博士論文

Diosgenin による軸索再伸長を基盤とした アルツハイマー病の記憶障害回復メカニズムに関する研究

Study on the mechanisms of memory recovery in Alzheimer's disease based on diosgenin-mediated axonal regeneration

2023年3月

富山大学 学術研究部薬学・和漢系

和漢医薬学総合研究所 病態制御分野 神経機能学領域

楊 熙蒙

<u>目次</u>

序論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2			
第1章: Diosgeninの軸索再伸長及び記憶改善に関わる分子の探索				
1.1. 緒言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4			
1.2.実験材料ならびに実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・	5			
1.3.実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14			
1.4.考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29			
1.5.小括・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32			
第2章: Diosgeninの AD 脳内における方向特異的な軸索再伸長作用とその分子機序の解明				
2.1. 緒言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33			
2.2.実験材料ならびに実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35			
2.3.実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45			
2.4.考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98			
2.5.小括・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	102			
第3章: Diosgenin 高濃度山薬エキスによる正常マウス及び健常人の記憶亢進作用の検討				
3.1. 緒言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	103			
3.2.実験材料ならびに実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	104			
3.3.実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	108			
3.4.考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123			
3.5.小括••••••	125			
総括および展望・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126			
参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128			
謝辞・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	141			

序論

近年の高齢化社会に伴い、認知症患者数の急増は深刻な社会問題となっており、2025 年には高齢 者の5人に1人が認知症に罹患すると推測されている (World alzheimer report 2022)。認知症の過半数を 占めるアルツハイマー病 (AD) は、記憶障害や見当識障害、学習障害等の中核症状、及び徘徊や幻 覚等の周辺症状を主症状とする神経変性疾患である。AD 発症の主な原因として、無症状期から脳内 でアミロイド β (A β) が蓄積することが考えられている。アミロイド前駆タンパク (amyloid precursor protein; APP) から β -及び γ -セクレターゼによって A β が切り出され、それらが凝集した A β オリゴマー 及び老人斑が神経細胞外に蓄積すると同時に、微小管を構成しているタウタンパク質が過剰にリン酸 化され、らせん状線維 (paired helical filament; PHF) として蓄積し、神経原線維変化も引き起こる。こ れらの結果、進行性に神経突起の変性やシナプスの脱落、及び神経細胞死が誘発され、神経機能の維 持に関わる脳神経回路が破綻する (Dickson & Vickers, 2001)。

現在日本では、コリンエステラーゼ阻害薬(ドネペジル、ガランタミン、リバスチグミン)や NMDA 受容体拮抗薬(メマンチン)が AD に対する承認薬として用いられている。コリンエステラ ーゼ阻害薬は、AD 患者の脳で低下しているアセチルコリン活性を高めることを目的としているが、 神経伝達物質の機能異常を抑えるのみでは、一度変性してしまった神経回路の機能を賦活化すること はできず、記憶障害の進行を遅延させるのみの対症療法に留まっている。また、NMDA 受容体拮抗 薬メマンチンは、過剰な興奮性伝達物質(グルタミン酸)の放出によるシナプスノイズを弱めること で記憶に関わる正常の神経伝達を高めるが、AD 患者に対して記憶障害改善作用を有さないことが多 数報告されている (Modrego et al., 2010)。我々のこれまでの基礎研究においても、メマンチンは AD モ デル (5XFAD) マウスの記憶障害を改善させず、海馬における変性軸索の割合をむしろ悪化させるこ とを明らかにしている (Tohda et al., 2012)。この現状を踏まえ、フランスでは"医療費は増加するにも かかわらず、それに見合う治療効果が見込めない"として、2018 年 8 月よりこれら 4 種類の AD 治療 薬を保険適用の対象外としている。

一方で、近年は原因物質の Aβ 除去に着目した抗 Aβ 抗体として、アデュカヌマブやレカヌマブが 大規模の臨床研究を経て、米国で AD 治療薬として承認されてきた (Sevigny et al., 2016; van Dyck et al., 2023)。軽度認知障害 (MCI) または軽度 AD の比較的早期のステージから抗 Aβ 抗体の投与を開始す ることで、脳内の Aβ 量を大きく減らす効果があることが示されている。しかし、プラセボ群と比べ て抗 Aβ 抗体投与群では、認知機能障害の進行を遅らせることには成功したものの、抗 Aβ 抗体の投 与前後で比較すると、認知機能はなお悪化し続けることが示されており、AD の進行を完全に止める、 または認知機能を改善する効果がないのが現状である。また、アデュカヌマブ投与では全体の約 38%、 レカヌマブ投与では全体の約 14%の被験者において、脳出血や脳浮腫、頭痛、めまい、錯乱をはじめ とした重篤な副作用が見られており、安全性の懸念も議論されている。

そこで我々は、AD 発症後からでも認知機能を改善しうる根本的治療戦略として、原因物質の蓄積

2

を減らすことに加えて、"破綻した脳神経回路を再形成することにより神経機能を正常化すること" こそが、最も重要であるとのコンセプトに基づいて研究を行ってきた。脳神経回路の形成には、神経 細胞の軸索が投射先の神経細胞の樹状突起に向かって伸長し、シナプス結合する必要がある。特に軸 索は、遠く離れた部位に向かっても長く伸長しなければならない。しかし成熟した成体の脳において は、一度変性した軸索は再伸長できないと長年考えられてきたため、治療戦略としてほとんど着目さ れてこなかった。これに代わる神経回路再形成の戦略として、樹状突起上のスパイン(後シナプス) を増やす研究が盛んに行われてきたが、ADの進行に伴って軸索(前シナプス)変性も進行するため、 スパインの増加のみから記憶回復を望めるのは、AD発病後初期に限られることが動物実験により明 らかになった (Roy et al., 2016)。一方で、成体脳において軸索が少なくとも近位には自発的に再伸長す ることが報告されているが (Jin et al., 2016)、軸索が遠く離れたつながるべき投射先に向かって正確に 再伸長するかどうか、またその現象に関わる脳内での分子メカニズムは全く不明である。

当研究室ではこれまでに、培養神経細胞において Aβ によって萎縮した軸索を再伸長させ、また家 族性 AD モデル (5XFAD) マウスの記憶障害を改善する薬物を和漢薬より探索してきた。その中で、 特に優れた活性を示したものとして、山薬 (*Dioscorea japonica* 又は *Dioscorea batatas* の周皮を除いた 根茎) 中の成分 diosgenin を発見した (Tohda et al., 2013; Tohda et al., 2012)。Diosgenin は他にも 5XFAD マウス脳内の Aβ やリン酸化タウを減らす作用も併せ持っている (Tohda et al., 2012)。さらに、 diosgenin による軸索再伸長及び記憶改善に関わる受容体タンパク質として 1,25D₃-MARRS (membraneassociated rapid response steroid-binding receptor) を同定した (Tohda et al., 2012)。しかし、神経細胞におけ る diosgenin の記憶改善に関わる分子メカニズムの詳細、及び AD 脳内での軸索再伸長作用について は未解明であった。

そこで本研究では、第1章において、diosgeninの軸索再伸長及び記憶改善に関わる神経細胞中での 分子を探索した。第2章では、5XFADマウス脳内における diosgenin による長距離かつ方向特異的な 軸索再伸長作用を評価し、軸索がつながるべき脳部位に正しく再伸長するために機能する分子群を明 らかにした。第3章では、diosgeninの基礎研究を社会実装するにあたり、diosgenin 高濃度山薬エキス の正常マウス及び健常人の認知機能に対する効果を評価した。以上の研究により、脳内での軸索の再 伸長が AD の記憶回復にとって決定的に重要である根拠を示すとともに、これを可能にする薬物 diosgenin の有効性とその基盤となる分子機序を証明し、AD に対する根本的治療法を提示することを 目指す。

3

第1章: Diosgenin の軸索再伸長及び記憶改善に関わる分子の探索

(Yang X, Tohda C. Scientific Reports, 8, 11707, 2018)

(Yang X, Tohda C. Frontiers in Pharmacology, 9, 48, 2018)

<u>1.1.緒言</u>

当研究室の先行研究により、神経細胞における diosgenin の受容体タンパク質として 1,25D₃-MARRS を同定した (Tohda et al., 2012; Tohda et al., 2013)。また、中和抗体によって神経細胞膜上に発現する 1,25D₃-MARRS をブロックすると、diosgenin による軸索再伸長及び記憶改善作用が消失することを示 した (Tohda et al., 2013)。さらに、diosgenin による軸索伸長作用には少なくとも、一般的に軸索伸長を 促進することで知られているタンパク質である PI3K (phosphoinositide 3-kinase)、ERK (extracellular signal-regulated kinase)、PKA (protein kinase A)、及び PKC (protein kinase C) の活性化が関わることを見 出している (Tohda et al., 2012)。しかし、diosgenin による軸索再伸長を説明できるような分子は不明で あった。

そこで本章では、diosgenin 刺激によって神経細胞内で引き起こされる分子シグナルの変化を検討し、 その分子の軸索再伸長及び記憶改善への寄与を明らかにすることを目的とした。本分子の同定方法と して、wild-type マウスまたは 5XFAD マウスに溶媒または diosgenin を経口投与後、それらマウスの大 脳皮質から抽出したタンパク質 lysate において、wild-type マウスと比べて 5XFAD マウスで発現変化 し、diosgenin 投与でその発現変化が打ち消されるタンパク質を探索した。脳組織 lysate を用いた網羅 的解析であるため、神経細胞中で機能する分子を特異的に絞り込むには検出精度が十分ではないが、 同定された分子について神経細胞特異的に機能解析をすることで、軸索再伸長及び記憶改善に対する 効果を検討した。

1.2.実験材料ならびに実験方法

<u>倫理宣言</u>

動物の取り扱いは富山大学動物実験指針に従った。また、本動物実験のプロトコールは、富山大学 動物実験委員会及び遺伝子組換え実験委員会の承認を得ている(動物実験承認番号:A2017INM-1、 遺伝子組換え実験承認番号:G2013INM-1,G2018INM-2)。

Diosgenin

*In vitro*の実験では、diosgenin(東京化成、東京)を Ethanol (和光純薬、大阪)に溶解させて用いた。 *In vivo*の実験では、diosgenin(東京化成)を日本薬局方ゴマ油(カネダ、東京)に溶解させ、0.1 µmol/kg/day で経口投与した。Diosgeninの構造式を **Fig.1**に示す。

Fig. 1: Diosgenin の構造式

<u>VER-155008</u>(別名:5'-O-[(4-Cyanophenyl)methyl]-8-[[(3,4-dichlorophenyl)methyl] amino]-adenosine)

Heat shock cognate (HSC) 70の活性阻害剤であり、HSC70のATP-binding ポケットに結合することで、 HSC70が活性型(ADP 結合型)になることを阻害する。

*In vitro*の実験では、VER-155008(Sigma-Aldrich, St. Louis, MO, USA)を dimethyl sulfoxide(DMSO、 和光純薬)に溶解させて用いた。*In vivo*の実験では、VER-155008(Sigma-Aldrich)を dimethyl sulfoxide(DMSO、和光純薬)に 10 mM となるように溶解させ、それを生理食塩水で 10 倍希釈して 10 μmol/kg/day で腹腔内投与した。VER-155008の構造式を **Fig. 2** に示す。

Fig. 2: VER-155008 の構造式

<u>Amyloid beta (Aβ) ペプチド</u>

Aβ タンパクの部分配列 A $\beta_{25.35}$ または A $\beta_{35.25}$ (Sigma-Aldrich) を滅菌精製水に溶解させて、37℃で4 日間インキュベートし、凝集させたものを用いた。

ADモデル (5XFAD) マウス

マウスはプラスチックケージ(24×17×12 cm)に入れ、12 時間の明暗周期(明期: 7:00–19:00)、恒 温恒湿(22±2℃,55±10%)の環境で飼育した。水及び固形飼料は自由摂取させた。

AD モデルマウスとして、5XFAD (Tg6799) マウス (雄性及び雌性、5–9 ヶ月齢) (The Jackson Laboratory, Bar Harbor, Me, USA) を用いた。5XFAD マウスは、Sweden 型 (K670N, M671L)、Florida 型 (I716V)、London 型 (V717I) の変異をもつ human amyloid precursor protein (APP) 695 遺伝子と、M146L、L286V の変異をもつ human prsenilin 1 (PS1) 遺伝子を神経細胞特異的に過剰発現させた家族性 AD のトランスジェニックマウスであり、10 世代以上 C57BL/6*SJL F1 にバッククロスさせて確立さ れた line である (Oakley et al., 2006)。雄性 5XFAD (heterozygote (+/-)) マウスと雌性 wild-type (-/-)マウ スを交配し、繁殖させ、以下のように genotyping した。

5XFAD マウスの genotyping

生後 4-8 週目に仔マウスの genotyping を行い、群分けした。Heterozygote (+/-) マウスと wild-type (-/-) マウスを実験に用いた。マウスの尾約 5 mm を切断し、溶液(10 × KAPA Express Extract Buffer 10 µl、 1 U/µl KAPA Express Extract Enzyme 2 µl (GE Healthcare、東京)、滅菌精製水 88 µl) 内に切断した尾を 入れた。サーマルサイクラーを用いて 75℃で 10 分間熱変性し DNA を抽出した後、95℃で 5 分間イ ンキュベーションして KAPA Express Extract の protease を不活化させた。

ゲノム DNA を鋳型として、2種の transgene をそれぞれ検出する primer ペアを用いて、PCR による 増幅を行った。2×KAPA2G Robust HotStart ReadyMix 5 µl、10 µM sense 及び 10 µM anti-sense primer 各 0.5 µl (Table 1)、RT 産物 2 µl、滅菌精製水 2 µl を混合し、94℃で 5 分間の熱変性後、94℃で 30 秒間、 各アニーリング温度で 30 秒間、72℃で 30 秒間のサイクル反応を各 25 サイクル行った。

PCR 産物を 1%アガロースゲル上で電気泳動した。アガロースゲルは、1 × Tris-Acetate-EDTA (TAE) Buffer (ナカライテスク、京都) に 1% Agarose S (和光純薬) を加熱溶解し、室温で固めたものを用 いた。電気泳動後、アガロースゲルを 0.01% ethydium bromide (和光純薬) -TAE 溶液で 30 分間染色し、 UV 照射によりバンドを検出した。596 bp に hAPP、554 bp に hPS1 の両方の DNA 増幅が認められた個 体を heterozygote (+/-) の 5XFAD マウスとし、どちらの DNA 増幅も認められない個体を wild-type (-/-) マウスとした。

	プライマー配列	Product (bp)	アニーリング温度
hAPP	5'-AGAGTACCAACTTGCATGACTACG-3' 5'-ATGCTGGATAACTGCCTTCTTATC-3'	596	60°C
hPS1	5'-GCTTTTTCCAGCTCTCATTTACTC-3' 5'-AAAATTGATGGAATGCTAATTGGT-3'	554	55°C

Table 1: 5XFAD マウスの genotyping に用いるプライマー

<u>5XFAD マウスに対する diosgenin の投与</u>

Diosgenin は 1 mM となるように溶解し、diosgenin (0.1 µmol/kg/day) または溶媒を 1 日 1 回 15 日間経 口投与した。

5XFAD マウスの行動試験

物体認知記憶試験

物体認知記憶試験は黒色($30 \text{ cm} \times 40 \text{ cm}$)のケージ内で行った。Training session では、ケージ内の 中心点から等距離離れた 2 点に、色と形が同じ物体 A, A'を 1 つずつ置いた。ケージの中央にマウス を静かに放し、マウスの各物体への探索行動の回数を 10 分間測定し、preferential index (%) = A'/(A+A')×100 を算出した。Training session 開始から 1 時間のインターバルの後、Test session を行った。 Test session では、物体 A'を物体 B に交換し、マウスの各物体への探索行動の回数を 10 分間測定し、 preferential index (%) = B/(A+B) × 100 を算出した。

· 空間記憶試験

空間記憶試験は黒色(30 cm × 40 cm)のケージ内で行った。ケージの 40 cm 辺の壁 2 面にそれぞ れ異なる目印のイラスト(白色縞模様及び白色水玉模様)を貼った。Training session では、縞模様の 壁側の中心点から等距離離れた 2 点に、色と形が同じ物体 C, C'を 1 つずつ置いた。ケージの中央に マウスを静かに放し、マウスの各物体への探索行動の回数を 10 分間測定し、preferential index (%) = C'/(C + C') × 100を算出した。Training session 開始から 1 時間のインターバルの後、Test session を行っ た。Test session では、物体 C'を元々置かれた正面の位置の水玉模様の壁側に移動し、マウスの各物体 への探索行動の回数を 10 分間測定し、preferential index (%) = C'/(C + C') × 100を算出した。

・エピソード記憶試験

エピソード記憶試験は黒色(30 cm × 40 cm)のケージ内で行った。ケージの 40 cm 辺の壁 2 面に それぞれ異なる目印のイラスト(白色三角模様及び白色神経細胞のイラスト)を貼った。Training session 1 では、三角模様の壁側の中心点に 1 物体 D1 を、神経細胞の模様の壁側の均等 3 点に、D1 と 色と形が同じ 3 物体 D2, D3, D4 を 1 つずつ置いた。ケージの中央にマウスを静かに放し、マウスの各 物体への探索行動の回数を 10 分間測定した。Training session 1 終了から 10 分のインターバルの後、 Training session 2 を行った。Training session 2 では、三角模様の壁側の中心点から等距離離れた 2 点に 2 物体 E1, E2 を、神経細胞の模様の壁側の中心点から等距離離れた 2 点に 2 物体 E3, E4 を 1 つずつ置 いた。つまり、D2 及び E3、D4 及び E4 は同じ場所に置かれていたことになる。ケージの中央にマウ スを静かに放し、マウスの各物体への探索行動の回数を 10 分間測定した。Training session 2 終了から 10 分のインターバルの後、Test session を行った。Test session では、三角模様の壁側の中心点から等距 離離れた 2 点に 2 物体 E1, D4 を、神経細胞の模様の壁側の中心点から等距離離れた 2 点に 2 物体 D2, E4 を 1 つずつ置いた。ケージの中央にマウスを静かに放し、マウスの各物体への探索行動の回数を 10 分間測定した。Test session における preferential index (%) = (E1 + E4)/(E1 + E4 + D2 + D4) × 100、(D2 + D4)/(E1 + E4 + D2 + D4) × 100、D2/(D2 + D4) × 100、及び D4/(D2 + D4) × 100 をそれぞれ算出した。

· 自発運動試験

自発運動試験は白色(30 cm × 40 cm)のケージ内で行った。マウスの背中に黒テープを貼り、1匹 ずつケージの中央に静かに放し、10分間の自由行動をさせて、デジタルカメラで撮影し、リアルタ イムで EthoVision 3.0 (Noldus Information Technology, Wageningen, Netherlands) に取り込んだ。撮影後、 マウスの 10 分間の総移動距離 (cm)、進行方向に対する方向転換角度 (degree)、不動の時間 (秒)を EthoVision 3.0 で解析した。

<u>二次元電気泳動</u>

薬物投与後、Wil-type または 5XFAD マウス(各群 n = 1 ずつ)に三種混合麻酔薬 [75 µg/ml ドミトー ル(日本全薬工業、郡山)、400 µg/ml ミタゾラム(サンド、東京)、500 µg/ml ベトルファール(Meiji Seika ファルマ、東京)]をマウス体重(g)×10-50(µl)腹腔内に投与し麻酔した。胸部を切開し、左 心室に翼状針(トップ、東京)を刺入した後、右心房に切れ込みを入れ、左心室より氷冷した saline を 20 ml 灌流し、マウスの全脳を取り出した後、大脳皮質を摘出した。大脳皮質を Mammalian protein extraction regent (M-PER solution)(Thermo Fisher scientific, MA, USA)1 ml、100× protease and phosphatase inhibiter cocktail(Thermo Fisher scientific)10 µl の混合液中で homogenate し、氷上で 30 分間静置した。 4℃で 10 分間遠心分離を行った後(14000 g)、可溶性画分を二次元電気泳動に供した。この後の二次 元電気泳動は Genomine(Pohang、韓国)に委託し、行われた。

MALDI-TOF/MS

二次元電気泳動により3群間で発現量に差のあるスポットを比較した。スポットの輝度値の解析により、wild-type マウスと比べて 5XFAD マウスで発現量が変化し、diosgenin 投与によりその変化が打ち消されたスポットについて MALDI-TOF/MS によりタンパクを同定した(Genomine に委託)。

マウス胎児大脳皮質神経細胞の初代培養

胎生 14 日齢の ddY マウス(Japan SLC, 浜松)から取り出した胎児を phosphate buffered saline (PBS) で洗浄後、初代培養用に調整した培地 [Neurobasal media (life Technologies, Carlsbad, DA, USA) 中に 12% 馬血清 (Life Technologies, MA, USA)、2 mM L-グルタミン、0.6% グルコースを溶解] に入れた。実体

顕微鏡 (SZ61, Olympus, 東京)下で大脳皮質のみを単離し、クリーンベンチ内でハサミを用いて細か く切断した後、700 rpm で 3 分間遠心した。上清を除去し、沈渣に 0.05% trypsin-0.53 mM EDTA solution (Life Technologies)を1 ml 加え、懸濁した。37°Cで 15 分間、5 分おきに攪拌しながらインキ ュベーションした後、培地を2 ml 加え、700 rpm で 3 分間遠心した。上清を除去し、沈渣に 600 U/ml DNase I (Life Technologies) -0.03% trypsin inhibitor (Life Technologies) -PBS 溶液を1 ml 加え、懸濁し た。37°Cで 15 分間、5 分おきに攪拌しながらインキュベーションした後、培地を 2 ml 加え、懸濁し た。37°Cで 15 分間、5 分おきに攪拌しながらインキュベーションした後、培地を 2 ml 加え、700 rpm で 3 分間遠心した。上清を除去し、沈渣に培地を 3 ml 加え、先端を炙りなめしたパスツールピペッ トで細胞塊が見えなくなるまで穏やかに懸濁した後、70 µm nylon cell strainer (Becton Diskinson and Company (BD), Franklin Lakes, NJ, USA) で濾過した。Trypan blue 染色で死細胞と弁別しながら生細胞 を数えた後、1.5 × 10⁴ cells/well となるように 8-well チャンバースライド (BD) に播種した。8-well チ ャンバースライドは、前日に 5 µg/ml Poly-D-Lysine (Sigma-Aldrich) -PBS 溶液を入れ、37°Cで一晩イ ンキュベーションし、培養当日に PBS で 2 回洗浄したものを用いた。

培養は、10% CO₂、37℃、飽和水蒸気下で行った。播種から 4–5 時間後に、培地を全量、B-27 supplement を含む無血清培地 [Neurobasal media 中に 2% B-27 supplement (Life Technologies)、2 mM L-グルタミン、0.6% グルコースを溶解] に交換した。

神経細胞に対する薬物処置

神経細胞培養開始 3 日後、10 μ M A β_{25-35} または A β_{35-25} を処置し、1 または 3 日間培養した。その後、 各濃度の薬物を B-27 supplement を含む無血清培地に溶解し、培地を全量交換した。神経細胞に対す る 1,25D₃-MARRS 中和抗体処置に関しては、Rabbit 抗 1,25D₃-MARRS ポリクローナル抗体(最終濃度 1:1000)(Ab099 clone, Dr. Nemere より供与)または normal rabbit IgG(Santa Cruz)を B-27 supplement を含む無血清培地に溶解し、培地を全量交換した。15 分間インキュベーションした後、追加で diosgenin(最終濃度 1 μ M)を含む B-27 supplement を含む無血清培地を加えた。

<u>神経細胞への siRNA 導入</u>

初代培養神経細胞への siRNA 導入は Lonza 社(Basel, Switzerland)のプロトコールに従って行った。 胎生 14 日齢の ddY マウス由来の大脳皮質初代培養神経細胞(5.0×10⁶細胞)に 300 nM HSC70 siRNA

(Stealth siRNA, Thermo Fisher Scientific) または 300 nM Control siRNA (Select Negative Control siRNA #1, Thermo Fisher Scientific) を 2 µg GFP vector と混合し、Amaxa Nucleofector (Lonza) でトランスフェクションした。1.5 × 10⁴ cells/well となるように 8-well チャンバースライドに播種し、播種から 4–5 時間後に、培地を全量、B-27 supplement を含む無血清培地に交換した。

培養細胞の蛍光免疫染色

神経細胞の培養終了後、培地を除去し PBS で洗浄した後、4% Paraformaldehyde-PBS 溶液を加えて 60 分間常温で静置し固定した。溶液を除去し、0.3% TritonX-100 (和光純薬) -PBS 溶液で 5 分間の洗 浄を 2 回行った。一次抗体溶液 {0.3% TritonX-100-PBS 溶液、normal goat serum (和光純薬)、以下いず れかの一次抗体 [mouse IgM 抗 HSC70 モノクローナル抗体 (1:300, Abcam, Cambridge, UK)、mouse IgG₁ 抗リン酸化型 neurofilament-H (pNF-H) モノクローナル抗体 (1:250, Convance, Princeton, NJ, USA)、mouse IgG₁抗 GAPDH モノクローナル抗体 (1:100, Applied Biological Materials Inc., Canada)、rabbit IgG α-tubulin ポリクローナル抗体 (1:200, Abcam)]} を 100 μ l 加え、4°Cで一晩反応させた。翌日、一次抗体液を除去 し、0.3% TritonX-100-PBS 溶液で 5 分間の洗浄を 2 回行った後、二次抗体液 [0.3% TritonX-100-PBS 溶 液、Alexa Fluor 594 標識 goat anti-mouse IgM 抗体 (1:400, Life Technologies)、Alexa Fluor 488 or 568 標識 goat anti-mouse IgG 抗体 (1:400, Life Technologies)、Alexa Fluor 488 or 568 標識 goat anti-mouse IgG 抗体 (1:400, Life Technologies)、Alexa Fluor 488 or 568 標識 goat anti-mouse IgG 抗体 (1:400, Life Technologies)、Alexa Fluor 488 or 568 標識 goat anti-mouse IgG 抗体 (1:400, Life Technologies)、Alexa Fluor 488 or 568 標識 goat anti-mouse IgG 抗体 (1:400, Life Technologies)、Alexa Fluor 488 or 568 標識 goat anti-mouse IgG 抗体 (1:400, Life Technologies)、Alexa Fluor 488 標志し、PBS で 5 分間の洗浄を 2 回行った後、4', 6-diamidino-2-phenylindole (DAPI, 1 μ g/ml) (Enzo Life Science, Farmingdale, NY, USA) -PBS 溶液を加え、遮光下、常温で 5 分間反応させた。その後、溶液を除去し、 PBS で 5 分間の洗浄を行った後、Aqua Poly Mount (Polyscience, Warringron, PA, USA) で封入した。

Western blot

マウス大脳皮質サンプルを1×Halt protease & phosphatase inhibitor cocktail (Thermo Fisher Scientific) を 含む M-PER (Thermo Fisher Scientific) で homogenate した。Lysate を SDS-PAGE し、ゲル上のタンパク 質をニトロセルロースメンブレン (Bio-Rad, Hercules, CA, USA) へ転写した。5%スキムミルク (和光 純薬、日本), 0.1% Tween 20-Tris-buffer saline (T-TBS) 溶液にタンパク質転写後のメンブレンを浸し、 30 分間、室温でブロッキングした。0.1% T-TBS で 2 回リンスした後、ラッピーバッグ (東信産業、 東京) 内で mouse 抗 HSC70 モノクローナル抗体 (1:4000, Abcam) または rabbit 抗 β-actin 抗体 (1:1000, Cell Signaling Technology, MA, USA) を含んだ Can Get Signal Solution 1 (Toyobo、大阪) と一晩、4°Cで 反応させた。メンブレンを 0.1% T-TBS で 15 分間 × 4 回リンスした後、ラッピーバッグ内で HRP 標 識 goat 抗 mouse IgM 抗体 (1:2000, Santa Cruz, CA, USA) または HRP 標識 goat 抗 rabbit IgG (1:2000, Santa Cruz) を含んだ Can Get Signal Solution 2 (Toyobo) と 2 時間、室温で反応させた。メンブレンを 0.1% T-TBS で 15 分間 × 4 回リンスした後、Amersham ECL Western Blotting Detection Reagents (Sigma-Aldrich) と反応させ、LAS4000 (GE Healthcare) により化学発光を検出し、画像を撮影した。取得した 画像について、CS analyzer (ATTO、東京) を用いてバンドの輝度を定量した。

培養細胞の画像解析

蛍光免疫染色後のスライド観察には、蛍光倒立顕微鏡 Cell Observer (Carl Zeiss, Oberkochen, Germany)、Axio Vision 4.8 ソフトウェア (Carl Zeiss)を用い、一枚当たり 432.49 μm × 322.81 μm また

は 864.98 µm × 645.62 µm の大きさの画像を取得した。神経細胞内の HSC70 の発現量及び pNF-H 陽性 軸索長の測定には、画像解析ソフト MetaMorph version 7.8 (Molecular Devices, Tokyo, Japan) を用いて自 動計測した。神経細胞体当たりの抗体陽性輝度の積算値により、細胞中の HSC70 の発現量を定量し た。また、画像全体の pNF-H 陽性軸索の長さを測定し、Map2 陽性の神経細胞体の数で除することで、 神経細胞当たりの軸索の長さを算出した。

siRNA 導入実験の画像解析は、画像解析ソフト Image J (National Institutes of Health, USA) を用いた。 GFP 陽性神経細胞 1 個 1 個を ROI で囲み、各細胞中の HSC70 の発現量を定量した。また、GFP 陽性 神経細胞から伸びる pNF-H 陽性軸索長をトレースし、神経細胞当たりの軸索の長さを算出した。

軸索上の α-tubulin の発現量の定量も Image J を用いた。Structure-retained 軸索及び Structure-lost 軸索 をなぞり、各軸索上の α-tubulin の輝度値を算出した。

免疫沈降法及び銀染色

胎生 14 日齢の ddY マウス由来の大脳皮質初代培養神経細胞を 3 日間培養後、10 μM Aβ₂₅₋₃₅ または 溶媒を添加し、30 分間インキュベートした。神経細胞を PBS で洗浄後、1 × Halt protease & phosphatase inhibitor cocktail を含む M-PER 溶液で溶解させた。Dynabead Protein G (Life Technologies) に非特異的に 直接結合するタンパク質を除く目的で、細胞 lysate (50 μg) をあらかじめ 50 μl Dynabeads Protein G と 10 分間、室温でインキュベートした。続いて、その上清を mouse 抗 HSC70 モノクローナル抗体

(4.27 µg、Abcam)と4℃、30分間インキュベートした。新たな 50 µl Dynabeads Protein G を加え、
4℃、20分間インキュベートし、65℃、5 分間熱処理した。免疫沈降後、SDS-PAGE し、銀染色を行った。銀染色には Silver Quest Silver Staining Kit (Thermo Fisher Scientific)を用い、Thermo Fisher Scientific 社のプロトコールに従ってバンドを検出した。

LC-MS/MS による VER-155008 の検出

VER-155008 の血液脳関門(BBB)の透過性を検討するために、5XFADマウスに VER-155008(89.9 µmol/kg)または溶媒(10%DMSO in Saline)を腹腔内投与した。投与5分後に、マウスをイソフルランで吸入麻酔し、血液(下大静脈より)を 300-400 µl 採取した。血液採取に用いた 26 G 注射針(テルモ、東京)及び1 ml シリンジ(テルモ)は、あらかじめ1 U/ml ヘパリン(和光純薬)溶液で共洗いした。10,000 g、4℃で10分間遠心分離後、上層の血漿(120 µl)を回収し、1200 µl のメタノールを加えてタンパク変性させた。また、マウス胸部を切開し、左心室に翼状針(トップ)を刺入した後、右心房に切れ込みを入れ、左心室より氷冷した saline を 20 ml 灌流後、マウスの全大脳皮質を摘出した。大脳皮質の質量の 10 倍量(µl)のメタノールを加えて homogenate し、タンパク変性させた。血 漿及び大脳皮質サンプルについて、変性タンパクを遠心分離[10,000 g, 4℃, 10 分間]で取り除き、上清をホットプレート上で乾燥(65℃、1 日間~)後、100 µl メタノールを加え再溶解し、0.45 µm 径マ イレクス-LH フィルター (Merck Millipore, Darmstadt, Germany) に通した溶液を LC-MS/MS 解析した。 標品 VER-155008 は、上記と同様に調製した 5XFAD マウス (薬物投与なし)の大脳皮質または血 漿サンプルと混合し、測定に用いた。LC-MS/MS 解析には、Thermo Fisher Scientific Accela HPLC シス テム及び LTQ Orbitrap XL hybrid Fourier Transform Mass Spectrometer (Thermo Fisher Scientific) を使用した。 液体クロマトグラフィーは、40°Cに保持した Capcell Pak C18 MGIII S-5 (1.5 mm i.d. × 150 mm; Shiseido, 東京) カラムを用いて、200 µl/min の流速で実施した。移動相には、超純水及びメタノール (M)を使 用し、0-5 分: 40-70% M、5-10 分: 70-85% M、10-13: 85-100% M、13-14 分: 100-40% M、14-18 分: 40% M の濃度勾配で検出した。スプレー電圧 4.5 kV、キャピラリー電圧 40.0 kV、管レンズ 150 V、キ ャピラリー温度 330°C、シーズガス流量 50 unit、及び補助ガス流量 10 unit とした。

脳組織切片の作製

薬物投与後、三種混合麻酔薬 [75 µg/ml ドミトール (日本全薬工業)、400 µg/ml ミタゾラム (サンド)、500 µg/ml ベトルファール (Meiji Seika ファルマ)]をマウス体重 (g) × 10 - 50 (µl) 腹腔内に投与し麻酔した。胸部を切開し、左心室に翼状針 (トップ)を刺入した後、右心房に切れ込みを入れ、左心室より氷冷した saline を 20 ml 灌流し、マウスの全脳を摘出した。全脳を 4°C で 4% Paraformaldehyde-PBS 溶液に一晩浸けた後、30% sucrose (和光純薬)-PBS に置換した [4°C、7–10 日間]。置換後、アルミホイルに包んで-30°Cに保存した。クリオスタット (CM3050SL, Leica, Heidelberg, Germany)を用いて、Frontal 領域 (Bregma 1.3–0.4 mm) 及び pariental 領域 (Bregma -1.4–2 mm) におけるそれぞれ 3–4 枚ずつの 20 µm 厚の連続冠状切片を作製した。その際、庫内温度及びステージは-20°Cに設定した。ゼラチン液 (ゼラチン1g, 硫酸カリウム(III)・2H₂O 150 mg を精製水 1000 ml に希釈) でコーティングしたスライドガラスに貼り付け、よく乾燥させてから-30°Cに保存した。

脳組織切片の蛍光免疫染色

脳切片を常温に戻した後、透明マニキュアでスライドガラスの周囲を囲み、4% Paraformaldehyde-PBS 溶液を加え、60 分間常温で静置し、固定した。溶液を除去し、0.5% TritonX-100-PBS 溶液で 5 分 間の洗浄を 2 回行った。一次抗体溶液 {0.5% TritonX-100-PBS 溶液、normal goat serum (和光純薬)、以 下いずれかの一次抗体 [rabbit IgG 抗ヒト A $\beta_{1.40/42}$ 抗体ポリクローナル抗体 (1:400, Chemicon, Temeccula, USA)、mouse IgG₁ 抗 Phospho-PHF-tau pSer + Thr205 抗体 (AT8) モノクローナル抗体 (1:100, Thermo Fisher scientific)、mouse IgG₁ 抗リン酸化型 neurofilament-H (pNF-H) モノクローナル抗体 (1:500, Convance)]} を加え、4°Cで一晩反応させた。翌日、一次抗体液を除去し、0.5% TritonX-100-PBS 溶液 で 5 分間の洗浄を 2 回行った後、二次抗体液 [0.5% TritonX-100-PBS 溶液、Alexa Fluor 568 標識 goat anti-rabbit 抗体 (1:400, Life Technologies)、Alexa Fluor 488 標識 goat anti-mouse 抗体 (1:400, Life Technologies)] を加え、遮光下、常温で 2 時間反応させた。反応後、溶液を除去し、PBS で 5 分間の洗 浄を2回行った後、Aqua Poly Mount (Polyscience, Warringron, PA, USA) で封入した。

脳組織切片の画像解析

脳切片のそれぞれの部位 [PRh (嗅周囲皮質)及び海馬 CA1] について、正立型蛍光顕微鏡 (BX-61, Olympus)及び画像撮影装置 (DP70, Olympus)を用いて、一枚当たり 864.98 μm × 645.62 μm の大きさ の画像を取得した。取得した画像の解析には、画像解析ソフト Image J を用いた。蛍光画像の抗 Aβ₁-40/42 抗体陽性面積を定量するため、各画像の抗体陽性アミロイドプラークを囲み、その積算値を算出 した。また、各アミロイドプラーク陽性面積内での pNF-H 陽性変性軸索及び PHF-タウの割合を算出 した。

<u>データ解析</u>

データは平均値 ± 標準誤差(SEM)または ± 標準誤差(SD)で表した。有意差検定には、Prism 6.07 (Graph Pad software, Sun Diego, CA, USA) を用い、one sample *t*-test、two-tailed unpaired *t*-test、One-way analysis of variance (ANOVA) *post hoc* Bonferroni test または Dunnett's test、repeated measures Two-way ANOVA *post hoc* Bonferroni test を行った。有意水準は 5% とした。

1.3. 実験結果

<u>1.3.1. Diosgenin 投与により 5XFAD マウス脳内で発現変動するタンパク質の同定</u>

本実験ではまず、diosgenin による 5XFAD マウスの記憶改善に関わる神経細胞中でのシグナル分子 を探索した。Wild-type マウス及び 5XFAD マウス(雄性、5-6 ヶ月齢)に溶媒または diosgenin (0.1 µmol/kg/day)を 15 日間連続で経口投与し、物体認知記憶試験を行った。その結果、wild-type マウスと 比べて 5XFAD マウスの溶媒投与群では記憶障害が起こっていたが、diosgenin を投与した 5XFAD マ ウスでは、物体認知記憶が有意に改善した (Fig. 3)。

続いて、各群 n = 1 ずつのマウスについて、大脳皮質からタンパク質を抽出し、3 群間で発現量が 変化したタンパクを二次元電気泳動で比較した。二次元電気泳動より検出された約 900 スポット

(**Fig. 4A**)のうち、wild-type マウスの溶媒投与群と比べて 5XFAD マウスの大脳皮質中で発現量が変化(増加または減少)し、その変化が diosgenin 投与により打ち消された(減少または増加)スポットは合計 29 個検出された。その中から、diosgenin を投与した 5XFAD マウスの脳内で特に発現量変化が大きかったスポットについて、MALDI-TOF/MS によるタンパクの同定を行った。その中のタンパク質の一つ(Fig. 4A 中赤矢印)は、Heat shock cognate (HSC) 70 であると示唆された (coverage: 39%, score: 309)。HSC70 は wild-type マウスと比べて 5XFAD マウスの大脳皮質中で増加し、diosgenin 投与により顕著に減少した(Fig. 4B, C)。

Fig. 3: 5XFAD マウスの記憶障害に対する diosgenin の作用

Wild-type マウス及び 5XFAD マウス(雄性、5-6ヶ月齢)に溶媒(Vehicle, Veh)または diosgenin (Dios; 0.1 μ mol/kg/day) を 15 日間連続で経口投与した。15 日目に物体認知記憶試験を行った。Training session と Test session は各々10 分間行い、インターバルは 1 時間に設定した。物体 A'または物体 B に対する マウスの接触回数を計測し、preferential index (%)を算出した。*p < 0.05 vs 5XFAD/Veh, One-way ANOVA *post hoc* Dunnett's test, ##p < 0.01, ###p < 0.001 vs 50%, One sample *t*-test, mean ± SD, n = 4 mice/group. [Yang & Tohda, 2018a より引用、一部改変]

Fig. 4: Diosgenin 投与により大脳皮質中で発現量が変化するタンパク質の同定

A, 溶媒または diosgenin (0.1 µmol/kg/day)を 15 日間で経口投与した wild-type マウス及び 5XFAD マウス

(雄性、5-6ヶ月齢)から大脳皮質 lysate を作製し、二次元電気泳動を行った。

B,A中の赤矢印のスポットの拡大画像。

C, B中の赤枠で囲んだスポットの輝度値の定量グラフ。

[Yang & Tohda, 2018a より引用、一部改変]

1.3.2. Diosgenin による Aβ25.35 処置神経細胞及び 5XFAD マウスに対する HSC70 の発現量変化の検討

5XFAD マウスへの diosgenin 投与により大脳皮質中で発現量が減少するタンパク質の候補として、 HSC70 が挙がった。そこで、diosgenin による HSC70 の発現量変化の再現性を ddY マウス (E14) の大 脳皮質神経細胞及び 5XFAD マウスの大脳皮質 lysate を用いて検討した。

Aβ₂₅₋₃₅(10 μM) または negative control Aβ₃₅₋₂₅(10 μM) を 3 日間処置した神経細胞に diosgenin (0.1, 1 μM) を処置し、その 4 日後に抗 HSC70 抗体及び抗 pNF-H 抗体(軸索マーカー)よる蛍光免疫染色を行っ た。その結果、神経細胞中の HSC70 の発現量は Aβ₂₅₋₃₅ 処置により有意に増加したが、diosgenin の後 処置により有意に減少した(Fig. 5A–D)またその際、Aβ₂₅₋₃₅ 処置により軸索が有意に萎縮したが、 diosgenin の後処置により軸索は有意に再伸長した(Fig. 5E, F)。さらに、wild-type マウス及び 5XFAD マウス(雄性、7–8 ヶ月齢)に溶媒または diosgenin (0.1 µmol/kg/day)を 18 日間連続で経口投与し、大 脳皮質よりタンパク質を抽出後、Western blot を用いて HSC70の発現量を比較した。その結果、wildtype マウスと比べて 5XFAD マウスの大脳皮質中では HSC70が増加傾向を示し、diosgenin を投与した 5XFAD マウスでは HSC70 が減少傾向を示した(Fig. 5G, H)。以上より、diosgenin による HSC70 減少 の再現性が確認された。

Fig. 5: Diosgenin による神経細胞中及び 5XFAD マウス脳内の HSC70 の発現量への作用

A-F, 3 日間培養した ddY (E14) マウス大脳皮質初代培養神経細胞に Aβ₂₅₋₃₅ (10 μM) または Aβ₃₅₋₂₅ (10 μM) を 3 日間処置し、diosgenin (0.1, 1 μM) を 4 日間処置した。抗 HSC70 抗体、抗 GAPDH 抗体、及び 抗 pNF-H 抗体よる蛍光免疫染色を行い、神経細胞(黄色点線)中の (**B**) HSC70、(**C**) GAPDH、(**D**) HSC70/GAPDH の発現量及び (**E**, **F**) pNF-H 陽性軸索密度を測定した。**p < 0.01, ***p < 0.001 vs Aβ₂₅₋₃₅/Veh, One-way ANOVA *post hoc* Dunnett's test, mean ± SEM, (**B**–**D**) n = 115–217 neurons, (**F**) n = 11–15 photos.

G-H, 溶媒または diosgenin (0.1 µmol/kg/day) を 18 日間で経口投与した wild-type マウス及び 5XFAD マウス (雄性、7-8 ヶ月齢) から大脳皮質 lysate を作製し、Western blot で HSC70 及び β-actin の発現量を 測定した。p>0.05 vs 5XFAD/Veh, One-way ANOVA *post hoc* Dunnett's test, mean ± SD, n = 3-4 mice.

[Yang & Tohda, 2018a より引用、一部改変]

1.3.3.1,25D3-MARRS 中和抗体処置下における diosgenin による HSC70 の発現量への影響

Aβ₂₅₋₃₅を処置した神経細胞に diosgenin を後処置すると、神経細胞中で HSC70 が減少し、軸索が再 伸長することが示された。Diosgenin による軸索伸長や記憶改善は、1,25D₃-MARRS 受容体を介するこ とがわかっている (Tohda et al., 2012; Tohda et al., 2013) ことから、HSC70 の発現量変化と 1,25D₃-MARRS シグナルの関与を検討した。

Aβ₂₅₋₃₅ (10 μM) を 3 日間処置した大脳皮質神経細胞に対し、1,25D₃-MARRS 中和抗体または normal rabbit IgG を diosgenin (0.1, 1 μM) と共に処置し、その 4 日後に抗 HSC70 抗体、抗 GAPDH 抗体、及び 抗 pNF-H 抗体よる蛍光免疫染色を行った。その結果、1,25D₃-MARRS 中和抗体処置により、diosgenin による軸索再伸長作用 (Fig. 6A) 及び神経細胞中での HSC70 の減少 (Fig. 6B) がともに消失した。 このことから、diosgenin による HSC70 の減少は、1,25D₃-MARRS シグナルを介して起こることが示唆 された。

Fig. 6: 神経細胞への 1,25D3-MARRS 中和抗体処置下での diosgenin の作用

3日間培養した ddY (E14) マウス大脳皮質初代培養神経細胞に A β_{25-35} (10 μ M) を 3 日間処置した。その後、normal rabbit IgG (Control Ab)または 1,25D₃-MARRS 中和抗体 (MARRS Ab) を処置し、15 分後にdiosgenin (1 μ M) を加えた。その 4 日後に、抗 HSC70 抗体、抗 GAPDH 抗体、及び抗 pNF-H 抗体よる 蛍光免疫染色を行い、(A) 細胞中の HSC70 の発現量及び (B) 軸索密度を測定した。*p < 0.05, **p < 0.01, **** p < 0.0001, One-way ANOVA *post hoc* Bonferroni test, mean ± SEM, (A) n = 78–243 neurons, (B) n = 9–14 photos. [Yang & Tohda, 2018a より引用、一部改変]

1.3.4. 神経細胞中の HSC70 ノックダウンよる軸索伸長への影響

ここまでの検討により、diosgenin は 1,25D₃-MARRS シグナルを介して神経細胞中の HSC70 を減少 させることが明らかになった。そこで、HSC70の減少が直接軸索伸長に関わるかを検討するために、 神経細胞への siRNA 導入実験を行った。

大脳皮質神経細胞に negative control siRNA または HSC70 siRNA (300 nM) を GFP vector (2 µg) と共に エレクトロポレーション法で導入し、その 4 日後に抗 HSC70 抗体、抗 GAPDH 抗体、及び抗 pNF-H 抗体よる蛍光免疫染色を行った。siRNA が導入された神経細胞とそれ以外の細胞を区別して定量する ために、GFP 陽性神経細胞においてのみ、HSC70 と GAPDH の発現量、及び軸索長を測定した。その 結果、HSC70 siRNA 導入により、神経細胞中の HSC70 の発現量は有意に減少した(Fig. 7A)。また、 HSC70 がノックダウンされた神経細胞では、軸索伸長が有意に促進された(Fig. 7B)。以上より、神 経細胞中における HSC70 の減少は、直接神経細胞の軸索伸長を促進することが示された。

Fig. 7: 神経細胞の HSC70 ノックダウンよる軸索伸長への影響

ddY (E14) マウス大脳皮質初代培養神経細胞に、negative control siRNA または HSC70 siRNA (300 nM) を GFP vector (2 µg) と共にエレクトロポレーション法で導入した。培養より4日後に、抗HSC70 抗体、 抗 GAPDH 抗体、及び抗 pNF-H 抗体よる蛍光免疫染色を行った。GFP 陽性(siRNA が導入された)神 経細胞について、(A) 細胞中の HSC70 の発現量及び (B) 軸索長を測定した。**** p < 0.0001, unpaired *t*test, mean ± SEM, (A) n = 87–155 neurons, (B) n = 25–28 photos. [Yang & Tohda, 2018a より引用、一部改 変]

1.3.5. 神経細胞中における HSC70 の結合タンパク質の同定

HSC70は様々なタンパク質と結合し、シャペロン活性によりその結合(クライアント)タンパク質 の分解やフォールディングを促進することが報告されている。そこで私は、Aβ存在下では神経細胞 中で HSC70 のシャペロン機能が亢進しており、それによって軸索萎縮が促進される可能性を考えた。 そこでまず、Aβ処置によって神経細胞中で HSC70 との結合が増加するタンパク質を探索した。

3 日間培養された大脳皮質神経細胞に対し、溶媒または A β_{25-35} (10 μ M) を 30 分処置した。細胞 lysate よりタンパク質を抽出し、抗 HSC70 抗体による共免疫沈降を行った。免疫沈降されたタンパク 質について、HSC70 とその結合タンパク質の結合を保持するために、65℃の mild な条件下で 5 分間 熱処理を施した。それらタンパク質を SDS-PAGE 及び銀染色を行ったところ、赤矢印で示したバンド が A β_{25-35} 処置によって増加していた(溶媒処置と比べて 122%増加)(Fig. 8)。nano LC-MS/MS によっ てタンパク質を同定したところ、本バンドは α -tubulin であると示唆された(coverage: 6%, score: 44)。 また、HSC70 が確かに免疫沈降されていることが western blot で確認された。

Fig. 8: 神経細胞中における HSC70 の結合タンパク質の同定

大脳皮質初代培養神経細胞を 3 日間培養し、溶媒または A β_{25-35} (10 μ M) を 30 分処置した。細胞 lysate よりタンパク質を抽出し、抗 HSC70 抗体による共免疫沈降を行った。免疫沈降されたタンパク質に 対して 65 °C、5 分間熱処理を施した後、SDS-PAGE 及び銀染色、または抗 HSC70 抗体を用いた western blot を行った。[Yang & Tohda, 2018a より引用、一部改変]

1.3.6.Aβ 及び diosgenin 処置による軸索上の α-tubulin への影響の検討

神経細胞中における HSC70 のクライアントタンパク質の候補として、 α -tubulin が同定された。 α -tubulin は、軸索の骨格タンパク質であり、軸索上における α -tubulin が増加(重合)すると軸索伸長が 促進される (Conde & Cáceres, 2009)。そこで、Aβ及び diosgenin 処置による軸索上における α -tubulin の 発現量を比較した。

2日間培養された大脳皮質神経細胞に、溶媒または A $\beta_{25.35}$ (10 μ M) を1日間処置した。その後、通 常培地で4日間培養し、抗 pNF-H 抗体及び抗 α -tubulin 抗体よる蛍光免疫染色を行った。微分干渉像 (DIC) 及び蛍光画像で観察を行った結果、軸索の形態が保持された structure-retained 軸索、及び軸索 が粒状に変性した structure-lost 軸索の2種類に大別された (Fig. 9A)。軸索上における α -tubulin の発現 量は、structure-retained と比べて structure-lost 軸索上で有意に低かった (Fig. 9B)。続いて、2日間培養 された大脳皮質神経細胞に、溶媒または A $\beta_{25.35}$ (10 μ M) を1日間処置後、diosgenin (1 μ M) を4日間培 養し、同様の実験を行った (Fig. 9C)。その結果、全軸索中における structure-lost 軸索、つまり α tubulin の発現が低い軸索の割合は、A β 処置によって有意に増加し、diosgenin の後処置によって有意 に減少した (Fig. 9D)。

Fig. 9: Aβ 及び diosgenin 処置による軸索上の α-tubulin への作用

A,2日間培養した ddY (E14) マウス大脳皮質初代培養神経細胞に A β_{25-35} (10 μM) を1日間処置した。その後、通常培地で4日間培養し、抗 pNF-H 抗体及び抗 α-tubulin 抗体よる蛍光免疫染色を行った。微分干渉像(DIC)及び蛍光画像での観察から、軸索の形態が保持された structure-retained 軸索、及び軸索が粒状に変性した structure-lost 軸索の2種類に大別された。B,各軸索上でのα-tubulin の発現量を測定した。****p < 0.0001, unpaired *t*-test, mean ± SEM, n = 84–104 axons. C, 2日間培養した ddY (E14) マウス大脳皮質初代培養神経細胞に A β_{25-35} (10 μM) を1日間処置後、溶媒または diosgenin (1 μM) を4日間処置し、抗 pNF-H 抗体及び抗α-tubulin 抗体よる蛍光免疫染色を行った。D,各群において、全軸索中における structure-lost 軸索の割合を測定した。****p < 0.0001 vs A β /Veh, One-way ANOVA *post hoc* Dunnett's test mean ± SEM, n = 3 photos. [Yang & Tohda, 2018a より引用、一部改変]

1.3.7. HSC70の活性阻害剤による軸索再伸長作用の検討

ここまでの研究により、神経細胞中の HSC70 の発現減少が diosgenin による軸索再伸長にとって重要な分子である可能性を示してきた。したがって次に、HSC70 の特異的阻害剤を用いて軸索再伸長に 及ぼす影響を検討した。

本実験では、HSC70 の活性阻害剤として VER-155008 (Fig. 2) を用いた。HSC70 は活性型 (ADP 結合型) をとる時にのみ、様々なクライアントタンパク質と結合でき、シャペロン活性を発揮する (Liu et al., 2012)。VER-1550008 は HSC70 の ATP 結合ポケットに直接結合することで、HSC70 が活性 型に変化するのを阻害することが報告されている (Schlecht et al., 2013)。

3 日間培養された大脳皮質神経細胞に Aβ₂₅₋₃₅ (10 μM) を 3 日間処置し、VER-155008 (0.05, 0.5, 5 μM) を後処置した。その 4 日後に抗 pNF-H 抗体による蛍光免疫染色を行った。その結果、Aβ₂₅₋₃₅により軸 索萎縮が誘発されたが、VER-155008 の後処置により軸索が有意に再伸長することが示された(Fig. 10)。

Fig. 10: HSC70 の活性阻害剤 VER-155008 による軸索再伸長への作用

A,3 日間培養した ddY (E14) マウス初代培養神経細胞に Aβ₂₅₋₃₅ (10 μM) を 3 日間処置した。VER-155008 (0.05, 0.5, 5 μM) を 4 日間処置し、抗 pNF-H 抗体よる蛍光免疫染色を行った。

B, 各薬物処置群において、pNF-H 陽性の軸索密度を測定した。**p < 0.01, ***p < 0.001 vs Aβ/Veh, Oneway ANOVA *post hoc* Dunnett's test, mean ± SEM, n = 11–22 photos. [Yang & Tohda, 2018b より引用、一部 改変]

1.3.8. HSC70の阻害剤が 5XFAD マウスの記憶障害改善に及ぼす作用

HSC70の特異的阻害(VER-155008)は、Aβ₂₅₋₃₅誘発によって萎縮した軸索を再伸長させたことから、 HSC70の特異的阻害が AD モデルマウスの記憶障害改善に及ぼす影響を検討した。

5XFADマウス及び wild-type マウス(雌性、8–9ヶ月齢)に溶媒または VER-155008 (10 µmol/kg/day) を 18 日間連続で腹腔内投与し、投与 14 日目に物体認知記憶試験を行った(Fig. 11A)。その結果、 VER-155008 投与によって 5XFAD マウスの物体認知記憶は有意に改善した。別に用意した 5XFAD マ ウス及び wild-type マウス(雌性、6ヶ月齢)に溶媒または VER-155008 (10 µmol/kg/day)を 15 日間連続 で腹腔内投与し、投与 14 日目に空間記憶試験を行い(Fig. 11B)、投与 15 日目にエピソード記憶試験 を行った(Fig. 11C)。その結果、VER-155008 投与によって 5XFAD マウスの空間記憶障害及びエピソ ード記憶障害はどちらも有意に改善した。Fig. 11A に用いたマウスについて、投与 18 日目に自発運動 試験を行った(Fig. 11D, E)。その結果、薬物投与によるマウスの自発運動(総移動距離、不動の時間) に群間差は認められなかった。また、薬物投与によってマウスに顕著な体重変化も見られなかった

(**Fig. 11F**)_°

Fig. 11: 5XFAD マウスの記憶障害に対する VER-155008 の作用

A, Wild-type マウス及び 5XFAD マウス (雌性、8–9 ヶ月齢) に溶媒または VER-155008 (10 μ mol/kg/day)を 18 日間連続で腹腔内投与した。投与 14 日目に物体認知記憶試験を行った。Training session と Test session は各々10 分間行い、インターバルは 1 時間に設定した。新奇物体に対するマウスの接触回数を計測し、preferential index (%) を算出した。**p < 0.01 vs 5XFAD/Veh, One-way ANOVA *post hoc* Dunnett's test; #p < 0.05, ###p < 0.001, repeated measures two-way ANOVA *post hoc* Bonferroni test, mean \pm SD, n = 4 mice.

B, **C**, Wild-type マウス及び 5XFAD マウス(雌性、6 ヶ月齢)に溶媒または VER-155008 (10 μ mol/kg/day)を 15 日間連続で腹腔内投与した。投与 14 日目に空間記憶試験 (**B**) を、投与 15 日目にエピソード記憶試験 (**C**) をそれぞれ行った。(**B**) Training session と Test session は各々10 分間行い、インターバルは 1 時間に設定した。位置を移動した物体に対するマウスの接触回数を計測し、preferential index (%) を算出した。***p < 0.001, ****p < 0.0001 vs 5XFAD/Veh, One-way ANOVA *post hoc* Dunnett's test; ###p < 0.001, repeated measures two-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 5 mice. (**C**) Training session 1 及び 2、Test session は各々10 分間行い、各インターバルは 10 分間に設定した。****p < 0.0001, unpaired *t*-test, mean ± SD, n = 5 mice.

D-F, Fig. 11A のマウスにおいて、薬物投与 18 日目に自発運動試験を行った。10 分間の自由行動をさせ、総移動距離 (**D**) 及び不動時間 (**E**) それぞれを測定した。(**F**) 薬物投与期間中におけるマウスの体重 推移 (day 0 と比較した増減量)。p > 0.05, repeated-measures two-way ANOVA, mean ± SD, n = 4 mice. [Yang & Tohda, 2018b より引用、一部改変]

24

1.3.9. VER-155008の脳移行性の検討

VER-155008 投与が 5XFAD マウスの記憶障害を改善することを示したが、VER-155008 が脳移行す る薬物かどうかは不明である。そこで、5XFADマウスに VER-155008 を単回腹腔内投与し、血漿及び 大脳皮質への移行性を検討した。

まず、LC-MS/MS おいて標品 VER-155008 のイオン電流クロマトグラム (Fig. 12A、上段) および 質量スペクトル (Fig. 12A、下段) を検出した。質量誤差±10 mmu の高精度準分子イオン ([M+H]⁺) ピークを抽出することにより、VER-155008 の質量スペクトル及びフラグメンテーションパターンが 検出された。続いて、5XFADマウス (雌性、9ヶ月齢)に溶媒または VER-155008 (89.9 µmol/kg)を単 回腹腔内投与し、投与5 分後における VER-155008 の血漿及び大脳皮質への移行性を検討した。LC-MS/MS の検出感度の限界から、生体試料中に移行した化合物を検出するためには、実際の薬理学的 投与量よりもはるかに高い投与量を用いるのが一般的である (Durairajan et al., 2012; Yang et al., 2017)。 そこで、記憶試験 (Fig. 11)で用いた投与量よりも約9倍の 89.9 µmol/kg VER-155008 を 5XFADマウ スに単回投与した。その結果、溶媒投与群の 5XFAD マウスでは血漿及び大脳皮質中いずれにおいて も VER-155008 が検出されなかったが、VER-155008 を投与したマウスでは標品 VER-155008 と同じ retention time において、ピークが検出された (Fig. 12B)。VER-155008 の標準曲線を用いて、血漿中及 び大脳皮質中に移行した VER-155008 濃度を定量したところ,それぞれ 13.97 nmol/ml 及び 3.326 nmol/g であることが算出された。以上の結果より、腹腔内投与された VER-155008 は、確かに血液脳 関門を透過し、脳に移行することが示唆された。

25

Fig. 12: VER-155008の脳移行性の検討

A, LC-MS/MS における VER-155008 (1 μg/ml)の標準ピーク。VER-155008 (m/z = 556.1246)のイオン電流クロマトグラム(上段)及び質量スペクトル(下段)を示す。

B, 5XFAD マウス(雌性,9ヶ月齢)に溶媒または VER-155008 (89.9 µmol/kg)を単回腹腔内投与した。 薬物投与5分後に血漿および大脳皮質を採取した。LC-MS/MSにおいて、イオン電流クロマトグラム 及び質量スペクトルより血漿および大脳皮質中の VER-155008 の含量を測定した。

[Yang & Tohda, 2018bより引用、一部改変]

1.3.10. VER-155008 が 5XFAD マウス脳内の変性軸索及び AD 病理に及ぼす作用の検討

VER-155008 を投与した 5XFAD マウスでは、記憶障害が改善することが示された(Fig. 11)。当研 究室の先行研究により、diosgenin を投与した 5XFAD マウスでは、脳内の Aβ やリン酸化タウ、変性 軸索の割合が減少することが明らかとなっている (Tohda et al., 2012)。そこで、HSC70の特異的阻害が 5XFAD マウス脳内の AD 病理及び軸索に及ぼす影響を検討するために、脳切片を用いた組織学的解 析を行った。脳切片は、Fig. 11A の投与実験終了後のマウス (5XFAD マウス及び wild-type マウス、 雌性、7-8 ヶ月齢) より作製した。抗 A $\beta_{1-40/42}$ 抗体、抗 PHF-タウ抗体、抗 pNF-H 抗体それぞれで蛍光 免疫染色を行い、特に物体認知記憶に関わる嗅周皮質(Perirhinal cortex) 及び海馬 CA1 を観察した。

Wild-type マウスでは、アミロイドプラーク及び PHF タウの蓄積が見られなかったが、5XFAD マウ スでは、アミロイドプラークの蓄積が認められた。また、当研究室の先行研究より、5XFAD マウス の脳内では、アミロイドプラーク部付近に限局して終末部が肥大化した変性軸索が見られることがわ かっている。各群のマウスにおいて、アミロイドプラーク中における変性軸索の割合を算出したとこ ろ、VER-155008 投与によって嗅周囲皮質及び CA1 での変性軸索の割合が有意に減少することが示さ れた(Fig. 13A-C)。嗅周皮質の一例を Fig. 13A(白点線はアミロイドプラーク領域)に示す。

次に、VER-155008 投与による AD 病理への作用を検討した。まず、5XFAD マウスの溶媒投与群と 比べて VER-155008 投与群では、アミロイドプラーク陽性面積が有意に減少した(Fig. 13D-F)。嗅周 皮質のアミロイドプラークの一例を Fig. 13D(白矢頭)に示す。また、アミロイドプラークと重なる 場所での PHF-タウの割合を算出した。その結果、5XFAD マウスの溶媒投与群と比べて VER-155008 投与群では、アミロイドプラーク近傍での PHF タウの割合も有意に減少した。嗅周皮質の一例を Fig. 13G(白点線はアミロイドプラーク領域)に示す。

以上より、HSC70の特異的阻害は、少なくとも物体認知記憶に関わる嗅周皮質及び海馬 CA1 において、異常に変性した軸索終末部の障害を改善し、ADの原因物質である Aβ 及びリン酸化タウの除 去にも関わることが示された。

Fig. 13: VER-155008 を投与した 5XFAD マウス脳の組織学的解析

溶媒または VER-155008 (10 μmol/kg/day)を 18 日間連続で腹腔内投与した wild-type マウス及び 5XFAD マウス(雌性、8–9ヶ月齢)について、脳切片を作製し蛍光免疫染色を行った。

A-C, アミロイドプラーク(赤)中の変性軸索(緑)を示す(白点線はアミロイドプラーク領域)。嗅周皮質(B)及び海馬 CA1(C)における変性軸索の割合。

D-F, アミロイドプラーク(白矢頭)を示す。嗅周皮質 (E) 及び海馬 CA1 (F) におけるアミロイドプラ ーク陽性面積。

G-I, アミロイドプラーク(赤)中の PHF-タウ(緑)を示す(白点線はプラーク領域)。嗅周皮質 (H) 及び海馬 CA1 (I) における変性軸索の割合。

p<0.01, *p<0.001 vs 5XFAD/Veh, One-way ANOVA, *post hoc* Dunnett's test, mean ± SD, n = 4 mice. [Yang & Tohda, 2018b より引用、一部改変]

<u>1.4.考察</u>

本章では、diosgenin による軸索再伸長及び記憶改善に関わる神経細胞中の分子を明らかにし、AD における新規治療ターゲットを探索することを目指した。その結果、AD では Aβ の蓄積により神経 細胞中で HSC70 が増加することを示した (Fig. 4, 5)。また、神経細胞中で HSC70 と結合するクライ アントタンパク質として α-tubulin を同定した (Fig. 8)。培養神経細胞への Aβ 処置により変性した軸 索上では α-tubulin の発現が減少したこと (Fig. 9)、AD 患者の脳内においても HSC70 が増加し (Perez et al., 1991; Piedrahita et al., 2015) α-tubulin が減少すること (Zhang et al., 2015)、HSC70 がクライアントタ ンパク質の分解を促進する機能があることを併せ考えると、Aβ が HSC70 を増加させることで HSC70 による α-tubulin の分解が促進され、それが軸索萎縮や記憶障害に関わっている可能性が考えられる。 また、diosgenin は HSC70 の発現を減少させることで (Fig. 4, 5)、間接的に α-tubulin の分解を抑制し

(Fig. 9)、軸索萎縮の抑制に関わっている可能性を示した。さらに、神経細胞中における HSC70 の 減少が軸索伸長に関わること (Fig. 7) と、HSC70 の特異的阻害剤 VER-155008 が軸索再伸長や記憶 改善を引き起こすこと (Fig. 10, 11) を示したのは本研究が初めてである。先行研究では diosgenin 投 与が 5XFAD マウス脳内の脳内の A β やリン酸化タウを減少させる作用を見出しているが、VER-155008 投与によっても脳内の A β やリン酸化タウが減少したこと (Fig. 13) から、diosgenin が HSC70 の減少を介して AD 病理の改善に関わる可能性が示された。

Fig. 4の二次元電気泳動において、wild-typeマウスと比べて 5XFADマウスの脳内で発現が変化し、 diosgenin 投与によってその変化が打ち消されたタンパク質は計 29 個検出された。その中で diosgenin 投与により顕著に発現変化した 5 タンパク質に着目し、MALDI-TOF/MS を行った結果、それぞれ HSC70、A-X actin、Gamma-actin、V-type proton ATPase catalytic subunit A、Alpha-1-globlin と同定された。 それぞれのタンパク質について、AD や神経変性疾患、軸索伸長との関係を文献的に調査したところ、 A-X actin や Gamma-actin を含むアクチンファミリーについては、既に AD との関連が多く報告されて いたことから (Bamburg & Bernstein, 2016)、本研究での解析候補からは除外した。また、V-type proton ATPase catalytic subunit A については、AD 患者の脳において発現変化の報告がない。Alpha-1-globlin に ついては、血中に多く含まれるタンパク質であることから、非特異的に検出された可能性があるので はないかと考えた。一方で HSC70 は、二次元電気泳動での結果に一致して、AD モデルマウスやヒト 患者の脳内で発現が増加することが報告されている (Perez et al., 1991; Piedrahita et al., 2015)。また、 HSC70 は正常時ではタウと結合し微小管の安定化に関わるが、AD 病態ではリン酸化タウと結合し、 リン酸化タウを安定化させること (Jinwal et al., 2010)、HSC70 はニューロフィラメント (NF) -M と結 合し、NF-M をユビキチンプロテアソーム系で分解すること (Wang et al., 2011) が報告されているため、 ADにおいて増加した HSC70 が軸索や記憶に対して何かしらの有害な作用をもたらしているのではな いかと予想した。しかし、HSC70の阻害が軸索及び記憶に及ぼす作用は不明であるため、本タンパク 質の機能解析を行うこととした。

HSC70 (別名 HSPA8、Hsp70-8、Hsp73) は Heat shock protein (HSP) ファミリーに属する分子シャペ ロンの一つであり、細胞内では細胞質や核、組織では全身に分布する多機能性タンパク質である (Finka et al., 2015; Stricher et al., 2013)。主な機能として、Bagファミリーや Hip ファミリー、CHIP 等の コシャペロンと複合体を形成し、数多くのクライアントタンパク質のフォールディングや分解を促進 している (Meimaridou et al., 2009)。また、がんや細胞内の熱・酸化ストレス、紫外線、エタノール、 感染等により発現誘導されることも報告されている (Liu et al., 2012)。また、HSC70 は ATP 依存的に活 性が制御されており、ATP 結合時では不活性型となり、クライアントタンパク質とのアフィニティー の低さのため、結合することができない。しかし、ATPase 活性を獲得し、ADP 結合型(活性型)に 変化することでクライアントと結合できるようになる。HSC70によるフォールディングの機序として、 Hip や Bag ファミリーと共に折りたたまれていないクライアントを正しい立体構造に折りたたみ、ク ライアントの構造や機能を維持している (Meimaridou et al., 2009)。また、HSC70 によるクライアント の分解には2つの機序がある。一つは、ユビキチン化されたクライアントをとらえ、CHIPとともに ユビキチンプロテアソーム系に運ぶことで、クライアントの分解を促進する。もう一つは、シャペロ ン介在性オートファジー(chaperon mediated autophagy; CMA) (Deffit & Blum, 2015) であり、KFERQ モチーフを持つクライアントを認識し、LAMP-2A を介して選択的にリソソームに取り込み、分解す る (Cuervo, 2011)。

このように、HSC70の結合タンパク質(クライアント)の種類に依存して、下流で引き起こされる 細胞内イベントが決定されると考えたため、Aβ存在下で HSC70 との結合が増加する神経細胞中のタ ンパク質を探索し、その結果 α-tubulin を同定した(Fig. 8)。α-及び β-tubulin が HSC70 と結合すること は既に報告されており (Gache et al., 2005)、本研究の結果を支持する。一方で、単量体 α-tubulin の分子 量は約55kであることから、Fig.8においてHSC70と共沈降された約300k以上のバンドに含まれる α-tubulin は、おそらく α-tubulin 同士が重合した状態、或いはその重合体が HSC70 と結合を保った複 合体なのではないかと予想している。α-tubulin は、重合することで軸索伸長を促進する微小管骨格タ ンパク質である (Conde & Cáceres, 2009)。Aβによって α-tubulin 陽性の微小管が破壊し、5XFAD マウス の脳においてアミロイドプラーク周囲の変性した神経突起に α-tubulin が異常に蓄積すること (Sadleir et al., 2016)、AD 患者の脳内において α-tubulin が減少すること (Zhang et al., 2015) からも、α-tubulin が 軸索伸長や記憶改善にとって重要なタンパク質であることは多々議論されている。Aβ処置によって 変性した軸索上では α-tubulin の発現が減少しており、diosgenin 処置によって変性軸索の割合が減少し たこと(**Fig. 9**)から、diosgeninは HSC70 による α-tubulin の分解を抑制している可能性が考えられた。 しかし、HSC70 と α-tubulin の結合後に、HSC70 が本当に α-tubulin の分解に寄与しているかどうかの 確証は得られていない。前述の HSC70 によるクライアントタンパク質の分解機序の 2 つのうち、後 者の CMA に関しては、HSC70 のクライアントが KFERQ モチーフをもつ必要がある。α-tubulin には 本モチーフが報告されていないため、おそらく前者のユビキチンプロテアソーム系で分解されるので

はないかと予想している。少なくとも、ユビキチン化された α-tubulin がプロテアソーム系で分解され るとの報告があるため (Ren et al., 2003)、本機序を確認することが今後の課題である。

Diosgenin が神経細胞中の HSC70 の発現を減少させたメカニズムとして、少なくとも diosgenin によ る 1,25D₃-MARRS の刺激を介して起こることが示された(Fig. 6)。HSC70 の転写促進因子の 1 つとし て Sp1 が報告されているが、Sp1 と 1,25D₃-MARRS の関係については報告がない。Sp1 は HSC70 のク ライアントとしても報告されており、HSC70 が Spl をフォールディングし安定化させる (Yang et al., 2014)。つまり、HSC70の活性化は転写因子 Sp1を増やし、それによって HSC70 自身の発現を上げる ポジティブフィードバック機構が成り立つ。さらに、Spl は AD 患者及び AD モデルマウス脳内で発 現が増加しており (Citron et al., 2015)、APP や BACE1 の転写因子としての報告もある (Santpere et al., 2006)。これらのことを踏まえると、diosgenin や VER-155008 による HSC70 の減少または活性阻害が、 Sp1 の発現を減少させる可能性はあるが、本研究において Sp1 の発現変化は未検討である。また、 diosgenin と同様に、VER-155008 を投与した 5XFAD マウスの脳内においても Aβ が減少したが、この メカニズムについても前述の機構を介して、Sp1 の減少による Aβ 生成抑制が関与している可能性も ある。しかし、本研究では Aβ の蓄積がほぼプラトーに達した後の 7-8 ヶ月齢の 5XFAD マウスを用 いたこと (Oakley et al., 2006)、VER-155008 投与によって脳内の Aβ は約 50%程度も減少したこと (Fig. 13)を踏まえると、HSC70の阻害によって新たに生成する Aβの蓄積を抑制しただけでなく、既に蓄 積している Aβ を分解し、除去する機序が活性化されたと考える方が妥当である。今後、HSC70 阻害 による Aβの除去に関わる分子メカニズムを詳細に解明する必要がある。

HSC70 はがん組織での発現が高く、がん細胞の生存に関わっていることから、これまでに VER-155008 を含めた 10 種類以上の HSC70 の阻害剤 (Wan et al., 2016; Wen et al., 2014) が、抗がん剤として 開発されてきた (Goloudina et al., 2012)。本研究では、HSC70 の ATP 結合ポケットに結合する VER-155008 (Schlecht et al., 2013) を用いたが、VER-155008 が培養神経細胞の軸索再伸長、5XFAD マウスの 記憶障害改善、さらには 5XFAD マウス脳内における変性軸索の減少、Aβ及びリン酸化タウの減少に 対して有効であることを初めて証明した (Fig. 11)。また、腹腔内投与された VER-155008 が確かに脳 に移行することも確認された (Fig. 12)。したがって、VER-155008 を含むこれらの HSC70 阻害剤を AD に対する新規治療薬として応用できる可能性が期待される。以上、本章の結果より、AD におい て HSC70を阻害することが新規治療ターゲットになりうることが示された。

しかし、本章の考察から生まれた問いとして、diosgenin がα-tubulinの分解を"抑制する"という分 子機序だけでは、diosgenin による"積極的に軸索を伸ばす"作用を説明し切れないことが挙げられる。 また、HSC70の減少または阻害が、直接軸索伸長及び軸索再伸長に寄与することは *in vitro*の初代培 養神経細胞おいて示されたが、本当に AD 脳において軸索が長距離、かつつながるべき投射先に向か って積極的に再伸長しているかは検出できていない。さらに、本章では大脳皮質の組織を用いて機能 分子の探索を行ったため、神経細胞特異的な機能分子を見落としている可能性がある。そこで第2章 では、トレーサーによって脳の軸索を可視化する手法を用いて、diosgenin が 5XFAD マウス脳内にお いて方向特異的な軸索再伸長を促進するかどうか、またその際「軸索がつながる脳部位まで再伸長し た神経細胞」を脳切片より1個1個単離し、それら神経細胞中で発現変化した因子を網羅的に検出す ることで、第1章よりも検出精度を高めて機能分子の探索を試みた。

<u>1.5.小括</u>

本章では、diosgenin による神経細胞中での HSC70 の減少が、軸索再伸長及び記憶改善にとって重要な分子であることが示された。また、本現象には HSC70 の結合タンパク質 α-tubulin の分解が間接的に抑制されることが寄与している可能性が考えられた (Yang & Tohda, 2018a)。さらに、HSC70 の特異的阻害が軸索再伸長及び AD モデルマウスの記憶障害の改善に関わることが示され、AD 治療における新規治療ターゲットになりうることが期待される (Yang & Tohda, 2018b)。

第2章: Diosgeninの AD 脳内における方向特異的な軸索再伸長作用とその分子機序の解明

(Yang X, Tohda C. Molecular Psychiatry, in press, 2023)

(Yang X, Tohda C. *Molecular Neurobiology*, 60, 1250–1266, 2023)

<u>2.1.緒言</u>

第1章において、diosgeninによる軸索再伸長に関わる神経細胞中の分子として、HSC70の減少及び α-tubulinの増加を見出した。しかし、第1章の考察で述べたように、diosgeninが ADの脳内において 軸索をつながるべき投射先に方向特異的に再伸長させているかは不明である。

一般的に、脳の成熟に伴って、神経細胞中の軸索再生に関わるエネルギーが低下すること、脳にお ける軸索誘導シグナルが減弱すること、細胞外での軸索伸長阻害因子の発現が増加すること等が、成 体脳での軸索伸長・再生能を低下させる要因であると考えられている (He & Jin, 2016)。一方、成体脳 及び AD モデルマウスの脳において、損傷された軸索が少なくとも近位局所には自発的に再伸長、ま たは分枝 (sprouting) できることが報告されている (Blazquez-Llorca et al., 2017; Jin et al., 2016; Li et al., 2010b)。しかし、記憶を始めとした神経機能を回復するには、再伸長する軸索は無秩序ではなく、 元々投射していた正しいターゲットに向かってのみ再伸長する必要があるが、薬物投与を含む何らか の刺激によって、脳において損傷した軸索がつながるべき脳部位に向かって再伸長するかどうかにつ いては検討されたことがない。

一方で、中枢神経系のうち、軸索走行の方向がシンプルである下行性伝導路 (Cheng et al., 2022) や 視覚路 (Li et al., 2022; Lim et al., 2016) に関しては、軸索が方向特異的に再伸長することが動物実験で 検証されており、その現象に関わる機能分子もいくつか見出されている。また、中枢神経系よりも軸 索再生しやすいと考えられている末梢神経系においても、少なくとも運動神経 (Isaacman-Beck et al., 2015)、迷走神経 (Isabella et al., 2021)、坐骨神経 (Serger et al., 2022)、感覚神経 (Cadiz Diaz et al., 2022)、 嗅神経 (Browne et al., 2022) は、損傷前に投射していたターゲット部位に自発的に軸索を再伸長し、そ の分子機構も明らかになりつつある。したがって、記憶を制御している脳内回路に関しても、軸索再 伸長刺激が加わることで、自ずとつながるべき脳部位に軸索が再投射する機構が備わっている可能性 は高いと予想されるが、脳回路は軸索走行が非常に複雑であるため、そのような現象が *in vivo* で評価 されるには至っていない。少なくとも、これまでの研究において、diosgenin 投与によってマウスの行 動学的所見に変化がなかったことから、diosgenin 投与によって脳で異所性に回路形成が起こっている 可能性は低いのではないかと考えた。

そこで本章では、記憶形成や記憶想起に関わる (Kitamura et al., 2017; Wang et al., 2021) 海馬 (Hippocampus; HPC) から前頭前野 (Prefrontal cortex; PFC) の長距離の神経回路に着目し、diosgenin による方向特異的な軸索再伸長作用を評価した。当研究室の先行研究により、diosgenin 投与は 5XFAD マウスの脳内において、HPC 及び PFC の両方において異常に肥大化した変性軸索終末を減ら

すことがわかっている (Tohda et al., 2012) 他、正常マウスへの diosgenin 投与が HPC—PFC 間の協調的 な神経発火を増加させる (Tohda et al., 2013) ことを見出していることから、本回路が軸索再伸長作用に よって修復されている可能性は高いのではないかと予想した。したがって、マウスの本神経回路を逆 行性トレーサーで標識し、"軸索が方向特異的に再伸長した神経細胞"を蛍光で可視化する手法を用 いて解析を試みた。また、第1章では大脳皮質の組織を用いて機能分子の探索を行ったが、本章では、 脳で"軸索が方向特異的に再伸長した神経細胞"を特異的に脳切片からレーザーマイクロダイセクシ ョンで単離し、これら神経細胞中で変化した因子を網羅的に検出することにより、検出精度を高めて 機能分子を探索した。

2.2.実験材料ならびに実験方法

<u>倫理宣言</u>

動物の取り扱いは富山大学動物実験指針に従った。また、本動物実験のプロトコールは、富山大学 動物実験委員会及び遺伝子組換え実験委員会の承認を得ている(動物実験承認番号:A2017INM-1、 遺伝子組換え実験承認番号:G2018INM-2,G2020INM-10)。

Diosgenin

In vitro の実験は第1章の同項に同じ。*In vivo* の投与実験では、diosgenin を日本薬局方オリーブオイル(丸石製薬、大阪)に溶解させ、0.1 µmol/kg/day で経口投与した。

マウスに対する diosgenin の投与

Diosgenin は 1 mM となるように溶解し、diosgenin (0.1 µmol/kg/day) または溶媒を 1 日 1 回 14–15 日 間経口投与した。

脳軸索切断マウスの作製

ddY マウスは、Japan SLC(浜松)より購入した。ddY マウス(雌性、8週齢)に三種混合麻酔薬を マウス体重(g)×10-50(μ l)腹腔内投与し、麻酔した。マウスの頭頂部の毛を剃り、頭皮に切れ込み を入れて開き、頭蓋骨を露出した後、頭部をステレオタキシス(ナリシゲ、東京、日本)に固定した。 電動ドリルを用いて、頭蓋骨(両側運動野の上)に穴を空けた。ブレード(直径 0.76 mm 刺しゅう 針;クローバー、大阪)を両側運動野(Bregmaに対して+0.0 mm anterior-posterior; A-P, ±1.5 mm mediallateral; M-L, -1.6 mm dorsal-ventral; D-V)に刺入し、そのまま+1.5 mm A-P まで平行移動させた。頭皮を 滅菌済みシルクブレード縫合糸4号(直径 0.10-0.149 mm、ハシモト、東京)で縫合した。手術後、 マウスに抗麻酔薬である75 μ g/ml アンチセダン(日本全薬工業)を三種混合麻酔薬と同量腹腔内投与 した。手術中及び手術後は、体温を維持するためにマウスをホットプレート(37°C)上に置いた。

ADモデル (5XFAD) マウス

5XFAD(Tg6799) またはその wild-type マウス(雌性、7-9ヶ月齢)を用いた。他は、第1章の同項 に同じ。

5XFAD マウスの genotyping

第1章の同項に同じ。

Dextran (3000 MW) を用いた逆行性標識
マウスに三種混合麻酔薬をマウス体重 (g) × 10 - 50 (µl) 腹腔内投与し、麻酔した。マウスの頭頂部 の毛を剃り、頭皮に切れ込みを入れて開き、頭蓋骨を露出した後、頭部をステレオタキシスに固定し た。電動ドリルを用いて、頭蓋骨(右側 PFC の上)に、注入針が通る程の微小の丸穴を空けた。0.5 µlの Dextran 3000 MW Texas Red (50 mg/mL in artificial cerebrospinal fluid [aCSF]; Thermo Fisher Scientific) を右側 PFC (+1.9 mm A-P, +0.3 mm M-L, -2.6 mm D-V; -2.8 mm D-V まで刺入後、-2.6 mm D-V に戻す) に 0.5 µl/min の速度で注入後、頭皮を滅菌済みシルクブレード縫合糸 4 号で縫合した。手術後、マウ スに 75 µg/ml アンチセダンを三種混合麻酔薬と同量腹腔内投与した。手術中及び手術後は、体温を維 持するためにマウスをホットプレート(37℃)上に置いた。

Dextran 3000 MW Texas Red の注入より7日後に、前項(マウスに対する diosgenin の投与)の通り マウスに薬物投与、または後項(5XFAD マウスに対する AAV9 注入)の通りマウスに AAV 注入手術 を施し、その後、前述と同様の要領で 0.5 µl の Dextran 3000 MW FITC(50 mg/mL になるように aCSF に溶解; Thermo Fisher Scientific)を同じ右側 PFC に注入した。Dextran 3000 MW FITC を注入する際、 Dextran 3000 MW Texas Red を注入時に空けた頭蓋骨の丸穴が観察されるため、1回目のトレーサー注 入時と全く同じ部位に注入されるよう、ステレオタキシスの目盛及び目視の両方で、注入部位を慎重 に決定した。PFC において、Dextran 3000 MW Texas Red 及び FITC の 2 色の注入位置が完全に一致し たマウスのみを解析に使用した。

レーザーマイクロダイセクション(LCM)及び DNA マイクロアレイ

薬物投与後、5XFADマウス(各群 n=3)に三種混合麻酔薬をマウス体重(g)×10-50(µl)腹腔内に 投与し麻酔した。胸部を切開し、左心室に翼状針(トップ)を刺入した後、右心房に切れ込みを入れ、 左心室より氷冷した saline を 20 ml 灌流し、マウスの全脳を摘出した。全脳をドライアイスで 15 分間 急速凍結し、アルミホイルに包んで−30°Cに保存した。クリオスタット(Leica)を用いて背側(dorsal) HPC を含む 16 µm の連続冠状切片を作製し、RNase 除去処理(RNase Quie; ナカライテスク)された MAS-GP typeA コートスライドグラス(松浪ガラス工業、大阪)に貼り付け、LCM まで-80 °C で保存 した。

LCM は PALM MicroBeam (Carl Zeiss) を用いて実施した。1枚のスライドガラスからの神経細胞の採 取は、室温で最低 1 時間以内に終えるようにした。溶媒投与群の 5XFAD マウス (n = 3) より計 660 個の naïve 神経細胞、diosgenin 投与群の 5XFAD マウス (n = 3) より計 720 個の軸索が再伸長した神経 細胞をそれぞれ採取した。採取した細胞から Total RNA を抽出し (NucleoSpin RNA, MACHEREY-NAGEL GmbH & Co. KG, Duren, Germany)、T7 RNA polymerase による増幅を行った (GeneChip 3' IVT Pico Kit, Thermo Fisher Scientific)。増幅した RNA について、Mouse Clariom S Array にハイブリダイズし た (GeneChip Hybridization, Wash and Stain Kit, Thermo Fisher Scientific)。データ解析は Transcriptome Analysis console (Thermo Fisher Scientific) を用いて行った。

マウス胎児海馬、前頭皮質、及び小脳神経細胞の初代培養

要領は、第1章の<u>マウス胎児大脳皮質神経細胞の初代培養</u>に基づき、以下の内容のみ変更して行った。胎生14日齢のddYマウスより海馬、前頭皮質(大脳皮質のうち前脳部)、及び小脳のみをそれぞれ単離し、それぞれ1.5×10⁴ cells/well となるように8-well チャンバースライド(BD)に播種した。 神経細胞の播種から4-5時間後に、海馬及び小脳神経細胞は、B-27 supplement を含む無血清培地 [Neurobasal media 中に2%B-27 supplement (Life Technologies)、2 mM L-グルタミン]に、前頭皮質神経 細胞は、B-27 supplement を含む無血清培地 [Neurobasal media 中に2%B-27 supplement (Life Technologies)、2 mM L-グルタミン、0.6% グルコースを溶解]に培地を全量交換した。なお、本章にお ける<u>神経細胞に対する薬物処置</u>についても、それぞれの神経細胞に対してここに示す各組成のB-27 supplement を含む無血清培地を使用した。

<u>Amyloid beta (Aβ) ペプチド</u>

第1章の同項に同じ。

<u>AAV9ベクター</u>

AAV9ベクターは、ベクタービルダー社 (Chicago, IL, USA) に構築を委託した。AAV-Control (AAV9-Syn1-Cerulean-WPRE) 、 AAV-SPARC (AAV9-Syn1-mSparc-IRES-Cerulean-WPRE) 、 AAV-Control-hM4Di (AAV9-Syn1-hM4Di-T2A-Cerulean-WPRE) 、 AAV-SPARC-hM4Di (AAV9-Syn1-mSparc-P2A-hM4Di-T2A-Cerulean)、AAV-Gal-1 (AAV9-Syn1-mLgals1-IRES-Celulean-WPRE) の各配列のものを用いた。*In vitro* 及 び *in vivo* の実験共に、AAV9ベクターは PBS に溶解して使用した。

神経細胞に対する薬物処置

後述の <u>2.3. 実験結果</u>に記載するぞれぞれのタイムコースに従って、培養神経細胞に 2.5 μ M A β_{25-35} または A β_{35-25} 、 0.1 or 1 μ M diosgenin、rabbit 抗 1,25D₃-MARRS ポリクローナル抗体(最終濃度 1:1000) (Ab099 clone) または normal rabbit IgG (Santa Cruz)、AAV-Control (5 × 10⁵, 10⁶, または 10⁷ GC/ μ l)、 AAV-SPARC (5 × 10⁵, 10⁶, または 10⁷ GC/ μ l)、または AAV-Gal-1 (5 × 10⁵, 10⁶, または 10⁷ GC/ μ l)、goat 抗 SPARC ポリクローナル抗体 (2 μ g/ml) または normal goat IgG (Santa Cruz; 2 μ g/ml)、recombinant Secernin-1 (rSecernin-1; 1, 10, または 100 ng/ml) (Synonym Symbols, Switzerland) を B-27 supplement を含む 無血清培地に混ぜ、加えた。

<u>神経細胞への siRNA 導入</u>

初代培養神経細胞への siRNA 導入は Lonza 社のプロトコールに従って行った。胎生 14 日齢の ddY

マウス由来の海馬初代培養神経細胞(2.5×10⁵細胞)に 30 nM SPARC siRNA(#S74217, Thermo Fisher Scientific)または 30 nM Control siRNA (Select Negative Control siRNA #1, Thermo Fisher Scientific)を 0.4 µg GFP vector と混合し、Amaxa 4D-Nucleofector (Lonza)でトランスフェクションした。 1.5×10⁴ cells/well となるように 8-well チャンバースライドに播種し、播種から 4-5 時間後に、培地を全量、B-27 supplement を含む無血清培地に交換した。

Collagen I コーディング

Poly-D-Lysine (PDL; 5 mg/ml; Sigma-Aldrich) で一晩コーディング後の 8-well チャンバースライド (BD) に、30 μg/ml Cellmatrix I-C (和光純薬) in 10³ M 塩酸 (HCl) 溶液を1時間、氷浴上でコーディン グした。Calcium-, magnesium-free Hank's balanced salt solution (HBSS) (Life Technologies) で 2 回、 Neurobasal 培地 (Thermo Fisher Scientific) で 1 回それぞれ洗浄後、初代培養海馬神経細胞を播種した。 **Fig. 32B** における方向特異的な collagen I コーティングは、同様に PDL コーディングした 8-well チャ ンバースライド (BD) の裏面にグリッドシール (Iwaki, Japan) を貼り、グリッドの目盛を利用して マイクロピペットで Cellmatrix I-C (10⁻³ M HCl溶液) をスライドの右側のみに部分的にコーティング した。1 時間、氷浴上でコーディングした後、HBSS (Life Technologies) で 2 回、Neurobasal 培地 (Thermo Fisher Scientific) で 1 回それぞれ洗浄し、Culture-Inserts 3 Well (Ibidi, Germany) をスライド 上に置いた。初代培養海馬神経細胞を Culture-Inserts 3 Well のみに 1.5 × 10⁴ cells で播種し、 神経細胞がスライド上に付着した後、Culture-Inserts 3 Well を取り外した。

Triple chamber neuron device での神経細胞培養、及び蛍光イメージング (Fig. 32C)

カバーガラスを dH₂O 中に浸し、30 分間超音波洗浄した後、エタノールで 1 回、dH₂O で 3 回それ ぞれ洗浄した。PDL (5 mg/ml; Sigma-Aldrich) にカバーガラスを浸し、一晩コーディングした。その後、 カバーガラスを dH₂O で 5 回洗浄し、乾燥させた。Triple chamber neuron device (Xona Microfluidics, Research Triangle Park, NC, USA) をカバーガラス上に置き、初代培養海馬神経細胞を Triple chamber neuron device の細胞体スペースに 1.0×10^5 cells で播種した。 5×10^7 GC/µl AAV-Control を 10 日間処置後、 倒立蛍光顕微鏡 BZ-X800 (キーエンス、大阪) を用いて、Microgroove 中の Cerulean 陽性軸索をライ ブセルイメージングで検出した。次に、細胞体及び軸索スペースに A β_{25-35} (2.5 µM) を 3 日間処置し、 再び倒立蛍光顕微鏡 BZ-X800 で同一の軸索をライブセルイメージングした。その後、カバーガラス から Triple chamber neuron device を取り外し、カバーガラスを新たに設けた培養 dish に移した。 5×10^6 GC/µl AAV-Control または AAV-SPARC、及び 2 µg/ml goat IgG 抗 SPARC 抗体 (R&D systems) または normal goat IgG (Santa Cruz) 入りの Neurobasal 培地で 7 日間処置した。

<u>Neuron Device Chamber での神経細胞培養(Fig. 41, 43)</u>

カバーガラスを dH₂O 中に浸し、30 分間超音波洗浄した後、エタノールで1回、dH₂O で3回それぞ れ洗浄した。PDL (5 mg/ml; Sigma-Aldrich) にカバーガラスを浸し、一晩コーディングした。その後、 カバーガラスを dH₂O で5回洗浄し、乾燥させた。Neuron device chamber (Xona Microfluidics) をカバ ーガラス上に置き、初代培養海馬神経細胞を Neuron device chamber の細胞体スペースに 1.0 × 10⁵ cells で播種した。その後、細胞体スペースに 5 × 10⁵ GC/µl AAV-Control または AAV-Gal-1入りの Neurobasal 培地でを処置し、軸索投射スペースに前項(マウス胎児海馬、前頭皮質、及び小脳神経細胞の初代培 養)の通り初代培養した前頭皮質神経細胞の培養上清(CM) または 1 ng/mL rSecernin-1 を処置した。 前頭皮質神経細胞の CM は、前頭皮質神経細胞を B-27 supplement を含む無血清培地で6日間培養後、 B-27 supplement を含まない無血清培地でさらに 1 日培養したものの培養上清を回収し、0.22 µm 径の Millex 濾過フィルター (Merck Millipore) を通して細胞の残骸を除いたものを使用した。7日間培養後、 カバーガラスから Neuron device chamber を静かに取り外し、蛍光免疫染色を行った。

培養細胞の蛍光免疫染色

細胞膜透過処理(染色時に界面活性剤あり)の蛍光免疫染色については、神経細胞の培養終了後、 培地を除去し PBS で洗浄した後、4% Paraformaldehyde-PBS 溶液を加えて 60 分間常温で静置し固定し た。溶液を除去し、0.3% TritonX-100(和光純薬)-PBS 溶液で5分間の洗浄を2回行った。一次抗体 溶液 {0.3% TritonX-100-PBS 溶液、normal donkey serum (和光純薬) または normal goat serum (和光純 薬)、以下いずれかの一次抗体 [goat IgG 抗 SPARC ポリクローナル抗体 (1:1000; R&D systems, Minneapolis, MN, USA)、rabbit IgG抗 collagen type I ポリクローナル抗体 (1:500; Abcam)、rabbit IgG抗 Secernin-1 ポリクローナル抗体 (1:2000; Synaptic Systems, Göttingen, Germany)、goat IgG 抗 mouse Gal-1 モ ノクローナル抗体 (1:100; R&D Systems)、mouse IgG1抗 His-tag モノクローナル抗体 (1:200; LSBio, WA, USA)、mouse IgG₁ 抗 pNF-H モノクローナル抗体 (1:250, Convance, Princeton)、rabbit IgG 抗 microtubeassociated protein (Map) 2 ポリクローナル抗体 (1:500, Abcam)] を 100 µl 加え、4℃で一晩反応させた。 翌日、一次抗体液を除去し、0.3% TritonX-100-PBS 溶液で5分間の洗浄を2回行った後、二次抗体液 [0.3% TritonX-100-PBS 溶液、Alexa Fluor 488, 594, または 647 標識 donkey または goat anti-mouse IgG 抗 体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 647 標識 donkey または goat anti-rabbit IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 647 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)] を 100 µl 加え、遮光下、常温で 2 時間反応させた。反応後、溶液を除去し、 PBS で 5 分間の洗浄を 2 回行った後、DAPI (1 µg/ml) (Enzo Life Science) - PBS 溶液を加え、遮光下、 常温で5分間反応させた。その後、溶液を除去し、PBS で5分間の洗浄を行った後、Aqua Poly Mount (Polyscience) で封入した。

細胞膜非透過処理(染色時に界面活性剤なし)の蛍光免疫染色については、神経細胞の培養終了後、 培地を除去し PBS で洗浄した後、4% Paraformaldehyde-PBS 溶液を加えて 15 分間常温で静置し固定し た。溶液を除去し、PBS 溶液で 5 分間の洗浄を 2 回行った。一次抗体溶液 {PBS 溶液、normal donkey serum (和光純薬) または normal goat serum (和光純薬)、以下いずれかの一次抗体 [goat IgG 抗 SPARC ポリクローナル抗体 (1:1000; R&D systems)、rabbit IgG 抗 collagen type I ポリクローナル抗体 (1:500; Abcam)、rabbit IgG 抗 Secernin-1 ポリクローナ抗体 (1:2000; Synaptic Systems)、goat IgG 抗 mouse Gal-1 モノクローナル抗体 (1:100; R&D Systems)、mouse IgG₁抗 His-tag モノクローナル抗体 (1:200; LSBio, WA, USA)、mouse IgG₁ 抗 pNF-H モノクローナル抗体 (1:250, Convance, Princeton)]} を 100 μ l 加え、4°C で一晩反応させた。翌日、一次抗体液を除去し、PBS 溶液で 5 分間の洗浄を 2 回行った後、二次抗体 液 [PBS 溶液、Alexa Fluor 488, 594, または 647 標識 donkey または goat anti-mouse IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 647 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 647 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 647 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 594, または 597 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 594, または 597 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 597 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 597 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 597 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 597 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 597 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 597 標面 の応冷を 2 回行った後、Aqua Poly Mount (Polyscience) で封入した。

<u>培養細胞の画像解析</u>

蛍光免疫染色後のスライド観察には、倒立蛍光顕微鏡 Cell Observer (Carl Zeiss)、Axio Vision 4.8 ソ フトウェア (Carl Zeiss)、及び倒立蛍光顕微鏡 BZ-X710 (キーエンス、大阪)を用いた。Fig. 41A 及 び Fig. 44B の観察は、共焦点顕微鏡 LSM700 (Carl Zeiss)を用いた。Cell Observer 及び LSM700 では一 枚当たり 432.49 μm × 322.81 μm または 864.98 μm × 645.62 μm の大きさで、BZ-X710 では 40 × NA 0.95、 20 × NA 0.75、または 10 × NA 0.45 対物レンズ (CFI Plan Apo-λ, ニコンインステック、東京)を用いて 画像を取得した。

神経細胞内の SPARC 及び Gal-1 の発現量及び pNF-H 陽性軸索長の測定には、画像解析ソフト MetaMorph version 7.8 (Molecular Devices) を用いて自動計測した。神経細胞体当たりの抗体陽性輝度の 積算値により、細胞中の SPARC 及び Gal-1 の発現量を定量した。また、画像全体の pNF-H 陽性軸索 の長さを測定し、Map2 陽性の神経細胞体の数で除することで、神経細胞当たりの軸索の長さを算出 した。

siRNA 導入実験及び、軸索上における SPARC 及び Gal-1 の発現量の解析は、画像解析ソフト Image J (National Institutes of Health)を用いた。siRNA 導入実験では、GFP 陽性神経細胞 1 個 1 個を ROI で囲み、各細胞中の SPARC の発現量を定量した。また、GFP 陽性神経細胞から伸びる pNF-H 陽性軸索長をトレースし、神経細胞当たりの軸索の長さを算出した。軸索上の SPARC 及び Gal-1 の定量は、画像中の全軸索をなぞり、各軸索上の SPARC 及び Gal-1 の輝度値を算出した。

Neuron device chamber 内で培養した神経細胞の pNF-H 陽性軸索長の定量は、画像解析ソフト

Neurocyte Image Analyzer ver. 1.5 (クラボウ、大阪)を用いて自動計測した。

Western blot

要領は、第1章の同項と同様に行ったが、以下の内容のみ変更して行った。

胎生 14 日齢の ddY マウスより単離した初代培養神経細胞を PBS で洗浄後、1 × Halt protease & phosphatase inhibitor cocktail (Thermo Fisher Scientific) を含む M-PER (Thermo Fisher Scientific) で homogenate したものをサンプルとして用いた。また、前頭皮質及び小脳神経細胞の CM は、B-27 supplement を含む無血清培地で 6 日間培養後、B-27 supplement を含まない無血清培地でさらに 1 日培養したものの培養上清を回収し、0.22 μm 径の Millex 濾過フィルター (Merck Millipore) を通して細胞の残骸を除いたものを Amicon Ultra 3K (Merck Millipore) で濃縮し、使用した。

ー次抗体液は、goat IgG 抗 SPARC ポリクローナル抗体 (1:1000; R&D systems)、mouse IgG₁ 抗 GAPDH モノクローナル抗体 (1:1,000; Applied biological materials)、rabbit IgG 抗 Secernin-1 ポリクロー ナ抗体 (1:2000; Synaptic Systems)、goat IgG 抗 mouse Gal-1 モノクローナル抗体 (1:100; R&D Systems)、

または mouse IgG₁抗β-actin 抗体(1:1000, Cell Signaling Technology)を含んだ Can Get Signal Solution 1 (Toyobo) とし、ラッピーバッグ(東信産業)内で一晩、4℃で反応させた。メンブレンを 0.1% T-TBS で 15 分間 × 4 回リンスした後、ラッピーバッグ内で HRP 標識 donkey 抗 goat IgG 抗体 (1:2000, Santa Cruz)、HRP 標識 goat 抗 mouse IgG (1:2000, Santa Cruz)、または HRP 標識 goat 抗 rabbit IgG (1:2000, Santa Cruz) を含んだ Can Get Signal Solution 2 (Toyobo) と 2 時間、室温で反応させた。

<u>免疫沈降法及び SDS-PAGE</u>

Dynabeads Protein G (1.5 mg; Thermo Fisher Scientific) を 0.01% Tween-PBS で 3 回洗浄し、goat IgG 抗 mouse Gal-1 (4 µg, R&D Systems) または normal goat IgG (4 µg) と混合した。200 mM トリエタノールア ミン (pH 8.9) で洗浄後、50 mM dimethyl pimelimidate (DMP) を用いて 30 分間、4℃でローテーションし た。200 mM トリエタノールアミン (pH 8.9) で洗浄後、ブロッキング buffer (200 mM エタノールアミ ン、pH 8.9) を加え、15 分間、室温でローテーションした。これを 0.01% Tween-PBS で 3 回洗浄し、 抗体と Dynabeads Protein G をクロスリンクさせた。

別に用意した初代培養海馬神経細胞 lysate (5×10⁶ GC/µl AAV-Gal-1を7日間処置したもの) 50 µg分 に 1.5 µg rSecernin-1 を加え、60 分間、37℃でインキュベートした。その後、クロスリンクした Dynabeads Protein G と抗体を加え、120分間、4℃でローテーションした。0.01% Tween-PBS で2回洗 浄し、溶出バッファー (0.1 M Glycine-HCL, pH 2.8) を加えて免疫沈降されたタンパク質を溶出した。 NuPAGE LDS Sample Buffer 及び 2-mercaptoethanol を加え、95℃で5分間加熱した後 SDS-PAGE し、 SilverQuest Silver Staining Kit (Thermo Fisher Scientific) を用いた銀染色、または上述と同様に western blot を行った。Input サンプルとして、海馬神経細胞 lysate (2 µg 分) または rSecernin-1 (1 ng 分) を同様

<u>5XFAD マウスに対する AAV9 注入</u>

マウスに三種混合麻酔薬をマウス体重 (g) × 10 - 50 (µl) 腹腔内投与し、麻酔した。マウスの頭頂部 の毛を剃り、頭皮に切れ込みを入れて開き、頭蓋骨を露出した後、頭部をステレオタキシスに固定し た。電動ドリルを用いて、頭蓋骨(両側 CA1 の上)に穴を空けた。各 1 × 10¹⁰ AAV9(PBS 溶液)を 両側 CA1(-1.9 mm A-P, +1.7 mm M-L, -1.7 mm D-V; -2.0 mm D-V まで刺入後、-1.7 mm D-V に戻す)に 1 µl/site、0.5 µL/min の速度で注入後、頭皮を滅菌済みシルクブレード縫合糸 4 号で縫合した。手術後、 マウスに 75 µg/ml アンチセダンを三種混合麻酔薬と同量腹腔内投与した。手術中及び手術後は、体温 を維持するためにマウスをホットプレート(37℃)上に置いた。

DREADDs (designer receptors exclusively activated by designer drugs) 実験

<u>5XFAD マウスに対する AAV9 注入</u>で述べた両側 CA1 への AAV 注入実験と同時に、小脳上の頭蓋 骨に 2 ヶ所の浅い穴を開け、脳実質に貫通しないようにしながら、アンカースクリュー (1.6 mm 深; Bio Research Center, Nagoya, Japan)を静かに留置した。また、電動ドリルを用いて、PFC の上の頭蓋 骨を開き,ガイドカニューレ (micro slim A-I, ID: 0.4 mm, OD: 0.5 mm DV: 2.5 mm; Eicom、京都)を両 側 PFC の中心 (+2.0 mm A-P, +0.0 mm M-L, -2.5 mm D-V) に留置した。その際、脳内出血を防ぐために、 まずは留置部よりもわずか lateral 部にガイドカニューレを挿入し、ステレオタキシスを用いて+0.0 mm M-L まで水平移動させた後、留置した。デンタルセメント (ユニファスト III; GC、東京)を用い てガイドカニューレ及び頭蓋骨を固定し、行動実験までの間はダミーカニューレ (Eicom)を充填し た。

手術より 21 日及び 23 日後の物体認知試験時に、Training session 終了後直ちにマウスをイソフルランで浅く麻酔し、インジェクションカニューレ(Eicom)を用いて 0.3 μ lの生理食塩水または 0.3 μ lの ImM clozapine-N-oxide (CNO; Cayman Chemical, MI, USA)を 0.5 μ l/min で PFC に注入した。全マウスについて、覚醒することを確認後、物体認知記憶試験の Test session を行った。

5XFAD マウスの行動試験

第1章の同項に同じ。

BDA を用いた順行性標識

要領は、第2章の <u>Dextran (3000 MW) を用いた逆行性標識</u>と同様に行ったが、以下の内容のみ変更 して行った。前項(マウスに対する diosgenin の投与)の通りマウスに薬物投与した後、10% BDA (in PBS, Thermo Fisher Scientific) をマウスの右側 CA1 (-1.9 mm A-P, +1.7 mm M-L, -1.7 mm D-V) に 0.5 μl、 0.5 µl/minの速度で注入した。BDA 注入より7日後に、マウスの脳を摘出した。

脳組織切片の作製

薬物投与後、三種混合麻酔薬をマウス体重 (g) × 10 - 50 (μl) 腹腔内に投与し麻酔した。胸部を切開 し、左心室に翼状針(トップ)を刺入した後、右心房に切れ込みを入れ、左心室より氷冷した saline を 20 ml 灌流し、マウスの全脳を摘出した。全脳をドライアイスで 15 分間急速凍結し、アルミホイ ルに包んで−30℃に保存した。クリオスタット(Leica)を用いて背側(dorsal)HPC を含む 20 μm の 連続冠状切片を作製し、MAS-GP typeA コートスライドグラス(松浪ガラス工業)に貼り付け、蛍光 免疫染色までは-30 ℃で保存した。

脳組織切片の蛍光免疫染色

脳切片を常温に戻した後、透明マニキュアでスライドガラスの周囲を囲み、4% Paraformaldehyde-PBS 溶液を加え、60 分間常温で静置し、固定した。溶液を除去し、0.5% TritonX-100-PBS 溶液で5分 間の洗浄を2回行った。一次抗体溶液 {0.5% TritonX-100-PBS 溶液、normal donkey serum (和光純薬) または normal goat serum (和光純薬)、以下いずれかの一次抗体 [mouse IgG₁抗 GFAP モノクローナル 抗体 (1:1000, Sigma-Aldrich), chicken IgY 抗 NF-H ポリクローナル抗体 (1:1000, Merck Millipore)、goat IgG 抗 SPARC ポリクローナル抗体 (1:1000; R&D systems, Minneapolis, MN, USA)、rabbit IgG 抗 collagen type I ポリクローナル抗体 (1:500; Abcam)、rabbit IgG 抗 Secennin-1 ポリクローナ抗体 (1:2000; Synaptic Systems)、goat IgG 抗 mouse Gal-1 モノクローナル抗体 (1:100; R&D Systems)、mouse IgG₁ 抗 pNF-H モ ノクローナル抗体 (1:250, Convance, Princeton)、rabbit IgG 抗 NeuN ポリクローナル抗体 (1:500, Abcam)、 goat IgG 抗 Synaptophysin ポリクローナル抗体 (1:200, Frontier Institute、長野)、rabbit IgG 抗 PSD95 ポリ クローナル抗体 (1:200, Frontier Institute)]} を 100 µl 加え、4℃で一晩反応させた。翌日、一次抗体液を 除去し、0.3% TritonX-100-PBS 溶液で 5 分間の洗浄を 2 回行った後、二次抗体液 [0.3% TritonX-100-PBS 溶液、Alexa Fluor 488, 594, または 647 標識 donkey または goat anti-mouse IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 647 標識 donkey または goat anti-rabbit IgG 抗体 Plus (1:800, Life Technologies)、Alexa Fluor 488, 594, または 647 標識 donkey anti-goat IgG 抗体 Plus (1:800, Life Technologies)]を100 µl 加え、遮光下、常温で2時間反応させた。反応後、溶液を除去し、PBS で5分 間の洗浄を2回行った後、DAPI (1 µg/ml) (Enzo Life Science) -PBS 溶液を加え、遮光下、常温で5分 間反応させた。その後、溶液を除去し、PBS で 5 分間の洗浄を行った後、Aqua Poly Mount (Polyscience) で封入した。

脳組織切片の画像解析

脳切片のそれぞれの部位 [PFC、CA1 及び CA3] について、倒立蛍光顕微鏡 BZ-X710 (キーエンス)

を用いて、40×NA 0.95、20×NA 0.75、または 10×NA 0.45 対物レンズ (CFI Plan Apo-λ) で画像を取 得した。

軸索切断マウスの切断領域中における軸索密度の定量は、画像解析ソフト Image J (Natural Institutes of Health)を用いた。大脳皮質の第 I-IV 層における GFAP 陽性のグリア瘢痕を囲み、グリア瘢痕中における全 NF-H 陽性軸索をなぞった。各画像について、軸索長(µm)をグリア瘢痕の面積(µm²)で割り、瘢痕領域内の軸索密度(µm/µm²)を算出した。マウス1匹につき 3-6枚の脳切片を定量後、その平均値を各マウスの値とし、解析に用いた。本定量は盲検法で行った。

Wild-type 及び 5XFAD マウス脳内における軸索再伸長(2 色の逆行性標識による)を評価するため に、Dextran 3000 MW 陽性の神経細胞数を MetaMorph version 7.8 (Molecular Devices) を用いて自動解析 した。背側 CA1 及び CA3(-2.06--1.82 mm A-P)を囲み、それぞれの領域における NeuN 及び DAPI 陽 性でかつトレーサーの蛍光が重なっている細胞数を測定した。マウス 1 匹につき 3-8 枚の脳切片を定 量後、その平均値を各マウスの値とし、解析に用いた。

NeuN 陽性神経細胞中における SPARC の発現量は、MetaMorph version 7.8 (Molecular Devices) を用い て自動解析した。背側 CA1 を囲み、それぞれの領域における NeuN 陽性神経細胞中の SPARC の輝度 値を定量した。マウス 1 匹につき 3 枚の脳切片における全 NeuN 神経細胞中の SPARC の発現量を定 量し、1 神経細胞あたりの SPARC の発現量の平均値を各マウスの値とし、解析に用いた。

PFC における NeuN 陽性神経細胞と重なる Cerulean 陽性軸索、Synaptophysin 陽性前シナプス、及び PSD95 陽性後シナプスの3 色の共局在面積の定量は、Image J (Natural Institutes of Health) を用いた。マ ウス1 匹あたり、PFC での NeuN 陽性神経細胞を 30 個囲み(3 枚の脳切片より)、その中のシナプス 密度の平均値を各マウスの値とした。

PFCにおける BDA 陽性軸索密度の定量は、Image J (Natural Institutes of Health) を用いた。マウス1 匹あたり、3 枚の PFC 切片それぞれにおける全 BDA 陽性軸索の密度を算出し、1 マウスあたりの平 均値を求めた。また、全 BDA 陽性軸索のうち、SPARC 及び Gal-1 陽性または陰性の BDA 軸索数(%) をそれぞれ算出した。

<u>データ解析</u>

データは平均値 ± 標準誤差(SEM)または ± 標準誤差(SD)で表した。有意差検定には、Prism 6.07 (Graph Pad software, Sun Diego, CA, USA) を用い、two-tailed unpaired *t*-test、One-way analysis of variance (ANOVA) *post hoc* Bonferroni test または Dunnett's test、repeated measures Two-way ANOVA *post hoc* Bonferroni test を行った。有意水準は 5%とした。

44

2.3. 実験結果

2.3.1. 脳の切断された軸索に対する diosgenin の軸索再伸長作用の検討

Diosgenin が *in vivo* の成体脳において、軸索を再伸長させるかどうかを検討するために、まず物理的に軸索を切断したマウスを用いて評価した。

ddY マウス(雌性、8 週齢)に対し、大脳皮質運動野の軸索をブレードで切断した。軸索切断 1 時間後には、切断部において neurofilament-H (NF-H) 陽性軸索が脱落していた(Fig. 14A)。このマウスに対し、軸索切断より 7 日後より、溶媒または diosgenin (0.1 µmol/kg/day)を 15 日間連続で経口投与した。軸索を切断した大脳皮質 I-IV 層において、GFAP(グリア瘢痕)陽性切断領域中の軸索密度を定量した。その結果、diosgenin 投与により切断部での軸索密度が有意に高まった(Fig. 14B)。一方、GFAP 陽性切断領域には群間に差がなかった(Fig. 14B)。よって、diosgenin は成体脳において、切断された軸索を再伸長させることが示された。

Fig. 14: 軸索切断マウスに対する diosgenin の軸索再伸長作用

大脳皮質軸索切断 ddY マウス(雌性、8 週齢)に対し、溶媒または diosgenin (0.1 µmol/kg/day)を15 日間経口投与した。蛍光免疫染色により、NF-H 陽性軸索(赤)及び GFAP 陽性グリア瘢痕(緑)を 検出した。軸索切断部における軸索密度(µm/100µm²切断領域)(B)及び切断面積(C)を定量した。 **p < 0.01, two-tailed unpaired *t*-test, mean ± SD, vehicle (Veh), n = 3; diosgenin (Dios), n = 5 mice. [Yang & Tohda, 2023a より引用、一部改変]

2.3.2. 逆行性トレーサーを用いた海馬―前頭前野の神経回路標識

Diosgenin が 5XFAD マウス脳内の萎縮した軸索を長距離かつつながるべき脳部位に再伸長させるか を検討するために、まず2色の逆行性トレーサーを用いて脳の神経回路を標識する基礎検討を行った。

2.1. 緒言で述べた通り、記憶形成や記憶想起に関わる海馬(HPC)から前頭前野(PFC)に軸索投 射する神経回路に着目した。腹側(ventral; v) HPCではなく、背側(dorsal; d) HPCから PFC への神 経回路がワーキングメモリに関与していることと(Izaki et al., 2008)や、dHPC—PFCの軸索投射数は vHPC—PFCの軸索投射数よりも多いこと(Ährlund-Richter et al., 2019)が報告されていることから、本 研究では dHPC—PFC における軸索投射を評価した。

一度萎縮した軸索が薬物投与によって再伸長する現象を明確に検出するために、以下の手法を取った。まず薬物投与前に逆行性トレーサーDextran (3000 MW) Texas Red (赤)を右側 PFC に注入し、 元々PFC に軸索投射していた右側 HPC 神経細胞を標識する。続く薬物投与後に、先の注入部位と全 く同じ右側 PFC に 2 色目の逆行性トレーサーDextran (3000 MW) FITC (緑)を注入する。つまり、薬 物投与期間中に軸索が萎縮した神経細胞は赤のみ、元々萎縮していたにもかかわらず薬物投与によっ て軸索が再伸長した神経細胞は緑のみ、薬物投与によって軸索が萎縮も伸長もしなかった神経細胞は 赤及び緑の 2 色で標識されることになる (Fig. 15A)。

まず神経回路が正常な ddY マウス(雌性、8 週齢)に対し、本オペを施したところ(薬物投与なし)、トレーサーを注入した PFC 部位において、2 色のトレーサーが完全に重なった(Fig. 15B)。また、これら 2 色の逆行性トレーサーは、ほとんど全ての HPC 神経細胞に等しく広がっていた(Fig. 15C)。

Fig. 15:2色の逆行性トレーサーを用いた脳神経回路の標識

A, ①軸索萎縮、②軸索再伸長、③軸索不変それぞれの神経細胞を 2 色(赤、緑)の逆行性トレーサーによって検出するイメージ図。

B, **C**, 正常 ddY マウス(雌性、8 週齢)の右側 PFC に Dextran Texas Red を注入し、その 21 日後に Dextran FITC を PFC の同部位に注入した。(B) PFC(注入部位)における 2 色の逆行性トレーサーの 重なりを示す。(C) 2 色の逆行性トレーサーで標識される右側 HPC 神経細胞は重なっている。

[Yang & Tohda, 2023a より引用、一部改変]

2.3.3. Diosgenin による 5XFAD マウス海馬―前頭前野における軸索再伸長作用の検討

Diosgenin が 5XFAD マウスの HPC—PFC において、萎縮した軸索をつながるべき脳部位に再伸長させるかどうかを検討するための2色の逆行性トレーサーを用いた標識実験を行った。

5XFAD マウス及び wild-type マウス(雌性、7–9 ヶ月齢)に対し、薬物投与前に逆行性トレーサー Dextran (3000 MW) Texas Red (赤)を右側 PFC に注入した。続いて溶媒または diosgenin (0.1 µmol/kg/day)を 14 日間連続で経口投与し、右側 PFC 部位に 2 色目の逆行性トレーサーDextran (3000 MW) FITC (緑)を注入した (Fig. 16A)。その7日後に脳を摘出し、dHPCを含む脳切片を抗 NeuN 抗 体及び DAPI で蛍光免疫染色し、CA1 及び CA3 における NeuN 陽性、かつ DAPI 陽性の逆行性トレー サー陽性神経細胞数をそれぞれ定量した (Fig. 16B, C)。

CA1—PFC において、軸索が再伸長した神経細胞(Texas Red 陰性かつ FITC 陽性)数は、diosgenin 投与により有意に増加することが示された(Fig. 17A)。また、薬物投与期間中に軸索が萎縮した神経 細胞(Texas Red 陽性かつ FITC 陰性)数は、wild-type と比べて 5XFAD マウスの溶媒投与群で有意に 増加したが、diosgenin を投与した 5XFAD マウスでは有意に減少し(Fig. 17B)、diosgenin による軸索 萎縮の抑制作用が示された。軸索が萎縮も伸長もしなかった naïve 神経細胞(Texas Red 陽性かつ FITC 陽性)数は、5XFAD マウスの溶媒投与群と比べて diosgenin 投与群で増加する傾向を示した

(Fig. 17C)。また、5XFAD マウスの溶媒投与群と diosgenin 投与群間では、元々PFC に軸索投射する 神経細胞(全 Texas Red 陽性)数に差がないものの、両群とも wild-type マウスと比べると有意に低か ったことから(Fig. 17D)、薬物投与前の段階において、5XFAD マウスの両群では wild-type マウスと 比べて同程度の軸索萎縮が起こっていたものと考えられる。薬物投与後に CA1—PFC において軸索投 射していた神経細胞(全 FITC 陽性)数は、diosgenin を投与した 5XFAD マウスで wild-type マウスと 同程度にまで有意に増加したことから、diosgenin 投与によって 5XFAD マウスでは wild-type マウスに 匹敵するほどの軸索投射が起きていることが示唆された(Fig. 17E)。一方、各群における NeuN 陽性 神経細胞数及び DAPI 陽性細胞数に差はなかった(Fig. 17F, G)。

CA3—PFC においても、diosgenin 投与によって CA1—PFC の場合と同様の結果が示された(Fig. 18)。以上より、diosgenin 投与によって 5XFAD マウスの HPC—PFC では、一度萎縮した軸索が長距離、かつつながるべき脳部位に向かって再伸長することが示された。

Fig. 16: Diosgenin の 5XFAD マウス HPC-PFC における方向特異的な軸索再伸長作用

A-C, 5XFADマウス及び wild-type マウス(雌性、7–9ヶ月齢)の右側 PFC に Dextran Texas Red を注入 した。その7日後より溶媒または diosgenin (0.1 µmol/kg/day)を14日間経口投与し、Dextran FITC を PFC の同部位に注入した。その7日後に脳を摘出し、脳切片を用いて抗 NeuN 抗体及び DAPI による 蛍光免疫染色を行った。各群の右側 CA1 (B) 及び右側 CA3 (C) における逆行性トレーサー (Texas Red 及び FITC)及び DAPI、NeuN の染色像を示す。各定量グラフは、Fig. 17 (CA1)及び Fig. 18 (CA3) に 示す。[Yang & Tohda, 2023a より引用、一部改変]

Fig. 17: Diosgenin 投与が 5XFAD マウスの CA1-PFC 神経回路に及ぼす作用

Fig. 16B の定量グラフ。(A) Texas Red 陰性かつ FITC 陽性、(B) Texas Red 陽性かつ FITC 陰性、(C) Texas Red 陽性かつ FITC 陽性、(D) 全 Texas Red 陽性、及び(E) 全 FITC 陽性の神経細胞数、(F) NeuN 陽性の全神経細胞数、(G) DAPI 陽性細胞数。**p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, wild-type mice (Wild)/vehicle (Veh), n = 8; 5XFAD mice (5XFAD)/Veh, n = 7; 5XFAD/diosgenin (Dios), n = 8 mice. [Yang & Tohda, 2023a より引用、一部改変]

Fig. 18: Diosgenin 投与が 5XFAD マウスの CA3—PFC 神経回路に及ぼす作用

Fig. 16C の定量グラフ。(A) Texas Red 陰性かつ FITC 陽性、(B) Texas Red 陽性かつ FITC 陰性、(C) Texas Red 陽性かつ FITC 陽性、(D) 全 Texas Red 陽性、及び(E) 全 FITC 陽性の神経細胞数、(E) 全 FITC 陽性神経細胞数、(F) NeuN 陽性全神経細胞数、(G) DAPI 陽性細胞数。**p < 0.01, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, wild-type mice (Wild)/vehicle (Veh), n = 8; 5XFAD mice (5XFAD)/Veh, n = 7; 5XFAD/diosgenin (Dios), n = 8 mice. [Yang & Tohda, 2023a より引用、一部改変]

2.3.4. 海馬―前頭前野において方向特異的な軸索再伸長に関わる候補分子の網羅的探索

Diosgenin 投与によって 5XFAD マウスの脳において軸索がつながるべきターゲットに再伸長したことから、軸索が正しくつながった神経細胞と軸索が変化しなかった神経細胞中で変化した因子を網羅的に比較することで、方向特異的な軸索再伸長に寄与する機能分子を探索した。

5XFADマウス(雌性、7–9ヶ月齢)の右側 PFCに逆行性トレーサーDextran (3000 MW) Texas Red を 注入後、溶媒または diosgenin (0.1 μ mol/kg/day)を 14 日間連続で経口投与した。続いて、右側 PFC に Dextran (3000 MW) FITC を注入し、脳切片を作製した。右側 HPC において、軸索が伸長しなかった naïve 神経細胞(Texas Red 陽性、FITC 陽性)を溶媒投与群より 660 個(n = 3 mice)、軸索が再伸長し た神経細胞(Texas Red 陰性、FITC 陽性)を diosgenin 投与群より 720 個(n = 3 mice)、レーザーマイ クロダイセクション(LCM)法で脳切片より採取した。それぞれの神経細胞プールより total RNA を 抽出し、DNA マイクロアレイによる網羅的解析を行った(Fig. 19A)。

一定量以上の発現があり(Avg (log2)>8)、かつ群間での発現量変化が5倍以上を示した遺伝子について、*in vivo*トランスクリプトーム解析を行った。Transcriptome analysis console(TAC)解析より、階層クラスタリング(Fig. 19B)と散布図(Fig. 19C)を作成した。その結果、これら2種類の神経細胞における遺伝子発現パターンは、顕著に異なっていることが示された。また、軸索が伸長しなかった神経細胞と比べて軸索が再伸長した神経細胞では、計67の遺伝子が5倍以上に発現増加または減少していた(Table 3)。この中で、軸索が再伸長した神経細胞中で発現量が顕著に増加した因子として、SPARC (Secreted protein acidic rich in cysteine)及びGalectin-1 (lectin, galactose binding soluble 1、遺伝子名:Lgals1)に着目した(Fig. 19C)。

Fig. 19: 軸索が再伸長した神経細胞を用いた in vivo トランスクリプトーム解析

A, 軸索が伸長しなかった naïve 神経細胞(Texas Red 陽性、FITC 陽性)及び diosgenin 投与によって軸索が再伸長した神経細胞(Texas Red 陰性、FITC 陽性)をレーザーマイクロダイセクション(LCM)により1個1個単離した。神経細胞の各プールから total RNA を抽出し、DNA マイクロアレイを行った。
B, C, Transcriptome analysis console(TAC)を用いて、naïve 神経細胞と軸索が再伸長した神経細胞間の遺伝子発現プロファイルを階層クラスタリング(B)および散布図(C)で比較した(Avg (log2) > 8, fold change > 5)。軸索が再伸長した神経細胞では、SPARC及び Galectin-1の発現量が顕著に高かった。[Yang & Tohda, 2023a より引用、一部改変]

Table 3: 軸索が再伸長した神経細胞中で発現量が5倍以上変化した(かつ Avg (log2)>8) 遺伝子一覧

NO.	Axon- regenerated Avg (log2)	<mark>Naïve</mark> Avg (log2)	Fold Change	Gene Symbol	Description
1	15.44	11.44	15.95	Sparc	secreted acidic cysteine rich glycoprotein
2	14.4	10.54	14.53	Klk6	kallikrein related-peptidase 6
3	11.85	8.08	13.64	Mia	melanoma inhibitory activity
4	12.98	9.6	10.38	Ermard	ER membrane associated RNA degradation
5	11.34	8.06	9.73	Psmd10	proteasome (prosome, macropain) 26S subunit, non-ATPase, 10
6	12.13	9.01	8.71	Tgm1	transglutaminase 1, K polypeptide
7	11.05	8.03	8.12	Spp1	secreted phosphoprotein 1
8	13.05	10.12	7.6	Arpc1b	actin related protein 2/3 complex, subunit 1B
9	12.71	9.8	7.49	Gm3435	predicted gene 3435
10	13.7	10.8	7.47	Cxcl16	chemokine (C-X-C motif) ligand 16
11	11.95	9.08	7.32	Sv2a	synaptic vesicle glycoprotein 2 a
12	11.78	8.93	7.23	Fam183b	family with sequence similarity 183, member B
13	14.9	12.14	6.79	Lgals1	lectin, galactose binding, soluble 1
14	11.37	8.61	6.77	Bst2	bone marrow stromal cell antigen 2
15	11.9	9.14	6.77	Stxbp6	syntaxin binding protein 6 (amisyn)
16	14.77	12.05	6.59	9030025P20Ri k	RIKEN cDNA 9030025P20 gene
17	13.15	10.45	6.52	Pmp22	peripheral myelin protein 22
18	11.1	8.46	6.23	Mrpl27	mitochondrial ribosomal protein L27
19	10.67	8.05	6.14	Mlh1	mutL homolog 1 (E. coli)
20	11.26	8.66	6.08	Med7	mediator complex subunit 7
21	11.68	9.11	5.91	Sdhb	succinate dehydrogenase complex, subunit B, iron sulfur (Ip)
22	11.53	8.97	5.9	Ntng1	netrin G1
23	10.6	8.08	5.76	Sycp1	synaptonemal complex protein 1
24	12.36	9.84	5.73	Polr2e	polymerase (RNA) II (DNA directed) polypeptide E
25	12.26	9.74	5.71	Ccnc	cyclin C
26	11.13	8.65	5.57	Plekha1	pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1
27	12.46	10.02	5.42	Susd4	sushi domain containing 4
28	11.28	8.86	5.37	Zfand2a	zinc finger, AN1-type domain 2A
29	13.36	10.94	5.36	0610009B22Ri k	RIKEN cDNA 0610009B22 gene
30	10.94	8.54	5.28	Rab33b	RAB33B, member RAS oncogene family
31	12.21	9.83	5.21	Psma1	proteasome (prosome, macropain) subunit, alpha type 1
32	11.09	8.72	5.17	Pbk	PDZ binding kinase
33	13.08	10.72	5.14	Fcgr3	Fc receptor, IgG, low affinity III
34	10.8	8.44	5.12	Nipsnap3b	nipsnap homolog 3B (C. elegans)
35	10.96	8.61	5.11	Gng8	guanine nucleotide binding protein (G protein), gamma 8
36	10.39	8.03	5.11	Nudt22	nudix (nucleoside diphosphate linked moiety X)-type motif 22
37	11.77	9.42	5.09	Pycard	PYD and CARD domain containing
38	10.52	8.18	5.05	Stk19	serine/threonine kinase 19
39	15.33	13	5.04	Cd9	CD9 antigen
40	11.57	9.24	5.01	D11Wsu47e	DNA segment, Chr 11, Wayne State University 47, expressed
41	11.32	13.69	-5.18	Ppp1r9b	protein phosphatase 1, regulatory subunit 9B
42	9.14	11.52	-5.2	Zhx1	zinc fingers and homeoboxes 1
43	10.32	12.7	-5.22	Ccdc88c	coiled-coil domain containing 88C
44	8.52	10.91	-5.24	Fmo1	flavin containing monooxygenase 1
45	10.74	13.16	-5.35	Bag5	BCL2-associated athanogene 5
46	8.13	10.57	-5.43	Zdhhc2	zinc finger, DHHC domain containing 2
47	9.49	11.95	-5.53	Crip1	cysteine-rich protein 1 (intestinal)
48	10.19	12.71	-5.71	Wfs1	Wolfram syndrome 1 homolog (human)
49	9.13	11.7	-5.92	Gmcl1	germ cell-less homolog 1 (Drosophila)
50	9.39	11.99	-6.06	Мрр6	membrane protein, palmitoylated 6 (MAGUK p55 subfamily

[Yang & Tohda, 2023a より引用、一部改変]

					member 6)
51	8.38	10.99	-6.09	Uhmk1	U2AF homology motif (UHM) kinase 1
52	8.65	11.3	-6.28	Flna	filamin, alpha
53	9.01	11.67	-6.31	Sgms1	sphingomyelin synthase 1
54	9.29	12	-6.58	Zfp609	zinc finger protein 609
55	8.99	11.71	-6.62	Alkbh8	alkB, alkylation repair homolog 8 (E. coli)
56	9.74	12.5	-6.74	Mpped1	metallophosphoesterase domain containing 1
57	8.72	11.56	-7.17	Fam60a	family with sequence similarity 60, member A
58	9.81	12.68	-7.32	Pwwp2a	PWWP domain containing 2A
59	8.15	11.13	-7.88	B630005N14R ik	RIKEN cDNA B630005N14 gene
60	8.34	11.45	-8.65	Nbr1	neighbor of Brca1 gene 1
61	8.72	11.87	-8.87	Actr3b	ARP3 actin-related protein 3B
62	8.38	11.57	-9.09	Neurod6	neurogenic differentiation 6
63	10.17	13.36	-9.1	Ndnf	neuron-derived neurotrophic factor
64	8.5	11.85	-10.21	Pcmt1; BC020402	protein-L-isoaspartate (D-aspartate) O-methyltransferase 1; cDNA sequence BC020402
65	8.28	11.98	-13.06	Mapk10	mitogen-activated protein kinase 10
66	9.06	13.1	-16.43	Sfxn5	sideroflexin 5
67	11.56	16.22	-25.26	Gm11096	predicted gene 11096 [Source:MGI Symbol;Acc:MGI:3779332]

2.3.5. Diosgenin 処置が海馬神経細胞及び 5XFAD マウスの SPARC の発現量に及ぼす影響の検討

Diosgenin による脳での方向特異的な軸索再伸長に関わる候補遺伝子の1つに、Sparc が同定された。 そこでまず、diosgenin 処置による SPARC の発現量変化の再現性がタンパク質レベルで観察されるか どうかについて、ddYマウス(E14)の海馬神経細胞及び 5XFADマウスの脳切片を用いて検討した。

3 日間初代培養した海馬神経細胞に溶媒または diosgenin (1 μ M) を処置し、その4日後にタンパク質 を抽出後、western blot によって SPARC の発現量を比較した。その結果、溶媒処置群と比べて diosgenin を処置した海馬神経細胞では、SPARC の発現量が有意に増加した (Fig. 20A)。また、wildtype マウス及び 5XFAD マウス (雌性、7–9 ヶ月齢)に溶媒または diosgenin (0.1 μ mol/kg/day) を 14 日 間連続で経口投与し、脳切片を用いて抗 SPARC 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行った

(Fig. 20B)。その結果、wild-type マウスと比べて 5XFAD マウスの CA1 領域では、NeuN 陽性神経細胞中において SPARC が有意に減少し、diosgenin を投与した 5XFAD マウスでは神経細胞中の SPARC が有意に増加した (Fig. 20C)。以上より、diosgenin によって神経細胞中の SPARC がタンパク質レベルでも増加することが確認された。

Fig. 20: Diosgenin 処置による SPARC のタンパク質レベルの再現性確認

A,3日間培養した ddY (E14) マウス海馬初代培養神経細胞に溶媒または diosgenin (1 µM) を 4 日間処置 した。細胞 lysate を作成し、western blot で SPARC 及び GAPDH の発現量を測定し、SPARC/GAPDH の 発現量を算出した。**p < 0.01, two-tailed unpaired *t*-test, mean ± SEM, vehicle (Veh), n = 7; diosgenin (Veh), n = 7 lysates. B, C, 溶媒または diosgenin (0.1 µmol/kg/day) を 14 日間経口投与した wild-type マウス及び 5XFAD マウス (雌性、7–9 ヶ月齢)の脳切片について、抗 SPARC 抗体及び抗 NeuN 抗体による蛍光 免疫染色を行い、CA1 領域における NeuN 陽性神経細胞中の SPARC の発現量を測定した。**p < 0.01, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, wild-type mice (Wild)/Veh, n = 5; 5XFAD mice (5XFAD)/Veh, n = 5; 5XFAD/Dios, n = 6 mice. [Yang & Tohda, 2023a より引用、一部改変]

2.3.6. 神経細胞中の SPARC ノックダウンが diosgenin による軸索伸長作用に及ぼす影響の検討

ここまでの検討より、diosgenin が神経細胞中の SPARC を増加させることが明らかになった。そこで、diosgenin による SPARC の増加が軸索伸長に関わるかどうかを検討するために、神経細胞の SPARC をノックダウンした状態(siRNA 導入による)で diosgenin による軸索伸長作用を検討した。

海馬神経細胞に negative control siRNA または SPARC siRNA (30 nM) を GFP vector (0.4 µg) と共にエレ クトロポレーション法で導入し、その 3 日後に抗 SPARC 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を 行った。siRNA が導入された神経細胞とそれ以外の細胞を区別して定量するために、GFP で可視化さ れた神経細胞においてのみ、SPARC の発現量及び軸索長を測定した(Fig. 21A)。その結果、SPARC siRNA 導入により、神経細胞中の SPARC の発現量は有意に減少したが(Fig. 21B)、軸索長に影響は 見られなかった(Fig. 21C)。続いて、同様に海馬神経細胞に negative control siRNA または SPARC siRNA (30 nM) を GFP vector (2 µg) と共にエレクトロポレーション法で導入し 3 日後培養した(SPARC がノックダウンされた)後、溶媒または diosgenin (1 µM)を 4 日間処置し、蛍光免疫染色を行った (Fig. 21D)。その結果、SPARC siRNA 導入により、diosgenin による神経細胞中における SPARC の増 加(Fig. 21E)、及び軸索伸長作用(Fig. 21F)はどちらも消失した。以上より、diosgenin による軸索 伸長作用には、神経細胞中での SPARC の増加が必須であることが示された。

Fig. 21: 神経細胞の SPARC ノックダウンによる diosgenin の軸索伸長作用への影響

A, ddY (E14) マウス海馬初代培養神経細胞に、negative control siRNA または HSC70 siRNA (30 nM) を GFP vector (0.4 μ g) と共にエレクトロポレーション法で導入した。培養より 3 日後に、抗 SPARC 抗体 及び抗 pNF-H 抗体よる蛍光免疫染色を行った。GFP 陽性(siRNA が導入された;緑矢頭)神経細胞に ついて、(B) 細胞中の SPARC の発現量及び (C) 軸索長を測定した。***p < 0.001, unpaired *t*-test, mean ± SEM, (B) n = 40–59 neurons, (C) n = 17–24 photos.

D, ddY (E14) マウス海馬初代培養神経細胞に、negative control siRNA または HSC70 siRNA (30 nM) を GFP vector (0.4 µg) と共にエレクトロポレーション法で導入した。培養 3 日後に、溶媒または diosgenin (1 µM) を処置し、その 4 日後に蛍光免疫染色を行った。GFP 陽性(siRNA が導入された;緑矢頭)神 経細胞について、(E) 細胞中の SPARC の発現量及び (F) 軸索長を測定した。*p < 0.05, ***p < 0.001; #p < 0.05, ####p < 0.0001 vs siControl/Veh or siControl/Dios, unpaired *t*-test, mean ± SEM, (E) n = 30–51 neurons, (F) n = 18–24 photos.

[Yang & Tohda, 2023a より引用、一部改変]

2.3.7. 海馬培養神経細胞での SPARC 過剰発現による軸索伸長作用の検討

ここまでの検討より、diosgenin による神経細胞中での SPARC の増加が、軸索伸長に重要な分子で あることが示された。そこで、SPARC の増加が軸索伸長に直接寄与するかどうかを検討するために、 アデノ随伴ウイルス(AAV) ベクターを用いて、SPARC を神経細胞特異的に過剰発現した。

神経細胞特異的なプロモーター*Synapsin 1 (Syn1)*下で、mouse SPARC 及び Cerulean(青色蛍光)を発 現する AAV9 ベクター(AAV-SPARC)、または *Syn1*下で Cerulean のみを発現するコントロール AAV9 ベクター(AAV-Control)をベクタービルダー社より購入した。海馬神経細胞に、溶媒または 5×10⁵、 5×10⁶、5×10⁷ GC (genome copies)/µlの AAV-Control または AAV-SPARC を処置し、その7日後に抗 SPARC 抗体、抗 Map2 抗体、及び抗 pNF-H 抗体よる蛍光免疫染色を行った。その結果、Map2 陽性神 経細胞中における SPARC の発現量は、AAV-Control と比べて AAV-SPARC 処置により、5×10⁶ GC/µl 以上の AAV 濃度において有意に増加し(Fig. 22A, B)、SPARC の過剰発現が誘発された。また、 SPARC の過剰発現(5×10⁶ GC/µl AAV-SPARC 処置)により、pNF-H 陽性の軸索長が有意に増加した (Fig. 22C, D)。以上より、海馬培養神経細胞における SPARC の過剰発現が、直接軸索伸長に関わる ことが示された。

Fig. 22: 海馬培養神経細胞での SPARC 過剰発現による軸索伸長作用

ddY (E14) マウス海馬初代培養神経細胞に、5×10⁵、5×10⁶、5×10⁷ GC/µl (**A**, **B**) または 5×10⁶ GC/µl (**C**, **D**) の AAV-Control (AAV9-Syn1-Cerulean-WPRE) または AAV-SPARC (AAV9-Syn1-mSparc-IRES-Cerulean-WPRE) を7日間処置し、抗 SPARC 抗体及び抗 Map2 抗体 (**A**, **B**)、または抗 pNF-H 抗体 (**C**, **D**) よる蛍光免疫染色を行った。**A**, **B**, Map2 陽性神経細胞中での SPARC の発現量を定量した。****p < 0.0001 vs same concentration of AAV-Control, one-way ANOVA *post hoc* Bonferroni test, mean ± SEM, n = 337–558 neurons. **C**, **D**, pNF-H 陽性軸索長を定量した。*p < 0.05, one-way ANOVA *post hoc* Bonferroni test, mean ± SEM, n = 10–16 photos. [Yang & Tohda, 2023a より引用、一部改変]

2.3.8. 海馬神経細胞での SPARC 過剰発現による 5XFAD マウスの記憶改善作用の検討

海馬培養神経細胞における SPARC の過剰発現が、軸索伸長に直接寄与することが示された。そこ で次に、海馬神経細胞における SPARC の過剰発現が 5XFAD マウスの記憶障害を改善するかどうかに ついて、AAV ベクターを海馬に注入することによって評価した。

まず、前述の AAV-SPARC ベクターが、マウスの海馬神経細胞において SPARC の過剰発現を誘発 するかどうかの基礎検討を行った。Wild-type マウス(雌性、7–9 ヶ月齢)の両側海馬 CA1 領域に、1 × 10^{10} GC/site の AAV-Control または AAV-SPARC を注入した。その 14、21、または 28 日後に脳を摘出 し、脳切片を用いて抗 SPARC 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行った(Fig. 23)。その結果、 全てのマウスにおいて、CA1 領域では AAV 由来の Cerulean 蛍光が検出された。またこの際、少なく とも AAV 注入より 14 (Fig. 23A)、21 (Fig. 23B)、及び 28 (Fig. 23C) 日後の全てのタイムポイント において、AAV-SPARC 注入によって NeuN 陽性神経細胞中における SPARC の発現量は有意に増加し た。以上より、1 × 10^{10} GC/site の AAV-SPARC を注入すると、マウスの CA1 において神経細胞の SPARC が過剰発現されることが確認された。

続いて、wild-type マウス及び 5XFAD マウス(雌性、7-9 ヶ月齢)の両側 CA1 領域に、1×10¹⁰ GC/site の AAV-Control または AAV-SPARC を注入し、AAV 注入より 21 日後に物体認知記憶試験を行った(Fig. 24A)。その結果、AAV-SPARC の注入によって 5XFAD マウスの物体認知記憶は有意に改善した。続いて、これらマウスについて、AAV 注入より 23 日後に空間記憶試験を行った(Fig. 24B)。その結果、AAV-SPARC の注入によって 5XFAD マウスの物体認知記憶も有意に改善した。さらに、AAV 注入より 24 日後に自発運動試験を行った(Fig. 24C-E)。その結果、AAV 注入よるマウスの自発運動(総移動距離、進行方向に対する方向転換角度、不動時間)に群間差は認められなかった。また、AAV 注入によってマウスに顕著な体重変化も見られなかった(Fig. 24F)。以上の結果より、海馬神経細胞における SPARC の過剰発現によって、5XFAD マウスの記憶障害が改善することが明らかとなった。

これらマウスについて、AAV 注入より 25 日後に脳を摘出し、脳切片を用いて抗 SPARC 抗体及び 抗 NeuN 抗体よる蛍光免疫染色を行った(Fig. 24G, H)。その結果、全てのマウスにおいて、CA1 領 域では AAV 由来の Cerulean 蛍光が検出され、AAV が注入されていることが確認された。また、Fig. 20C の結果と一致して、wild-type マウスと比べて 5XFAD マウスの CA1 では NeuN 陽性神経細胞中に おいて SPARC が有意に減少することが確認された(Fig. 24H)。一方、AAV-SPARC を注入した 5XFAD マウスでは、神経細胞中の SPARC が有意に増加しており(Fig. 24H)、一連の行動試験中で CA1 神経細胞において SPARC の過剰発現が維持されていたことが確認された。

さらに、これらマウスについて、CA1—PFC の神経回路におけるシナプス形成作用を蛍光免疫染色で評価した(Fig. 24I)。PFC領域に投射している CA1 神経細胞の軸索終末部は、AAV 由来の Cerulean によって可視化されるため、PFC 中の NeuN 陽性神経細胞(青色点線)上における Cerulean、

Synaptophysin 陽性前シナプス、及び PSD95 陽性後シナプスの 3 色の共局在面積を定量した。その結 果、wild-type マウスと比べて 5XFAD マウスでは、CA1-PFC 間のシナプス形成が有意に減少してい たが、SPARCの過剰発現によってシナプス形成が有意に促進することが示された(Fig. 24J)。以上の 結果より、CA1 神経細胞での SPARC の過剰発現によって記憶障害が改善した 5XFAD マウスでは、 PFC 領域でのシナプス形成も促進されていることが明らかになった。

A 14 days after AAV injections

Wild-type マウス(雌性、7–9ヶ月齢)の両側 CA1 に、1×10¹⁰ GC/site AAV-Control または AAV-SPARC を注入した。AAV 注入より 14 (A)、21 (B)、または 28 (C) 日後に脳を摘出し、脳切片を用いて抗 SPARC 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行った。海馬 CA1 領域における NeuN 陽性神経細 胞中の SPARC の発現量を定量した。***p < 0.001, unpaired *t*-test, mean ± SD, n = 6 photos (2 mice; 3 photos/mouse). [Yang & Tohda, 2023a より引用、一部改変]

Fig. 24: 海馬神経細胞での SPARC の過剰発現による 5XFAD マウスの記憶障害改善作用

Wild-type マウス及び 5XFAD マウス(雌性、7–9 ヶ月齢)の両側 CA1 領域に、1×10¹⁰ GC/site の AAV-Control または AAV-SPARC を注入した。

A, B, AAV 注入より 21 日後に物体認知記憶試験 (A)、23 日後に空間記憶試験 (B) をそれぞれ行った。 Training session と Test session は各々10分間行い、インターバルは1時間に設定した。新奇物体に対す る、または位置を移動した物体に対するマウスの接触回数を計測し、preferential index (%) を算出した。 *****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test. A significant drug × test interaction was found using repeated-measures two-way ANOVA [F(2, 15) = 24.30, p < 0.0001 (A), [F(2, 15) = 35.74, p < 0.0001 (B), ####p < 0.0001, *post hoc* Bonferroni test, mean ± SD, n = 6 mice.

C-F, AAV 注入より 24 日後に自発運動試験を行った。10 分間の自由行動をさせ、総移動距離 (C)、進行方向に対する方向転換角度 (D) 及び不動時間 (E) それぞれを測定した。p > 0.05, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 6 mice. (F) AAV 注入によるマウスの体重推移。p > 0.05, repeated-measures two-way ANOVA, mean ± SD, n = 6 mice.

G, H, AAV 注入より 25 日後に、脳を摘出し、脳切片を用いて抗 SPARC 抗体及び抗 NeuN 抗体よる蛍 光免疫染色を行った。海馬 CA1 領域における NeuN 陽性神経細胞中の SPARC の発現量を定量した。 **p<0.01, ***p<0.001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 6 mice.

I, J, AAV 注入より 25 日後に、脳を摘出し、脳切片を用いて抗 Synaptophysin 抗体、抗 PSD95 抗体、及 び抗 NeuN 抗体よる蛍光免疫染色を行った。NeuN 陽性神経細胞(青色点線)上における Cerulean、

Synaptophysin、及び PSD95 の共局在面積を算出した。*p < 0.05, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 6 mice.

[Yang & Tohda, 2023a より引用、一部改変]

2.3.9. SPARC 過剰発現による 5XFAD マウス海馬―前頭前野における軸索再伸長作用の検討

HPC 神経細胞における SPARC の過剰発現が、5XFAD マウスの記憶障害を改善することが明らかに なったことから、続いて、SPARC 過剰発現による 5XFAD マウス HPC—PFC における軸索再伸長作用 について、前述の2色の逆行性トレーサーを用いた標識実験で検討した。

5XFAD マウス及び wild-type マウス(雌性、7–9 ヶ月齢)に対し、逆行性トレーサーDextran (3000 MW) Texas Red (赤)を右側 PFC に注入した。続いて右側 CA1 領域に、1×10¹⁰ GC/site の AAV-Control または AAV-SPARC を注入し、その 21 日後に右側 PFC に 2 色目の逆行性トレーサーDextran (3000 MW) FITC (緑)を注入した (Fig. 25A)。dHPC を含む脳切片を抗 NeuN 抗体で蛍光免疫染色し、CA1 及び CA3 における NeuN 陽性かつ逆行性トレーサー陽性の神経細胞数をそれぞれ定量した (Fig. 25B)。

その結果、CA1—PFCにおいて、軸索が再伸長した神経細胞(Texas Red 陰性かつ FITC 陽性)数は、 SPARC 過剰発現により有意に増加することが示された(Fig. 25C)。また、AAV が注入された期間中 に軸索が萎縮した神経細胞(Texas Red 陽性かつ FITC 陰性)数は、wild-type と比べて 5XFAD マウス の溶媒投与群で有意に増加したが、SPARC を過剰発現した 5XFAD マウスでは有意に減少した(Fig. 25D)。また、軸索が萎縮も伸長もしなかった naïve 神経細胞(Texas Red 陽性かつ FITC 陽性)数は、 5XFAD マウスの AAV-Control 群と比べて AAV-SPARC 群で有意に増加し(Fig. 25E)、Fig. 25D と同様 に SPARC 過剰発現による軸索保護作用が示唆された。また、5XFAD マウスの AAV-Control 群と AAV-SPARC 躍間では、元々PFC に軸索投射する神経細胞(全 Texas Red 陽性)数に差がなく、また両群と も wild-type マウスと比べて有意に低かったことから(Fig. 25F)、AAV 注入前の段階において、 5XFAD マウスの両群では wild-type マウスと比べて同程度の軸索萎縮が起こっていたものと考えられ る。また、AAV 注入後に CA1—PFC において軸索投射していた神経細胞(全 FITC 陽性)数は、 SPARC を過剰発現した 5XFAD マウスで wild-type マウスと同程度、またはそれ以上にまで有意に増加 したことから、SPARC 過剰発現によって 5XFAD マウスでは wild-type マウスに匹敵するほどの軸索投 射が起きていることが示唆された(Fig. 25G)。一方、各群における NeuN 陽性神経細胞数に差はなか った (Fig. 25H)。

CA3 領域においても AAV 由来の Cerulean 蛍光が検出されたことから、CA3—PFC においても定量 を行った。その結果、SPARC の過剰発現によって CA1—PFC と同様の結果が示された(Fig. 26)。以 上より、HPC 神経細胞において SPARC を過剰発現するだけで、5XFAD マウスの HPC—PFC において 一度萎縮した軸索が長距離、かつつながるべき脳部位に向かって再伸長することが示された。

62

Fig. 25: SPARC 過剰発現による 5XFAD マウスの CA1—PFC における軸索再伸長作用

A, B, 5XFADマウス及び wild-type マウス(雌性、7–9ヶ月齢)の右側 PFC に Dextran Texas Red を注入 した。その7日後に、右側 CA1 領域に1×10¹⁰ GC/site の AAV-Control または AAV-SPARC を注入し、 AAV 注入より21日後に Dextran FITC を PFC の同部位に注入した。その7日後に脳を摘出し、脳切片 を用いて抗 NeuN 抗体による蛍光免疫染色を行った。(B) 各群の右側 CA1 における逆行性トレーサー (Texas Red 及び FITC)及び NeuN の染色像を示す。

C-H,右側 CA1 における (C) Texas Red 陰性かつ FITC 陽性の神経細胞数、(D) Texas Red 陽性かつ FITC 陰性の神経細胞数、(E) Texas Red 陽性かつ FITC 陽性の神経細胞数、(F) 全 Texas Red 陽性神経細胞数、(G) 全 FITC 陽性神経細胞数、(H) NeuN 陽性全神経細胞数。*p < 0.05, ***p < 0.001, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 7-8 mice.

[Yang & Tohda, 2023a より引用、一部改変]

Fig. 26: SPARC 過剰発現による 5XFAD マウスの CA3—PFC における軸索再伸長作用

5XFAD マウス及び wild-type マウス(雌性、7-9ヶ月齢)の右側 PFC に Dextran Texas Red を注入した。 その7日後に、右側 CA1 領域に1×10¹⁰ GC/site の AAV-Control または AAV-SPARC を注入し、AAV 注 入より21日後に Dextran FITC を PFC の同部位に注入した。その7日後に脳を摘出し、脳切片を用い て抗 NeuN 抗体による蛍光免疫染色を行った。AAV 由来の Cerulean 蛍光が CA3 にも一部広がってい る様子を確認した (データ未提示)。右側 CA3 における (A) Texas Red 陰性かつ FITC 陽性の神経細胞 数、(B) Texas Red 陽性かつ FITC 陰性の神経細胞数、(C) Texas Red 陽性かつ FITC 陽性の神経細胞数、 (D) 全 Texas Red 陽性神経細胞数、(E) 全 FITC 陽性神経細胞数、(F) NeuN 陽性全神経細胞数。***p < 0.001, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 7-8 mice. [Yang & Tohda, 2023a より引用、一部改変]

2.3.10. 海馬―前頭前野における軸索再伸長と記憶改善作用の直接的な関係の検証

ここまでの検討より、HPC 神経細胞における SPARC の過剰発現が、5XFAD マウスの記憶障害を改善し、HPC—PFC における軸索再伸長に寄与することが明らかとなった。そこで、「脳での軸索再伸 長が、直接的に記憶障害の改善に寄与する」かを検証するために、DREADDs システム (Zhu & Roth, 2014)を用いた機能学的証明実験を行った。

DREADD は遺伝子変異 G タンパク質共役受容体 (GPCR) を指すが、内在性リガンドとは反応せず、 人工的に合成されたデザイナーリガンドによってのみ活性化される受容体である。本研究では、Gi 型 GPCR である hM4Di 及びそのリガンドであるクロザピン-*N*-オキシド (CNO) (Mahler & Aston-Jones, 2018) を利用し、hM4Di 発現神経細胞の神経活動を CNO によって一時的に抑制する手法を用いた。 hM4Di とともに SPARC を HPC 神経細胞特異的に過剰発現し、それら神経細胞の軸索が投射する PFC より CNO を局所注入することによって、SPARC が過剰発現された HPC から PFC に投射する軸索を 介した神経活動のみを抑制することを試みた。

SPARC とともに hM4Di を神経細胞に過剰発現する AAV9(AAV-SPARC-hM4Di)及びそのコントロ ール AAV9(AAV-Control-hM4Di)をベクタービルダー社より購入した。まず、AAV-hM4Di-SPARC に よっても、マウスの海馬神経細胞において SPARC の過剰発現が誘発されるかどうかの基礎検討を行 った。Wild-type マウス(雌性、7–9ヶ月齢)の両側海馬 CA1 領域に、1×10¹⁰ GC/site の AAV-ControlhM4Di または AAV-SPARC-hM4Di を注入した。その 21 または 28 日後に脳を摘出し、脳切片を用いて 抗 SPARC 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行った(Fig. 27)。その結果、全てのマウスにお いて、CA1 領域では AAV 由来の Cerulean (= hM4Di)が検出された。また、AAV 注入より 21 (Fig. 27A) 及び 28 (Fig. 27B) 日後において、AAV-SPARC-hM4Di を注入によって NeuN 陽性神経細胞中に おける SPARC の発現量は有意に増加した。さらに、それぞれのタイムポイントにおいて、Cerulean 陽性 HPC 神経細胞の軸索終末が、確かに PFC 領域に発現しており、PFC から CNO を注入することに よって Cerulean (hM4Di) 発現神経細胞の神経活動を抑制しうると思われた。

続いて、wild-type マウス及び 5XFAD マウス(雌性、7-9 ヶ月齢)の両側 CA1 領域に、1×10¹⁰ GC/site の AAV-Control-hM4Di または AAV-SPARC-hM4Di を注入した。また、Fig. 22-26 において用いた AAV-Control (本実験では AAV-Control-empty と記す)を、hM4Di を発現しない negative control ベク ターとして同様に用いた。さらに、CNO を投与する埋込カニューレを AAV 注入オペと同時に、両側 PFC をまたがるようにして留置した (Fig. 28A)。AAV 注入より 21 日後に、PFC より生理食塩水 (CNO の negative control)を投与する場合 (神経活動抑制なし)の物体認知記憶試験を行った (Fig. 28B)。生理食塩水は、記憶試験の training session 終了後直ちに、埋込カニューレを介して PFC に注入 した。その結果、AAV-Control-empty 及び AAV-Control-hM4Di を注入した wild-type マウスでは、記憶 力が正常であったため、カニューレの埋込や hM4Di の発現そのものがマウスの記憶力に影響を及ぼ さないことが確認された。一方、5XFAD マウスの AAV-Control-hM4Di 群では記憶障害が生じていた

が、AAV-SPARC-hM4Di 群では記憶が有意に改善し、SPARC 過剰発現による記憶改善作用の再現性が 確認された。続いて、その2日後に、同じマウスを用いて PFCより1 mM CNOを 0.3 µl 注入し、 hM4Di 発現神経細胞の神経活動を抑制する場合の物体認知記憶試験を行った(Fig. 28B)。その結果、 まず興味深いこととして、AAV-Control-hM4Di を注入した wild-type マウスでは記憶障害が引き起こさ れた。つまり、HPC—PFC の神経回路の活動が遮断されると記憶保持できず、この回路が記憶保持に 重要であることが示された。さらに、最も重要な知見として、AAV-hM4Di-SPARC を注入した 5XFAD マウスでは、生理食塩水注入時には改善していた物体認知記憶が障害された(Fig. 28B)。つまり、 SPARC が過剰発現され、かつ軸索が PFC に再伸長した HPC 神経細胞が、直接的に記憶障害の改善に 寄与していることが機能学的に証明された。

これらのマウスについて、AAV 注入より 28 日後に自発運動試験を行ったところ、マウスの自発運 動(総移動距離、進行方向に対する方向転換角度、不動時間)に群間差は認められなかった(Fig. 28C-E)。また、AAV 注入より 28 日後に脳を摘出し、PFC 脳切片を明視野画像で観察したところ、全 マウスにおいて埋込カニューレが両側 PFC の中心部に留置されていた痕(矢印)が確認された(Fig. 28F)。また、脳切片を用いて抗 SPARC 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行ったところ、全 てのマウスにおいて、CA1 領域では AAV 由来の Cerulean (= hM4Di) が検出された(Fig. 28G)。また、 AAV-SPARC-hM4Di を注入によって NeuN 陽性神経細胞中における SPARC の発現量は有意に増加した

(**Fig. 28H**)。さらに、Cerulean 陽性 HPC 神経細胞の軸索終末が PFC 領域に発現していることから、 PFC から投与された CNO が確かに PFC の hM4Di に作用できていたと考えられた(**Fig. 28G**)。

A 21 days after AAV injections

Fig. 27: AAV-hM4Di-SPARC 注入によるマウス脳内での SPARC 過剰発現の確認

Wild-type マウス(雌性、7–9ヶ月齢)の両側 CA1 に、1×10¹⁰ GC/site AAV-Control-hM4Di または AAV-SPARC -hM4Di を注入した。AAV 注入より 21 (A) または 28 (B) 日後に脳を摘出し、脳切片を用いて抗 SPARC 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行った。海馬 CA1 領域における NeuN 陽性神経細 胞中の SPARC の発現量を定量した。*p<0.05, **p<0.01, unpaired *t*-test, mean ± SD, n = 6 photos (2 mice; 3 photos/mouse). [Yang & Tohda, 2023a より引用、一部改変]

Fig. 28: DREADD システムによる SPARC 過剰発現海馬神経細胞の神経活動抑制が 5XFAD マウスの 記憶障害改善作用に及ぼす作用の検証

Wild-type マウス及び 5XFAD マウス(雌性、7–9ヶ月齢)の両側 CA1 領域に、1×10¹⁰ GC/site の AAV-Control- empty (AAV9-Syn1-Cerulean-WPRE)、AAV-Control-hM4Di (AAV9-Syn1-hM4Di-Cerulean-WPRE)、または AAV-SPARC-hM4Di (AAV9-Syn1-mSparc-hM4Di-Cerulean)を注入した。同日に、PFCの両側中心部に埋込カニューレを留置した。

A, **B**, AAV 注入より 21 日後に PFC から 0.3 µl の生理食塩水を投与する場合の物体認知記憶試験 (A)、 23 日後に PFC から 0.3 µl の 1 mM CNO を投与する場合の物体認知記憶試験 (B) をそれぞれ行った。 Training session と Test session は各々10 分間行い、インターバルは 1 時間に設定した。Training session 終了後直ちに、生理食塩水または CNO を投与した。新奇物体に対するマウスの接触回数を計測し、 preferential index (%) を算出した。**p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test. A significant drug × test interaction was found using repeated-measures two-way ANOVA [F(3, 15) = 19.02, p < 0.0001 (Saline), [F(3, 15) = 10.30, p = 0.0006 (CNO). #p < 0.05, ##p < 0.01, *post hoc* Bonferroni test, mean ± SD, n = 4–5 mic.

C-E, AAV 注入より 28 日後に自発運動試験を行った。10 分間の自由行動をさせ、総移動距離 (C)、進行方向に対する方向転換角度 (D) 及び不動時間 (E) それぞれを測定した。p > 0.05, one-way ANOVA *post hoc* Bonferroni test, mean \pm SD, n = 4-5 mice.

F, AAV 注入より 28 日後に脳を摘出し、脳切片にて埋込カニューレが PFC に正しく留置されたことを 明視野観察にて確認した。

G, H, AAV 注入より 28 日後に脳を摘出し、脳切片を用いて抗 SPARC 抗体及び抗 NeuN 抗体よる蛍光 免疫染色を行った。海馬 CA1 領域における NeuN 陽性神経細胞中の SPARC の発現量を定量した。**p < 0.01, ***p < 0.001, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 3–5 mice.

[Yang & Tohda, 2023a より引用、一部改変]

2.3.11. 軸索再伸長時の海馬神経細胞における SPARC の局在検討

神経細胞での SPARC の増加が、なぜ方向特異的な軸索再伸長に関わるのかを検討するために、まずは diosgenin 処置によって SPARC が海馬神経細胞のどこで増加するのかについて、その局在を検討した。

3 日間培養した海馬神経細胞に A $\beta_{25.35}$ (2.5 μ M) を 3 日間処置し、溶媒または diosgenin (0.1, 1 μ M) を 処置した。その 4 日後に抗 SPARC 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行った(Fig. 29A)。そ の結果、control 群では、神経細胞体および軸索上で SPARC の発現が見られたが、A $\beta_{25.35}$ 処置によっ て特に軸索上において SPARC 発現が有意に減少した(Fig. 29B)。一方、diosgenin を後処置すると、 軸索上の SPARC の発現が有意に増加することが示された(Fig. 29A: 黄色矢頭、Fig. 29B)。

また、diosgenin による軸索上の SPARC の増加が、<u>1.3.3.</u>でも前述した、diosgenin による軸索再 伸長に関わる直接結合タンパク質 1,25D₃-MARRS を介して起こるかどうかを検討した。3 日間培養し た海馬神経細胞に A β_{25-35} (2.5 μ M)を3日間処置し、1,25D₃-MARRS 中和抗体または normal rabbit IgG を diosgenin (1 μ M)と共に処置した。その4日後に抗 SPARC 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を 行った。その結果、1,25D₃-MARRS 中和抗体処置により、diosgenin による軸索再伸長作用(Fig. 29C) 及び軸索上での SPARC の増加(Fig. 29D)がともに消失した。このことから、diosgenin による軸索上 での SPARC の増加は、1,25D₃-MARRS シグナルを介して起こることが示唆された。

続いて、diosgenin 投与が 5XFAD マウス脳内の HPC-PFC において、軸索上の SPARC を増加させ るかどうかを検討するために、HPC から PFC に投射する軸索を順行性トレーサーであるビオチン化 デキストランアミン(BDA)により標識し、BDA 陽性軸索上における SPARC の発現を検出した。 Wild-type 及び 5XFAD マウス(雌性、7-9ヶ月齢)に溶媒または diosgenin (0.1 µmol/kg/day)を 21 日間 連続で経口投与した。薬物投与 14 日目に BDA を右側 CA1 に注入し、HPC—PFC の神経回路を標識 した。まず、海馬 CA1 に注入された BDA (Fig. 30A) が、PFC において pNF-H 陽性軸索と共局在す ることが確認された(Fig. 30B: 白矢頭)。また、抗 SPARC 抗体及び DAPI による蛍光免疫染色を行っ たところ(Fig. 30C)、PFCにおける BDA 陽性軸索の面積は、wild-type マウスに比べて 5XFAD マウス の溶媒投与群で有意に減少しており(Fig. 30D)、HPC-PFCの神経回路において軸索投射が減少する ことが確認された。一方、diosgeninを投与した 5XFAD マウスでは、HPC から PFC に投射する軸索が 有意に増加することが示され(Fig. 30D)、diosgeninの軸索再伸長作用を支持する結果となった。この 際、wild-type マウスの PFC では、BDA 陽性軸索において SPARC が高発現している様子が観察された (Fig. 30C)。しかし、溶媒を投与した 5XFAD マウスでは、SPARC を発現する軸索数が有意に減少し ていた(Fig. 30C: 白矢頭、Fig. 30E)。一方、diosgenin を投与した 5XFAD マウスでは、SPARC を発現 する BDA 陽性軸索数は wild-type マウスとほとんど同レベルにまで有意に増加した(Fig. 30E)。以上 の結果より、diosgenin によって再伸長している軸索上では、SPARC の発現が高いことが示唆された。

Fig. 29: Diosgenin 処置された海馬培養神経細胞における SPARC の局在及びその発現変化

A, **B**, 3 日間培養した ddY (E14) マウス海馬初代培養神経細胞に A β_{25-35} (2.5 μ M) を 3 日間処置し、 diosgenin (0.1, 1 μ M) を 4 日間処置した。抗 SPARC 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行い、 軸索上での SPARC の発現量を測定した。Diosgenin を処置した神経細胞では、SPARC の発現量は特に 軸索上で高かった(黄矢頭)。*p < 0.05, ***p < 0.001 vs A β_{25-35} (A β)/Vehicle (Veh), one-way ANOVA *post hoc* Dunnett's test, mean ± SEM, n = 92–427 axons.

C, D, 3 日間培養した ddY (E14) マウス海馬初代培養神経細胞に A β_{25-35} (2.5 μ M) を 3 日間処置した。その後、normal rabbit IgG (Control Ab) または 1,25D₃-MARRS 中和抗体 (MARRS Ab) を処置し、15 分後に diosgenin (1 μ M) を処置した。その 4 日後に、抗 SPARC 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行い、(C) 軸索密度及び (D) 軸索上の SPARC の発現量を測定した。**p < 0.01, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SEM, (C) n = 13–18 photos, (D) n = 57–136 axons.

[Yang & Tohda, 2023a より引用、一部改変]

Fig. 30: HPC-PFC おける diosgenin による SPARC の局在及びその発現変化

5XFAD マウス及び wild-type マウス(雌性、7–9ヶ月齢)に溶媒または diosgenin(0.1 µmol/kg/day)を 21日間経口投与し、薬物投与 14日目に右側 CA1に BDA を注入した。脳を摘出後、脳切片を用いて 抗 pNF-H 抗体及び抗 SPARC 抗体による蛍光免疫染色を行った。

A, BDA 注入部位(CA1)を示す。

B, CA1 神経細胞由来の軸索 (PFC) において、BDA が pNF-H 染色と共局在する様子が観察された (白矢頭)。

C, 各群の PFC における BDA 及び SPARC、DAPI の染色像。白矢頭は、SPARC が発現していない BDA 陽性軸索を示す。

D, **E**, PFC における BDA 陽性軸索数 (**D**) 及び全 BDA 陽性軸索のうち SPARC 陽性または SPARC 陰性 軸索数の割合 (**E**) を定量した。*p<0.05, ***p<0.001 vs 5XFAD/Veh, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 5 mice.

[Yang & Tohda, 2023a より引用、一部改変]

2.3.12. 軸索上の SPARC が方向特異的な軸索再伸長に関わる分子機序の仮説立案

再伸長中の軸索上において SPARC が高発現しているという事実に基づき、私は軸索上で増加した SPARC は、道しるべとなる何らかの細胞外タンパク質と相互作用しながら、つながるべき投射先ま で再伸長しているのではないかとの仮説を立てた。つまり、それら細胞外タンパク質は、軸索が萎縮 後においても、萎縮前に伸びていた軌跡にレール様に残存している可能性を考えた。

SPARC は酸性ドメイン、フォリスタチン様ドメイン、細胞外ドメインの 3 つのドメインから構成 されており (Kos & Wilding, 2010)、細胞質 (Fenouille et al., 2010)、細胞外マトリックス (Everitt & Sage, 1992; Sage et al., 1989a)、細胞膜 (Tang & Tai, 2007) において広く発現が報告されている。もし、軸索膜 に局在する SPARC が細胞外タンパク質と相互作用しているのであれば、その相互作用タンパク質は、 SPARC の細胞外ドメインを介して結合する分子である可能性が高い。そこで、SPARC の細胞外ドメ インの主なリガンドとして報告されている collagen ファミリー (I, III, IV 型 collagen) に着目した (Mayer et al., 1991)。Collagen ファミリーは、発達期の脳において軸索伸長や軸索誘導、シナプス形成 に重要であることが知られているものの (Hubert et al., 2009)、SPARC と collagen の相互作用が軸索伸 長や軸索再伸長に影響を及ぼすかについては不明であった。脳では、特に I 型 collagen (collagen I) の 発現が高いことから、SPARC と collagen I の相互作用が方向特異的な軸索再伸長に関わるかどうかを 検討することとした。

まず、前述の仮説が正しいかを検証する実験として、培養神経細胞における collagen I の局在を検 討した。これまでの基礎検討により、短期培養(~7日)した海馬神経細胞では collagen I の発現が低 いが、比較的長期間(10日~)培養すると、collagen I の発現が増加することを確認している(デー タ未提示)。そこで、海馬神経細胞を 14日間培養後、A $\beta_{25.35}$ (2.5 μ M)を 3日間処置し、diosgenin (1 μ M)を処置した。その 4 日後に抗 collagen I 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行った(Fig. 31A)。その結果、control 群では、ほとんどの collagen I が線維状に軸索と共局在することが確認され た(Fig. 31A, B)。一方、興味深いことに、A $\beta_{25.35}$ を処置した細胞では、pNF-H 陽性の軸索自体は萎縮 しているものの、軸索が元々伸びていたと思われる場所に、collagen I が残存している像が多く観察さ れた(Fig. 31A: 水色矢頭、Fig. 31B)。一方、diosgenin を後処置すると、ほとんどの軸索が再び細胞外 collagen I と共局在することが示された(Fig. 31A, B)。

また、軸索上の SPARC が細胞外 collagen I と直接相互作用できるかの可能性を検討するために、軸 索膜上に本当に SPARC が局在するかどうかについて、細胞膜非透過処理(染色時に界面活性剤なし) の蛍光免疫染色で確認した。海馬神経細胞を 14 日間培養後、Aβ₂₅₋₃₅ (2.5 μM)を 3 日間処置し、 diosgenin (1 μM)を処置した。その4日後に抗 SPARC 抗体及び抗 collagen I 抗体よる細胞膜非透過処理 の蛍光免疫染色を行った(Fig. 31C)。この条件で可視化されたタンパク質は、細胞膜または細胞外に 局在するものと考えられる。その結果、control 細胞では、SPARC のシグナルが軸索膜上で検出され (黄色矢頭)、それらが細胞外 collagen I と共局在していた。一方、Aβ₂₅₋₃₅を処置した神経細胞では、 軸索膜上の SPARC の発現が劇的に減少し、細胞外 collagen I のみが残存していた(青色矢頭)。一方、 diosgenin 処置によって、軸索膜上の SPARC の発現は増加し、collagen I との共局在も観察された(黄 色矢頭)。

また、この軸索が元あった場所における collagen I の残存がマウス脳でも見られるかどうかを検討 するために、wild-type マウス及び 5XFAD マウス(雌性、7-9ヶ月齢)の PFC (HPC 神経細胞の軸索 投射部)における collagen I 及び軸索の局在を蛍光免疫染色で検討した(Fig. 31D)。その結果、wildtype マウスの PFC では、pNF-H 陽性軸索と collagen I がほとんど共局在していたのに対し、5XFAD マ ウスでは collagen I 陽性かつ pNF-H 陰性の粒状の染色像が増加することが検出された(白矢印)。

以上の結果より、軸索伸長時では神経細胞から産生(分泌)された collagen I が軸索に沿うように 局在すること、軸索が萎縮しても collagen I は細胞外に残存すること、軸索再伸長時では軸索膜上で 局在する SPARC が、元々軸索が伸びていた場所に残存する collagen I と相互作用し、方向特異的な軸 索再伸長に関わる可能性があることが考えられたため、以降の2.3.13.の実験に進んだ。

50 µm

Fig. 31: 海馬神経細胞の軸索上における SPARC 及び collagen I の局在性

A-C, 14 日間培養した ddY (E14) マウス海馬初代培養神経細胞に A $\beta_{25.35}$ (2.5 μ M) を 3 日間処置し、 diosgenin (1 μ M) を 4 日間処置した。抗 pNF-H 抗体及び抗 collagen I 抗体による細胞膜透過(染色時に 界面活性剤あり)(A, B)、または抗 SPARC 抗体及び抗 collagen I 抗体による細胞膜非透過(染色時に 界面活性剤なし)(C)の蛍光免疫染色を行った。(A) 軸索萎縮部には collagen I が残存していた(水色 矢頭)。(B) 全軸索長のうち collagen I と共局在する割合を定量した。***p < 0.001 vs A β /Veh, one-way ANOVA *post hoc* Bonferroni test, mean ± SEM, n = 12 images. (C) SPARC は軸索膜上で局在し(黄色矢頭)、 軸索萎縮部の細胞外では collagen I が残存していた(水色矢頭)。

D, 5XFAD マウス及び wild-type マウス(雌性、7–9 ヶ月齢)の脳切片を用いて抗 pNF-H 抗体及び抗 collagen I 抗体による蛍光免疫染色を行った。Collagen I 陽性かつ pNF-H 陰性の染色像が見られた(白 矢印)。

[Yang & Tohda, 2023a より引用、一部改変]

2.3.13. 軸索上の SPARC 一細胞外 collagen I による方向特異的な軸索再伸長作用の検討

軸索膜上での SPARC と細胞外に残存する collagen I が方向特異的な軸索再伸長に直接関わるかどう かを検討するために、以下の一連の実験を行った。

神経細胞を播種する前日より、通常の PDL コーティング上に、collagen I をさらに重ねてコーティ ングした。その後、播種した海馬神経細胞に AAV-Control または AAV-SPARC (5 × 10⁶ GC/µl) を7日 間処置し、抗 pNF-H 抗体よる蛍光免疫染色を行った (Fig. 32A)。その結果、Fig. 22C, D の結果に一 致して、PDL コーティング上において AAV-SPARC 処置は軸索伸長を有意に促進した。一方、興味深 いことに、SPARC 過剰発現による軸索伸長作用は細胞外に collagen I がコーティングされた場合、よ り促進されることが示された (Fig. 32A)。

続いて Fig. 32B では、右側に collagen I をコーティングした dish を作製し、中央部に SPARC 過剰発 現神経細胞を播種し、その軸索が PDL と collagen I 上のどちらに向かってより伸長するかを比較した。 神経細胞を播種する前日より、well の右側にのみ PDL コーティング上に collagen I を重ねてコーティ ングした。その後、Neuron device チャンバーを用いて、collagen I がコーティングされていない中央の スペース内に海馬神経細胞を播種した。チャンバーを取り外した後、神経細胞に AAV-Control または AAV-SPARC (5 × 10⁶ GC/µl) を 14 日間処置し、抗 pNF-H 抗体よる蛍光免疫染色を行った (Fig. 32B)。 PDL (左) および collagen I (右) でコーティングされた領域に伸長した軸索長をそれぞれ定量したと ころ、SPARC を過剰発現した神経細胞の軸索は、より collagen I 上に向かって伸びることが示された (Fig. 32B)。以上より、神経細胞中で SPARC の発現が増加すると、その軸索は細胞外 collagen I の方 向により伸びることが示された。

さらに、軸索膜上の SPARCと "元々軸索が伸びていた場所に残存する"細胞外 collagen I の相互作 用が、方向特異的な軸索再伸長に寄与するかどうかを検証した (Fig. 32C)。海馬神経細胞を Triple neuron device チャンバーの細胞体スペース内 (灰色) に播種し、5×10⁷ GC/µl AAV-Control を処置する ことで、AAV 由来の Cerulean 蛍光で神経細胞及び軸索の形態を可視化し、全てのタイムポイントに おいて同一の軸索をイメージングした。軸索のみがチャンバーの細い microgroove 内に伸長すること ができるため、軸索が伸長した microgroove 内には、神経細胞由来の collagen I が軸索に沿って蓄積し た (Fig. 32C、collagen I の列)。蛍光顕微鏡でのライブイメージングにより、Cerulean 陽性軸索が microgroove 内に伸長し切ったことが確認された培養 10 日目まで通常培養後、A $\beta_{25.35}$ (2.5 µM) をチャ ンバーの細胞体スペース (灰色) 及び軸索スペース (ピンク) に 3 日間処置した (11-13 DIV [days *in vitro*])。13 DIV におけるライブイメージングにより、元々microgroove に伸びていた Cerulean 陽性軸索 が、A $\beta_{25.35}$ 処置によって萎縮したことを確認した。その後、チャンバーを培養 dish より取り外し (microgroove 以外のどこにでも、軸索が自由に伸長できる状態にする)、5×10⁶ GC/µl AAV-Control ま たは AAV-SPARC を、2µg/mL SPARC 中和抗体 (SPARC-Ab、軸索膜上の SPARC をマスクする) また は normal IgG (IgG) と共に処置した。培養開始より 20 日後 (20 DIV) に、抗 pNF-H 抗体及び抗 collagen I 抗体を用いた蛍光免疫染色を行った。元々microgroove があった場所(細胞外 collagen I を辿 った軸索の長さ)及び microgroove がない場所(細胞外 collagen I を辿らなかった軸索の長さ)それぞ れを定量した。その結果、IgG 処置下では、SPARC の過剰発現により、軸索は microgroove 部があっ た場所に向かって有意に再伸長することが示された(Fig. 32D)。一方、SPARC-Ab 処置群では、 SPARC を過剰発現しても軸索が元々伸びていた microgroove 部に伸長せず(Fig. 32D)、collagen I がな い場所に向かって無秩序に伸長する様子が検出され(Fig. 32D: 灰色矢頭、Fig. 32E)、方向特異的な軸 索再伸長が見られなかった。なお、全群において、細胞外 collagen I が microgroove 部に残存している ことが確認された(Fig. 32C)。以上の結果より、軸索膜上の SPARC が、道しるベタンパク質である 細胞外 collagen I と相互作用することが、軸索の方向特異的な再伸長に直接寄与することが証明され た。

Fig. 32: SPARC-collagen Iによる方向特異的な軸索再伸長作用

A, ddY (E14) マウス海馬初代培養神経細胞を PDL または collagen I コーティングされた dish 上に播種 し、AAV-Control または AAV-SPARC(5×10⁶ GC/µl)を7日間処置した。抗 pNF-H 抗体よる蛍光免疫 染色で pNF-H 陽性軸索長を定量した。*p < 0.05, **p < 0.01, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SEM, n = 10–17 photos.

B, PDL 及びコラーゲン I を培養 dish の左及び右側にコーティングし、中央部分に ddY (E14) マウス海 馬初代培養神経細胞を播種後、AAV-Control または AAV-SPARC(5 × 10⁶ GC/µl)を処置した。その 14 日後に、抗 pNF-H 抗体よる蛍光免疫染色で pNF-H 陽性軸索長を定量した。*p < 0.05, ****p < 0.0001, one-way ANOVA; #p < 0.05, two-way ANOVA, *post hoc* Bonferroni test, mean ± SEM, 8–13 images. A significant SPARC × collagen I interaction was found using repeated-measures two-way ANOVA [F(1, 40) = 5.81, p = 0.0206].

C-E, Triple neuron device チャンバーの細胞体スペース(灰色)に ddY (E14) マウス海馬初代培養神経 細胞を播種し、 5×10^7 GC/µl AAV-Control を 10 日間処置した。10 DIV (days in vitro)に蛍光イメージ ングを用いて、microgroove内の Cerulean 陽性軸索を観察した。その後、Aβ_{25.35} (2.5 µM)を細胞体スペ ース(灰色)及び軸索スペース(ピンク)に3日間処置した。13 DIVの蛍光イメージングより、元々 microgroove内に伸びていた Cerulean 陽性軸索が Aβ_{25.35}によって萎縮されたことを確認した。その後、 チャンバーを培養 dish から取り外し、 5×10^6 GC/µl AAV-Control または AAV-SPARC を 2 µg/ml SPARC 中和抗体 (SPARC-Ab)または normal IgG (IgG)と共に処置した。20DIVにおいて、抗 pNF-H 抗体及 び抗 collagen I 抗体よる蛍光免疫染色を行い、細胞外 collagen I を辿った軸索長 (**D**)及び細胞外 collagen I を辿らなかった軸索長 (**E**) をそれぞれ定量した。*p<0.05,**p<0.01,****p<0.0001, one-way ANOVA, *post hoc* Bonferroni test, mean ± SEM, 12 photos.

[Yang & Tohda, 2023a より引用、一部改変]

2.3.14. Diosgenin 処置が海馬神経細胞の Galectin-1 の発現量に及ぼす影響の検討

ここまでの実験により、diosgenin による方向特異的な軸索再伸長に関わる重要な機能分子の1つと して、SPARC の役割を明らかにした。一方で、diosgenin による脳での方向特異的な軸索再伸長に関 わる2つ目の候補遺伝子として、*Lgals1*が同定されていた(<u>2.3.4.</u>参照)。*Lgals1*遺伝子は、Galectin-1 (以下略:Gal-1) タンパク質をコードしている。細胞外 Gal-1 が末梢神経の軸索再生を促進するこ と (Horie et al., 1999; McGraw et al., 2004)、Gal-1 ノックアウトマウスでは記憶障害が生じること (Sakaguchi et al., 2011) が報告されているが、神経細胞中における Gal-1 の増加が脳での軸索再伸長や 記憶障害の改善に寄与するかどうかは不明だったため、興味深い本タンパク質についても SPARC と 同様に機能解析することとした。

まず、diosgenin 処置による Gal-1 の発現量変化の再現性がタンパク質レベルで観察されるかどうか について、ddY マウス (E14) の海馬神経細胞を用いて検討した。3 日間初代培養した海馬神経細胞に 溶媒または diosgenin (1 μM) を処置し、その4日後にタンパク質を抽出後、western blot を用いて Gal-1 の発現量を比較した。その結果、溶媒処置群と比べて diosgenin を処置した海馬神経細胞では、Gal-1 の発現量が有意に増加した (Fig. 33)。したがって、diosgenin によって神経細胞中の Gal-1 がタンパク 質レベルでも増加することが確認された。

Fig. 33: 海馬培養神経細胞への diosgenin 処置による Gal-1 の発現量変化

3 日間培養した ddY (E14) マウス海馬初代培養神経細胞に溶媒または diosgenin (1 µM) を 4 日間処置した。細胞 lysate を作成し、western blot で Gal-1 及び GAPDH の発現量を測定し、Gal-1/GAPDH の発現量を算出した。*p < 0.05, two-tailed unpaired *t*-test, mean ± SEM, vehicle (Veh), n = 7; diosgenin (Veh), n = 7 lysates.

2.3.15. 海馬培養神経細胞での Gal-1 過剰発現による軸索伸長作用の検討

Diosgenin による神経細胞中の Gal-1 の発現量を増加させることが示された。そこで、Gal-1 の増加 が軸索伸長に直接寄与するかどうかを検討するために、SPARC と同様に AAV9 ベクターを用いて、 Gal-1 を神経細胞特異的に過剰発現する実験を行った。

神経細胞特異的なプロモーター*Syn1*下で、mouse *Lgals1*及び Cerulean を発現する AAV9 ベクター (AAV-Gal-1)、または *Syn1*下で Cerulean のみを発現するコントロール AAV9 ベクター (AAV-Control) をベクタービルダー社より購入した。海馬神経細胞に、溶媒または 5×10⁵または 5×10⁶ GC/µl AAV-Control または AAV-Gal-1 を処置し、その 7 日後に抗 Gal-1 抗体、抗 Map2 抗体、及び抗 pNF-H 抗体よ る蛍光免疫染色を行った。その結果、Map2 陽性神経細胞中における Gal-1 の発現量は、AAV-Control と比べて AAV-Gal-1 処置により、有意に増加し (Fig. 34A, B)、Gal-1 の過剰発現が誘発された。また この際、Gal-1 の過剰発現により、pNF-H 陽性の軸索長が有意に増加した (Fig. 34C, D)。以上より、 海馬培養神経細胞における Gal-1 の過剰発現が、直接軸索伸長に関わることが示された。

Fig. 34: 海馬培養神経細胞での Gal-1 過剰発現による軸索伸長作用

ddY (E14) マウス海馬初代培養神経細胞に、5×10⁵または 5×10⁶ GC/µl の AAV-Control (AAV9-Syn1-Cerulean-WPRE) または AAV-Gal-1 (AAV9-Syn1-mLgals1-IRES-Cerulean-WPRE) を7日間処置し、抗 Gal-1 抗体及び抗 Map2 抗体 (A, B)、または抗 pNF-H 抗体 (C, D)よる蛍光免疫染色を行った。

A, B, Map2 陽性神経細胞中での Gal-1 の発現量を定量した。****p<0.0001 vs same concentration of AAV-Cont, one-way ANOVA with *post hoc* Bonferroni test, mean ± SEM, n = 248–511 neurons.

C, D, pNF-H 陽性軸索長を定量した。*p < 0.05, **p < 0.01 vs same concentration of AAV-Cont, one-way ANOVA with *post hoc* Bonferroni test, mean ± SEM, n = 10–16 photos.

[Yang & Tohda, 2023b より引用、一部改変]

2.3.16. 海馬神経細胞での Gal-1 過剰発現による 5XFAD マウスの記憶改善作用の検討

海馬培養神経細胞における Gal-1 の過剰発現が、軸索伸長に寄与することが示された。そこで次に、 海馬神経細胞における Gal-1 の過剰発現が 5XFAD マウスの記憶障害を改善するかどうかを評価した。

まず、前述の AAV-Gal-1 ベクターが、マウスの海馬神経細胞において Gal-1 の過剰発現を誘発する かどうかの基礎検討を行った。Wild-type マウス(雌性、7–9 ヶ月齢)の両側海馬 CA1 領域に、1 × 10¹⁰ GC/site の AAV-Control または AAV-Gal-1 を注入した。その 21 または 28 日後に脳を摘出し、脳切 片を用いて抗 Gal-1 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行った(Fig. 35)。その結果、全てのマ ウスにおいて、CA1 領域では AAV 由来の Cerulean 蛍光が検出された。またこの際、少なくとも AAV 注入より 21 (Fig. 35A) 及び 28 (Fig. 35B) 日後において、AAV-Gal-1 注入によって Gal-1 の発現量が CA1 において顕著に増加することが確認された。Gal-1 が NeuN 陽性神経細胞とその周囲領域の両方 で増加したことから、Gal-1 はまず AAV の Syn1 プロモーターによって神経細胞特異的に過剰発現さ れ、その後神経細胞で合成された Gal-1 が周囲に分泌される可能性を考えている。また、Gal-1 と NeuN の染色反応のプロセスで二次抗体のみを用いた蛍光免疫染色では、Gal-1 及び NeuN のどちらの シグナルも検出されず、Gal-1 及び NeuN の染色は一次抗体の抗原への結合を反映していることを確 認した(Fig. 35)。

続いて、wild-type マウス及び 5XFAD マウス(雌性、7–9 ヶ月齢)の両側 CA1 領域に、1 × 10¹⁰ GC/site の AAV-Control または AAV-Gal-1 を注入し、AAV 注入より 21 日後に物体認知記憶試験を行った(Fig. 36A)。その結果、AAV-Gal-1 の注入によって 5XFAD マウスの物体認知記憶は有意に改善した。続いて、これらマウスについて、AAV 注入より 26 日後に空間記憶試験を行った(Fig. 36B)。その結果、AAV-Gal-1 の注入によって 5XFAD マウスの物体認知記憶も有意に改善した。さらに、AAV 注入より 28 日後に自発運動試験を行った(Fig. 36C-E)。その結果、AAV 注入よるマウスの自発運動

(総移動距離、進行方向に対する方向転換角度、不動時間)に群間差は認められなかった。また、 AAV 注入によってマウスに顕著な体重変化も見られなかった(Fig. 36F)。以上の結果より、海馬神 経細胞における Gal-1 の過剰発現によって、5XFAD マウスの記憶障害が改善することが明らかとなっ た。

81

B 28 days after AAV injections

1st + 2nd antibodies

Fig. 35: AAV-Gal-1 注入によるマウス脳内での Gal-1 過剰発現の確認

Wild-type マウス(雌性、7–9ヶ月齢)の両側 CA1 に、1×10¹⁰ GC/site AAV-Control または AAV-Gal-1 を 注入した。AAV 注入より 21 (A) または 28 (D) 日後に脳を摘出し、脳切片を用いて抗 Gal-1 抗体及び抗 NeuN 抗体よる蛍光免疫染色を行った。抗 Gal-1 抗体と抗 NeuN 抗体の二次抗体 (2nd anti-goat IgG, 2nd anti-rabbit IgG)のみを染色に用いた場合には、Gal-1 と NeuN のシグナルは検出されなかった。[Yang & Tohda, 2023b より引用、一部改変]

Fig. 36: 海馬神経細胞での Gal-1 の過剰発現による 5XFAD マウスの記憶障害改善作用 Wild-type マウス及び 5XFAD マウス(雌性、7–9 ヶ月齢)の両側 CA1 領域に、1 × 10¹⁰ GC/site の AAV-Control または AAV-Gal-1 を注入した。

A, B, AAV 注入より 21 日後に物体認知記憶試験 (A)、27 日後に空間記憶試験 (B) をそれぞれ行った。 Training session と Test session は各々10分間行い、インターバルは1時間に設定した。新奇物体または 位置を移動した物体に対するマウスの接触回数を計測し、preferential index (%) を算出した。****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test. A significant drug × test interaction was found using repeated measures two-way ANOVA [(A) F(2, 15) = 44.47, p < 0.0001, (B) F(2, 15) = 15.35, p = 0.0002]. ####p < 0.0001, *post hoc* Bonferroni test, mean ± SD, n = 6 mice.

C-F, AAV 注入より 28 日後に自発運動試験を行った。10 分間の自由行動をさせ、総移動距離 (C)、進行方向に対する方向転換角度 (D) 及び不動時間 (E) それぞれを測定した。p > 0.05, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 6 mice. (F) AAV 注入によるマウスの体重推移。p > 0.05, repeated-measures two-way ANOVA, mean ± SD, n = 6 mice.

[Yang & Tohda, 2023b より引用、一部改変]

2.3.17.Gal-1 過剰発現による 5XFAD マウス海馬―前頭前野における軸索再伸長作用の検討

HPC神経細胞における Gal-1 の過剰発現が、5XFAD マウスの記憶障害を改善することが明らかになったことから、続いて、Gal-1 過剰発現による 5XFAD マウス HPC—PFC における軸索再伸長作用について、2 色の逆行性トレーサーを用いた標識実験で検討した。

5XFAD マウス及び wild-type マウス(雌性、7–9 ヶ月齢)に対し、逆行性トレーサーDextran (3000 MW) Texas Red (赤)を右側 PFC に注入した。続いて右側 CA1 領域に、1×10¹⁰ GC/site の AAV-Control または AAV-Gal-1を注入し、その 21 日後に右側 PFC に 2 色目の逆行性トレーサーDextran (3000 MW) FITC (緑)を注入した (Fig. 37A)。その 7 日後に脳を摘出し、CA1 及び CA3 における逆行性トレー サー陽性細胞数をそれぞれ定量した (Fig. 37B)。

その結果、CA1—PFC において、軸索が再伸長した細胞(Texas Red 陰性かつ FITC 陽性)数は、 Gal-1 過剰発現により有意に増加することが示された(Fig. 37C)。また、AAV が注入された期間中に 軸索が萎縮した細胞(Texas Red 陽性かつ FITC 陰性)数は、wild-type と比べて 5XFAD マウスの溶媒 投与群で有意に増加したが、Gal-1 を過剰発現した 5XFAD マウスでは有意に減少した(Fig. 37D)。ま た、軸索が萎縮も伸長もしなかった naïve 細胞(Texas Red 陽性かつ FITC 陽性)数は、5XFAD マウス の AAV-Control 群と比べて AAV-Gal-1 群で有意に増加した(Fig. 37E)。また、5XFAD マウスの AAV-Control 群と AAV-Gal-1 群間では、元々PFC に軸索投射する細胞(全 Texas Red 陽性)数に差がなく、 また両群とも wild-type マウスと比べて有意に低かったことから(Fig. 37F)、AAV 注入前の段階にお いて、5XFAD マウスの両群では同程度の軸索萎縮が起こっていたものと考えられる。また、AAV 注 入後に CA1—PFC において軸索投射していた細胞(全 FITC 陽性)数は、Gal-1 を過剰発現した 5XFAD マウスで wild-type マウスと同程度にまで有意に増加したことから、Gal-1 過剰発現によって 5XFAD マウスでは wild-type マウスに匹敵するほどの軸索投射が起きていることが示唆された(Fig. 37G)。一方、定量した CA1 領域の面積は群間で差はなかった(Fig. 37H)。

CA3 領域においても AAV 由来の Cerulean 蛍光が検出されたことから、CA3—PFC においても定量 を行った。その結果、Gal-1 の過剰発現によって全ての項目において CA1—PFC と同様の作用が検出 された(Fig. 38)。以上より、HPC 神経細胞において Gal-1 を過剰発現した場合でも、SPARC と同様 に、5XFAD マウスの HPC—PFC において一度萎縮した軸索が長距離、かつつながるべき脳部位に向 かって再伸長することが示された。

84

Fig. 37: Gal-1 過剰発現による 5XFAD マウスの CA1-PFC における軸索再伸長作用

A, B, 5XFADマウス及び wild-type マウス(雌性、7–9ヶ月齢)の右側 PFC に Dextran Texas Red を注入 した。その7日後に、右側 CA1 領域に 1×10¹⁰ GC/site の AAV-Control または AAV-Gal-1 を注入し、 AAV 注入より 21日後に Dextran FITC を PFC の同部位に注入した。その7日後に脳を摘出し、脳切片 を用いて各逆行性トレーサー陽性の細胞数を定量した。(B) 各群の右側 CA1 における逆行性トレーサ ー (Texas Red 及び FITC) を示す。C-H, 右側 CA1 における (C) Texas Red 陰性かつ FITC 陽性の細胞 数、(D) Texas Red 陽性かつ FITC 陰性の細胞数、(E) Texas Red 陽性かつ FITC 陽性の細胞数、(F) 全 Texas Red 陽性細胞数、(G) 全 FITC 陽性細胞数、(H) 定量した CA1 の面積。*p<0.05, **p<0.01, ****p<0.001, ****p<0.001, one-way ANOVA *post hoc* Bonferroni test, mean \pm SD, n = 5 mice.

[Yang & Tohda, 2023b より引用、一部改変]

Fig. 38: Gal-1 過剰発現による 5XFAD マウスの CA3—PFC における軸索再伸長作用

5XFAD マウス及び wild-type マウス(雌性、7–9ヶ月齢)の右側 PFC に Dextran Texas Red を注入した。 その7日後に、右側 CA3 領域に1×10¹⁰ GC/site の AAV-Control または AAV-Gal-1 を注入し、AAV 注入 より21日後に Dextran FITC を PFC の同部位に注入した。その7日後に脳を摘出し、脳切片を用いて 各逆行性トレーサー陽性の細胞数を定量した。(A) AAV 由来の Cerulean 蛍光が CA3 にも広がっている 様子を確認が確認された。右側 CA3 における (B) Texas Red 陰性かつ FITC 陽性の神経細胞数、(C) Texas Red 陽性かつ FITC 陰性の神経細胞数、(D) Texas Red 陽性かつ FITC 陽性の神経細胞数、(E) 全 Texas Red 陽性神経細胞数、(F) 全 FITC 陽性神経細胞数、(G) 定量した CA3 の面積。*p < 0.05, ***p < 0.001, ****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 5 mice. [Yang & Tohda, 2023b より引用、一部改変]

2.3.18. Diosgenin 処置が海馬神経細胞の Gal-1 の局在及び発現量に及ぼす影響の検討

神経細胞において、Gal-1 がどのような分子機序を介して方向特異的な軸索再伸長に関わるのかを 予想するために、まずは Aβ 及び diosgenin 処置における海馬神経細胞の Gal-1 局在及び発現変化を検 討した。

3 日間培養した海馬神経細胞に Aβ₂₅₋₃₅ (1.25, 2.5, or 5 μM) または negative control Aβ₃₅₋₂₅ (1.25, 2.5, or 5 μM) を 3 日間処置し、溶媒または diosgenin (1 μM) を処置した。その 4 日後に抗 Gal-1 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行った (Fig. 39A)。その結果、control 群では、神経細胞体および軸索 上で Gal-1 の発現が見られたが、2.5 μM Aβ₂₅₋₃₅ 処置によって軸索上の Gal-1 発現が有意に減少した (Fig. 39B: 白矢頭)。5 μM Aβ₂₅₋₃₅ 処置群では、顕著な神経細胞死が誘発されたため、軸索の定量は行

えなかった。一方、Aβ₃₅₋₂₅処置は、軸索上の Gal-1 の発現量に影響を与えなかった(Fig. 39A, B)。

次に、diosgenin が軸索上の Gal-1 の発現量に及ぼす影響、及びその発現量変化が 1,25D₃-MARRS を 介して起こるかどうかを検討した。3 日間培養した海馬神経細胞に A β_{25-35} (2.5 μ M) を 3 日間処置し、 1,25D₃-MARRS 中和抗体または normal rabbit IgG を diosgenin (1 μ M) と共に処置した。その4 日後に抗 Gal-1 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行った。その結果、diosgenin 処置によって軸索上の Gal-1 の発現量は有意に増加したが、1,25D₃-MARRS 中和抗体処置により diosgenin による Gal-1 の増加 は消失した (Fig. 39C)。このことから、diosgenin は A β によって減少した軸索上での Gal-1 の発現を 増加させることと、この Gal-1 の増加が 1,25D₃-MARRS シグナルを介して起こることが示唆された。

続いて、diosgenin 投与が 5XFAD マウス脳内の HPC—PFC において、軸索上の Gal-1 を増加させる かどうかを検討するために、HPC から PFC に投射する軸索を順行性トレーサーBDA により標識し、 BDA 陽性軸索上における Gal-1 の発現を検討した。Wild-type 及び 5XFAD マウス(雌性、7–9 ヶ月齢) に溶媒または diosgenin (0.1 µmol/kg/day) を 21 日間連続で経口投与した。薬物投与 14 日目に BDA を右 側 CA1 に注入し、HPC—PFC の神経回路を標識した。まず、海馬 CA1 に BDA が注入されていること が確認された (Fig. 40A)。また、抗 Gal-1 抗体及び DAPI による蛍光免疫染色を行ったところ (Fig. 40B)、PFC における BDA 陽性軸索の面積は、wild-type マウスに比べて 5XFAD マウスの溶媒投与群 で有意に減少し (Fig. 40C)、また diosgenin を投与した 5XFAD マウスの容媒投与群 で有意に減少し (Fig. 40C)、また diosgenin を投与した 5XFAD マウスでは有意に増加することが示さ れ (Fig. 40C)、Fig. 30D の再現性が確認された。この際、wild-type マウスの PFC では、BDA 陽性軸 索において Gal-1 が高発現していたが (Fig. 40B)、溶媒を投与した 5XFAD マウスでは、Gal-1 を発現 する軸索数が有意に減少した (Fig. 40D)。一方、diosgenin を投与した 5XFAD マウスでは、Gal-1 を発現 現する BDA 陽性軸索数は wild-type マウスとほとんど同レベルにまで有意に増加した (Fig. 40D)。以 上の結果より、diosgenin によって再伸長している軸索上では、Gal-1 の発現が高いことが示唆された。

87

Fig. 39: Diosgenin 処置された海馬培養神経細胞における Gal-1 の局在及びその発現変化

A, B, 3 日間培養した ddY (E14) マウス海馬初代培養神経細胞に A β_{25-35} (1.25, 2.5, or 5 μ M) または negative control A β_{35-25} (1.25, 2.5, or 5 μ M) を 3 日間処置し、その後、通常の培地で 4 日間培養した。抗 Gal-1 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行い、軸索上での Gal-1 の発現量を測定した。A β_{25-35} 処置群では、 軸索上の Gal-1 の発現が低かった(白矢頭)。*p < 0.05, ****p < 0.0001, one-way ANOVA, *post hoc* Bonferroni test, mean ± SEM, n = 70–89 axons.

C,3日間培養した ddY (E14) マウス海馬初代培養神経細胞に Aβ₂₅₋₃₅ (2.5 μM) を3日間処置した。その 後、normal rabbit IgG (Control Ab) または 1,25D₃-MARRS 中和抗体 (MARRS Ab) を処置し、15分後に diosgenin (1 μM) を処置した。その4日後に、抗 Gal-1 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行い、 軸索上の Gal-1 の発現量を測定した。****p < 0.0001, one-way ANOVA *post hoc* Bonferroni test, mean ± SEM, n = 49–100 axons.

[Yang & Tohda, 2023bより引用、一部改変]

Fig. 40: HPC-PFC おける diosgenin による Gal-1 の局在及びその発現変化

5XFAD マウス及び wild-type マウス(雌性、7–9 ヶ月齢)に溶媒または diosgenin (0.1 µmol/kg/day)を 21 日間経口投与し、薬物投与 14 日目に右側 CA1 に BDA を注入した。脳を摘出後、脳切片を用いて 抗 pNF-H 抗体及び抗 Gal-1 抗体による蛍光免疫染色を行った。

A, BDA 注入部位(CA1)を示す。

B, 各群の PFC における BDA 及び Gal-1、DAPI の染色像。

C, D, PFC における BDA 陽性軸索数 (C) 及び全 BDA 陽性軸索のうち Gal-1 陽性または Gal-1 陰性軸索数の割合 (D) を定量した。***p < 0.001 vs 5XFAD/Veh, one-way ANOVA *post hoc* Bonferroni test, mean ± SD, n = 5 mice.

[Yang & Tohda, 2023bより引用、一部改変]

2.3.19. 海馬神経細胞の軸索に発現する Gal-1 の方向特異的な軸索再伸長への寄与

正常海馬神経細胞の軸索上には Gal-1 が高発現するが、Aβによってそれが減少し、diosgenin によっ て再び軸索上で Gal-1 が増加した結果より、軸索上の Gal-1 が軸索を正しい投射先 (PFC) まで誘導し ていると予想し、詳細な分子メカニズムの解明を目指した。そこでまず、Gal-1 の軸索上における局 在の詳細を検討するために、細胞膜非透過処理の蛍光免疫染色を行った。

蛍光免疫染色による Gal-1 の検出感度を高めるために、海馬神経細胞に 5×10⁷ GC/μl AAV-Gal-1 を 7 日間処置し、抗 Gal-1 抗体及び抗 pNF-H 抗体よる細胞膜透過(Permeable)または非透過処理(Nonpermeable)の蛍光免疫染色を行い、共焦点レーザー顕微鏡で観察した(Fig. 41A)。神経細胞体(黄色 アスタリスク)及び軸索の形態は、AAV 由来の Cerulean 蛍光によって検出した。その結果、Gal-1 は 神経細胞体や軸索側枝上だけでなく、軸索終末部の成長円錐(青矢頭)にも高発現していた。さらに、 成長円錐での Gal-1 は、細胞膜非透過処理の蛍光免疫染色でも検出されたことから、Gal-1 が成長円錐 の膜上で発現することが示唆された。一方、細胞質タンパク質である pNF-H は、細胞膜非透過処理 の蛍光免疫染色で検出されなかったことから、本手法により蛍光免疫染色に用いる抗体が確かに細胞 質内に透過していないことが確認された。

この結果より私は、成長円錐膜上に発現する Gal-1 が、HPC 神経細胞の軸索投射先である PFC 神経 細胞から分泌される何かしらの軸索誘導因子(液性因子)を感知する受容体様にはたらき、HPC-PFC における軸索誘導に寄与する可能性を考えた。本仮説を検証するために、Gal-1 を過剰発現した HPC 神経細胞の成長円錐側からのみ、PFC 神経細胞の培養上清(conditioned media; CM)を処置し、 Gal-1 による軸索伸長が促進されるかどうかを検討した。海馬神経細胞を neuron device チャンバーの 細胞体スペース内(Soma; 灰色)に播種し、AAV-Control または AAV-Gal-1 (5×10⁵ GC/µl)を処置した (Fig. 41B)。なお、Gal-1 の過剰発現と PFC CM の処置による軸索伸長作用の相加・相乗効果が見ら れるように、AAV-Gal-1 の処置濃度は、軸索伸長作用が最大に達しないよう低濃度の 5×10⁵ GC/µl と した。同時に、チャンバーの軸索投射部(Axonal site; ピンク)より、PFC CM を添加した。PFC CM は、7日間培養した前頭皮質の神経細胞より採取した。チャンバー内で7日間培養後、抗 pNF-H 抗体 よる蛍光免疫染色を行い、microgroove 部(M)、軸索投射部(A)、及びその total の軸索密度を算出した

(Fig. 41C-E)。その結果、AAV-Control 群において、PFC CM (-) に比べて PFC CM (+) では軸索伸長が 有意に促進されることが示された (Fig. 41C-E)。つまり、HPC 神経細胞の軸索は、PFC 神経細胞か ら分泌される何かしらの因子に誘引されることが示唆された。また興味深いことに、AAV-Gal-1 群で は AAV-Control 群と比べて、PFC CM による軸索誘導が有意に促進された (Fig. 41C-E)。これは、軸 索円錐上に局在する Gal-1 が、PFC CM 中の因子と相互作用し、HPC—PFC における軸索誘導を促進 することを示唆する結果である。なお、Gal-1 過剰発現によってチャンバー内の神経細胞数に変化が なかったことから (Fig. 41F)、本研究で検出されたチャンバー内での軸索密度の増加は、Gal-1 過剰 発現による軸索伸長作用を反映しているものと考えられる。

Fig. 41: 海馬神経細胞に局在する Gal-1の PFC への方向特異的な軸索再伸長への寄与

A, ddY (E14) マウス海馬初代培養神経細胞に AAV-Gal-1 (5×10⁷ GC/µl) を7日間処置し、抗 Gal-1 抗体 及び抗 pNF-H 抗体よる細胞膜透過(染色時に界面活性剤あり)または細胞膜非透過(染色時に界面 活性剤なし)の蛍光免疫染色を行った。撮影画像は共焦点顕微鏡より取得した。Gal-1 は成長円錐内 及び膜上に局在していた(青色矢頭)。神経細胞体は黄色アスタリスクで示す。

B-E, ddY (E14) マウス海馬初代培養神経細胞を neuron device チャンバーの細胞体スペース (Soma; 灰色) に播種し、AAV-Control または AAV-Gal-1 (5 × 10⁵ GC/µl) を Soma 部に処置した。同時に、PFC 神経細胞の CM (7 日間初代培養された前頭皮質神経細胞より回収)を軸索投射部 (Axonal site; 青色) に処置し、7 日間培養した。その後、抗 pNF-H 抗体よる蛍光免疫染色を行った。(C) microgroove (M)、(D) axonal site (A)、及び (E) その total における pNF-H 陽性軸索密度を算出した。**p < 0.01, ***p < 0.001, ****p < 0.001, one-way ANOVA, *post hoc* Bonferroni test; # < 0.05, PFC CM (-) vs PFC CM (+), two-way ANOVA, *post hoc* Bonferroni test; mean ± SEM, n = 9–13 images.

F, ddY (E14) マウス海馬初代培養神経細胞に AAV-Control または AAV-Gal-1 (5 × 10⁵ GC/µl) を7日間 処置し、抗 Map2 抗体による蛍光免疫染色を行った。一定面積内における Map2 陽性神経細胞数を定 量した。p > 0.05, unpaired *t*-test, mean ± SEM, n = 13 images. [Yang & Tohda, 2023b より引用、一部改変]

2.3.20. PFC 神経細胞より分泌される軸索誘導因子の探索

HPC 神経細胞の軸索円錐膜上に局在する Gal-1 が、PFC 神経細胞より分泌される何かしらの液性因子と相互作用し、HPC—PFC における軸索誘導を促進することが示唆されたため、次に Gal-1 と相互作用する軸索誘導因子の同定を試みた。

HPC 神経細胞は、PFC には多く軸索投射するものの、小脳(Cerebellum)にはほとんど軸索投射し ないことが報告されている (Oh et al., 2014)。したがって、PFC 神経細胞と比べて Cerebellum 神経細胞 から全く分泌がない液性因子が、前述の軸索誘導因子候補になりうるのではないかと考えた。そこで、 PFC 神経細胞または Cerebellum 神経細胞 (negative control) を 7 日間培養し、それぞれの CM を回収 した。両神経細胞から得た CM を用いて、SDS-PAGE 及び銀染色を用いて、PFC CM では発現がある ものの Cerebellum CM では発現がないタンパク質を網羅的に探索した (Fig. 42A)。分子量 50 k 前後の タンパク質(赤矢印)は、PFC CM でのみ発現が見られ、Cerebellum CM では全く検出されなかった。 他にも Cerebellum CM では PFC CM と比べていくつかのタンパク質の発現が低下していたが、発現量 がゼロではなかった。50 k のバンドに含まれるタンパク質を nano-LC-MS/MS で同定したところ、 Secernin-1 であると示唆された (coverage: 2%, score: 36)。

続いて、銀染色における Secernin-1 の発現量の再現性を確認するために、前段と同様にサンプルを 作製し、抗 Secernin-1 抗体及び抗 β -actin 抗体を用いた western blot を行った(Fig. 42B)。その結果、 PFC CM と比べて Cerebellum CM では、Secernin-1 の発現が顕著に減少することが確認され、銀染色の 結果と一致した(Fig. 42C)。一方、細胞質 lysate における Secernin-1 の発現量は、PFC 及び Cerebellum の両神経細胞において、ほとんど差がなく検出された(Fig. 42D)。また、細胞質にのみ発 現するタンパク質である β -actin は CM 中では検出されなかったため、CM の回収時に細胞質中のタン パク質が混在した可能性が低いことが確認された。以上の結果から、Secernin-1 は PFC と Cerebellum の両神経細胞で合成されるが、おそらく両神経細胞における分泌機構が異なっており、それによって PFC 神経細胞から多く分泌されるのではないかと考える。

PFC 神経細胞から分泌される Secernin-1 が、HPC 神経細胞に対する新規軸索誘導因子の候補になり うるかを検討するために、まずは遊離型 Secernin-1 の HPC 神経細胞に対する軸索伸長作用を検討した (Fig. 42E)。海馬神経細胞に溶媒または 1、10、100 ng/ml リコンビナント Secernin-1 (rSecernin-1)を 処置し、7 日後に抗 pNF-H 抗体による蛍光免疫染色を行った。その結果、1–100 ng/mL rSecernin-1 い ずれを処理した神経細胞においても、溶媒処置と比較して pNF-H 陽性の軸索長が有意に増加した

(Fig. 42F)。したがって、遊離型(細胞外) Secernin-1 が、HPC 神経細胞の軸索伸長を促進すること が示された。

92

Fig. 42: PFC 神経細胞より分泌される軸索誘導因子候補の探索

A, ddY (E14) マウスより前頭皮質 (PFC) または小脳 (Cerebellum) 初代培養神経細胞を単離し7日間 培養した。両神経細胞より回収した CM を用いて銀染色を行った。赤矢印のバンドは、PFC CM での み発現しており、Cerebellum CM 中では発現が認められなかった。Nano-LC/MS 解析の結果、本バン ドは Secernin-1 だと示唆された。

B-D, ddY (E14) マウスより前頭皮質 (PFC) または小脳 (Cerebellum) 初代培養神経細胞を単離し7日 間培養した。両神経細胞より回収した CM 及び細胞 lysate を用いて western blot を行った。(C) CM 及 び (D) lysate 中における Secernin-1 の発現量 (/β-actin) を定量した。****p < 0.0001, unpaired *t*-test, mean ± SEM, n = 6 different samples in each group.

E, **F**, ddY (E14) マウス海馬初代培養神経細胞に 1, 10, 100 ng/mL rSecernin-1 または溶媒を7日間処置し、 抗 pNF-H 抗体による蛍光免疫染色を行った。(F) pNF-H 陽性軸索の長さを定量した。**p < 0.01, ***p <0.001, ***p < 0.0001, one-way ANOVA, *post hoc* Bonferroni test, mean ± SEM, n = 12–17 photos.

[Yang & Tohda, 2023bより引用、一部改変]

2.3.21. Gal-1 及び遊離型 Secernin-1 による HPC-PFC における軸索誘導作用の検討

PFC 神経細胞より分泌される遊離型(細胞外) Secernin-1 が、HPC 神経細胞の軸索誘導因子候補と して同定されたため、次に Gal-1 を過剰発現する HPC 神経細胞の軸索が、遊離型 Secernin-1 によって 伸長するかどうかについて検討した。

そこで、Neuron device チャンバーを用いて、Gal-1 を過剰発現した HPC 神経細胞の成長円錐側から のみ rSecernin-1 を処置し、Gal-1 による軸索伸長が促進されるかどうかを検討した。海馬神経細胞を neuron device チャンバーの細胞体スペース内(Soma; 灰色)に播種し、AAV-Control または AAV-Gal-1 (5×10⁵ GC/µl)を処置した(Fig. 43A)。同時に、チャンバーの軸索投射部(Axonal site; 青色)より、1 ng/ml rSecernin-1 を添加した。チャンバー内で 7 日間培養後、抗 pNF-H 抗体よる蛍光免疫染色を行い、 microgroove 部 (M)、軸索投射部 (A)、及びその total の軸索密度を算出した(Fig. 43B-D)。その結果、 HPC 神経細胞の成長円錐が存在する軸索投射部より rSecernin-1 を処置した場合では、AAV-Gal-1 よる 軸索伸長作用が顕著かつ有意に増強した(Fig. 43B-D)。これは、軸索円錐上に局在する Gal-1 が、 PFC CM 中の軸索誘導因子 Secernin-1 を感知する受容体様にはたらくことで、HPC—PFC における軸 索誘導を促進することを支持する結果であると考える。

ddY (E14) マウス海馬初代培養神経細胞を neuron device チャンバーの細胞体スペース (Soma; 灰色) に 播種し、AAV-Control または AAV-Gal-1 (5 × 10⁵ GC/µl) を Soma 部に処置した。同時に、1 ng/ml rSecernin-1 または溶媒を軸索投射部 (Axonal site; 青色) に処置し、7 日間培養した。その後、抗 pNF-

H抗体よる蛍光免疫染色を行った。(B) microgroove (M)、(C) axonal site (A)、及び(D) その total における pNF-H 陽性軸索密度を算出した。***p < 0.001, ****p < 0.0001, one-way ANOVA, *post hoc* Bonferroni test; #p < 0.05, ###p < 0.001, Vehicle vs rSecernin-1, two-way ANOVA, *post hoc* Bonferroni test, mean ± SEM, n = 11–13 images. [Yang & Tohda, 2023b より引用、一部改変]

2.3.22. Gal-1 と遊離型 Secernin-1 結合、及び成長円錐膜上における Gal-1 と遊離型 Secernin-1 共局在

ここまでの一連の実験より、HPC 神経細胞の軸索円錐膜上に局在する Gal-1 が、PFC より分泌される Secernin-1 を感知する受容体様にはたらき、HPC—PFC における軸索誘導に寄与する可能性を示した。そこで次に、遊離型 Secernin-1 と Gal-1 が、相互作用するペアであることを証明するために、両タンパク質が直接結合するかどうかを検討した。

海馬神経細胞に 5 × 10⁶ GC/µl AAV-Gal-1 を 7 日間処置し、その細胞 lysate を回収した。回収した海 馬神経細胞 lysate (50 µg) に rSecernin-1 (1.5 µg) を添加し、37℃で 60 分間混合した後、抗 Gal-1 抗体に よる免疫沈降(IP)を行った(Fig. 44A)。抗 Gal-1 抗体による western blot を行ったところ(Fig. 44A: 下段)、input (lysate)の Gal-1 と同分子量に、IP された Gal-1 のバンドが検出され、抗 Gal-1 抗体によ って確かに Gal-1 が IP されていることが確認された。また、normal IgG IP レーンにおいては、Gal-1 が IP されていなかった。続いて、抗 Secernin-1 抗体によって western blot を行ったところ (Fig. 44A: 上段)、抗 Gal-1 抗体によって IP したサンプルでは、rSecernin-1 input と同じ分子量にバンドが検出さ れた。Normal IgG で IP したサンプルにもわずかに rSecernin-1 のバンドが検出されたが、その量は抗 Gal-1 抗体 IP サンプルよりもはるかに低かった。また、rSecernin-1 には His-tag 及び T7-tag (計、約 1.9 k)が付加されているため、海馬神経細胞 lysate 中の細胞内 Secernin-1 の分子量よりもわずかに高 分子量側に検出された。以上より、遊離型 Secernin-1 が Gal-1 に直接結合していることが示された。 神経細胞 lysate 中に含まれる細胞内 Secernin-1 は Gal-1 と共沈降されなかったが、この理由の1つとし て、反応に用いた rSecernin-1 が細胞内 Secernin-1 の量よりも多かったため、細胞内 Secernin-1 との結 合が検出限界以下であった可能性がある。もう1つの理由として、細胞内 Secernin-1 と遊離(分泌) 型 Secernin-1 の三次構造が異なる可能性を考えている。Fig. 42B において、CM 中の Secernin-1 は lysate 中の Secernin-1の分子量もよりわずかに大きいことが算出された(分子量差は約0.6 k)。また、 rSecernin-1 に付加されている His-tag と T7-tag は合計約 1.9 k であるが、Fig. 44A において lysate 中の Secernin-1 と rSecernin-1 の分子量の差は約 2.8 k だと算出され、Fig. 42B の結果に一致して遊離型 Secernin-1 の方がわずかに分子量が大きい可能性が考えられた。これらの理由から、lysate 中の Secernin-1と Gal-1の結合が検出されなかったのではないかと予想している。

さらに、Gal-1 と rSecernin-1 が成長円錐膜上で共局在するかどうかを検出した。海馬神経細胞に 5 × 10⁷ GC/μl AAV-Gal-1 を 3 日間処置後、1 μg/mL rSecernin-1 または溶媒を 1 時間処置した。抗 Gal-1 抗体、 抗 His-tag 抗体、及び抗 Secernin-1 抗体よる細胞膜透過(Permeable)または非透過処理(Nonpermeable)の蛍光免疫染色を行い、共焦点レーザー顕微鏡で観察した(Fig. 44B)。なお、rSecernin-1 には poly histidine タグが付加されているため、処置した rSecernin-1 を検出するために抗 His-tag 抗体及 び抗 Secernin-1 抗体の両方を用いた(神経細胞中の内在性 Secernin-1 も、抗 Secernin-1 抗体で検出され ることになる)。その結果、rSecernin-1 処置群では、Permeable 及び Non-permeable 蛍光免疫染色のど ちらにおいても、成長円錐で His-tag 及び Secernin-1 のシグナルが検出され、Gal-1 と共局在していた (青矢頭)。一方、溶媒処置群では、rSecernin-1 由来の His-tag シグナルは検出されなかった(白矢印)。 以上の結果より、遊離型 Secernin-1 は成長円錐膜上において、確かに Gal-1 と共局在することが示さ れた。

Fig. 44: Gal-1 及び遊離型 Secernin-1 の結合性

A, ddY (E14) マウス海馬初代培養神経細胞に 5×10⁶ GC/μl AAV-Gal-1 を7日間処置し、細胞 lysate を作 製した。その lysate (50 μg) と rSecernin-1 (1.5 μg) を 37℃で1時間混合し、normal IgG (IgG) または抗 Gal-1 抗体を用いて免疫沈降 (IP) を行った。その後、IP されたタンパク質を抗 Gal-1 抗体及び抗 Secernin-1 抗体を用いた western blot により検出した。

B, ddY (E14) マウス海馬初代培養神経細胞に 5×10⁷ GC/μl AAV-Gal-1 を 3 日間処置後、rSecernin-1 (1 μg /mL) または溶媒を 1 時間処置した。抗 Gal-1 抗体及び抗 pNF-H 抗体よる細胞膜透過(染色時に界面活性剤あり)または細胞膜非透過(染色時に界面活性剤なし)の蛍光免疫染色を行った。撮影画像は共 焦点顕微鏡より取得した。処置した rSecernin-1 (His-tag 及び Secernin-1 シグナル)は、成長円錐にお いて Gal-1 と共局在していたが(青矢頭)、溶媒処置群では検出されなかった(白矢頭)。神経細胞体 は黄色アスタリスクで示す。

[Yang & Tohda, 2023b より引用、一部改変]

<u>2.4.考察</u>

本章では、diosgenin による 5XFAD マウスの脳内における方向特異的な軸索再伸長作用を検討し、 本現象に関わる神経細胞中での機能分子の発見を目指した。まず、2 色の逆行性トレーサー(Dextran 3000 MW Texas Red 及び FITC)を用いて、薬物投与によって脳で軸索が萎縮した神経細胞、軸索が萎 縮も伸長もしなかった naïve な神経細胞、及び軸索が方向特異的に再伸長した神経細胞それぞれを異 なる色で可視化する手法を確立した(Fig. 15, 16)。本手法を用いた解析の結果、5XFADマウスへの diosgenin 投与によって海馬 CA1 及び CA3 から PFC への軸索再伸長が促進されることを初めて示した (Fig. 16–18)。また、diosgenin 投与によって軸索が方向特異的に再伸長した神経細胞特異的に発現量 が変化した因子をマイクロアレイで網羅的に解析し(Fig. 19、Table 3)、SPARC及び Galectin-1 (Gal-1) に着目し、機能解析を行った。SPARC に関しては、HPC 神経細胞への過剰発現により、5XFAD マウスの物体認知記憶及び空間記憶障害が改善すること(Fig. 24)、HPC から PFC へ軸索が再伸長す ること(Fig. 25, 26)、SPARC の過剰発現によって HPC から PFC へ軸索が再伸長した神経細胞が物体 認知記憶の改善に直接寄与すること(Fig. 28)、5XFADマウスの HPC 神経細胞の軸索上で発現減少し、 diosgenin 投与によって特に軸索膜上で発現増加すること(Fig. 29-31)、軸索膜上に発現する SPARC が、軸索が元々伸びていた場所に残存する細胞外 collagen I と相互作用することで、方向特異的な軸 索再伸長に寄与すること(Fig. 31, 32)をそれぞれ証明した。Gal-1についても、HPC神経細胞への過 剰発現により、5XFADマウスの物体認知記憶及び空間記憶障害が改善すること(Fig. 36)、HPCから PFC へ軸索が再伸長すること(Fig. 37, 38)、5XFAD マウスの HPC 神経細胞の軸索上で発現減少し、 diosgenin 投与によって軸索上で発現増加すること(Fig. 39, 40)、HPC 神経細胞の成長円錐膜上に高発 現し、PFC 神経細胞から分泌される新規軸索誘導因子 Secernin-1 を感知する受容体様にはたらくこと で、HPC—PFC における方向特異的な軸索再伸長に寄与すること(Fig. 41-44)をそれぞれ証明した。 以上の結果は、AD の脳においていったん萎縮した軸索が方向性を持って再伸長できることを初めて 証明するものであり、本現象を可能にする薬物 diosgenin の有用性と、その際の神経細胞中での機能 分子の働きを実証した。

本章で見出した機能分子について、個々に考察する。5XFAD マウスへの diosgenin 投与によって軸 索が HPC から PFC に方向特異的に再伸長した神経細胞を脳切片より LCM で単離し、溶媒投与群の naïve 神経細胞と比べて発現変化する遺伝子をマイクロアレイで網羅的に比較し(Fig. 19)、Table 3 に も示す通り、多くの遺伝子を検出した。軸索や記憶との関連、神経機能への関与等を文献調査し、 Table 3 の中から *Spare, Klk6, Arpc1b, CXCL16, Lgals1*の5遺伝子を抽出した。これらの5因子について、 Fig. 20 及び Fig. 33 と同様に diosgenin 処置による神経細胞中でのタンパク質レベルでの発現量を western blot で検討したところ、SPARC 及び Gal-1 (*Lgals1* 遺伝子)のみがマイクロアレイにおける RNA レベルの発現の再現性が確認されたため、これら2分子に着目することととした。

SPARC は、細胞接着 (Cheng et al., 2013; Murphy-Ullrich et al., 1995)、細胞増殖 (Chen et al., 2012)、細胞

98

遊走 (Hung et al., 2017)、組織修復 (Bradshaw & Sage, 2001) や発達 (Sage et al., 1989b) を促進する糖タン パク質である。中枢神経系では、神経回路形成が最も盛んな発達期において発現がピークを示し (Vincent et al., 2008)、シナプス形成 (Jones et al., 2018) や除去 (López-Murcia et al., 2015) にも関与するこ とが報告されている。HPC 神経細胞の軸索投射部位の1つである内嗅皮質を切断後、修復期において HPC で SPARC が自ずと増加すること (Liu et al., 2005) から、SPARC が神経修復に寄与している可能性 が議論されていたが、SPARC の増加が直接軸索再伸長や記憶回復に関わるかどうかは不明であった。 本研究において、神経細胞中における SPARC の過剰発現が脳での軸索再伸長及び記憶回復に寄与す るだけでなく、軸索膜上に発現する SPARC が、軸索萎縮前に元々軸索が伸びていた場所に残存する 細胞外 collagen I と相互作用することで、方向特異的な軸索再伸長を促進することを初めて証明した。

Collagen ファミリーは、発達期の脳において軸索伸長や軸索誘導、シナプス形成に重要な役割を担っている (Hubert et al., 2009)。末梢神経系の運動神経では、軸索がターゲット部位に再投射する際に collagen 4a5 が関わることが報告されている (Isaacman-Beck et al., 2015)。しかし、脳神経細胞の軸索再 伸長時に collagen I が軸索の伸び先の道しるベ分子様にはたらくことは本研究で初めて明らかにした。 Collagen I が軸索の伸び先の道しるベ分子様にはたらくことは本研究で初めて明らかにした。 Collagen I が培養神経細胞から分泌されることは既に報告されている(Kuhn et al., 2012; Mendes-Pinheiro et al., 2018)。本研究では、軸索伸長時に collagen I は軸索が伸びている場所の周囲に蓄積し、軸索が Aβ によって萎縮した後でも、細胞外に残存することを示した (Fig. 31)。また、軸索膜上の SPARC をマスクするとその軸索は細胞外 collagen I を辿ることができず、方向特異的に再伸長できなくなる ことも確認された (Fig. 32C-E)。そこで重要になるのが、軸索萎縮後に collagen I がそのくらい長期 間道しるベ分子として脳内に残存するか、という点である。本研究では、Fig. 31D に示すように、少 なくとも 7-9 ヶ月齢の 5XFAD マウスの PFC においては、collagen I が残存することを観察している。 また、AD 患者の脳における collagen I の発現量は、正常時と比べて不変 (Xu et al., 2019) もしくは、む しろ増加する (Freitas et al., 2021) との報告があるため、脳に残存し続ける可能性は十分あり得ると考 える。

Gal-1 は、*Lgals1* 遺伝子によってコードされており、細胞内・外に発現するガラクトース結合タンパク質である (Camby et al., 2006)。特に細胞外 Gal-1 については、中枢神経系及び末梢神経系の軸索伸長・再生に関わることが多く報告されており、例えば細胞外(リコンビナント)Gal-1 は後根神経節

(DRG)及び運動神経の軸索伸長及び再生を促進する (Horie et al., 1999; McGraw et al., 2004)。また、 リコンビナント Gal-1 で刺激されたマクロファージからは、DRG 神経細胞に対する軸索伸長促進因子 が分泌されることもわかっている (Horie et al., 2004)。さらに、Gal-1 は嗅神経の軸索誘導にも関わる (Barondes et al., 1994; Mahanthappa et al., 1994; Puche et al., 1996; Tenne-Brown et al., 1998)。中枢神経系にお いては、リコンビナント Gal-1 が NRP1/PlexinA4 受容体に結合することで、軸索伸長阻害因子 Semaphorin3A が NRP1/PlexinA4 受容体に結合することをブロックし、脊髄損傷マウスにおいて脊髄中 の軸索を再伸長させ、運動機能障害を回復する (Quintá et al., 2014)。一方、脳においては、Gal-1 はア ストロサイト (Gaudet et al., 2015; Wu et al., 2016)、マクロファージ (Gaudet et al., 2015)、神経細胞 (Kajitani et al., 2014) で広く発現が報告されている。脳神経細胞中での Gal-1 の機能はほとんど明らか にされていないものの、細胞外 Gal-1 が PlexinA4 受容体とともに海馬初代培養神経細胞にエンドサイ トーシスによって取り込まれ、軸索再伸長に関わることが報告されている (Quintá et al., 2016)。また、 Gal-1 ノックアウトマウスでは、記憶障害が起こる (Sakaguchi et al., 2011)。以上のことから、脳神経細 胞中の Gal-1 が、軸索再伸長作用を介して記憶障害の改善に寄与する可能性は高いと考えられるが、 神経細胞中での Gal-1 の増加が脳での軸索再伸長や記憶改善に関わるかどうかは検討されたことがな かった。本研究では、神経細胞中における Gal-1 の過剰発現が脳での軸索再伸長及び記憶回復に寄与 することを示した。

Gal-1 は β1-integrin と共局在していることから、細胞膜上にも発現すると考えられている (Bojic-Trbojevic et al., 2018)。本研究においても、Gal-1 が成長円錐膜上に局在することを細胞膜非透過の蛍光 免疫染色で確認した。また、Gal-1 は小脳神経細胞と比べて PFC 神経細胞から分泌が多い Secernin-1 と直接結合し、遊離型 Secernin-1 が Gal-1 発現軸索を誘導したことから、Gal-1 が軸索誘導因子 Secernin-1 の受容体としてはたらく可能性を初めて示した。しかし、神経細胞に過剰発現された Gal-1 が、神経細胞から分泌され、それら細胞外 Gal-1 が軸索再伸長を促進している可能性も否定できない。 今後は、Gal-1 と遊離型 Secernin-1 の成長円錐膜上における結合様式を詳細に解明する必要があると考 える。

Secernin-1 は、肥満細胞においてエキソサイトーシスを制御する細胞質タンパク質として、近年同 定されたタンパク質である (Way et al., 2002)。中枢神経系における Secernin-1 の機能についてはまだほ とんど報告がないが、少なくとも Secernin-1 はラットの脳及び脊髄組織に発現することがわかってい る (Lindhout et al., 2019)。また、海馬神経細胞の Secernin-1 をノックダウンすると、シナプス形成が減 少することから (Lindhout et al., 2019)、神経細胞において Secernin-1 が神経活動の維持に重要な役割を 担っている可能性が示唆されている。さらに、AD 患者の脳において Secernin-1 がアミロイドプラー ク内に異常に蓄積していることも検出されている (Pires et al., 2019)。しかし、本研究で見出したよう に、Secernin-1 が分泌型タンパク質として存在し、軸索誘導因子として機能することを報告した例は ない。また、Secernin-1 は PFC 及び小脳神経細胞のどちらにおいても合成されるにもかかわらず、そ の分泌量は PFC 神経細胞ではるかに多かった (Fig. 42B-D)。したがって、PFC 及び小脳神経細胞に おける Secernin-1 の分泌機構は異なる可能性があるが、その機構の詳細についてはさらなる解明が必 要である。

Diosgenin による SPARC 及び Gal-1 の発現増加に関わる分子メカニズムについても、少なくとも 1,25D₃-MARRS を介することを示した(Fig. 29C, D 及び Fig. 39C)。SPARC の転写促進因子の 1 つとし て、c-Jun が報告されているが (Briggs et al., 2002)、diosgenin による 1,25D₃-MARRS 刺激後に活性化さ れる PI3K、ERK、PKA、PKC (Tohda et al., 2012)の下流において、c-Jun の転写活性が増強することが

わかっている (Zhao et al., 2015)。よって、diosgenin は少なくともこれらの4つの protein kinase を介して c-Jun の転写活性を増加し、SPARC の発現を増加させる可能性があると考えられる。また、Gal-1 についても、RET/PIK3 シグナルの下流で発現増加することが報告されている (Takaku et al., 2013)。

Diosgenin によって軸索が PFC に向かって再伸長した HPC 神経細胞が、どのような性質や特徴を持 つのか、どのようなサブタイプの神経細胞集団なのか、或いは発達期と成熟期神経細胞のどちらに近 いフェノタイプを有するか等については、非常に重要な論点だが、まだ不明な点が多い。まず興味深 いこととして、Fig. 16B、Cにおける逆行性トレーサーの広がりを観察すると、一般的に HPC 神経細 胞体が多く位置する錐体細胞層には、トレーサー陽性神経細胞が少なかった。むしろ錐体細胞層の上 下層(上昇層及び分子層)にトレーサー陽性神経細胞がまばらに局在していた。これら二層に局在す る神経細胞がどのような性質を持つか、特に軸索再伸長活性が高いのかについては不明だが、少なく とも Fig. 19 において軸索が再伸長した神経細胞では、naïve な神経細胞と比べて Calretinin の発現量が 5.5 倍増加していた(データ未提示)。Calretinin は、HPC 介在神経細胞のマーカーとして用いられて きたため、HPC-PFCのように長距離の神経回路ではなく、HPC内の局所回路の形成を担っていると 一般的に考えられてきた。しかし、PFC の抑制性神経細胞に軸索投射している HPC 神経細胞の約半 分以上は、Calretinin 陽性の神経細胞であることが報告されており (Ährlund-Richter et al., 2019)、全ての Calretinin 陽性神経細胞が介在神経細胞様の性質を持つわけでないことが示唆されている。Fig. 16中の Texas Red 陰性かつ FITC 陽性の(軸索再伸長した)神経細胞の局在が、HPC における Calretinin 陽性 の神経細胞の局在場所と非常に類似している (Gulyás et al., 1992; Mátyás et al., 2004) ことも踏まえると、 Calretinin 陽性神経細胞の一部は、いったん萎縮した後も軸索を長距離に再伸長できる population かも しれない。これら神経細胞の機能及び特徴を特定するために、電気生理学的手法やシングルセル解析 等をさらに進める必要がある。また、5XFAD マウスにおいて、特定の神経細胞に蛍光タンパク質を 発現させ、萎縮した軸索が本当に diosgenin 投与によって長距離に再伸長するかどうかについて、二 光子励起蛍光顕微鏡を用いて経時的に観察することも、今後の重要な課題である。

以上、本章では、diosgenin 投与が AD 脳の少なくとも HPC-PFC において、軸索を方向特異的に再 伸長させることと、HPC-PFC での軸索再伸長が記憶改善の直接かつ十分な要因であることを証明し た。5XFADマウスでは、生後 4-5ヶ月齢で記憶障害が発症するが、この AD 発症のタイミングは神経 突起の変性及びシナプスの脱落と一致していること、少なくとも 9ヶ月齢では神経細胞の脱落は起き ていないことが報告されている (Kim et al., 2019; Oakley et al., 2006)。本研究では、神経細胞の脱落が起 こっていない 7-9ヶ月齢の 5XFAD マウスを用いたため、diosgenin による記憶改善は軸索再伸長によ ってもたらされており、神経細胞保護作用の関与は小さいと考える。今後は、diosgenin 投与が HPC -PFC 以外の神経回路においても軸索を方向特異的に再伸長させるかどうかを解析するとともに、そ れら神経回路の修復にも SPARC 及び Gal-1 が関与する可能性を検討する予定である。

<u>2.5.小括</u>

本章では、diosgenin 投与が 5XFAD マウス脳内において方向性を持って軸索を再伸長させることを 初めて証明し、本現象に関わる神経細胞中の機能分子として SPARC (Yang & Tohda, 2023a) 及び Gal-1 (Yang & Tohda, 2023b) を見出した。また、脳での軸索再伸長が記憶改善の直接かつ十分な要因である ことを機能学的に証明した。これらの結果は、脳内の軸索再伸長が AD に対する有力な根本的治療戦 略になりうることを強く示唆する。

第3章:Diosgenin 高濃度山薬エキスによる正常マウス及び健常人の記憶亢進作用の検討

(Yang X, Nomoto K, Tohda C. Journal of Natural Medicines, 75, 207–216, 2021)

(Tohda C, Yang X, Nomoto K. Japanese Journal of Food Chemistry and Safety, 27, 102–105, 2020)

(Tohda C, Yang X, Matsui M, Inada Y, Kadomoto E, Nakada S, Watari H, Shibahara N. Nutrients, 9, 1160, 2017)

<u>3.1.緒言</u>

以前からの当研究室での diosgenin の基礎研究、及び第1章、第2章の結果より、diosgenin が AD に 対して有用な新規治療薬候補であることを提示してきた。Diosgenin の基礎研究を社会実装するにあ たり、我々はハードルの高い化合物 diosgenin ではなく、diosgenin を含有した山薬エキスで臨床研究 まで展開する戦略を立てた。まずは diosgenin を機能性表示食品として開発することを目指すために、 本章では、正常マウスに対する山薬エキスの記憶亢進作用を検討することと、そのエキスを用いて健 常人の認知機能に対する効果を臨床研究で評価することを目的とした。

山薬中における diosgenin の含量は、Dioscorea 属の種類に依存して大きく異なり、例えば、D. zingiberensis 及び D. collettii は diosgenin 含量が高いが、D. japonica 及び D. opposita では diosgenin 含量 は低い (Li et al., 2010a; Vendl et al., 2006; Yi et al., 2014)。また、重要なこととして、日本薬局方で規定さ れる山薬(Doscorea Rhizome)は、D. japonica 又はD. batatas (= D. opposita)を基原植物としており、 つまり diosgenin 含量が非常に低い。一方で、山薬中には、種々の diosgenin 配糖体(例: dioscin, protodioscin, pseudoprotodioscin)が含有されており、服用後に生体内(主に腸内細菌による)で diosgenin に代謝されると考えられている (Yi et al., 2014)。一方、実際には、生体内における diosgenin 配糖体から diosgenin への代謝効率は低いことが報告されている (Okawara et al., 2013)。そこで私は、 日本薬局方山薬を通常通り熱水抽出した場合の「常法山薬エキス」では、そもそもエキス中に十分量 の diosgenin が含まれていない可能性や、diosgenin 配糖体から diosgenin への代謝効率が悪く、記憶亢 進作用を期待できないのではないかと予想した。そこで、常法山薬エキスエキスと、diosgenin 含量を 高める処置を施した山薬エキスを比較することとした。D. batatas の中でも、中国雲南省で栽培され た山薬は、diosgenin 配糖体の dioscin の含量が非常に高い(山薬中の2%以上)ことがわかっているこ とから、この D. batatas を基原とした山薬を含水エタノールで抽出後、エキスに酸加水分解反応を加 えることによって、エキス中の diosgenin 含量を 16%まで高めた「diosgenin 高濃度山薬エキス」も用 いて検討を行った。

本章では、これら2種類の山薬エキスそれぞれを種々の溶媒に溶解させた状態で正常マウスに経口 投与し、その際の diosgenin の脳移行率及び記憶亢進作用の違いから、山薬エキスとして diosgenin を 脳に作用させる製剤条件を検討した。続いて、見出された最も有力な条件で作製された山薬エキスを 用いて、健常人の認知機能に対する作用を臨床研究で評価した。

103

3.2.実験材料ならびに実験方法

<u>倫理宣言</u>

動物の取り扱いは富山大学動物実験指針に従った。また、本動物実験のプロトコールは、富山大学 動物実験委員会及び遺伝子組換え実験委員会の承認を得ている(動物実験承認番号:A2017INM-1、 遺伝子組換え実験承認番号:G2013INM-1,G2018INM-2)。健成人を対象としたプラセボ対照ランダム 化二重盲検クロスオーバー試験は、富山大学倫理委員会の承認を得ている(ID:UMIN000021151)。

山薬エキス

日本薬局方山薬の熱水抽出(常法山薬)エキスは、アルプス薬品工業(岐阜)に調製を委託し、購入した。500gのDioscorea Rhizome(15 mm片)に51の超純水を加え、90℃以上で1時間熱水抽出し、 凍結乾燥機で乾燥させて粉末とした(収率 19.2%)。Diosgenin 高濃度山薬エキス(商品名:ジオパワ -15[®])(中国雲南省産の *Dioscorea batatas* を含水エタノールで抽出後、酸加水分解処理を施したもの で、diosgenin 含量は16%)は、アンチエイジングプロ株式会社(東京)より購入した。

マウスに対する薬物投与

Fig. 45A, B では、diosgenin を EtOH に溶解した後、5%グルコース水溶液に 10 倍希釈したものを diosgenin (10 μmol/kg/day) で1日1回5日間経口または腹腔内投与した。その他の実験は、diosgenin を 日本薬局方ゴマ油(カネダ)、日本薬局方オリーブオイル(丸石製薬)、及び日本薬局方大豆油(カネ ダ)に溶解させ、3.3.実験結果に示す各濃度及び日数で経口投与した。

常法山薬エキス及び diosgenin 高濃度山薬エキスは、滅菌水、日本薬局方ゴマ油(カネダ)、日本薬 局方オリーブオイル(丸石製薬)、日本薬局方大豆油(カネダ)、魚油(from menhaden; Sigma-Aldrich)、 または中鎖脂肪酸トリグリセリド (MCT E6000; MUSIM MAS, Singapore) にそれぞれ溶解させ、<u>3.3.実</u> **験結果**に示す各濃度及び日数で経口投与した。

<u>正常(ddY)マウス</u>

ddYマウス(雄性及び雌性、6-9週齢)は、Japan SLC(浜松)より購入した。

ADモデル (5XFAD) マウス

5XFAD(Tg6799) またはその wild-type マウス(雄性及び雌性、6ヶ月齢)を用いた。他は、第1章の同項に同じ。

<u>5XFAD マウスの genotyping</u>

第1章の同項に同じ。

マウス胎児大脳皮質神経細胞の初代培養

第1章の同項に同じ。

神経細胞に対する薬物処置

3 日間初代培養した神経細胞に、2.5 μg/ml 常法山薬エキス、2.5 μg/ml diosgenin 高濃度山薬エキス、 または 2.5 μg/ml 常法山薬エキス + 0.4 μg/ml (1 μM) diosgenin を B-27 supplement を含む無血清培地に混 ぜ、4 日間培養した。他は、第 1 章の同項に同じ。

培養細胞の蛍光免疫染色

神経細胞の培養終了後、培地を除去し PBS で洗浄した後、4% Paraformaldehyde-PBS 溶液を加えて 60 分間常温で静置し固定した。溶液を除去し、0.3% TritonX-100(和光純薬)-PBS 溶液で 5 分間の洗 浄を 2 回行った。一次抗体溶液 [0.3% TritonX-100-PBS 溶液、normal goat serum (和光純薬)、mouse IgG₁ 抗 pNF-Hモノクローナル抗体 (1:250, Convance, Princeton) 及び rabbit IgG 抗 Map2 ポリクローナ ル抗体 (1:500, Abcam)]を 100 µl 加え、4°Cで一晩反応させた。翌日、一次抗体液を除去し、0.3% TritonX-100-PBS 溶液で 5 分間の洗浄を 2 回行った後、二次抗体液 [0.3% TritonX-100-PBS 溶液、Alexa Fluor 488 標識 goat anti-mouse IgG 抗体 (1:400, Life Technologies)及び Alexa Fluor 594 標識 goat anti-rabbit IgG 抗体 (1:400, Life Technologies)]を 100 µl 加え、遮光下、常温で 2 時間反応させた。反応後、溶液を 除去し、PBS で 5 分間の洗浄を 2 回行った後、DAPI (1 µg/ml) (Enzo Life Science) -PBS 溶液を加え、 遮光下、常温で 5 分間反応させた。その後、溶液を除去し、PBS で 5 分間の洗浄を行った後、Aqua Poly Mount (Polyscience) で封入した。

培養細胞の画像解析

蛍光免疫染色後のスライド観察には、倒立蛍光顕微鏡 Cell Observer (Carl Zeiss) 及び Axio Vision 4.8 ソフトウェア (Carl Zeiss) を用いた。一枚当たり 864.98 μm × 645.62 μm の大きさで画像を取得した。 pNF-H 陽性軸索長及び Map2 陽性樹状突起長の測定には、画像解析ソフト MetaMorph version 7.8 (Molecular Devices) を用いて自動計測した。画像全体の pNF-H 陽性軸索の長さを測定し、Map2 陽性の 神経細胞体の数で除することで、神経細胞当たりの軸索の長さを算出した。

<u>マウスの行動試験</u>

5XFAD マウスの物体認知記憶試験については、第1章の同項と同様に行った。正常 ddY マウスの 物体認知記憶試験は、Training session と Test session 間のインターバルを48時間に設定した。

LC-MS/MS による diosgenin の検出

ddY マウスに diosgenin、常法山薬エキス、または diosgenin 高濃度山薬エキスを <u>3.3. 実験結果</u>に示 す各濃度で単回経口投与した。投与より 3, 6, 9, 12, 24, または 48 時間後に、マウスをイソフルランで 吸入麻酔し、血液(下大静脈より)を約 500 µl 採取した。10,000 g、4℃で 10 分間遠心分離後、上層 の血漿(200 µl)を回収し、2000 µl のメタノールを加えてタンパク変性させた。また、マウス胸部を 切開し、左心室に翼状針(トップ)を刺入した後、右心房に切れ込みを入れ、左心室より氷冷した saline を 20 ml 灌流後、マウスの全大脳皮質を摘出した。大脳皮質の質量の 10 倍量(µl)のメタノー ルを加えて homogenate し、タンパク変性させた。血漿及び大脳皮質サンプルについて、変性タンパ クを遠心分離[10,000 g, 4℃, 10 分間]で取り除き、上清を乾燥(65℃、1 日間~)後、100 µl メタノー ルを加え再溶解し、0.45 µm 径マイレクス-LH フィルター(Merck Millipore)に通した溶液を LC-MS/MS 解析した。

標品 diosgenin はメタノールに溶解して用いた。LC-MS/MS 解析には、Thermo Fisher Scientific Accela HPLC システム及び LTQ Orbitrap XL hybrid Fourier Transform Mass Spectrometer (Thermo Fisher Scientific) を使用した。液体クロマトグラフィーは、40°Cに保持した Capcell Pak C18 MGIII S-5 (1.5 mm i.d. × 150 mm, Shiseido) カラムを用いて、200 µl/min の流速で実施した。移動相には、超純水及びメタノール (M) を使用し、0–5 分: 65% M、5–16 分: 95% M、16–20: 55% M の濃度勾配で検出した。スプレー電 圧 4.5 kV、キャピラリー電圧 40.0 kV、管レンズ 150 V、キャピラリー温度 330°C、シーズガス流量 50 unit、及び補助ガス流量 10 unit とした。

健常人を対象とした臨床試験

被験者の募集期間は、2015 年 12 月 12 日から 2016 年 2 月 4 日までとした。被験者の参加基準は、 (a) 20歳以上、(b) 日本語を話せる、(c) 富山県在住、(d) 心身の健康状態が良好であること、とした。 また、除外基準は、(a) AD、(b) 精神障害、または (c) がんと診断されている、(d) 教育歴が 12 年未満、 (e) 山芋アレルギー、(f) 認知機能改善薬または抗精神病薬を処方されている、とした。全被験者は、 臨床試験参加前にインフォームド・コンセントに同意している。全被験者候補 (n = 41) のうち、参 加基準を満たした 31 名について、ランダムに 2 群に分けた。途中で 3 名が健康上の理由で服薬を中 止し、最終的に 28 名のデータを分析した。被験者は、富山大学を計 4 回訪れ、各検査を受けた。

プラセボ (2カプセル/日 = オリーブ油 [グリセリン脂肪酸エステル、ビタミン E 誘導体、白ミツロ ウ]) または diosgenin 高濃度山薬エキス (2カプセル/日 = ジオパワー15[®] 50 mg; diosgenin 量として 8 mg、オリーブ油 672 mg) は、GMP 及び ISO22000 認証に基づき、白鳥薬品(習志野) で製造された。

認知記憶試験として、RBANS (Repeatable Battery for the Assessment of Neuropsychological Status) (Randolph et al., 1998) の日本語版を実施した。また、安全性評価として、有害事象の記録及び一般血 液検査を各検査日に実施した。

<u>データ解析</u>

データは平均値 ± 標準誤差 (SEM) または ± 標準誤差 (SD) で表した。有意差検定には、Prism 6.07 (Graph Pad software, Sun Diego, CA, USA) を用い、two-tailed unpaired *t*-test、One-way analysis of variance (ANOVA) *post hoc* Bonferroni test または Dunnett's test、repeated measures Two-way ANOVA *post hoc* Bonferroni test を行った。有意水準は 5% とした。
3.3. 実験結果

<u>3.3.1. Diosgenin、常法山薬エキス、及び diosgenin 高濃度山薬エキスが記憶亢進作用を発揮する投与</u> 濃度及び投与溶媒の検討

まず、正常マウスに対する常法山薬エキス及び diosgenin 高濃度山薬エキスによる記憶亢進作用を 比較することとした。Diosgenin は脂溶性が高い(cLogP = 5.912)ため、ここまでの実験では、ゴマ油

(第1章)またはオリーブオイル(第2章)等の油溶媒に溶解させ、経口投与実験を行っていた。また、予備実験において、diosgenin をゴマ油またはオリーブオイルに溶解させて経口投与すると、 diosgenin が脳に移行することも確認している(データ未提示)。一方で、diosgenin を経口投与する際 の溶媒を水溶性溶媒として記憶に対する効果及び脳移行性を比較したことはなかったため、まずは diosgenin を用いてこの点を検討した。

水溶液に完全に溶解させるために、diosgenin を EtOH に溶解した後、5%グルコース水溶液に 10 倍 希釈した。つまり、溶媒は 10% EtOH in 5%グルコースで構成されている。先行研究では、10 µmol/kg/day diosgenin (in 10% EtOH in 5%グルコース溶媒)の腹腔内投与によって、正常マウスの記憶亢 進作用を確認している (Tohda et al., 2013) ため、まずは本濃度を用いて経口投与を行った。本濃度は、 第1,2章 (ゴマ油またはオリーブオイルに溶解した場合)で投与した 0.1 µmol/kg/day よりも、100 倍 高い投与量となる。正常 ddY マウス(雄性、6 週齢)に溶媒または 10 µmol/kg/day diosgenin を 5 日間 連続で経口投与または腹腔内投与し、物体認知記憶試験を行った (Fig. 45A, B)。その結果、diosgenin の腹腔内投与では先行研究に一致して記憶亢進作用が見られたが、経口投与では記憶亢進作用は見ら れなかった。続いて、第1,2章での経口投与濃度と同じく 0.1 µmol/kg/day diosgenin に濃度を低め、ゴ マ油に溶解した場合の実験を行った。正常 ddY マウス(雄性及び雌性、9 週齢)に溶媒または 0.1 µmol/kg/day diosgeninをゴマ油に溶解し、4 日間連続で経口投与した結果、マウスの物体認知記憶は有 意に亢進した(Fig. 45C)。

続いて、wild-type 及び 5XFAD マウス(雄性及び雌性、6 ヶ月齢)に溶媒(ゴマ油)または diosgenin (0.1 μmol/kg/day)を種々の油溶媒(ゴマ油、オリーブオイル、または大豆油)に溶解し、そ れぞれ 20 日間連続で経口投与した。物体認知記憶を行った結果、diosgenin をいずれの油溶媒に溶解 して経口投与した場合でも、5XFAD マウスの記憶障害が有意に改善することが示された(Fig. 45D)。

次に、diosgenin 高濃度山薬エキスをゴマ油に溶解し、正常マウス(雄性、6 週齢)に7日間経口投 与した。Diosgenin 高濃度山薬エキス(diosgenin を 16%含有)の投与量は 0.259 mg/kg/day とし、 diosgenin として 0.1 µmol/kg/day (0.0414 mg/kg/day) となるように設定した。その結果、diosgenin 高濃度 山薬エキスの投与によっても、正常マウスの物体認知記憶が有意に亢進した(Fig. 45E)。

ここまでの実験を踏まえ、diosgenin を油溶媒に溶解すると記憶亢進作用を発揮できる可能性が考え られたため、常法山薬エキス及び diosgenin 高濃度山薬エキスをオリーブオイルに溶解し、正常マウ スに対する記憶亢進作用を検討した。また、<u>3.1. 緒言</u>で記述の通り、D. batatas を基原とする日本薬 局方山薬は、diosgenin 含量が低いことが知られているため、diosgenin 高濃度化処理を施していない常 法山薬エキスでも作用を発揮する可能性のある投与濃度として、各山薬エキスとして 100 mg/kg/day (diosgenin 高濃度山薬エキス中の diosgenin 量として、16 mg/kg/day [= 38.59 µmol/kg/day]) と高めに設定 した。また、diosgenin 高濃度山薬エキスを水に懸濁したものを経口投与する条件でも比較した。正常 ddY マウス(雌性、6週齢)に溶媒または 100 mg/kg/day 常法山薬エキス(Yam) または diosgenin 高濃 度山薬エキス (Dios-rich Yam) を 7 日間連続で経口投与し、物体認知記憶試験を行った (Fig. 45F)。 その結果、常法山薬エキス投与群においては記憶亢進作用が見られなかった。一方、オリーブオイル を溶媒とした diosgenin 高濃度山薬エキス群では、Fig. 45E の結果と一致して記憶亢進作用が見られた が、水を溶媒とした diosgenin 高濃度山薬エキス群では、記憶亢進作用が見られなかった。

以上の一連の結果より、diosgenin による記憶亢進作用を期待するためには、経口投与の溶媒を水で はなく油とすることが重要であること、油溶媒とした場合には 0.1 µmol/kg/day diosgenin という低用量 で diosgenin の効果が表れること、常法山薬エキスを油溶媒に溶解して経口投与を行っても記憶亢進 作用が見られないことが示された。そこで、水溶媒及び常法山薬エキスとして経口投与したときにな ぜ diosgenin による記憶亢進作用が見られないかの理由を探るために、エキス中の diosgenin 含量及び 経口投与後の diosgenin の脳移行性の観点から次項より検証した。

Fig. 45: Diosgenin、常法山薬エキス、diosgenin 高濃度山薬エキス投与によるマウスの記憶亢進作用 A, B, Diosgenin を 10% EtOH in 5%グルコース水溶液に溶解し、ddY マウス(雄性、6 週齡)に 10 µmol/kg/day で (A) 経口投与 (p.o.) または (B) 腹腔内投与 (i p.) した。5 日間連続で投与後、物体認識記 憶試験を行った。Training session と Test session は各々10 分間行い、インターバルは 48 時間に設定し た。新奇物体に対するマウスの接触回数を計測し、preferential index (%) を算出した。*p < 0.05, paired *t*-test, mean ± SD, n = 4 mice.

C, Diosgenin をゴマ油に溶解し、ddY マウス(雄性及び雌性、9週齢)に 0.1 µmol/kg/day で経口投与した。4日間連続で投与後、物体認識記憶試験を行った。Training session と Test session は各々10分間行い、インターバルは 48 時間に設定した。新奇物体に対するマウスの接触回数を計測し、preferential index (%)を算出した。*p<0.05, paired *t*-test, mean ± SD, n = 4 mice.

D,溶媒(大豆油)または 0.1 µmol/kg/day diosgenin をゴマ油、オリーブオイル、または大豆油に溶解し、 wild-type 及び 5XFAD マウス(雄性及び雌性、6 ヶ月齢)に 20日間連続で経口投与後、物体認識記憶 試験を行った。Training session と Test session は各々10分間行い、インターバルは1時間に設定した。 新奇物体に対するマウスの接触回数を計測し、preferential index (%)を算出した。*p < 0.05, paired *t*-test, mean ± SD, n = 3–5 mice.

D, Diosgenin 高濃度山薬エキスをゴマ油に溶解し、ddY マウス(雄性、6 週齢)に 0.1 µmol/kg/day で経 口投与した。7 日間連続で投与後、物体認識記憶試験を行った。Training session と Test session は各々 10 分間行い、インターバルは 48 時間に設定した。新奇物体に対するマウスの接触回数を計測し、 preferential index (%) を算出した。*p<0.05, paired *t*-test, mean ± SD, n = 3 mice.

E, 常法山薬エキスまたは diosgenin 高濃度山薬エキスをオリーブオイルまたは水に溶解または懸濁し、 ddY マウス(雌性、6週齢)に 100 mg/kg/day で経口投与した。7日間連続で投与後、物体認識記憶試 験を行った。Training session と Test session は各々10分間行い、インターバルは 48 時間に設定した。 新奇物体に対するマウスの接触回数を計測し、preferential index (%)を算出した。**p<0.01 vs Veh, oneway ANOVA, *post hoc* Dunnett's test; ####p < 0.0001 vs Veh, repeated measures two-way ANOVA [F(2, 9) = 10.15, p = 0.0049], *post hoc* Bonferroni test, mean ± SD, n = 4 mice.

[Tohda et al., 2017; Yang et al., 2021 より引用、一部改変]

3.3.2. 常法山薬エキス及び diosgenin 高濃度山薬エキス中の diosgenin 含量、及び経口投与後の

<u>diosgeninの脳移行性の比較</u>

ここまでの検討により、経口投与する際の溶媒を水ではなく油とすることと、常法山薬エキスでは なく diosgenin 高濃度山薬エキスとして経口投与することが、diosgenin による記憶亢進作用に重要で ある可能性が示された。この違いが生じる理由を探るために、各山薬エキス中の diosgenin 含量、及 び経口投与後の diosgenin の脳移行性を検討した。

まず、LC-MS/MS おいて標品 diosgenin(10 μg/ml in EtOH)のイオン電流クロマトグラム(Fig. 46A、 左)および質量スペクトル(Fig. 46A、右)を検出した。質量 (m/z = 415.3192) 誤差 ± 1 mmu の高精 度準分子イオン ([M+H]⁺) ピークを抽出することにより、diosgenin の質量スペクトル及びフラグメン テーションパターンが検出された。続いて、常法山薬エキス(Yam)及び diosgenin 高濃度山薬エキス (Diosgenin-rich Yam)を 100 μg/ml となるよう EtOH に溶解し、同様に LC-MS/MS で diosgenin ピーク を検出した (Fig. 46B)。その結果、常法山薬エキスからは全く diosgenin 由来のピークが検出されな かった (Fig. 46B、左)。なお、常法山薬エキスの 150 mg/ml (in EtOH) 溶解液(1500 倍高濃度)中から でも、diosgenin のピークが検出されないことが確認され(データ未提示)、常法山薬エキス中には diosgenin がほとんど含有されていない(LC-MS/MS の検出限界以下)ことが示唆された。一方、 diosgenin 高濃度山薬エキスからは、標準 diosgenin と同じ retention time において、diosgenin が含有されて いないために、Fig. 45F において記憶亢進作用が見られなかったのではないかと推測された。

しかし、日本薬局方山薬は、diosgenin 含量は低いものの、種々の diosgenin 配糖体(例:dioscin, protodioscin, pseudoprotodioscin)が含有されており、服用後に腸内細菌によって diosgenin に代謝され ることが知られている(Yi el al., 2014)。そこで、常法山薬エキス経口投与後に、体内で diosgenin 配糖 体から diosgenin に代謝され、その diosgenin が脳移行する可能性を期待し、常法山薬エキスまたは diosgenin 高濃度山薬エキス経口投与後における diosgenin の脳移行性を比較した。正常マウス(雄性、 7 週齡)に対し、記憶試験(Fig. 45F)で用いた投与量と同じ 100 mg/kg の常法山薬エキス及び diosgenin 高濃度山薬エキスを単回経口投与した。また、ポジティブコントロールとして diosgenin を 16 mg/kg (100 mg/kg diosgenin 高濃度山薬エキス中に含有される diosgenin 相当量)を単回経口投与した。 各投与 6時間後に、マウスから大脳皮質と血漿を採取し、LC-MS/MS で diosgenin を検出した。その結 果、常法山薬エキス投与群では大脳皮質及び血漿(データ未提示)中いずれにおいても diosgenin が 検出されなかったが、diosgenin 高濃度山薬エキス及び diosgenin を投与したマウスの大脳皮質及び血 漿からは、標品 diosgenin (Fig. 46A)と同じ retention time に、diosgenin のピークが検出された(Fig. 46C)。したがって、常法山薬エキスを経口投与しても、diosgenin 配糖体から diosgenin への代謝、及 び diosgeninの脳への移行はないものと考えられた。

一方で、D. nipponica、D. panthaica、D. zingiberensis 等の他の Dioscorea 属植物のエキスを経口投与

した場合、長時間(1-2 日)後にならないと diosegnin 配糖体からの代謝がピークに到達せず、 diosgenin の血漿濃度が増加しないことが報告されている (Tang et al., 2015)。そこで次に、常法山薬エ キス投与の 24 または 48 時間後に脳を摘出し、diosgenin の検出を試みた。さらに、LC-MS/MS での検 出限界を考慮し、常法山薬エキスの投与量を 500 mg/kg に高めて経口投与した。正常マウス(雄性、 7 週齡)に 500 mg/kg 常法山薬エキスを単回経口投与し、その 24 または 48 時間後にマウスから大脳 皮質と血漿を採取し、LC-MS/MS で diosgenin を検出した。その結果、エキス投与から 24、48 時間後 のいずれにおいても、diosgenin は大脳皮質及び血漿中で検出されなかった(Fig. 46D)。ヒトに対する 投与量を考慮した際に、この 500 mg/kg 以上のエキスを投与することは非現実的だと考えたため、こ れ以上高濃度の常法山薬エキスを経口投与する実験は行わなかった。

最後に、エキスを油及び水溶媒で投与した際の diosgenin の脳移行性の違いについて検討した。LC-MS/MS での検出感度を高めるために、diosgenin 高濃度山薬エキスを 50 mg/マウス(体重 40 g マウス の場合、1250 mg/kg)の高用量となるようにオリーブオイルまたは水に懸濁した。ddY マウス(雌性、 8 週齢)に 50 mg/マウス diosgenin 高濃度山薬エキスを単回経口投与し、その 3、6、または 12 時間後 にマウスから大脳皮質と血漿を採取し、LC-MS/MS で diosgenin を検出した(Fig. 46E)。その結果、エキスの溶媒をオリーブオイルとした場合と比べて、水溶媒とした場合では diosgenin の血漿中及び 脳移行性がともに顕著に低かった。また、溶媒をオリーブオイルとした場合では、投与後 12 時間後 においても diosgenin の脳内濃度が高く維持されていることが示された。以上より、油溶媒として経 口投与することが、diosgenin の脳移行性を高め、記憶亢進作用を発揮するために必須であると考えら れた。

A Standard Diosgenin

Fig. 46: 常法山薬エキスまたは diosgenin 高濃度山薬エキス経口投与後の diosgenin の脳移行性の検討

A, LC-MS/MS における diosgenin (10 μg/ml) の標準ピーク。Diosgenin (m/z = 415.3192) のイオン電流クロマトグラム(左)及び質量スペクトル(右)を示す。NL: 正規化レベル(ベースピークを基準)。
B, 常法山薬エキス(左)または diosgenin 高濃度山薬エキス(右)(各 100 μg/ml)のイオン電流クロマトグラムを示す。

C, ddY マウス(雄性、7週齢)に溶媒または 100 mg/kg 常法山薬エキス、100 mg/kg diosgenin 高濃度山 薬エキス、または 16 mg/kg diosgenin を単回経口投与した。薬物投与 6 時間後に大脳皮質を採取した。
LC-MS/MS において、イオン電流クロマトグラムより大脳皮質中に含まれる diosgenin を検出した。
D, ddY マウス(雄性、7週齢)に溶媒または 500 mg/kg 常法山薬エキスを単回経口投与した。薬物投 与 24 または 48 時間後に血漿および大脳皮質を採取した。LC-MS/MS において、イオン電流クロマト

グラムより大脳皮質及び血漿中に含まれる diosgenin を検出した。

E, ddY マウス(雌性、8週齢)に溶媒または 50 mg/マウス diosgenin 高濃度山薬エキスを単回経口投与 した。薬物投与3、6、 または48時間後に血漿および大脳皮質を採取した。LC-MS/MS において、イ オン電流クロマトグラムより大脳皮質及び血漿中に含まれる diosgenin を検出した。

[Yang et al., 2021 より引用、一部改変]

3.3.3.山薬エキスによる記憶亢進に関わる活性成分の検討

ここまでの検討により、常法山薬エキスにはそもそも diosgenin が全く検出されないため、経口投 与後に diosgenin が脳移行できず、記憶亢進作用が見られないことが示された。しかし、常法山薬エ キス中には diosgenin 以外の成分が多く含まれるため、それらが本当に軸索伸長及び記憶亢進に関与 しないかどうかを検討した。具体的には、常法山薬エキスに diosgenin を人為的に添加し、正常マウ スの記憶亢進作用、及び培養神経細胞に対する軸索伸長作用を比較する実験を行った。

まず、正常 ddY マウス(雌性、6 週齢)に溶媒または 100 mg/kg/day 常法山薬エキス、または 100 mg/kg/day 常法山薬エキス + 16 mg/kg/day diosgenin (diosgenin 高濃度山薬エキス中の diosgenin 相当量) をそれぞれオリーブオイルに溶解し、7 日間連続で経口投与後、物体認知記憶試験を行った(Fig. 47A)。その結果、常法山薬エキス投与群では記憶亢進作用が見られなかったのに対し、常法山薬エ キス + diosgenin 添加群では、記憶亢進作用が見られた。

続いて、大脳皮質神経細胞を3日間培養し、溶媒、2.5 µg/ml常法山薬エキス、2.5 µg/ml diosgenin 高 濃度山薬エキス(1µM diosgenin に相当)、または2.5 µg/ml常法山薬エキス+1µM diosgenin を4日間処 置し、抗 Map2 抗体及び抗 pNF-H 抗体よる蛍光免疫染色を行った(Fig. 47B)。その結果、常法山薬エ キス群では有意な軸索及び樹状突起伸長作用は見られなかったが、diosgenin 高濃度山薬エキス群及び 常法山薬エキス+diosgenin 群では、軸索及び樹状突起が有意に伸長した(Fig. 47C)。以上の結果より、 山薬中の記憶亢進作用及び神経突起伸長作用は、エキス中の diosgenin 量のみに依存していることが 示され、つまり diosgenin 以外の成分はこれらの作用に関与する活性成分ではないことが示唆された。

Fig. 47: 山薬エキスによる記憶亢進及び神経突起伸長に関わる活性成分

A, 100 mg/kg/day 常法山薬エキスまたは 100 mg/kg/day 常法山薬エキス + 16 mg/kg/day をオリーブオイ ルに溶解し、ddY マウス(雌性、6 週齢)に 7 日間経口投与した。その後、物体認識記憶試験を行った。Training session と Test session は各々10 分間行い、インターバルは 48 時間に設定した。新奇物体 に対するマウスの接触回数を計測し、preferential index (%)を算出した。***p < 0.01 vs Veh, one-way ANOVA, *post hoc* Dunnett's test; ####p < 0.0001 vs Veh, repeated measures two-way ANOVA [F(2, 9) = 11.94, p = 0.0029], *post hoc* Bonferroni test, mean ± SD, n = 4 mice. **B**, **C**, ddY (E14) マウス大脳皮質初代培養神経細 胞を 3 日間培養後、溶媒、2.5 µg/ml 常法山薬エキス、2.5 µg/ml diosgenin 高濃度山薬エキス (1 µM diosgenin に相当)、または 2.5 µg/ml 常法山薬エキス + 1 µM diosgenin を 4 日間処置し、抗 Map2 抗体及 び抗 pNF-H 抗体よる蛍光免疫染色を行った。(**B**) 各薬物処理群における pNF-H 陽性軸索の長さ、及び Map2 陽性樹状突起の長さを定量した。*p < 0.05, **p < 0.01, ***p < 0.001 vs Veh, one-way ANOVA *post hoc* Dunnett's test, mean ± SEM, n = 10–13 photos. [Yang et al., 2021 より引用、一部改変]

3.3.4. 種々の油溶媒で経口投与した際の diosgenin の脳移行性の比較

ここまでの実験において、少なくとも diosgenin をオリーブオイルまたはゴマ油のいずれに溶解さ せて経口投与した場合でも、diosgenin が脳に移行し、記憶を亢進させることを示した。しかし、全て の油脂が diosgenin の脳移行性を高めるのか、あるいは油脂の種類によって脳移行性が異なるのかは 未検討であった。そこで、オリーブオイルと比べて、魚油、中鎖脂肪酸トリグリセリドに溶解した場 合の diosgenin の脳移行性を比較した。

8 mg diosgenin (Fig. 46E における 50 mg diosgenin 高濃度山薬エキス中の diosgenin 量に相当) をオリー ブオイル、魚油、または中鎖脂肪酸トリグリセリドにそれぞれに溶解したものを正常 ddY マウス (雄性、8 週齡) に単回経口投与した。投与 6 時間後にマウスから血漿及び大脳皮質を採取し、LC-MS/MS で diosgenin 含量を検出した (Fig. 48A, B)。その結果、diosgenin をオリーブオイルに溶解した 場合には、diosgenin の血中濃度が高かった (32.196 ± 3.773 µg/ml) が、魚油に溶解した場合には 9.781 ± 4.790 µg/ml となり、オリーブオイルに溶解した場合より有意に低いことがわかった。さらに、中鎖 脂肪酸トリグリセリドに溶解した場合には diosgenin の血中濃度がさらに低い (0.909 ± 0.488 µg/ml) ことが示された (Fig. 48A)。大脳皮質中の diosgenin 量についても、diosgenin をオリーブオイルに溶 解した場合には高い値を示し (17.576 ± 6.642 µg/g)、魚油に溶解した場合には 2.024 ± 0.278 µg/g と有 意に低かった。また、中鎖脂肪酸トリグリセリドに溶解した場合には diosgenin の脳移行性はさらに 低かった (0.374 ± 0.408 µg/g) (Fig. 48B)。このことより、溶解する油脂によって diosgenin の脳移行 性に大きな違いが生じることが示唆された。

この理由を考察するために、各油脂の脂肪酸組成を Table 4 に示した。中鎖脂肪酸トリグリセリド は、飽和脂肪酸(炭素間二重結合なし)のカプリル酸とカプリン酸のみで構成されている。一方で、 オリーブオイルや魚油は、カプリル酸とカプリン酸以外の飽和脂肪酸の他、一価不飽和脂肪酸(1 つ の炭素間二重結合)及び多価不飽和脂肪酸(複数の炭素間二重結合)によっても構成されている。ま た、オリーブオイルと魚油の違いとして、オリーブオイルにはオレイン酸やリノール酸が多く含まれ ることが挙げられる。油による diosgenin の血漿及び脳への輸送メカニズムは不明であるが、本研究 より、少なくともオレイン酸及びリノール酸が diosgenin の脳輸送に重要な役割を担っているのでは ないかと考えられた。詳細は 3.4.考察において議論する。

118

Fig. 48: 溶媒となる油脂の違いによる diosgenin の血漿中及び脳移行性の違い

ddY マウス(雄性、8週齢)に溶媒(control)及び8 mg diosgeninをオリーブオイル、魚油、または中 鎖脂肪酸トリグリセリドに溶解したものを単回経口投与した。薬物投与6時間後に血漿および大脳皮 質を採取した。LC-MS/MSにおいて、イオン電流クロマトグラムより血漿(A)及び大脳皮質(B)中に 含まれる diosgeninを検出した。*p < 0.05, ***p < 0.001 vs Control; #p < 0.05, ##p < 0.01, ###p < 0.001 vs Olive oil, one-way ANOVA, *post hoc* Tukey test, mean ± SD, n = 3 mice. [Tohda et al., 2020より引用、一部改 変]

Table 4: オリーブオイル、魚油、及び中鎖脂肪酸トリグリセリドの脂肪酸組成

	飽和脂肪酸										一価不飽和脂肪酸					多価不飽和脂肪酸					
	Caprylic acid	Capric acid	Lauric acid	Myristic acid	Pentadecanoic acid	Parmitic acid	Heptadecanoic acid	Stearic acid	Arachidic acid	Behinic acid	Lignoceric acid	Myristoleic acid	Palmitoleic acid	Heptadecenoic acid	Oleic acid	Icosenoic acid	Linoleic acid	α -Linolenic acid	Arachidonic acid	Eicosapentaenoic acid	Docosahexaenoic acid
Fatty acid composition	8:0	10:0	12:0	14:0	15:0	16:0	17:0	18:0	20:0	22:0	24:0	14:1	16:1	17:1	18:1	20:1	18:2 (n=6)	18:3 (n=3)	20:4 (n=6)	20:5 (n=3)	22:6 (n=3)
Olive oil	0	0	0	0	0	10.4	0	3.1	0.4	0.1	0	0	0.7	0	77.3	0.3	7	0.8	0	0	0
Fish oil from menhaden	0	0	0	6-9	0	15- 20	0	3-4	0	0	0	0	9-14	0	5-12	0	0	0	0	10- 15	8-15
Medium-chain triglyceride	60	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

[Tohda et al., 2020 より引用、一部改変]

3.3.5. Diosgenin 高濃度山薬エキスによる健常人の認知記憶に対する効果の検討

ここまでの基礎検討により、山薬エキスとして diosgenin を脳に作用させ、記憶亢進作用を発揮す るには、diosgenin 高濃度山薬エキスを油溶媒(特にオリーブオイル)に溶解したものを用いることが 最適な製剤条件であることが示唆された。そこで、これを独自製剤(特許権利化: レジリオ株式会社) として開発し、健常人の認知機能に対する効果を評価する臨床研究を行うこととした。

Fig. 49 において、本臨床研究(プラセボ対照ランダム化二重盲検クロスオーバー試験)の CONSORT フローチャートを示す。まず、計 41 人の被検者をランダムに 2 群に割り付り、除外基準 に該当した 10 名を除外した。残りの被検者(31 名)に対し、12 週間のプラセボまたは 50 mg/day diosgenin 高濃度山薬エキス(diosgenin 量として 8 mg/day)の服用を実施した。うち 3 名の被験者は、 個人の都合により途中で試験参加を中止した。その後、6 週間の休薬期間を設けた後、プラセボ群と diosgenin 高濃度山薬エキス群を逆にし、さらに 12 週間の服薬期間を設けた(クロスオーバー)。最終 的に全服薬を終了した計 28 人の被験者について、服薬前後における認知機能変化を RBANS にて評 価した。

RBANSにおける総得点、及び RBANS の 5 つの下位項目である即時記憶、視空間/構成、言語、注 意、遅延記憶それぞれのスコアの変化量を算出した。その結果、diosgenin 高濃度山薬エキス服用によ り、全被検者 28 名における RBANS の総得点変化は有意に増加しており、健常人において認知機能 が亢進することが示された(Fig. 50A)。また、28 名の被験者を男女(男性 12 名、女性 16 名)別に分 けて見ると、diosgenin 高濃度山薬エキス服用によりどちらにおいても認知機能が亢進する傾向を示し た(Fig. 50B)。さらに、全被験者について、46歳以下(15 名)と47歳以上(13 名)に分けた場合、 及び 58歳以下(19 名)と60歳以上(9 名)に分けた場合のどちらにおいても、年齢が上のグループ で認知機能が有意に亢進することが示された(Fig. 50C)。また、RBANS の 5 つの下位項目について は、即時記憶(Fig. 50D)を除く全ての項目(Fig. 50C)。また、RBANSの 5 つの下位項目について は、即時記憶(Fig. 50D)を除く全ての項目(Fig. 50C)。また、CDAIの項目も群間差は見られなかったため(デ ータ未提示)、今回の服用量では有害事象は起こっていないことが示された。以上の結果より、 diosgenin 高濃度山薬エキスを服用することにより、健常人において認知機能が亢進することが初めて 明らかとなった。また、この科学的根拠及び特許に基づき、新規機能性表示食品「ジオスゲニン・ゴ ールド[®]」(レジリオ株式会社)の開発に繋げることができた。

120

Fig. 49: 本研究の CONSORT フローチャート

[Tohda et al., 2017 より引用]

Fig. 50: Diosgenin 高濃度山薬エキスによる健常人の認知記憶亢進に対する効果

プラセボまたは 50 mg/day diosgenin 高濃度山薬エキスを 12 週間服用し、服用前後における健常人(男 女計 28 名)の認知機能変化を RBANS で評価した。(A) 28 名の全被験者における総得点変化、(B) 男 性 12 名、女性 16 名別の総得点変化、(C) 46 歳以下(15 名)、47 歳以上(13 名)(左)、及び 58 歳以下 (19 名)、60 歳以上(9 名)(右)の総得点変化、(D)即時記憶、(E)視空間/構成、(F)言語、(G)注意、 (H)遅延記憶それぞれのスコアの変化量を示す。Paired *t*-test, mean ± SD. [Tohda et al., 2017 より引用、 一部改変]

3.4.考察

本章ではまず、diosgenin を水溶性溶媒に溶解して経口投与しても正常マウスにおいて記憶亢進作用 が見られないが、油溶媒に溶解して経口投与すると低用量(0.1 µmol/kg/day)でも記憶が亢進するこ とを示した(Fig. 45)。この原因として、水溶性溶媒に溶解した場合では diosgenin の脳移行が低いた めだと考えられた(Fig. 47E)。一方で、油溶媒でも油脂の種類によっては経口投与後の diosgenin の 脳移行性が悪くなることも示された(Fig. 49)。また、<u>3.1. 緒言</u>で述べた予想の通り、常法山薬エキ ス中にはそもそも diosgenin の含量がなく、また高投与量で経口投与しても体内で配糖体から diosgenin への代謝も見られず、記憶亢進作用も見られなかった。一方、diosgenin 高濃度山薬エキスを 経口投与すると十分量の diosgenin が脳に移行し、記憶亢進作用を示した(Fig. 45F, Fig. 46)。さらに、 山薬エキス中の diosgenin 以外の成分は軸索伸長及び記憶亢進作用には関与しないことが示唆された

(Fig. 48)。そこで、diosgenin 高濃度山薬エキスをオリーブオイル溶媒に溶解した製剤を用いて臨床研究(プラセボ対照ランダム化二重盲検クロスオーバー試験)を行ったところ、diosgenin 高濃度山薬 エキスを服用した健常人では認知機能が亢進することが明らかになった(Fig. 50)。これら一連の科 学的根拠及び特許に基づき、diosgenin を機能関与成分とした初めての機能性表示食品「ジオスゲニ ン・ゴールド[®]」(レジリオ株式会社)の開発に寄与した。

Diosgenin は一般的に山薬中の主要成分と認識されてきたため、D. batatas を基原とする日本薬局方 山薬の熱水抽出エキス中から diosgenin が全く検出されなかった(少なくとも 150 mg/ml 常法山薬エキ スを用いても、LC-MS/MSの検出限界以下)ことは、予想外だった。高用量の 500 mg/kg 常法山薬エ キスを経口投与し、体内における diosgenin への代謝を期待した実験をしても、diosgenin が血中及び 脳内に全く移行しなかったこと(Fig. 46D)から、今回用いた D. batatas 中には diosgenin だけでなく diosgenin 配糖体の量も低い、或いは diosgenin 配糖体から diosgenin への生体内での代謝効率が著しく 低いことが予想された。他の研究グループも、日本薬局方山薬 Dioscorea Rhizome のメタノール抽出 エキスからは、diosgenin が全く検出されないことを報告している (Kawazoe et al., 2017)。また、これま でに種々の Dioscorea 属抽出エキスが、動物実験において記憶亢進作用を有することが報告されてお り (Chiu et al., 2009; Yang et al., 2009)、エキス中の diosgenin や diosgenin 配糖体の含量を測定していない ものもあるにもかかわらず、おそらく活性成分は diosgenin だろうと考察されている文献も見受けら れるが、もし diosgenin 含量の低い Dioscorea エキスを用いた場合は、その効果は diosgenin によるもの ではない可能性が高いと考えられる。同様に、仮に山薬を含む漢方方剤が記憶亢進作用を示す場合に も、その効果を担う活性成分は diosgenin であろうと安易に推測されがちだが、エキス中の diosgenin 含量、経口投与の溶媒、diosgeninの脳移行性の有無の観点から慎重に考察しない限り、そのエキス中 の他の真の活性成分を見落としてしまうリスクがあるため、注意が必要である。

Diosgenin は脂溶性が高い化合物(cLogP = 5.912)であるにも関わらず、投与後のバイオアベイラビ リティは低いため、例えば diosgenin を β -シクロデキストリンに溶解し、皮膚への移行の改善を試み た例もある (Okawara et al., 2013)。本研究においても、diosgenin を水溶性溶媒で腹腔内投与すると正常 マウスの記憶が亢進するが、水溶性溶媒で経口投与しても記憶亢進作用を示さないこと (Fig. 45A, B) が確認された。Diosgenin を水溶性溶媒で経口投与すると、消化管からの吸収が悪いか、初回通過効 果の影響を受けるせいで、血中 diosgenin 濃度が高まらない可能性を考えている。一方で、diosgenin をオリーブオイル、ゴマ油、大豆油等の油溶媒に溶解して経口投与すると、diosgenin の血中濃度及び 脳移行が高まり、記憶亢進作用を示したこと (Fig. 45C-E) から、油溶媒とすることが diosgenin のバ イオアベイラビリティを高めるカギとなっていることが示された。しかし、油脂であれば何でも diosgenin の血中及び脳への移行を高める訳ではなく (Fig. 49)、オレイン酸及びリノール酸配合が高 いオリーブオイルが、比較検討に用いた油脂の中では最適であることも示された (Table 4)。

油による diosgenin の血漿及び脳への輸送メカニズムの詳細は不明であるが、diosgenin は脂溶性が 高いため、そもそも油溶媒との親和性が高い。一般的に、水溶性薬物は経口投与後に毛細血管に取り 込まれやすく、門脈及び肝臓に移行するため、初回通過効果を受ける。一方で、脂溶性薬物はリンパ 管から取り込まれやすく、初回通過効果を受けることなく全身に移行することが知られている。他の グループによる9種類の油脂をラットに投与してリンパへの移行率を比較した研究では、リンパ液中 の蓄積量はオリーブオイルが最大であり、魚油を含むその他の油脂はそれよりも低かった (Porsgaard & Høy, 2000)。したがって、diosgenin をオリーブオイルに溶解して経口投与すると、オリーブオイル によってリンパ管への移行がさらに高まり、それによって体内における滞在性が増加し、脳移行性が 高まった可能性が考えられる。また、オリーブオイル及び魚油投与後にリンパ管に吸収される脂肪酸 の種類を比較すると、オリーブオイル投与後にはオレイン酸のリンパ管での蓄積が多いこともわかっ ている (Porsgaard & Høy, 2000) ことから、オレイン酸が diosgenin の血中及び脳移行に重要な役割を担 っている可能性がある。脳内にもリンパ管が存在するとの報告があることから (Louveau et al., 2015)、 diosgenin のリンパ管への吸収性、リンパ管からの脳移行性が油溶媒(特に高オレイン酸油脂)によっ て促進される分子メカニズムを詳細に解明する必要があると考えられる。

これまでに diosgenin には、抗がん作用、抗心疾患作用、抗高脂血症作用、抗糖尿病作用等の多く の薬理作用を有することが *in vitro* 及び *in vivo* の実験系によって明らかにされている (Chen et al., 2015; Semwal et al., 2022)。しかし、diosgenin の効果を臨床研究で検証した例はなかった。本研究では、 diosgenin 高濃度山薬エキスを服用すると、健常人の認知機能が亢進することを初めて見出した(Fig. 50)。その亢進効果は47歳以上の中高年において顕著であった(Fig. 50C)。加齢に伴って脳内の神経 回路の密度及びシナプス伝達能は低下するため (Hof & Morrison, 2004)、diosgenin 高濃度山薬エキスの 記憶亢進効果が特に高齢グループで顕著に検出されたものと考えられる。また、本臨床研究における diosgenin 高濃度山薬エキスの用量は 50 mg/day (diosgenin として 8 mg/day) に設定した。マウスへの 経口投与で効果を示すことが確実な diosgenin の投与量 0.1–10 µmol/kg/day をヒト等価用量で除して、 体重 60 kg のヒトに換算すると、0.2–20.2 mg/ヒト/day となることから、およその中間値として 8 mg/ ヒト/day とした。また、本臨床研究において、diosgenin 高濃度山薬エキス服用による有害事象は検出 されず、中性脂肪の値が減少傾向を示したことから(データ未提示)、少なくとも今回設定した服用 量では副作用はなかったものと思われる。実際に diosgenin は安全性が高い化合物として知られてお り、マウスにおける LD50 は 8 g/kg 以上(体重 60 kg のヒトに換算すると 480 g/ヒト以上)である。ま た、山薬も diosgenin も食薬区分において"非医"に区分されており、安全な素材であることが裏付 けされている。以上の結果より、diosgenin 高濃度山薬エキスは健常人において認知機能を高める有力 な素材であることが示された。

<u>2.5.小括</u>

本章では、diosgenin を多く含む diosgenin 高濃度山薬エキスを、オリーブオイルを始めとする油溶 媒で経口投与することにより、十分量の diosgenin が脳に移行し、正常マウスの記憶を亢進すること を動物実験で示した (Tohda et al., 2020; Yang et al., 2021)。また、山薬エキス中の diosgenin 以外の成分 は、記憶亢進作用には関与しないことも示唆された。さらに、基礎研究で見出した山薬エキスの条件 に基づき、diosgenin 高濃度山薬エキスをオリーブオイルに溶解したソフトカプセル製剤を作製し、本 エキス製剤が健常人の認知機能を高めることを初めて証明した (Tohda et al., 2017)。現在は、本エキス 製剤の軽度認知障害及び軽度 AD 患者の認知機能に対する効果を特定臨床研究で検討しており、 diosgenin 含有製剤が新規 AD 治療薬に発展することが期待される。

総括および展望

本研究のまとめの概要図を Fig. 51 に示す。本研究では、AD モデルマウス脳内において萎縮した軸 索が、diosgenin によってつながるべき投射先に向かって再伸長する現象を初めて明らかにした。また、 diosgenin による脳内での軸索再伸長に関わる機能分子として、HSC70, SPARC,及び Galectin-1 を見出 した。さらに、脳での軸索再伸長が記憶改善の直接的な要因であることを機能学的に証明し、軸索再 伸長をターゲットとした AD の根本的治療戦略の有用性を提示した。一方、diosgenin を脳に作用させ るための山薬エキス製剤の条件を明らかにし、diosgenin 高濃度山薬エキス製剤が健常人の認知機能を 亢進させることを示した。

Diosgenin は 5XFAD マウス脳内において AD の原因物質(Aβ 及びリン酸化タウ)を減らす作用 (Tohda et al., 2012)に加えて、本研究で見出した神経回路の再形成作用を併せ持っていることから、 diosgenin や diosgenin 含有山薬エキスは、AD の記憶障害を食い止め改善する画期的な根本的治療薬に なりうることが期待される。実際に、当研究室では現在、diosgenin 高濃度山薬エキスの軽度認知障害 及び軽度 AD 患者の認知機能対する特定臨床研究を実施しており、今後は AD 患者を対象とした治験 を行うことも目指している。

Fig. 51: 本研究のまとめ(概要図)

参考文献

Ährlund-Richter, S., Xuan, Y., van Lunteren, J. A., Kim, H., Ortiz, C., Pollak Dorocic, I., Meletis, K., & Carlén, M. (2019). A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. *Nat Neurosci*, *22*(4), 657-668. <u>https://doi.org/10.1038/s41593-019-0354-y</u>

Bamburg, J. R., & Bernstein, B. W. (2016). Actin dynamics and cofilin-actin rods in alzheimer disease. *Cytoskeleton (Hoboken)*, 73(9), 477-497. <u>https://doi.org/10.1002/cm.21282</u>

Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K., Feizi, T., Gitt, M. A., Hirabayashi, J., Hughes, C., Kasai, K., et al. (1994). Galectins: a family of animal beta-galactoside-binding lectins. *Cell*, *76*(4), 597-598. <u>https://doi.org/10.1016/0092-8674(94)90498-7</u>

Blazquez-Llorca, L., Valero-Freitag, S., Rodrigues, E. F., Merchán-Pérez, Á., Rodríguez, J. R., Dorostkar, M. M., DeFelipe, J., & Herms, J. (2017). High plasticity of axonal pathology in Alzheimer's disease mouse models. *Acta Neuropathol Commun*, 5(1), 14. <u>https://doi.org/10.1186/s40478-017-0415-y</u>

Bojic-Trbojevic, Ž., Jovanovic Krivokuca, M., Stefanoska, I., Kolundžic, N., Vilotic, A., Kadoya, T., & Vicovac, L. (2018). Integrin β1 is bound to galectin-1 in human trophoblast. *J Biochem*, *163*(1), 39-50. <u>https://doi.org/10.1093/jb/mvx061</u>

Bradshaw, A. D., & Sage, E. H. (2001). SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. *J Clin Invest*, *107*(9), 1049-1054. <u>https://doi.org/10.1172/jci12939</u>

Briggs, J., Chamboredon, S., Castellazzi, M., Kerry, J. A., & Bos, T. J. (2002). Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. *Oncogene*, *21*(46), 7077-7091. <u>https://doi.org/10.1038/sj.onc.1205857</u>

Browne, L. P., Crespo, A., & Grubb, M. S. (2022). Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve. *Cell Rep*, *41*(10), 111750. https://doi.org/10.1016/j.celrep.2022.111750

Cadiz Diaz, A., Schmidt, N. A., Yamazaki, M., Hsieh, C. J., Lisse, T. S., & Rieger, S. (2022). Coordinated NADPH oxidase/hydrogen peroxide functions regulate cutaneous sensory axon de- and regeneration. *Proc Natl Acad Sci U S A*, *119*(30), e2115009119. <u>https://doi.org/10.1073/pnas.2115009119</u>

Camby, I., Le Mercier, M., Lefranc, F., & Kiss, R. (2006). Galectin-1: a small protein with major functions. *Glycobiology*, 16(11), 137r-157r. <u>https://doi.org/10.1093/glycob/cwl025</u> Chen, J., Wang, M., Xi, B., Xue, J., He, D., Zhang, J., & Zhao, Y. (2012). SPARC is a key regulator of proliferation, apoptosis and invasion in human ovarian cancer. *PLoS One*, 7(8), e42413. <u>https://doi.org/10.1371/journal.pone.0042413</u>

Chen, Y., Tang, Y. M., Yu, S. L., Han, Y. W., Kou, J. P., Liu, B. L., & Yu, B. Y. (2015). Advances in the pharmacological activities and mechanisms of diosgenin. *Chin J Nat Med*, 13(8), 578-587. https://doi.org/10.1016/s1875-5364(15)30053-4

Cheng, L., Sage, E. H., & Yan, Q. (2013). SPARC fusion protein induces cellular adhesive signaling. *PLoS One*, 8(1), e53202. <u>https://doi.org/10.1371/journal.pone.0053202</u>

Cheng, Y., Yin, Y., Zhang, A., Bernstein, A. M., Kawaguchi, R., Gao, K., Potter, K., Gilbert, H. Y., Ao, Y., Ou, J., Fricano-Kugler, C. J., Goldberg, J. L., He, Z., Woolf, C. J., Sofroniew, M. V., Benowitz, L. I., & Geschwind, D. H. (2022). Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. *Nat Commun*, *13*(1), 4418. <u>https://doi.org/10.1038/s41467-022-31960-7</u>

Chiu, C. S., Deng, J. S., Hsieh, M. T., Fan, M. J., Lee, M. M., Chueh, F. S., Han, C. K., Lin, Y. C., & Peng, W. H. (2009). Yam (Dioscorea pseudojaponica Yamamoto) ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. *Am J Chin Med*, *37*(5), 889-902. https://doi.org/10.1142/s0192415x09007296

Citron, B. A., Saykally, J. N., Cao, C., Dennis, J. S., Runfeldt, M., & Arendash, G. W. (2015). Transcription factor Sp1 inhibition, memory, and cytokines in a mouse model of Alzheimer's disease. *Am J Neurodegener Dis*, *4*(2), 40-48.

Conde, C., & Cáceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. *Nat Rev Neurosci*, *10*(5), 319-332. <u>https://doi.org/10.1038/nrn2631</u>

Cuervo, A. M. (2011). Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity. *Nat Rev Mol Cell Biol*, *12*(8), 535-541. <u>https://doi.org/10.1038/nrm3150</u>

Deffit, S. N., & Blum, J. S. (2015). A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. *Mol Immunol*, *68*(2 Pt A), 85-88. <u>https://doi.org/10.1016/j.molimm.2015.04.007</u>

Dickson, T. C., & Vickers, J. C. (2001). The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer's disease. *Neuroscience*, *105*(1), 99-107. <u>https://doi.org/10.1016/s0306-4522(01)00169-5</u>

Durairajan, S. S., Liu, L. F., Lu, J. H., Chen, L. L., Yuan, Q., Chung, S. K., Huang, L., Li, X. S., Huang, J. D., & Li, M. (2012). Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. *Neurobiol Aging*, *33*(12), 2903-2919. https://doi.org/10.1016/j.neurobiolaging.2012.02.016

Everitt, E. A., & Sage, E. H. (1992). Overexpression of SPARC in stably transfected F9 cells mediates attachment and spreading in Ca^{2+} -deficient medium. *Biochem Cell Biol*, 70(12), 1368-1379. <u>https://doi.org/10.1139/o92-185</u>

Fenouille, N., Puissant, A., Dufies, M., Robert, G., Jacquel, A., Ohanna, M., Deckert, M., Pasquet, J. M., Mahon, F. X., Cassuto, J. P., Raynaud, S., Tartare-Deckert, S., & Auberger, P. (2010). Persistent activation of the Fyn/ERK kinase signaling axis mediates imatinib resistance in chronic myelogenous leukemia cells through upregulation of intracellular SPARC. *Cancer Res*, *70*(23), 9659-9670. <u>https://doi.org/10.1158/0008-5472.Can-10-2034</u>

Finka, A., Sharma, S. K., & Goloubinoff, P. (2015). Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. *Front Mol Biosci*, 2, 29. https://doi.org/10.3389/fmolb.2015.00029

Freitas, A., Aroso, M., Rocha, S., Ferreira, R., Vitorino, R., & Gomez-Lazaro, M. (2021). Bioinformatic analysis of the human brain extracellular matrix proteome in neurodegenerative disorders. *Eur J Neurosci*, *53*(12), 4016-4033. <u>https://doi.org/10.1111/ejn.15316</u>

Gache, V., Louwagie, M., Garin, J., Caudron, N., Lafanechere, L., & Valiron, O. (2005). Identification of proteins binding the native tubulin dimer. *Biochem Biophys Res Commun*, 327(1), 35-42. https://doi.org/10.1016/j.bbrc.2004.11.138

Gaudet, A. D., Sweet, D. R., Polinski, N. K., Guan, Z., & Popovich, P. G. (2015). Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair. *Mol Cell Neurosci*, *64*, 84-94. <u>https://doi.org/10.1016/j.mcn.2014.12.006</u>

Goloudina, A. R., Demidov, O. N., & Garrido, C. (2012). Inhibition of HSP70: a challenging anti-cancer strategy. *Cancer Lett*, 325(2), 117-124. <u>https://doi.org/10.1016/j.canlet.2012.06.003</u>

Gulyás, A. I., Miettinen, R., Jacobowitz, D. M., & Freund, T. F. (1992). Calretinin is present in non-pyramidal cells of the rat hippocampus--I. A new type of neuron specifically associated with the mossy fibre system. *Neuroscience*, 48(1), 1-27. <u>https://doi.org/10.1016/0306-4522(92)90334-x</u>

He, Z., & Jin, Y. (2016). Intrinsic control of axon regeneration. *Neuron*, *90*(3), 437-451. https://doi.org/10.1016/j.neuron.2016.04.022

Hof, P. R., & Morrison, J. H. (2004). The aging brain: morphomolecular senescence of cortical circuits. *Trends Neurosci*, *27*(10), 607-613. <u>https://doi.org/10.1016/j.tins.2004.07.013</u>

Horie, H., Inagaki, Y., Sohma, Y., Nozawa, R., Okawa, K., Hasegawa, M., Muramatsu, N., Kawano, H., Horie, M., Koyama, H., Sakai, I., Takeshita, K., Kowada, Y., Takano, M., & Kadoya, T. (1999). Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. *J Neurosci*, 19(22), 9964-9974. https://doi.org/10.1523/jneurosci.19-22-09964.1999

Horie, H., Kadoya, T., Hikawa, N., Sango, K., Inoue, H., Takeshita, K., Asawa, R., Hiroi, T., Sato, M., Yoshioka, T., & Ishikawa, Y. (2004). Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. *J Neurosci*, 24(8), 1873-1880. https://doi.org/10.1523/jneurosci.4483-03.2004

Hubert, T., Grimal, S., Carroll, P., & Fichard-Carroll, A. (2009). Collagens in the developing and diseased nervous system. *Cell Mol Life Sci*, 66(7), 1223-1238. <u>https://doi.org/10.1007/s00018-008-8561-9</u>

Hung, J. Y., Yen, M. C., Jian, S. F., Wu, C. Y., Chang, W. A., Liu, K. T., Hsu, Y. L., Chong, I. W., & Kuo, P. L. (2017). Secreted protein acidic and rich in cysteine (SPARC) induces cell migration and epithelial mesenchymal transition through WNK1/snail in non-small cell lung cancer. *Oncotarget*, *8*(38), 63691-63702. https://doi.org/10.18632/oncotarget.19475

Isaacman-Beck, J., Schneider, V., Franzini-Armstrong, C., & Granato, M. (2015). The lh3 glycosyltransferase directs target-selective peripheral nerve regeneration. *Neuron*, *88*(4), 691-703. <u>https://doi.org/10.1016/j.neuron.2015.10.004</u>

Isabella, A. J., Stonick, J. A., Dubrulle, J., & Moens, C. B. (2021). Intrinsic positional memory guides targetspecific axon regeneration in the zebrafish vagus nerve. *Development*, *148*(18). <u>https://doi.org/10.1242/dev.199706</u>

Izaki, Y., Takita, M., & Akema, T. (2008). Specific role of the posterior dorsal hippocampus-prefrontal cortex in short-term working memory. *Eur J Neurosci*, 27(11), 3029-3034. <u>https://doi.org/10.1111/j.1460-9568.2008.06284.x</u>

Jin, Y., Dougherty, S. E., Wood, K., Sun, L., Cudmore, R. H., Abdalla, A., Kannan, G., Pletnikov, M., Hashemi, P., & Linden, D. J. (2016). Regrowth of serotonin axons in the adult mouse brain following injury. *Neuron*,

91(4), 748-762. https://doi.org/10.1016/j.neuron.2016.07.024

Jinwal, U. K., O'Leary, J. C., 3rd, Borysov, S. I., Jones, J. R., Li, Q., Koren, J., 3rd, Abisambra, J. F., Vestal, G. D., Lawson, L. Y., Johnson, A. G., Blair, L. J., Jin, Y., Miyata, Y., Gestwicki, J. E., & Dickey, C. A. (2010). Hsc70 rapidly engages tau after microtubule destabilization. *J Biol Chem*, 285(22), 16798-16805. https://doi.org/10.1074/jbc.M110.113753

Jones, E. V., Bernardinelli, Y., Zarruk, J. G., Chierzi, S., & Murai, K. K. (2018). SPARC and GluA1containing AMPA receptors promote neuronal health following CNS injury. *Front Cell Neurosci*, *12*, 22. <u>https://doi.org/10.3389/fncel.2018.00022</u>

Kajitani, K., Kobayakawa, Y., Nomaru, H., Kadoya, T., Horie, H., & Nakabeppu, Y. (2014). Characterization of galectin-1-positive cells in the mouse hippocampus. *Neuroreport*, 25(3), 171-176. https://doi.org/10.1097/wnr.000000000000068

Kawazoe, S., Hamaguchi, M., Tanaka, R., Okumura, A., Terabayashi, S. (2017). Contents of diosgenin and dioscin in wild yam supplements. *Journal of food science*, 072, 25-31. <u>https://cir.nii.ac.jp/crid/1050564287532074752</u>

Kim, S., Nam, Y., Jeong, Y. O., Park, H. H., Lee, S. K., Shin, S. J., Jung, H., Kim, B. H., Hong, S. B., Park, Y. H., Kim, J., Yu, J., Yoo, D. H., Park, S. H., Jeon, S. G., & Moon, M. (2019). Topographical visualization of the reciprocal projection between the medial septum and the hippocampus in the 5XFAD mouse model of Alzheimer's disease. *Int J Mol Sci*, *20*(16). <u>https://doi.org/10.3390/ijms20163992</u>

Kitamura, T., Ogawa, S. K., Roy, D. S., Okuyama, T., Morrissey, M. D., Smith, L. M., Redondo, R. L., & Tonegawa, S. (2017). Engrams and circuits crucial for systems consolidation of a memory. *Science*, *356*(6333), 73-78. <u>https://doi.org/10.1126/science.aam6808</u>

Kos, K., & Wilding, J. P. (2010). SPARC: a key player in the pathologies associated with obesity and diabetes. *Nat Rev Endocrinol*, *6*(4), 225-235. <u>https://doi.org/10.1038/nrendo.2010.18</u>

Kuhn, P. H., Koroniak, K., Hogl, S., Colombo, A., Zeitschel, U., Willem, M., Volbracht, C., Schepers, U., Imhof, A., Hoffmeister, A., Haass, C., Roßner, S., Bräse, S., & Lichtenthaler, S. F. (2012). Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. *EMBO J*, *31*(14), 3157-3168. https://doi.org/10.1038/emboj.2012.173

Li, J., Yang, D., Yu, K., He, J., & Zhang, Y. (2010a). Determination of diosgenin content in medicinal plants with enzyme-linked immunosorbent assay. *Planta Med*, 76(16), 1915-1920. <u>https://doi.org/10.1055/s-0030-</u>

1250054

Li, L., Fang, F., Feng, X., Zhuang, P., Huang, H., Liu, P., Liu, L., Xu, A. Z., Qi, L. S., Cong, L., & Hu, Y. (2022). Single-cell transcriptome analysis of regenerating RGCs reveals potent glaucoma neural repair genes. *Neuron*, *110*(16), 2646-2663. <u>https://doi.org/10.1016/j.neuron.2022.06.022</u>

Li, S., Overman, J. J., Katsman, D., Kozlov, S. V., Donnelly, C. J., Twiss, J. L., Giger, R. J., Coppola, G., Geschwind, D. H., & Carmichael, S. T. (2010b). An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. *Nat Neurosci*, *13*(12), 1496-1504. <u>https://doi.org/10.1038/nn.2674</u>

Lim, J. H., Stafford, B. K., Nguyen, P. L., Lien, B. V., Wang, C., Zukor, K., He, Z., & Huberman, A. D. (2016). Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. *Nat Neurosci*, *19*(8), 1073-1084. <u>https://doi.org/10.1038/nn.4340</u>

Lindhout, F. W., Cao, Y., Kevenaar, J. T., Bodzęta, A., Stucchi, R., Boumpoutsari, M. M., Katrukha, E. A., Altelaar, M., MacGillavry, H. D., & Hoogenraad, C. C. (2019). VAP-SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function. *EMBO J*, 38(20), e101345. <u>https://doi.org/10.15252/embj.2018101345</u>

Liu, T., Daniels, C. K., & Cao, S. (2012). Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. *Pharmacol Ther*, *136*(3), 354-374. <u>https://doi.org/10.1016/j.pharmthera.2012.08.014</u>

Liu, X., Ying, G., Wang, W., Dong, J., Wang, Y., Ni, Z., & Zhou, C. (2005). Entorhinal deafferentation induces upregulation of SPARC in the mouse hippocampus. *Brain Res Mol Brain Res*, 141(1), 58-65. https://doi.org/10.1016/j.molbrainres.2005.08.003

López-Murcia, F. J., Terni, B., & Llobet, A. (2015). SPARC triggers a cell-autonomous program of synapse elimination. *Proc Natl Acad Sci U S A*, *112*(43), 13366-13371. <u>https://doi.org/10.1073/pnas.1512202112</u>

Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., Derecki, N. C., Castle, D., Mandell, J. W., Lee, K. S., Harris, T. H., & Kipnis, J. (2015). Structural and functional features of central nervous system lymphatic vessels. *Nature*, *523*(7560), 337-341. <u>https://doi.org/10.1038/nature14432</u>

Mahanthappa, N. K., Cooper, D. N., Barondes, S. H., & Schwarting, G. A. (1994). Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. *Development*, *120*(6), 1373-1384. <u>https://doi.org/10.1242/dev.120.6.1373</u> Mahler, S. V., & Aston-Jones, G. (2018). CNO evil? Considerations for the use of DREADDs in behavioral neuroscience. *Neuropsychopharmacology*, 43(5), 934-936. <u>https://doi.org/10.1038/npp.2017.299</u>

Mátyás, F., Freund, T. F., & Gulyás, A. I. (2004). Immunocytochemically defined interneuron populations in the hippocampus of mouse strains used in transgenic technology. *Hippocampus*, 14(4), 460-481. <u>https://doi.org/10.1002/hipo.10191</u>

Mayer, U., Aumailley, M., Mann, K., Timpl, R., & Engel, J. (1991). Calcium-dependent binding of basement membrane protein BM-40 (osteonectin, SPARC) to basement membrane collagen type IV. *Eur J Biochem*, *198*(1), 141-150. <u>https://doi.org/10.1111/j.1432-1033.1991.tb15996.x</u>

McGraw, J., McPhail, L. T., Oschipok, L. W., Horie, H., Poirier, F., Steeves, J. D., Ramer, M. S., & Tetzlaff, W. (2004). Galectin-1 in regenerating motoneurons. *Eur J Neurosci*, 20(11), 2872-2880. https://doi.org/10.1111/j.1460-9568.2004.03802.x

Meimaridou, E., Gooljar, S. B., & Chapple, J. P. (2009). From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. *J Mol Endocrinol*, 42(1), 1-9. <u>https://doi.org/10.1677/jme-08-0116</u>

Mendes-Pinheiro, B., Teixeira, F. G., Anjo, S. I., Manadas, B., Behie, L. A., & Salgado, A. J. (2018). Secretome of undifferentiated neural progenitor cells induces histological and motor improvements in a rat model of Parkinson's disease. *Stem Cells Transl Med*, 7(11), 829-838. <u>https://doi.org/10.1002/sctm.18-0009</u>

Modrego, P. J., Fayed, N., Errea, J. M., Rios, C., Pina, M. A., & Sarasa, M. (2010). Memantine versus donepezil in mild to moderate Alzheimer's disease: a randomized trial with magnetic resonance spectroscopy. *Eur J Neurol*, *17*(3), 405-412. <u>https://doi.org/10.1111/j.1468-1331.2009.02816.x</u>

Murphy-Ullrich, J. E., Lane, T. F., Pallero, M. A., & Sage, E. H. (1995). SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca²⁺-binding EF-hand. *J Cell Biochem*, 57(2), 341-350. <u>https://doi.org/10.1002/jcb.240570218</u>

Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R., & Vassar, R. (2006). Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. *J Neurosci*, *26*(40), 10129-10140. <u>https://doi.org/10.1523/JNEUROSCI.1202-06.2006</u>

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A. M.,

Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K. E., Bohn, P., Joines, K. M., Peng, H., Hawrylycz, M. J., Phillips, J. W., Hohmann, J. G., Wohnoutka, P., Gerfen, C. R., Koch, C., Bernard, A., Dang, C., Jones, A. R., & Zeng, H. (2014). A mesoscale connectome of the mouse brain. *Nature*, *508*(7495), 207-214. https://doi.org/10.1038/nature13186

Okawara, M., Tokudome, Y., Todo, H., Sugibayashi, K., & Hashimoto, F. (2013). Enhancement of diosgenin distribution in the skin by cyclodextrin complexation following oral administration. *Biol Pharm Bull*, *36*(1), 36-40. <u>https://doi.org/10.1248/bpb.b12-00467</u>

Perez, N., Sugar, J., Charya, S., Johnson, G., Merril, C., Bierer, L., Perl, D., Haroutunian, V., & Wallace, W. (1991). Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer's disease. *Brain Res Mol Brain Res*, *11*(3-4), 249-254. <u>https://doi.org/10.1016/0169-328x(91)90033-t</u>

Piedrahita, D., Castro-Alvarez, J. F., Boudreau, R. L., Villegas-Lanau, A., Kosik, K. S., Gallego-Gomez, J. C., & Cardona-Gómez, G. P. (2015). β-Secretase 1's targeting reduces hyperphosphorilated tau, implying autophagy actors in 3xTg-AD mice. *Front Cell Neurosci*, *9*, 498. <u>https://doi.org/10.3389/fncel.2015.00498</u>

Pires, G., McElligott, S., Drusinsky, S., Halliday, G., Potier, M. C., Wisniewski, T., & Drummond, E. (2019). Secernin-1 is a novel phosphorylated tau binding protein that accumulates in Alzheimer's disease and not in other tauopathies. *Acta Neuropathol Commun*, 7(1), 195. <u>https://doi.org/10.1186/s40478-019-0848-6</u>

Porsgaard, T., & Høy, C. E. (2000). Lymphatic transport in rats of several dietary fats differing in fatty acid profile and triacylglycerol structure. *J Nutr*, *130*(6), 1619-1624. <u>https://doi.org/10.1093/jn/130.6.1619</u>

Puche, A. C., Poirier, F., Hair, M., Bartlett, P. F., & Key, B. (1996). Role of galectin-1 in the developing mouse olfactory system. *Dev Biol*, 179(1), 274-287. <u>https://doi.org/10.1006/dbio.1996.0257</u>

Quintá, H. R., Pasquini, J. M., Rabinovich, G. A., & Pasquini, L. A. (2014). Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury. *Cell Death Differ*, *21*(6), 941-955. <u>https://doi.org/10.1038/cdd.2014.14</u>

Quintá, H. R., Wilson, C., Blidner, A. G., González-Billault, C., Pasquini, L. A., Rabinovich, G. A., & Pasquini, J. M. (2016). Ligand-mediated Galectin-1 endocytosis prevents intraneural H₂O₂ production promoting F-actin dynamics reactivation and axonal re-growth. *Exp Neurol*, 283(Pt A), 165-178. https://doi.org/10.1016/j.expneurol.2016.06.009

Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The repeatable battery for the assessment of

neuropsychological status (RBANS): preliminary clinical validity. *J Clin Exp Neuropsychol*, 20(3), 310-319. https://doi.org/10.1076/jcen.20.3.310.823

Ren, Y., Zhao, J., & Feng, J. (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. *J Neurosci*, 23(8), 3316-3324. <u>https://doi.org/10.1523/jneurosci.23-08-03316.2003</u>

Roy, D. S., Arons, A., Mitchell, T. I., Pignatelli, M., Ryan, T. J., & Tonegawa, S. (2016). Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. *Nature*, *531*(7595), 508-512. <u>https://doi.org/10.1038/nature17172</u>

Sadleir, K. R., Kandalepas, P. C., Buggia-Prévot, V., Nicholson, D. A., Thinakaran, G., & Vassar, R. (2016). Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased A β generation in Alzheimer's disease. *Acta Neuropathol*, *132*(2), 235-256. <u>https://doi.org/10.1007/s00401-016-1558-9</u>

Sage, H., Vernon, R. B., Decker, J., Funk, S., & Iruela-Arispe, M. L. (1989b). Distribution of the calciumbinding protein SPARC in tissues of embryonic and adult mice. *J Histochem Cytochem*, 37(6), 819-829. https://doi.org/10.1177/37.6.2723400

Sage, H., Vernon, R. B., Funk, S. E., Everitt, E. A., & Angello, J. (1989a). SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca⁺²-dependent binding to the extracellular matrix. *J Cell Biol*, *109*(1), 341-356. <u>https://doi.org/10.1083/jcb.109.1.341</u>

Sakaguchi, M., Arruda-Carvalho, M., Kang, N. H., Imaizumi, Y., Poirier, F., Okano, H., & Frankland, P. W. (2011). Impaired spatial and contextual memory formation in galectin-1 deficient mice. *Mol Brain*, *4*, 33. <u>https://doi.org/10.1186/1756-6606-4-33</u>

Santpere, G., Nieto, M., Puig, B., & Ferrer, I. (2006). Abnormal Sp1 transcription factor expression in Alzheimer disease and tauopathies. *Neurosci Lett*, 397(1-2), 30-34. <u>https://doi.org/10.1016/j.neulet.2005.11.062</u>

Schlecht, R., Scholz, S. R., Dahmen, H., Wegener, A., Sirrenberg, C., Musil, D., Bomke, J., Eggenweiler, H.
M., Mayer, M. P., & Bukau, B. (2013). Functional analysis of Hsp70 inhibitors. *PLoS One*, 8(11), e78443. <u>https://doi.org/10.1371/journal.pone.0078443</u>

Semwal, P., Painuli, S., Abu-Izneid, T., Rauf, A., Sharma, A., Daştan, S. D., Kumar, M., Alshehri, M. M., Taheri, Y., Das, R., Mitra, S., Emran, T. B., Sharifi-Rad, J., Calina, D., & Cho, W. C. (2022). Diosgenin: an ipdated pharmacological review and therapeutic perspectives. *Oxidative medicine and cellular longevity*, 2022,

1035441. https://doi.org/10.1155/2022/1035441

Serger, E., Luengo-Gutierrez, L., Chadwick, J. S., Kong, G., Zhou, L., Crawford, G., Danzi, M. C., Myridakis, A., Brandis, A., Bello, A. T., Müller, F., Sanchez-Vassopoulos, A., De Virgiliis, F., Liddell, P., Dumas, M. E., Strid, J., Mani, S., Dodd, D., & Di Giovanni, S. (2022). The gut metabolite indole-3 propionate promotes nerve regeneration and repair. *Nature*, *607*(7919), 585-592. <u>https://doi.org/10.1038/s41586-022-04884-x</u>

Sevigny, J., Chiao, P., Bussière, T., Weinreb, P. H., Williams, L., Maier, M., Dunstan, R., Salloway, S., Chen, T., Ling, Y., O'Gorman, J., Qian, F., Arastu, M., Li, M., Chollate, S., Brennan, M. S., Quintero-Monzon, O., Scannevin, R. H., Arnold, H. M., Engber, T., Rhodes, K., Ferrero, J., Hang, Y., Mikulskis, A., Grimm, J., Hock, C., Nitsch, R. M., & Sandrock, A. (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. *Nature*, *537*(7618), 50-56. <u>https://doi.org/10.1038/nature19323</u>

Stricher, F., Macri, C., Ruff, M., & Muller, S. (2013). HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. *Autophagy*, *9*(12), 1937-1954. <u>https://doi.org/10.4161/auto.26448</u>

Takaku, S., Yanagisawa, H., Watabe, K., Horie, H., Kadoya, T., Sakumi, K., Nakabeppu, Y., Poirier, F., & Sango, K. (2013). GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. *Neurochem Int*, *62*(3), 330-339. https://doi.org/10.1016/j.neuint.2013.01.008

Tang, M. J., & Tai, I. T. (2007). A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. *J Biol Chem*, 282(47), 34457-34467. https://doi.org/10.1074/jbc.M704459200

Tang, Y. N., Pang, Y. X., He, X. C., Zhang, Y. Z., Zhang, J. Y., Zhao, Z. Z., Yi, T., & Chen, H. B. (2015). UPLC-QTOF-MS identification of metabolites in rat biosamples after oral administration of Dioscorea saponins: a comparative study. *J Ethnopharmacol*, *165*, 127-140. <u>https://doi.org/10.1016/j.jep.2015.02.017</u>

Tenne-Brown, J., Puche, A. C., & Key, B. (1998). Expression of galectin-1 in the mouse olfactory system. *Int J Dev Biol*, 42(6), 791-799.

Tohda, C., Lee, Y. A., Goto, Y., & Nemere, I. (2013). Diosgenin-induced cognitive enhancement in normal mice is mediated by 1,25D₃-MARRS. *Sci Rep*, *3*, 3395. <u>https://doi.org/10.1038/srep03395</u>

Tohda, C., Urano, T., Umezaki, M., Nemere, I., & Kuboyama, T. (2012). Diosgenin is an exogenous activator of 1,25D₃-MARRS/Pdia3/ERp57 and improves Alzheimer's disease pathologies in 5XFAD mice. *Sci Rep*, *2*, 535. https://doi.org/10.1038/srep00535

Tohda, C., Yang, X., Matsui, M., Inada, Y., Kadomoto, E., Nakada, S., Watari, H., & Shibahara, N. (2017). Diosgenin-rich yam extract enhances cognitive function: a placebo-controlled, randomized, double-blind, crossover study of healthy adults. *Nutrients*, *9*(10). <u>https://doi.org/10.3390/nu9101160</u>

Tohda, C., Yang, X., & Nomoto, K. (2020). Transported amount of diosgenin to the brain is differed by a solvent fat. *Japanese Journal of Food Chemistry and Safety*, 27(2), 102-105.

van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., Li, D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2023). Lecanemab in early Alzheimer's disease. *N Engl J Med*, *388*(1), 9-21. <u>https://doi.org/10.1056/NEJMoa2212948</u>

Vendl, O., Wawrosch, C., Noe, C., Molina, C., Kahl, G., & Kopp, B. (2006). Diosgenin contents and DNA fingerprint screening of various yam (Dioscorea sp.) genotypes. *Z Naturforsch C J Biosci*, *61*(11-12), 847-855. <u>https://doi.org/10.1515/znc-2006-11-1213</u>

Vincent, A. J., Lau, P. W., & Roskams, A. J. (2008). SPARC is expressed by macroglia and microglia in the developing and mature nervous system. *Dev Dyn*, 237(5), 1449-1462. <u>https://doi.org/10.1002/dvdy.21495</u>

Wan, J., Wu, W., Huang, Y., Ge, W., & Liu, S. (2016). Incomplete radiofrequency ablation accelerates proliferation and angiogenesis of residual lung carcinomas via HSP70/HIF-1α. *Oncol Rep*, *36*(2), 659-668. <u>https://doi.org/10.3892/or.2016.4858</u>

Wang, C., Furlong, T. M., Stratton, P. G., Lee, C. C. Y., Xu, L., Merlin, S., Nolan, C., Arabzadeh, E., Marek, R., & Sah, P. (2021). Hippocampus-prefrontal coupling regulates recognition memory for novelty discrimination. *J Neurosci*, *41*(46), 9617-9632. <u>https://doi.org/10.1523/jneurosci.1202-21.2021</u>

Wang, Q., Song, F., Zhang, C., Zhao, X., Zhu, Z., Yu, S., & Xie, K. (2011). Carboxyl-terminus of Hsc70 interacting protein mediates 2,5-hexanedione-induced neurofilament medium chain degradation. *Biochem Pharmacol*, *81*(6), 793-799. <u>https://doi.org/10.1016/j.bcp.2010.12.021</u>

Way, G., Morrice, N., Smythe, C., & O'Sullivan, A. J. (2002). Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. *Mol Biol Cell*, *13*(9), 3344-3354. <u>https://doi.org/10.1091/mbc.e01-10-0094</u>

Wen, W., Liu, W., Shao, Y., & Chen, L. (2014). VER-155008, a small molecule inhibitor of HSP70 with potent anti-cancer activity on lung cancer cell lines. *Exp Biol Med (Maywood)*, 239(5), 638-645. https://doi.org/10.1177/1535370214527899 Wu, G., Lu, Z. H., André, S., Gabius, H. J., & Ledeen, R. W. (2016). Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca²⁺ influx. *J Neurochem*, *136*(3), 550-563. <u>https://doi.org/10.1111/jnc.13418</u>

Xu, J., Patassini, S., Rustogi, N., Riba-Garcia, I., Hale, B. D., Phillips, A. M., Waldvogel, H., Haines, R., Bradbury, P., Stevens, A., Faull, R. L. M., Dowsey, A. W., Cooper, G. J. S., & Unwin, R. D. (2019). Regional protein expression in human Alzheimer's brain correlates with disease severity. *Commun Biol*, *2*, 43. https://doi.org/10.1038/s42003-018-0254-9

Yang, M. H., Yoon, K. D., Chin, Y. W., Park, J. H., Kim, S. H., Kim, Y. C., & Kim, J. (2009). Neuroprotective effects of Dioscorea opposita on scopolamine-induced memory impairment in in vivo behavioral tests and in vitro assays. *J Ethnopharmacol*, *121*(1), 130-134. <u>https://doi.org/10.1016/j.jep.2008.10.010</u>

Yang, W., Tanaka, Y., Bundo, M., & Hirokawa, N. (2014). Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells. *Dev Cell*, *31*(2), 202-214. https://doi.org/10.1016/j.devcel.2014.08.028

Yang, X., Nomoto, K., & Tohda, C. (2021). Diosgenin content is a novel criterion to assess memory enhancement effect of yam extracts. *J Nat Med*, 75(1), 207-216. <u>https://doi.org/10.1007/s11418-020-01451-4</u> Yang, X., & Tohda, C. (2018a). Diosgenin restores Aβ-induced axonal degeneration by reducing the expression of heat shock cognate 70 (HSC70). *Sci Rep*, 8(1), 11707. <u>https://doi.org/10.1038/s41598-018-30102-8</u>

Yang, X., & Tohda, C. (2018b). Heat shock cognate 70 inhibitor, VER-155008, reduces memory deficits and axonal degeneration in a mouse model of Alzheimer's disease. *Front Pharmacol*, *9*, 48. https://doi.org/10.3389/fphar.2018.00048

Yang, X., & Tohda, C. (2023a). Diosgenin restores memory function via SPARC-driven axonal growth from the hippocampus to the PFC in Alzheimer's disease model mice. *Mol Psychiatry*, in press.

Yang, X., & Tohda, C. (2023b). Axonal regeneration mediated by a novel axonal guidance pair, Galectin-1 and Secernin-1. *Mol Neurobiol*, 60, 1250-1266. <u>https://doi.org/10.1007/s12035-022-03125-6</u>

Yang, Z., Kuboyama, T., & Tohda, C. (2017). A systematic strategy for discovering a therapeutic drug for Alzheimer's disease and its target molecule. *Front Pharmacol*, *8*, 340. https://doi.org/10.3389/fphar.2017.00340

Yi, T., Fan, L. L., Chen, H. L., Zhu, G. Y., Suen, H. M., Tang, Y. N., Zhu, L., Chu, C., Zhao, Z. Z., & Chen, H.

B. (2014). Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS. *BMC Biochem*, 15, 19. <u>https://doi.org/10.1186/1471-2091-15-19</u>

Zhang, F., Su, B., Wang, C., Siedlak, S. L., Mondragon-Rodriguez, S., Lee, H. G., Wang, X., Perry, G., & Zhu, X. (2015). Posttranslational modifications of α-tubulin in alzheimer disease. *Transl Neurodegener*, *4*, 9. https://doi.org/10.1186/s40035-015-0030-4

Zhao, H. F., Wang, J., & Tony To, S. S. (2015). The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? (Review). *Int J Oncol*, 47(2), 429-436. <u>https://doi.org/10.3892/ijo.2015.3052</u>

Zhu, H., & Roth, B. L. (2014). DREADD: a chemogenetic GPCR signaling platform. Int J Neuropsychopharmacol, 18(1). https://doi.org/10.1093/ijnp/pyu007

謝辞

大変興味深い研究テーマを与えて頂き、科学的意義及び社会的意義と独創性の高い研究を遂行し、社会 実装につなげる信念、大きなゴールを見据え根気強くチャレンジし続ける姿勢、物事を俯瞰的に捉える力 などを幅広く親身かつ丁寧に御指導賜り、また、研究者として、人として、持つべき志を自ら示して下さ り、自身の夢への挑戦に対して多大なる御支援、御尽力を賜りました富山大学和漢医薬学総合研究所 神経 機能学領域 教授 東田千尋先生に心より深く感謝申し上げます。

本研究を進めるにあたり、幅広い専門知識や実験手技、解析方法などを親身に御指導賜り、様々な視点 から物事を論理的かつ客観的に思考することの重要性を示して下さいました第一薬科大学薬学部 漢方薬学 科 生薬学分野 准教授 久保山友晴先生(元 神経機能学領域 助教)に深く感謝申し上げます。

本研究を進めるにあたり、臨床学的な観点や統計解析などについて多くの有益な御助言を賜り、また 日々の研究生活において共に切磋琢磨しながら、様々な面から支えて下さいました富山大学和漢医薬学総 合研究所神経機能学領域助教稲田祐奈先生に深く感謝申し上げます。

本研究において、DREADD システムの実験を行うにあたり、脳へのカニューレ埋込法を御教示賜りました富山大学医学部生化学講座助教野本真順先生、教授井ノロ馨先生に深く感謝申し上げます。

本研究において、山薬エキスの臨床研究にご尽力賜りました金沢大学臨床神経心理学(臨床認知科学・ 心理学)研究室教授松井三枝先生、稲田祐奈先生、門本笑花氏、中田翔太郎氏、富山大学医学部和漢診 療学講座教授柴原直利先生、助教渡り英俊先生に深く感謝申し上げます。

本研究において、実験手技や解析方法を御指導賜り、自ら真摯かつ誠実に研究に取り組む姿で私たち後 輩を鼓舞して下さいました広東海洋大学海洋薬物研究所 准教授 楊志友先生に深く感謝いたします。

本研究において、実験手技を御指導賜り、多くの貴重なアドバイスや御意見を下さっただけでなく、精神的に大きな支えとなり、励まし応援し続けて下さいました富山大学和漢医薬学総合研究所神経機能学領域 卒業生 田辺紀生博士に深く感謝いたします。

本研究において、多くの有益な御助言、御意見を下さっただけでなく、日々の研究生活において支えに なって下さいました富山大学和漢医薬学総合研究所 神経機能学領域 卒業生 渡り英俊博士、執行美智子博 士、金原嘉之博士、谷江良崇博士、小林諒氏、加々美(工藤)凪紗氏、小暮智里氏、小谷篤氏、小湊誠也 氏、伊藤(山内)唯氏、井関隆介氏、細川治起氏、菊池高広氏、中野葵氏、高橋(南雲)美咲氏、竹田

(真継)理子氏、元研究支援員 野本かおり氏、元研究員 アンドレイア トレド氏、元研究生 Mai Farid 氏、 ならびに在籍生 井城(長瀬)綸沙氏、近藤麻布氏、須山真聡氏、渋江省吾氏、永田朋也氏、金田みづほ氏、 羽柴圭悟氏、石井雄翔氏、末上亜理沙氏、東山綾花氏、そして同分野・領域に在籍されていた全ての研究 員、技術補佐員、及び卒業生の皆様に深く感謝いたします。

最後に、温かく支え、無条件に応援して下さいました両親に、心より感謝申し上げます。