

Table 7.11: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large EGS instances with n = 2000, m = 200.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-a

21
20

0
10

10
77

35
4

76
94

1
78

34
1

78
37

0
77

04
0.

75
76

82
4.

40
78

17
2.

60
78

26
0.

50
M

D
G

-a
22

20
0

10
10

77
33

3
76

90
0

78
33

8
78

34
9

77
10

3.
75

76
81

7.
75

78
15

0.
85

78
25

4.
80

M
D

G
-a

23
20

0
10

10
77

22
7

76
90

3
78

20
0

78
35

2
77

06
7.

70
76

80
5.

95
78

08
1.

85
78

24
4.

45
M

D
G

-a
24

20
0

10
10

77
51

7
77

02
3

78
34

9
78

40
3

77
03

4.
65

76
82

3.
40

78
12

7.
75

78
24

6.
85

M
D

G
-a

25
20

0
10

10
77

37
6

76
91

9
78

23
7

78
34

4
77

12
7.

85
76

84
9.

90
78

11
0.

25
78

24
7.

45
M

D
G

-a
26

20
0

10
10

77
48

2
76

93
5

78
29

5
78

37
4

77
14

3.
05

76
83

3.
20

78
14

7.
55

78
27

3.
00

M
D

G
-a

27
20

0
10

10
77

31
3

76
86

3
78

34
7

78
34

0
77

03
8.

00
76

76
4.

40
78

12
4.

55
78

18
2.

60
M

D
G

-a
28

20
0

10
10

77
33

4
76

94
9

78
30

3
78

39
3

77
07

5.
20

76
83

1.
35

78
18

7.
00

78
24

1.
50

M
D

G
-a

29
20

0
10

10
77

26
5

76
93

9
78

27
7

78
41

4
77

08
7.

80
76

83
9.

75
78

16
4.

50
78

26
5.

80
M

D
G

-a
30

20
0

10
10

77
47

0
76

94
7

78
29

7
78

40
5

77
15

9.
15

76
83

5.
40

78
14

6.
95

78
26

2.
20

M
D

G
-a

31
20

0
10

10
77

35
1

76
99

9
78

36
2

78
42

0
77

16
2.

85
76

85
0.

30
78

16
1.

55
78

27
2.

25
M

D
G

-a
32

20
0

10
10

77
29

6
76

93
4

78
22

7
78

31
2

77
04

8.
60

76
81

8.
25

78
13

2.
55

78
24

0.
80

M
D

G
-a

33
20

0
10

10
77

30
8

76
93

1
78

34
2

78
34

2
77

07
3.

95
76

82
3.

80
78

19
3.

15
78

24
6.

90
M

D
G

-a
34

20
0

10
10

77
31

7
76

97
2

78
36

6
78

35
8

77
13

6.
70

76
82

8.
15

78
17

2.
60

78
25

4.
65

M
D

G
-a

35
20

0
10

10
77

38
0

76
93

7
78

28
6

78
42

4
77

06
3.

50
76

83
2.

10
78

14
9.

60
78

25
5.

85
M

D
G

-a
36

20
0

10
10

77
30

1
76

93
7

78
30

4
78

39
7

77
09

8.
10

76
81

4.
90

78
18

0.
85

78
26

0.
05

M
D

G
-a

37
20

0
10

10
77

28
9

76
91

9
78

33
2

78
59

2
77

07
8.

75
76

84
4.

35
78

17
3.

45
78

27
9.

95
M

D
G

-a
38

20
0

10
10

77
42

8
76

90
8

78
35

5
78

39
9

77
12

4.
25

76
81

0.
05

78
16

6.
45

78
23

8.
30

M
D

G
-a

39
20

0
10

10
77

33
7

76
92

5
78

35
5

78
33

0
77

08
2.

40
76

81
6.

65
78

15
0.

80
78

24
5.

10
M

D
G

-a
40

20
0

10
10

77
38

5
76

96
3

78
35

6
78

38
1

77
13

3.
00

76
86

0.
00

78
18

0.
95

78
28

9.
65

A
vg

.
77

35
3.

15
76

93
7.

20
78

31
3.

45
78

38
4.

95
77

09
4.

00
76

82
6.

20
78

15
3.

79
78

25
3.

13
#B

es
t

0
0

4
17

0
0

0
20

p-
va

lu
e

0.
00

00
6

0.
00

00
76

0.
00

03
72

0.
00

00
82

0.
00

00
82

0.
00

00
82

77

Table 7.12: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large DGS instances with n = 3000, m = 50,Lg = 48, and Ug = 72.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-c

1
50

48
72

57
94

54
95

58
18

34
39

58
35

33
27

58
24

11
23

57
89

36
72

.2
0

58
15

75
22

.7
5

58
32

25
59

.1
0

58
20

20
64

.2
5

M
D

G
-c

2
50

48
72

57
95

02
56

58
17

71
31

58
35

70
64

58
23

90
03

57
88

96
24

.5
5

58
14

51
98

.8
0

58
29

92
40

.2
5

58
18

43
08

.3
0

M
D

G
-c

3
50

48
72

57
93

98
91

58
17

09
77

58
34

13
58

58
21

33
59

57
88

19
18

.3
0

58
12

31
00

.9
5

58
29

57
79

.2
5

58
17

24
16

.4
5

M
D

G
-c

4
50

48
72

57
94

28
01

58
20

12
17

58
33

61
51

58
22

24
18

57
88

32
81

.1
5

58
14

47
07

.2
5

58
28

44
23

.1
5

58
17

46
68

.3
0

M
D

G
-c

5
50

48
72

57
92

74
89

58
14

88
31

58
32

03
49

58
17

67
35

57
86

12
17

.4
5

58
11

67
49

.5
5

58
27

42
59

.1
5

58
15

66
40

.6
5

M
D

G
-c

6
50

48
72

57
91

67
10

58
14

46
69

58
31

24
74

58
20

17
38

57
86

29
22

.6
5

58
11

24
48

.7
5

58
27

76
56

.7
0

58
15

59
40

.3
0

M
D

G
-c

7
50

48
72

57
93

98
18

58
16

31
26

58
32

56
29

58
21

32
11

57
86

34
48

.2
5

58
11

77
06

.9
0

58
28

51
70

.9
0

58
16

64
20

.9
5

M
D

G
-c

8
50

48
72

57
93

47
38

58
15

60
17

58
31

92
08

58
19

92
12

57
86

13
58

.4
5

58
12

64
08

.1
0

58
28

09
32

.9
5

58
16

14
27

.0
5

M
D

G
-c

9
50

48
72

57
94

40
61

58
15

37
00

58
29

70
84

58
18

33
64

57
86

19
25

.3
0

58
10

34
68

.3
5

58
26

29
31

.1
0

58
14

14
85

.7
0

M
D

G
-c

10
50

48
72

57
93

45
02

58
15

09
88

58
32

54
24

58
21

66
21

57
86

06
47

.2
5

58
12

27
95

.2
5

58
28

27
54

.2
5

58
16

12
95

.8
5

M
D

G
-c

11
50

48
72

57
91

86
27

58
15

77
13

58
32

39
46

58
18

65
46

57
86

28
95

.7
5

58
10

90
35

.3
0

58
28

47
88

.5
5

58
15

56
67

.3
5

M
D

G
-c

12
50

48
72

57
90

48
29

58
13

82
99

58
32

81
66

58
21

27
61

57
86

17
97

.2
0

58
11

32
64

.2
5

58
28

67
36

.6
0

58
15

89
36

.4
5

M
D

G
-c

13
50

48
72

57
94

88
19

58
16

93
72

58
33

64
56

58
21

68
47

57
87

77
34

.7
0

58
12

20
95

.9
5

58
28

12
07

.7
5

58
17

86
09

.7
5

M
D

G
-c

14
50

48
72

57
98

18
20

58
16

20
79

58
38

20
20

58
20

76
49

57
86

56
49

.4
0

58
12

77
67

.3
0

58
28

81
65

.4
0

58
16

77
93

.2
5

M
D

G
-c

15
50

48
72

57
93

17
40

58
18

65
21

58
35

05
12

58
22

72
09

57
87

08
36

.1
5

58
11

89
34

.0
5

58
30

47
97

.2
5

58
16

92
82

.4
0

M
D

G
-c

16
50

48
72

58
01

03
85

58
17

76
02

58
33

77
23

58
21

86
67

57
88

90
27

.4
0

58
13

05
42

.2
5

58
29

50
22

.9
0

58
17

98
13

.4
5

M
D

G
-c

17
50

48
72

57
92

61
17

58
14

49
93

58
32

82
80

58
21

27
77

57
87

55
97

.7
5

58
11

00
74

.6
0

58
26

94
24

.5
5

58
15

37
27

.9

M
D

G
-c

18
50

48
72

57
90

02
42

58
14

09
26

58
27

65
89

58
16

38
91

57
85

04
59

.1
5

58
10

48
95

.3
5

58
25

19
73

.4
5

58
13

80
17

.3
5

M
D

G
-c

19
50

48
72

57
94

00
90

58
16

78
33

58
32

77
71

58
22

54
44

57
86

90
54

.1
0

58
13

18
11

.0
0

58
28

77
29

.9
0

58
17

93
91

.3
0

M
D

G
-c

20
50

48
72

57
94

40
47

58
17

14
52

58
34

19
28

58
24

10
35

57
87

36
53

.7
5

58
13

15
18

.1
5

58
29

20
51

.9
0

58
17

43
94

.2
5

A
vg

.
57

93
91

23
.8

5
58

16
33

44
.2

5
58

33
10

72
.9

5
58

21
09

80
.5

0
57

87
08

36
.0

5
58

12
35

02
.2

4
58

28
53

80
.2

5
58

16
66

15
.0

6

#B
es

t
0

0
20

0
0

0
20

0

p-
va

lu
e

0.
00

00
82

0.
00

00
82

1
0.

00
00

82
0.

00
00

82
1

78

Table 7.13: Comparison of the TPSDP algorithm with three best performing algorithms on
20 large EGS instances with n = 3000, m = 50.

In
st

an
ce

f b
es

t
f a

vg

G
ra

ph
m

L g
U

g
IT

S
IM

S
N

D
H

A
T

PS
D

P
IT

S
IM

S
N

D
H

A
T

PS
D

P

M
D

G
-c

1
50

60
60

56
02

22
25

56
29

30
75

56
42

04
43

56
34

21
68

55
96

92
59

.0
5

56
26

47
39

.4
0

56
37

30
21

.4
5

56
30

72
21

.5
0

M
D

G
-c

2
50

60
60

56
03

19
48

56
31

44
01

56
39

77
84

56
37

46
69

55
96

10
75

.8
0

56
26

20
42

.2
5

56
35

13
99

.0
5

56
30

93
99

.6
5

M
D

G
-c

3
50

60
60

56
00

17
51

56
28

37
95

56
41

01
98

56
32

02
45

55
91

05
35

.5
5

56
24

89
29

.2
0

56
34

60
13

.8
0

56
28

10
97

.9
5

M
D

G
-c

4
50

60
60

56
00

52
57

56
28

72
74

56
37

56
06

56
31

55
72

55
92

26
64

.6
5

56
24

79
30

.8
5

56
34

68
01

.1
0

56
29

05
99

.1
0

M
D

G
-c

5
50

60
60

55
99

07
60

56
26

37
13

56
38

01
38

56
32

72
00

55
91

99
56

.9
0

56
22

79
45

.3
5

56
32

92
47

.9
0

56
27

25
12

.2
0

M
D

G
-c

6
50

60
60

55
96

24
20

56
26

42
69

56
35

35
10

56
29

34
87

55
90

91
68

.8
5

56
22

91
32

.4
5

56
32

38
59

.9
0

56
27

05
51

.9
5

M
D

G
-c

7
50

60
60

55
97

55
70

56
26

46
67

56
38

12
98

56
31

08
11

55
91

31
41

.6
5

56
23

89
77

.3
5

56
33

21
39

.5
5

56
28

07
72

.7
0

M
D

G
-c

8
50

60
60

56
00

69
84

56
27

20
94

56
37

09
74

56
34

31
56

55
91

08
90

.3
5

56
23

51
46

.7
5

56
32

83
51

.1
0

56
27

69
18

.2
5

M
D

G
-c

9
50

60
60

56
00

20
73

56
25

78
81

56
35

02
61

56
29

87
98

55
90

58
42

.8
0

56
21

63
09

.0
0

56
31

50
49

.5
5

56
26

06
24

.6
0

M
D

G
-c

10
50

60
60

55
96

45
43

56
26

13
37

56
36

91
87

56
32

59
52

55
90

95
96

.6
5

56
22

60
19

.3
5

56
31

60
37

.2
0

56
27

98
29

.0
0

M
D

G
-c

11
50

60
60

56
01

08
77

56
26

27
99

56
37

49
62

56
33

38
18

55
93

04
05

.8
5

56
23

79
29

.2
5

56
32

24
88

.2
5

56
27

44
70

.6
0

M
D

G
-c

12
50

60
60

55
99

44
13

56
28

17
15

56
38

81
08

56
30

54
14

55
92

50
52

.4
5

56
24

36
71

.1
0

56
33

19
49

.6
0

56
27

33
45

.2
0

M
D

G
-c

13
50

60
60

56
00

74
94

56
27

92
55

56
39

31
46

56
31

84
06

55
91

81
95

.1
5

56
24

73
26

.4
0

56
34

52
43

.7
5

56
28

87
95

.7
0

M
D

G
-c

14
50

60
60

55
99

76
67

56
29

19
93

56
41

15
82

56
33

62
28

55
94

60
80

.2
0

56
24

69
83

.7
5

56
35

21
25

.6
5

56
29

09
13

.0
0

M
D

G
-c

15
50

60
60

55
99

27
07

56
27

64
30

56
36

56
03

56
33

55
16

55
92

63
00

.7
0

56
23

68
20

.4
5

56
33

29
09

.9
5

56
29

56
84

.4
5

M
D

G
-c

16
50

60
60

56
01

14
05

56
27

61
99

56
40

02
49

56
33

24
17

55
92

41
95

.6
5

56
24

58
49

.1
0

56
34

65
01

.6
5

56
29

23
99

.4
0

M
D

G
-c

17
50

60
60

55
99

47
15

56
25

96
79

56
37

47
99

56
28

90
65

55
91

89
99

.9
0

56
23

16
08

.3
0

56
31

57
44

.6
5

56
25

96
74

.6
0

M
D

G
-c

18
50

60
60

55
96

48
88

56
24

23
34

56
35

25
03

56
29

88
85

55
89

50
09

.5
0

56
21

43
64

.8
5

56
31

14
84

.5
0

56
24

94
94

.2
0

M
D

G
-c

19
50

60
60

56
00

08
82

56
29

26
80

56
38

06
86

56
31

22
07

55
92

13
72

.2
0

56
24

93
35

.6
5

56
35

38
01

.3
0

56
28

61
50

.7
0

M
D

G
-c

20
50

60
60

56
04

64
25

56
26

47
42

56
37

75
41

56
32

19
44

55
94

75
49

.3
0

56
23

03
49

.0
5

56
34

82
20

.5
5

56
29

47
55

.2
0

A
vg

.
55

99
92

50
.2

0
56

27
45

16
.6

0
56

38
14

28
.9

0
56

32
17

97
.9

0
55

92
42

64
.6

6
56

23
90

70
.4

9
56

33
61

19
.5

2
56

28
17

60
.5

0

#B
es

t
0

0
20

0
0

0
20

0

p-
va

lu
e

0.
00

00
82

0.
00

00
82

1
0.

00
00

82
0.

00
00

82
1

79

Bibliography

[1] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.

[2] A. Schrijver, “On the history of combinatorial optimization (till 1960),” Handbooks

in Operations Research and Management Science, vol. 12, pp. 1–68, 2005.

[3] M. Jünger, G. Reinelt, and G. Rinaldi, “The traveling salesman problem,” Handbooks

in Operations Research and Management Science, vol. 7, pp. 225–330, 1995.

[4] R. A. Walker and S. Chaudhuri, “Introduction to the scheduling problem,” IEEE De-

sign & Test of Computers, vol. 12, no. 2, pp. 60–69, 1995.

[5] A. J. Kleywegt and J. D. Papastavrou, “The dynamic and stochastic knapsack prob-

lem,” Operations Research, vol. 46, no. 1, pp. 17–35, 1998.

[6] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing problems: A sur-

vey,” European Journal of Operational Research, vol. 141, no. 2, pp. 241–252, 2002.

[7] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The maximum clique

problem,” in Handbook of combinatorial optimization. Springer, 1999, pp. 1–74.

[8] S. Z. Selim and K. Alsultan, “A simulated annealing algorithm for the clustering

problem,” Pattern Recognition, vol. 24, no. 10, pp. 1003–1008, 1991.

[9] T. R. Jensen and B. Toft, Graph coloring problems. John Wiley & Sons, 2011.

[10] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations

Research, vol. 14, no. 4, pp. 699–719, 1966.

80

[11] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey, “Cutting planes in integer

and mixed integer programming,” Discrete Applied Mathematics, vol. 123, no. 1-3,

pp. 397–446, 2002.

[12] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[13] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the

third annual ACM symposium on Theory of computing, 1971, pp. 151–158.

[14] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms. Cam-

bridge university press, 2011.

[15] A. Vince, “A framework for the greedy algorithm,” Discrete Applied Mathematics,

vol. 121, no. 1-3, pp. 247–260, 2002.

[16] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang, “Semidefinite programming

approaches for sensor network localization with noisy distance measurements,” IEEE

Transactions on Automation Science and Engineering, vol. 3, no. 4, pp. 360–371,

2006.

[17] S. I. Gass, Linear programming: methods and applications. Courier Corporation,

2003.

[18] S. H. Zanakis, J. R. Evans, and A. A. Vazacopoulos, “Heuristic methods and appli-

cations: a categorized survey,” European Journal of Operational Research, vol. 43,

no. 1, pp. 88–110, 1989.

[19] N. Kokash, “An introduction to heuristic algorithms,” Department of Informatics and

Telecommunications, pp. 1–8, 2005.

[20] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and

conceptual comparison,” ACM Computing Surveys (CSUR), vol. 35, no. 3, pp. 268–

308, 2003.

[21] I. H. Osman and G. Laporte, “Metaheuristics: A bibliography,” 1996.

81

[22] M. Dorigo, “Optimization, learning and natural algorithms,” Ph. D. Thesis, Politec-

nico di Milano, 1992.

[23] M. Dorigo and T. Stützle, “Ant colony optimization: overview and recent advances,”

Handbook of Metaheuristics, pp. 311–351, 2019.

[24] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm Intelli-

gence, vol. 1, no. 1, pp. 33–57, 2007.

[25] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,”

Soft Computing, vol. 22, no. 2, pp. 387–408, 2018.

[26] D. Karaboga et al., “An idea based on honey bee swarm for numerical optimization,”

Technical report-tr06, Erciyes university, engineering faculty, computer . . . , Tech.

Rep., 2005.

[27] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. MIT press, 1992.

[28] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated anneal-

ing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[29] F. Glover, “Future paths for integer programming and links to artificial intelligence,”

Computers & Operations Research, vol. 13, no. 5, pp. 533–549, 1986.

[30] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,” in Handbook of

metaheuristics. Springer, 2003, pp. 320–353.

[31] Z.-H. Fu and J.-K. Hao, “A three-phase search approach for the quadratic minimum

spanning tree problem,” Engineering Applications of Artificial Intelligence, vol. 46,

pp. 113–130, 2015.

[32] X. Lai and J.-K. Hao, “Iterated maxima search for the maximally diverse grouping

problem,” European Journal of Operational Research, vol. 254, no. 3, pp. 780–800,

2016.

82

[33] K. Singh and S. Sundar, “A new hybrid genetic algorithm for the maximally di-

verse grouping problem,” International Journal of Machine Learning and Cybernet-

ics, vol. 10, no. 10, pp. 2921–2940, 2019.

[34] R. Weitz and S. Lakshminarayanan, “An empirical comparison of heuristic methods

for creating maximally diverse groups,” Journal of the Operational Research Society,

vol. 49, no. 6, pp. 635–646, 1998.

[35] J. Desrosiers, N. Mladenović, and D. Villeneuve, “Design of balanced mba student

teams,” Journal of the Operational Research Society, vol. 56, no. 1, pp. 60–66, 2005.

[36] D. Krass and A. Ovchinnikov, “Constrained group balancing: Why does it work,”

European Journal of Operational Research, vol. 206, no. 1, pp. 144–154, 2010.

[37] H. K. Yeoh and M. I. Mohamad Nor, “An algorithm to form balanced and diverse

groups of students,” Computer Applications in Engineering Education, vol. 19, no. 3,

pp. 582–590, 2011.

[38] J. Johnes, “Operational research in education,” European Journal of Operational Re-

search, vol. 243, no. 3, pp. 683–696, 2015.

[39] Y. Chen, Z.-P. Fan, J. Ma, and S. Zeng, “A hybrid grouping genetic algorithm for

reviewer group construction problem,” Expert Systems with Applications, vol. 38,

no. 3, pp. 2401–2411, 2011.

[40] R. Weitz and S. Lakshminarayanan, “An empirical comparison of heuristic and graph

theoretic methods for creating maximally diverse groups, vlsi design, and exam

scheduling,” Omega, vol. 25, no. 4, pp. 473–482, 1997.

[41] J. Bhadury, E. J. Mighty, and H. Damar, “Maximizing workforce diversity in project

teams: A network flow approach,” Omega, vol. 28, no. 2, pp. 143–153, 2000.

[42] T. A. Feo and M. Khellaf, “A class of bounded approximation algorithms for graph

partitioning,” Networks, vol. 20, no. 2, pp. 181–195, 1990.

83

[43] T. Arani and V. Lotfi, “A three phased approach to final exam scheduling,” IIE Trans-

actions, vol. 21, no. 1, pp. 86–96, 1989.

[44] R. R. Weitz and M. T. Jelassi, “Assigning students to groups: a multi-criteria decision

support system approach,” Decision Sciences, vol. 23, no. 3, pp. 746–757, 1992.

[45] M. Gallego, M. Laguna, R. Martı́, and A. Duarte, “Tabu search with strategic os-

cillation for the maximally diverse grouping problem,” Journal of the Operational

Research Society, vol. 64, no. 5, pp. 724–734, 2013.

[46] G. Palubeckis, E. Karčiauskas, and A. Riškus, “Comparative performance of three

metaheuristic approaches for the maximally diverse grouping problem,” Information

Technology and Control, vol. 40, no. 4, pp. 277–285, 2011.

[47] D. Uroŝevic, “Variable neighborhood search for maximum diverse grouping prob-

lem,” Yugoslav Journal of Operations Research, vol. 24, no. 1, pp. 21–33, 2014.

[48] J. Brimberg, N. Mladenović, and D. Urošević, “Solving the maximally diverse group-

ing problem by skewed general variable neighborhood search,” Information Sciences,

vol. 295, pp. 650–675, 2015.

[49] G. Palubeckis, A. Ostreika, and D. Rubliauskas, “Maximally diverse grouping: an

iterated tabu search approach,” Journal of the Operational Research Society, vol. 66,

no. 4, pp. 579–592, 2015.

[50] X. Lai, J.-K. Hao, Z.-H. Fu, and D. Yue, “Neighborhood decomposition based vari-

able neighborhood search and tabu search for maximally diverse grouping,” European

Journal of Operational Research, vol. 289, no. 3, pp. 1067–1086, 2021.

[51] Z.-P. Fan, Y. Chen, J. Ma, and S. Zeng, “Erratum: A hybrid genetic algorithmic

approach to the maximally diverse grouping problem,” Journal of the Operational

Research Society, vol. 62, no. 7, pp. 1423–1430, 2011.

84

[52] F. J. Rodriguez, M. Lozano, C. Garcı́a-Martı́nez, and J. D. González-Barrera, “An

artificial bee colony algorithm for the maximally diverse grouping problem,” Infor-

mation Sciences, vol. 230, pp. 183–196, 2013.

[53] C. R. Reeves, Modern heuristic techniques for combinatorial problems. John Wiley

& Sons, Inc., 1993.

[54] F. W. Glover and G. A. Kochenberger, Handbook of metaheuristics. Springer Science

& Business Media, 2006, vol. 57.

[55] N. Mladenović and P. Hansen, “Variable neighborhood search,” Computers & Opera-

tions Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[56] J. Brimberg, “A variable neighborhood algorithm for solving the continuous location-

allocation problem,” Studies in Locational Analysis, vol. 10, pp. 1–12, 1996.

[57] W. C. Davidon, “Variable metric method for minimization,” SIAM Journal on Opti-

mization, vol. 1, no. 1, pp. 1–17, 1991.

[58] R. Fletcher and M. J. Powell, “A rapidly convergent descent method for minimiza-

tion,” The Computer Journal, vol. 6, no. 2, pp. 163–168, 1963.

[59] N. Mladenovic, “A variable neighborhood algorithm-a new metaheuristic for combi-

natorial optimization,” in papers presented at Optimization Days, vol. 112, 1995.

[60] C. Audet, V. Béchard, and S. L. Digabel, “Nonsmooth optimization through mesh

adaptive direct search and variable neighborhood search,” Journal of Global Opti-

mization, vol. 41, no. 2, pp. 299–318, 2008.

[61] C. Audet, J. Brimberg, P. Hansen, S. L. Digabel, and N. Mladenović, “Pooling prob-

lem: Alternate formulations and solution methods,” Management Science, vol. 50,

no. 6, pp. 761–776, 2004.

[62] G. Caporossi, D. Alamargot, and D. Chesnet, “Using the computer to study the dy-

namics of the handwriting processes,” in International Conference on Discovery Sci-

ence. Springer, 2004, pp. 242–254.

85

[63] F. Carrabs, J.-F. Cordeau, and G. Laporte, “Variable neighborhood search for the

pickup and delivery traveling salesman problem with lifo loading,” Informs Journal

on Computing, vol. 19, no. 4, pp. 618–632, 2007.

[64] E. Carrizosa, B. Martı́n-Barragán, F. Plastria, and D. Romero Morales, “On the se-

lection of the globally optimal prototype subset for nearest-neighbor classification,”

Informs Journal on Computing, vol. 19, no. 3, pp. 470–479, 2007.

[65] P. Hansen and N. Mladenović, “Developments of variable neighborhood search,” in

Essays and surveys in metaheuristics. Springer, 2002, pp. 415–439.

[66] M. A. Lejeune, “A variable neighborhood decomposition search method for supply

chain management planning problems,” European Journal of Operational Research,

vol. 175, no. 2, pp. 959–976, 2006.

[67] C. Zhang, Z. Lin, and Z. Lin, “Variable neighborhood search with permutation dis-

tance for qap,” in International Conference on Knowledge-Based and Intelligent In-

formation and Engineering Systems. Springer, 2005, pp. 81–88.

[68] M. E. Aydin and T. C. Fogarty, “A distributed evolutionary simulated annealing algo-

rithm for combinatorial optimisation problems,” Journal of Heuristics, vol. 10, no. 3,

pp. 269–292, 2004.

[69] D. T. Connolly, “An improved annealing scheme for the qap,” European Journal of

Operational Research, vol. 46, no. 1, pp. 93–100, 1990.

[70] P. J. Van Laarhoven, E. H. Aarts, and J. K. Lenstra, “Job shop scheduling by simulated

annealing,” Operations Research, vol. 40, no. 1, pp. 113–125, 1992.

[71] R. Battiti, “Reactive search: Toward self-tuning heuristics,” Modern Heuristic Search

Methods, vol. 4, pp. 61–83, 1996.

[72] R. Battiti and G. Tecchiolli, “The reactive tabu search,” ORSA Journal on Computing,

vol. 6, no. 2, pp. 126–140, 1994.

86

[73] R. Battiti and M. Protasi, “Reactive search, a history-sensitive heuristic for max-sat,”

Journal of Experimental Algorithmics (JEA), vol. 2, pp. 2–es, 1997.

[74] M. Dell’Amico, A. Lodi, and F. Maffioli, “Solution of the cumulative assignment

problem with a well-structured tabu search method,” Journal of Heuristics, vol. 5,

no. 2, pp. 123–143, 1999.

[75] P. Toth and D. Vigo, The vehicle routing problem. SIAM, 2002.

[76] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence (Morgan Kaufmann series

in evolutionary computation). Morgan Kaufmann Publishers, 2001.

[77] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimization in wireless-

sensor networks: A brief survey,” IEEE Transactions on Systems, Man, and Cyber-

netics, Part C (Applications and Reviews), vol. 41, no. 2, pp. 262–267, 2010.

[78] M. R. AlRashidi and M. E. El-Hawary, “A survey of particle swarm optimization

applications in electric power systems,” IEEE Transactions on Evolutionary Compu-

tation, vol. 13, no. 4, pp. 913–918, 2008.

[79] S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. U. Rehman, “Research on parti-

cle swarm optimization based clustering: a systematic review of literature and tech-

niques,” Swarm and Evolutionary Computation, vol. 17, pp. 1–13, 2014.

[80] K. Jebari and M. Madiafi, “Selection methods for genetic algorithms,” International

Journal of Emerging Sciences, vol. 3, no. 4, pp. 333–344, 2013.

[81] D. Datta, A. R. Amaral, and J. R. Figueira, “Single row facility layout problem using

a permutation-based genetic algorithm,” European Journal of Operational Research,

vol. 213, no. 2, pp. 388–394, 2011.

[82] C. K. H. Lee, “A review of applications of genetic algorithms in operations manage-

ment,” Engineering Applications of Artificial Intelligence, vol. 76, pp. 1–12, 2018.

87

[83] A. Hiassat, A. Diabat, and I. Rahwan, “A genetic algorithm approach for location-

inventory-routing problem with perishable products,” Journal of Manufacturing Sys-

tems, vol. 42, pp. 93–103, 2017.

[84] G. Sermpinis, C. Stasinakis, K. Theofilatos, and A. Karathanasopoulos, “Model-

ing, forecasting and trading the eur exchange rates with hybrid rolling genetic algo-

rithms—support vector regression forecast combinations,” European Journal of Op-

erational Research, vol. 247, no. 3, pp. 831–846, 2015.

[85] S. Jiang, K.-S. Chin, L. Wang, G. Qu, and K. L. Tsui, “Modified genetic algorithm-

based feature selection combined with pre-trained deep neural network for demand

forecasting in outpatient department,” Expert Systems with Applications, vol. 82, pp.

216–230, 2017.

[86] A. Diabat and R. Deskoores, “A hybrid genetic algorithm based heuristic for an inte-

grated supply chain problem,” Journal of Manufacturing Systems, vol. 38, pp. 172–

180, 2016.

[87] J. Shi, Z. Liu, L. Tang, and J. Xiong, “Multi-objective optimization for a closed-loop

network design problem using an improved genetic algorithm,” Applied Mathematical

Modelling, vol. 45, pp. 14–30, 2017.

[88] C. M. Bishop, “Neural networks and their applications,” Review of Scientific Instru-

ments, vol. 65, no. 6, pp. 1803–1832, 1994.

[89] J. J. Hopfield and D. W. Tank, ““neural” computation of decisions in optimization

problems,” Biological Cybernetics, vol. 52, no. 3, pp. 141–152, 1985.

[90] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in Neural In-

formation Processing Systems, vol. 28, 2015.

88

Acknowledgements

First of all, I would like to give my heartfelt thanks to all the people who have ever helped

me during the writing of this thesis and my entire PhD career.

I would like to express my sincere gratitude to my supervisor, Prof. Tang and Associate

Prof. Gao of Toyama University, for guiding me with their patient instruction and offering

constructive opinions on my thesis. Without them, I can’t study abroad and enter the com-

plex and magical computer world. I consider it a great privilege to have got the benefit of

their professional guidance.

I would like to extend my special thanks to my classmate Zonghui Cai. He is not only

a gentle partner, but also a teacher in my study, a comrade in arms in life, and a man

who knows how to respect others. In my studies, he never tires of teaching me obscure

knowledge, thinking with me and helping me solve problems. In life, it is also because

of his attentive company and meticulous care that I can spend this period of study abroad

safely and happily.

My deepest thanks would go to my beloved family, especially my favorite mother, Ms.

Lu, for their loving considerations and great confidence in me. Through these years, they

have been supporting and encouraging me financially and spiritually, and they will always

be my most solid backing. I also own my appreciation to my best friend Ying Wang and

college roommates Qin Luo, Huimin Ding, and Xue Peng. During the five years of studying

in Japan, I can’t forget their warm company. They are the best listeners and enlighteners.

Whenever I fall into anxiety and depression, they give me selfless companionship and firm

strength. They let me know myself, accept myself, persist in myself, and do not lose my

direction in the long journey of life. They are the treasure in my life.

At last but not least, I also want to thanks myself. I want to say to myself, cherish

89

yourself, always be proud of yourself, you are the best.

