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Abstract 

We extend the sequential generalized Lorenz dominance (SGL) criterion in two directions. First, we 

consider situations where the welfare of individuals depends on multivariate attributes. Second, we 

allow for demographic differences. Even under such extensions, the derived welfare ordering is 

basically same as in the previous analysis. We will also offer an empirical illustration. 
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1 Introduction 
The importance of multivariate measurement in the evaluation of social welfare is undisputed. 

As this has long been recognized, there have been various attempts to extend Lorenz dominance 

criteria and inequality measures to multivariate attributes (e.g., Kolm, 1977; Marshall et al., 2011; 

Aaberge and Brandolini, 2015). The United Nations has established indicators to assess the welfare 

of countries and regions from multiple perspectives, such as the Human Development Index (HDI) 

and the Sustainable Development Goal (SDG) Index. 

To evaluate the welfare of societies consisting of households, regions or countries, we must 

consider the non-transferable heterogeneity among agents. The sequential generalized Lorenz 

dominance (SGL) criterion of Atkinson and Bourguignon (1987) is an informative criterion for 

evaluating income distribution for this purpose. Using SGL, we can assess social welfare depending 

on households of various sizes without using equivalence scales. Furthermore, the welfare ordering 
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by the SGL is consistent with a broad class of social evaluation functions. Because of these features, 

much literature extends the SGL criterion to various perspectives (e.g., Lambert and Ramos, 2002; 

Fleurbaey et al., 2003; López-Laborda and Onrubia, 2005; Ooghe and Lambert, 2006; Ooghe, 2007; 
Moyes, 2012; Muller and Trannoy, 2012; Fleurbaey et al., 2014). 

The present paper extends the SGL criterion in two directions. First, we consider situations 

where the social welfare of heterogeneous agents depends on multiple attributes. We retain the basic 

properties of SGL while extending it to the multivariate case. That is, the concavity of the utility 

function for transferable attributes (income, health, education, etc.) used in Kolm (1977) and other 

related literature and the properties of the utility function for changes in non-transferable attributes 

(needs) follow the assumptions in SGL. Second, we consider demographic differences, as discussed 

in Jenkins and Lambert (1993) and Chambaz and Maurin (1998).  

Furthermore, we show that solving a linear programming problem reveals the presence or 

absence of the proposed dominance relation between two distributions. We cannot test the 

dominance condition via a convenient graphical form such as the generalized Lorenz curve in SGL. 

Instead, we can obtain the optimal solution to a linear programming problem with a clear implication 

and providing further insights into the dominance condition. That is, even if we cannot observe a 

dominance relation between two distributions, we can know from the solution of a linear 

programming problem which economic agents and how much they should change which attributes to 

allow the dominance relation to hold. 

As an illustration of the method presented here, we evaluate changes in global welfare based on 

the HDI. As is well-known, the HDI represents the geometric mean of three attributes: health, 

education, and income. The method presented here allows us to evaluate global well-being under a 

broad class of social welfare functions. Muller and Trannoy (2011) have proposed a multivariate 

dominance condition and analyzed worldwide well-being based on the HDI. Here, we divide 

countries into two categories, least developed countries (LDCs) and non-LDCs, and consider the 

situation where LDCs are strongly required to improve their HDI. 

In the next section, we describe the analytical framework. Section 3 presents the dominance 

criteria proposed in this paper. Section 4 explains how to test the dominance condition using a linear 

programming problem. Section 5 shows an empirical application of the method described herein. 

Finally, we provide a summary and some remarks. 

 

 

2 Analytical Framework 
Consider a society consisting of 𝑛 agents (households, countries, regions, etc.). Let 𝒩 be the set of 

agents 𝒩 ≔ {1, … ,𝑛}. In what follows, we compare two situations, denoted by 𝑋 and 𝑌. Agents in 

each situation are classified into 𝐻(≥ 2) types according to their needs for the cardinal attributes. Let 
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ℋ ≔ {1, … ,𝐻} be the set of needs. The group of type ℎ agents, where ℎ ∈ 𝐻, is the ℎ-th mos needy 

among the groups.  

Let 𝒩  for ℎ ∈ ℋ and 𝐽 ∈ {𝑋,𝑌} be the set of agents of type ℎ. The number of agents of type ℎ 

in situation 𝐽 is denoted by 𝑛 ≔ #𝒩 . Since the total number of agents is identical between 𝑋 and 𝑌, ∑ 𝑛∈ℋ = ∑ 𝑛∈ℋ  holds. However, we allow for a situation 𝑛 ≠ 𝑛  for some ℎ ∈ ℋ. Without 
loss of generality, we define an index set such as 𝒩 = {𝑛 + 1, … ,𝑛 } with 𝑛 = 0 for ∀ℎ ∈ ℋ 

and 𝐽 ∈ {𝑋,𝑌}. Let 𝒩  be the set of agents whose needs are greater than or equal to ℎ: 𝒩 ≔⋃ 𝒩 . Let 𝑛  be the number of agents who belongs to 𝒩 : 𝑛 = #𝒩 . From the assumption on 
the index for agents, we can confirm that 𝒩 = {1, … ,𝑛 }.  

The utility of an agent depends on 𝑚  attributes, which have cardinal properties. Let ℳ ={1, … ,𝑚} be the set of attributes. We denote by 𝑧 ∈ 𝒟 = 𝑧 , 𝑧̅  for  𝑖 ∈ ℳ  and 𝑗 ∈ 𝒩  the i-th 

attribute with which the j-th agent is endowed, where 𝒟  is the conceivable range for the i-th 

attribute. For the later discussion, we denote by 𝐳 = (𝑧̅ , … , 𝑧̅ )  the vector consisting of the 

maximum conceivable amounts of all attributes. Thus, the cardinal attributes with which the j-th 
agent is endowed can be represented by a column vector such as 𝐳 = (𝑧 , … , 𝑧 ) ∈ 𝒟 ⊂ ℝ , 

where 𝒟 = 𝒟 × … × 𝒟 .1  

Let ℛ(𝑚,𝑛) be a set of m-by-n matrices with real entries. The distribution of attributes in the ℎ-

th needy group in society X is represented as follows: 

 

 𝐗 = 𝐱 , … , 𝐱 ∈ ℛ 𝑚,𝑛  𝑓𝑜𝑟 ℎ ∈ ℋ, 𝑥 ∈ 𝒟. (1) 

 

Thus, the full distribution of attributes in situation X can be written as follows: 

 
 𝐗 = 𝐗 , … ,𝐗 ∈ ℛ(𝑚,𝑛). (2) 
 

Let 𝐗  be a sub-matrix consisting of the distributions of needy groups from 1 to ℎ. That is,  
 
 𝐗 = 𝐗 , … ,𝐗 ∈ ℛ 𝑚,𝑛 , ℎ ∈ ℋ. (3) 
 

For situation Y, we similarly define 𝐲 , 𝐘 , 𝐘, and 𝐘 .  

We denote by 𝑈(𝐳,ℎ)  the utility of agents having attributes 𝐳 ∈ (−∞,∞) ×, … ,× (−∞,∞) , 

where this utility function is continuous in 𝐳 and we denote by 𝒰 the set of all such functions. 

Furthermore, we consider a class of utility functions based on the following properties. 

 
U1 For a given ℎ ∈ ℋ, 𝑈(𝐳,ℎ) is non-decreasing and concave in 𝐳;  

 
1 Superscript 𝑡 denotes transpose of a vector. 
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U2 
 

For a given ℎ ∈ ℋ ∖ {𝐻}, 𝐺(𝐳,ℎ) =  𝑈(𝐳,ℎ) −  𝑈(𝐳,ℎ + 1) is non-decreasing and concave 
in 𝐳; 

 
U3 𝐺(𝐳,ℎ) = 0 holds ∀ℎ ∈ ℋ ∖ {𝐻}.  
 

We introduce the following class of utility function: 

 𝒰𝐳 = {𝑈 ∈ 𝒰: U1, U2 and U3 are satisfied}. 
 

Assumptions U1–U3 can be interpreted as an extended version of Jenkins and Lambert (1993). 

Indeed, when we consider the case of #ℳ = 1, 𝒰𝐳 coincides with the class considered in Jenkins 

and Lambert (1993). In the present analysis, we do not impose differentiability with respect to 𝐳 on 𝑈, as this property is not essential. From U1, U2, and U3, we can verify that 𝐺(𝐳,ℎ) ≤ 0 ∀ℎ ∈ ℋ ∖{𝐻}. 

For example, we can construct a utility function which belongs to 𝒰𝐳 as follows. 

 

Example 1 Let 𝒱 = {[𝑐 ,𝐯 ], … , [𝑐 ,𝐯 ]} be the set of (𝑚 + 1)-dimensional real vector, where 𝑐 ∈ ℝ and 𝐯 ∈ ℝ  for 𝑠 = 1,2, … , 𝑟. The following utility function 𝑈 belong to 𝒰𝐳: 
 

 𝑈(𝐳,ℎ) = 𝛼 + 𝜑 (𝐳) ,ℎ ∈ ℋ, 𝐳 ∈ 𝒟, (4) 

 

where 𝜑 (𝐳) = min, ∈𝒱 [𝑐 , 𝑣 ] 1𝒛 , 
 𝛼 = 𝛼 + 𝜑 (𝐳),ℎ ∈ ℋ ∖ {𝐻}, 
 

and 𝛼  is given.2  

 

Social welfare is utilitarian. In society 𝑋, we denote by 𝑊  social welfare as follows: 

 

 
2 Since 𝜑 (𝐳) is non-decreasing and concave in 𝐳, 𝑈 is also non-decreasing and concave. Furthermore, 𝐺(𝐳,ℎ) =𝛼 − 𝛼 + 𝜑 (𝐳)  is also non-decreasing and concave. Finally, 𝑈(𝐳, ℎ) = 𝛼 + 𝜑 (𝐳) + ∑ 𝜑 (𝐳) =𝑈(𝐳,ℎ + 1) holds. 
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 𝑊 = 1𝑛  𝑈 𝐱 ,ℎ∈𝒩∈ℋ = 1𝑛  𝐺 𝐱 ,ℎ∈𝒩∈ℋ∖{ } +  𝑈 𝐱 ,𝐻∈𝒩 . (5) 

 

We define 𝑊  in a similar way. 

 

 

3 Multivariate Dominance Criteria 
 
First, we consider a dominance criterion which is an extended version of uniform majorization 

introduced by Kolm (1977) in the economics literature. 

 

Definition 1 For two matrices, 𝐀 and 𝐁 ∈ ℛ(𝑚,𝑛), 𝐀 ≺ 𝐁 implies that there exists some doubly 

stochastic matrix, 𝐏 ∈ ℛ(𝑛,𝑛) such that 𝐁𝐏 ≤ 𝐀 holds. 

 

The above definition is known as increasing concave ordering (ICV) in the literature of the 

theory of stochastic order (e.g., Muller and Stoyan, 2002). In the theory of majorization, if 𝐁𝐏 = 𝐀 

holds for some doubly stochastic matrix, 𝐏, it is said that 𝐁 uniformly majorizes 𝐀 (e.g., Kolm, 

1977). The notion of uniform majorization can be regarded as an extension of the familiar Lorenz 

dominance criterion. In this analogy, Definition 1 can be regarded as an extension of the generalized 

Lorenz dominance criterion of Shorrocks (1983) to multivariate attributes. 

Indeed, the following property, which is interpreted as a multivariate version of the Shorrocks 

theorem, can be obtained. 

 

Lemma 1 For two matrices consisting of m-dimensional column vector, 𝐀 = [𝐚 , … , 𝐚 ] and 𝐁 =[𝐛 , … ,𝐛 ] ∈ ℛ(𝑚,𝑛), the following two conditions are equivalent: 

 
(i) 𝐀 ≺ 𝐁,  
 
(ii) ∑ 𝑓(𝐚 ) ≥ ∑ 𝑓(𝐛 ) holds for all non-decreasing concave function 𝑓.  
 

Proof: See Nakamura (2012).                                                      

 

We turn to the dominance criterion that we propose herein. Following Atkinson and 

Bourguignon (1987), we could compare 𝐗  and 𝐘 , sequentially. However, it should be noted that 𝑛 = 𝑛   ∀ℎ ∈ ℋ does not necessarily hold. Thus, we begin by adjusting the sizes of matrices. Let 𝑛  for ℎ ∈ ℋ be max {𝑛 ,𝑛 }. Based on 𝐗  and 𝐘 , we construct the following matrices. 
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 𝐗 = [𝐗 ,𝐙 ] 𝑖𝑓 𝑛 < 𝑛 ,𝐗 𝑖𝑓 𝑛 = 𝑛 , (6a) 

and 

 

 𝐘 = [𝐘 ,𝐙 ] 𝑖𝑓 𝑛 > 𝑛 ,𝐘 𝑖𝑓 𝑛 = 𝑛 , (6b) 

 

where 𝐙 ∈ ℛ(𝑚, 𝑛 − 𝑛 ) is a matrix consisting of identical column vectors, 𝐳 ∈ ℝ : 

 
 𝐙 = [𝐳, … , 𝐳]. (7) 
 

Next, we define the following dominance criterion. 

 

Definition 2 For 𝐗  and 𝐘 ∈ ℛ(𝑚,𝑛 ) and a given vector for 𝐳, if 𝐗 ≺ 𝐘  ∀ℎ ∈ ℋ holds, then 𝐗 dominates 𝐘 in the sense of an extended form of Jenkins and Lambert’s dominance criterion (in 

symbols 𝐘(𝐳) ≺ 𝐗(𝐳)). 

 

If 𝑚 = 1, then Definition 2 is basically the same as the welfare dominance criterion proposed by 

Jenkins and Lambert (1993) and the dominance criterion of Chambaz and Maurin (1998). In addition 

to 𝑚 = 1, if we concentrate on the case of 𝑛 = 𝑛  ∀ℎ ∈ ℋ, Definition 2 reduces to Atkinson and 
Bourguignon’s SGL.  

The following Lemma characterizes the dominance condition described above using the 

Kronecker product, ⨂, and the column stacking operator, vec. 

 

Lemma 2 The following two conditions are equivalent. 

 
(i)  𝐘(𝐳) ≺ 𝐗(𝐳)  
 

(ii)  The following system of inequalities has a non-negative solution 𝐪 ∈ ℝ  ∀ℎ ∈ ℋ: 

 

 
𝐀 𝑶⋱𝑶 𝐀 𝐪⋮𝐪 ≤ 𝐛⋮𝐛 , (8) 

 

where, 
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𝐀 =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝐈 ⨂𝐘𝐞 ⨂𝐈−𝐞 ⨂𝐈𝐈 ⨂𝐞−𝐈 ⨂𝐞 ⎦⎥⎥

⎥⎥⎥
⎥⎤ ,   𝐛 = ⎣⎢⎢

⎢⎢⎡vec𝐗𝐞−𝐞𝐞−𝐞 ⎦⎥⎥
⎥⎥⎤ ,   for ℎ ∈ ℋ 

 

In the above definition, 𝐈 ∈ ℛ(𝑛 ,𝑛 ) is an identity matrix and 𝐞 ∈ ℝ  is a column vector 

whose entries are all equal to 1. 

 

Proof First, consider a matrix inequality 𝐘 𝐐 ≤ 𝐗  for ℎ ∈ ℋ. Vectorizing this matrix inequality, 
we obtain 

 
 𝐈 ⨂𝐘 vec𝐐 ≤ vec𝐗  (9) 
 
Next, if 𝐐  is doubly stochastic, then 𝐐 𝐞 = 𝐞  and 𝐞 𝐐 = 𝐞  must hold. Vectorizing  𝐐 𝐞 = 𝐞  and 𝐞 𝐐 = 𝐞 , we get 𝐞 ⨂𝐈 vec𝐐 = 𝐞  and 𝐈 ⨂𝐞 vec𝐐 = 𝐞 , 

respectively.3 Thus, if 𝐘(𝐳) ≺ 𝐗(𝐳), then (8) has a non-negative solution, 𝐪 = vec𝐐 , ∀ℎ ∈ ℋ. 

Conversly, if (8) has a non-negative solution, then 𝐗 ≺ 𝐘  ∀ℎ ∈ ℋ  holds, which implies 𝐘(𝐳) ≺ 𝐗(𝐳).                                                                             

 

Lemma 2 implies that the dominance condition defined above is characterized by sequential 

dominance relations for matrix inequalities, 𝐀 𝐪 ≤ 𝐛  for ℎ ∈ ℋ . Now, we can state the main 
result. 

 

Proposition 1 For a given vector, 𝐳 ∈ ℝ , the following two conditions are equivalent. 

 
(i).  𝐘(𝐳) ≺ 𝐗(𝐳),  
 
(ii).  𝑊 ≥ 𝑊   ∀𝑈 ∈ 𝒰𝐳.  
 

Proof See Appendix. 

 

 
3 For the vectrizing procedure, see Rao and Mitra (1971). 
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In the next section, we consider how to verify the validity of this extended SGL. 

 

 

4 Equivalent Linear Programming Problem 
We can easily transform the dominance condition that we presented into a linear programming 

model. Based on (8), consider the following problem. 

 

Problem 1 For ℎ ∈ ℋ, 

 

 min𝐪 𝐯 𝐪  (P1) 

 

subject to 

 
 𝐀 𝐪 = 𝐛  (P2) 
 

and 

 
 𝐪 ≥ 𝟎, (P3) 
 

where 𝐯 = 𝟎( ) , 𝐯 ∈ ℝ( ) , 

 

 𝐀 = ⎣⎢⎢⎢
⎡ 𝐈 ⨂𝐘 𝐈 −𝐈𝐞 ⨂𝐈 𝐎 𝐎𝐈 ⨂𝐞 𝐎 𝐎 ⎦⎥⎥⎥

⎤ , 𝐛 = vec𝐗𝐞𝐞 ,  

 

and 𝐯 ∈ ℝ  is a vector whose entries are all constant and strictly positive: 𝐯 > 𝟎. 
 

Problem 1 is a standard linear programming model. We can easily show that the dual of 

Problem 1 has a bounded optimal solution. Thus, by the duality theorem, Problem 1 also has a 

bounded optimal solution.4 In (P1), 𝐯  can be interpreted as the shadow prices of the (negative) 

slack vector. Thus, we have the following results. 

 

 
4 Consider the dual problem of Problem 1: max𝒔 𝒔 𝐛  subject to 𝒔 𝐀 ≤ 𝐯 . It is obvious that 𝒔 = 𝟎 is a feasible 

solution. We decompose 𝒔  as 𝒔 = [𝒔 , 𝒔 ] , where 𝒔 ∈ ℝ  and 𝒔 ∈ ℝ . Since 𝒔  is restricted to −𝐯 ≤𝒔 ≤ 𝟎 , the optimal solution is also bounded. 
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Proposition 2. The following two conditions are equivalent: 

 
(i)  𝐘(𝐳) ≺ 𝐗(𝐳);  
 

(ii) The optimal solution of Problem 1 is zero ∀ℎ ∈ ℋ. 

 

Proof The claim is clear from Lemma 2 and Proposition 1.                               

 

Proposition 2 states that we can confirm ≺  by solving Problem 1 sequentially. We can easily 

solve the problem if the number of agents is not too large. 

 

 

5 Empirical Illustration 
In this section, we offer a simple application of the procedure proposed in the previous section. 

We compare the global distribution of welfare between different years using data from the United 

Nations Human Development Index (HDI). As mentioned previously, the HDI consists of three sub-

indices: health, education, and income. The health index (HI) comes from the life expectancy at birth 

(LE); the education index (EI) consists of the mean years of schooling (MYS) for adults aged 25 

years and the expected years of schooling (EYS) for children of school entering age; the income 

index (II) comes from the gross national income per capita (𝐺𝑁𝐼𝑝𝑐). We use normalized indices such 

as follows: 

  𝐻𝐼 = min 𝐿𝐸 − 2085 − 20 , 1 , 
 𝐸𝐼 = min 12 𝑀𝑌𝑆 − 015 − 0 + 𝐸𝑌𝑆 − 018 − 0 , 1 , 
 𝐼𝐼 = min ln (𝐺𝑁𝐼𝑝𝑐 ) − ln (100)ln (75000) − ln (100) , 1 . 
 

We assume that the needs for the attributes differ between LDCs and non-LDCs. Specificaly, a 

one-unit improvement in an index of LDC brings about a more prominent effect on social welfare 

than in non-LDCs, even if the attribute value is the same. This might because the HDI does not fully 

capture the factors affecting well-being, or improvements in the HDI in LDCs may have a positive 

externality to the world. 

We use data published by the United Nations Development Programme (UNDP) for 2000, 2005, 
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2010, 2015, and 2020, and select 174 countries with complete data for the survey years. The 

definition of LDCs follows the United Nations Department of Economic and Social Affairs. During 

the period, some countries included among the LDCs and later graduate5. 

Table 1 presents summary statistics. The average achievement of each sub-index has increased 

year by year in both LDCs and non-LDCs. At the same time, standard deviations are decreasing year 

by year, except for income from 2015 to 2020. These facts suggest an improvement in social welfare. 

On the other hand, the minimum value of the health index from 2000 to 2005 decreased in both 

LDCs and non-LDCs. This implies that the distribution of attributes in 2005 does not dominate the 

distribution in 2000. The average achievement in non-LDCs is higher than in LDCs in all sub-

indices for all years. However, the maximum value of each index in LDCs is greater than the 

minimum value in non-LDCs. That is, the sub-indices are distributed with overlap. 

 
Table 1 Summary statistics 

   LDCs  Non-LDCs 

year   mean max min std  mean max min std 

2000 

 HI 0.547  0.783  0.377  0.111   0.783  0.941  0.380  0.111  
 EI 0.316  0.695  0.117  0.116   0.628  0.911  0.253  0.139  
 II 0.446  0.738  0.273  0.101   0.733  1.000  0.419  0.146  

# of countries 44     130    

2005 

 HI 0.588  0.842  0.357  0.106   0.801  0.954  0.340  0.116  
 EI 0.359  0.710  0.147  0.112   0.668  0.942  0.313  0.137  
 II 0.466  0.795  0.304  0.103   0.754  1.000  0.451  0.141  

# of countries 44     130    

2010 

 HI 0.619  0.887  0.394  0.098   0.824  0.969  0.410  0.105  
 EI 0.400  0.726  0.182  0.105   0.700  0.946  0.342  0.131  
 II 0.484  0.798  0.320  0.098   0.769  1.000  0.498  0.132  

# of countries 43     131    

2015 

 HI 0.649  0.777  0.478  0.069   0.842  0.989  0.539  0.095  
 EI 0.425  0.654  0.225  0.090   0.730  0.941  0.383  0.127  
 II 0.489  0.810  0.319  0.094   0.782  1.000  0.536  0.127  

# of countries 41     133    

2020 

 HI 0.668  0.800  0.504  0.065   0.841  1.000  0.600  0.092  
 EI 0.445  0.614  0.264  0.088   0.749  0.959  0.392  0.126  
 II 0.486  0.655  0.301  0.083   0.782  1.000  0.512  0.128  

# of countries 40     134    

Source: Author’s calculation from the UNDP data. 

 

Based on these data, we consider the dominance relationship by applying Problem 1. Following 

Muller and Trannoy (2011), we do not weight each country’s attributes by its population. We set the 

 
5 See Table A1 in Appendix for the list of LDCs. 
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maximum conceivable amount for all attributes to 1. That is, 𝐳 ≡ (1,1,1). We also set the shadow 

price vector in Problem 1 to 𝐯 = (500, … ,500). In what follows, 𝐘 is referred to as the distribution 

for the base year and 𝐗 as the distribution for the comparison year. 

Table 2 shows the results of solving Problem 1 for LDCs only. We can confirm that the 

distributions for 2010, 2015, and 2020 dominate the distribution for the 2000. Furthermore, the 2010 

and 2015 distributions dominate the 2005 distribution. In other pair-wise comparisons, we do not 

observe a dominance relationship. 

Table 3 shows the optimal values obtained by solving Problem 1 for all countries including 

non-LDCs. Here we observe the same dominance relationship as in Table 2. From this, we can find 

the welfare orderings shown in Figure 1. In summary, global well-being has improved over the 20-

year period. 

  
Table 2 Dominance relationships for LDCs 
  Base year 
  2000 2005 2010 2015 2020 

Comparison 
year 

2000 - 2300.39  5023.74  7753.89  9187.33  
2005 9.89  - 2723.35  5453.50  6886.94  
2010 0.00  0.00  - 2730.15  4163.59  
2015 0.00  0.00  13.26  - 1433.44  
2020 0.00  1.30  9.62  38.51  - 

Source: Author’s own calculation. 

 
Table 3 Dominance relationships for all countries 
  Base year 
  2000 2005 2010 2015 2020 

Comparison 
year 

2000 - 7500.53  14423.15  20517.94  22732.33  
2005 31.76  - 6955.61  13030.06  15247.68  
2010 0.00  0.00  - 6099.17  8315.06  
2015 0.00  0.00  13.26  - 2477.09  
2020 0.00  1.30  9.62  44.28  - 

Source: Author’s own calculation. 

 

 
 
Figure 1 Welfare ordering 

 

From the solution of Problem 1, we can obtain more detailed information. For example, Table 3 

shows that the optimal solution for 2020 (comparison year) compared to 2005 (base year) is 1.30, 

and there is no dominance relationship. The solution vector of Problem 1 indicates that a dominance 

relationship is established if the income index (II) in 2020 in Burundi, Sub-Saharan Africa, increases 
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by 0.0026, which corresponds to a 1.02 (in 2017 PPP $) increase in GNI per capita.  

 

   

6 Remarks 
In this paper, we extended the sequential generalized Lorenz dominance (SGL) criterion in two 

directions. First, we considered a situation where the welfare of individuals depends on multivariate 

attributes in addition to the needs for these their attributes. Second, as considered in Chambaz and 

Maurin (1998) and Jenkins and Lambert (1993), we allowed for demographic differences. Even 

under these extensions, the welfare ordering derived was basically the same as in the analysis with 

the original SGL criterion. We also offered an empirical illustration. 

We can consider further extensions based on the framework in this paper. For example, the 

maximum conceivable value can be adjustable attribute-wise. We can also apply the present 

procedure to multivariate poverty analysis by setting 𝐳 as a poverty line vector. In the empirical 

illustration, we give an equal weight to each country. We could instead use the population size of 

each country as a weight. In the latter case, a modified matrix based on the doubly stochastic matrix 

would characterize the dominance relation. 

 

 

Appendix 
Proof of Proposition 1 

First, suppose that 𝐘(𝐳) ≺ 𝐗(𝐳). From Definition 2, 𝐗 ≺ 𝐘  ∀ℎ ∈ ℋ holds. Noting that 𝑈 ∈ 𝒰𝐳 and 𝐺 are non-decreasing concave, 𝐗 ≺ 𝐘  implies that 
 

  𝐺 𝐱 ,ℎ∈𝒩 −  𝐺 𝐲 ,ℎ∈𝒩 + 𝑛 − 𝑛 𝐺(𝐳,ℎ) ≥ 0,ℎ ∈ ℋ ∖ {𝐻}, (A1) 

 

  𝑈 𝐱 ,𝐻∈𝒩 −  𝑈 𝐲 ,𝐻∈𝒩 ≥ 0. (A2) 

 

Furthermore, since 𝐺(𝐳,ℎ) = 0 holds from U3, we can eliminate the third term of the LHS of (A1). 

Inserting (A1) and (A2) into the difference in the social welfare, we can confirm 𝑊 ≥ 𝑊  ∀𝑈 ∈ 𝒰𝐳.   
Next, suppose that 𝐘(𝐳) ⊀ 𝐗(𝐳). In such a situation, from Lemma 2, Inequality (8) does not 

have a non-negative solution. Thus, from the theorem of alternative (e.g., Gale, 1960, Theorem 2.8), 

there exists a non-negative vector, 𝐰 ∈ ℝ  for ℎ ∈ ℋ such that 
 
 𝐰 𝐀 ≥ 𝟎 ∀ℎ ∈ ℋ, (A3) 
and  
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 [𝐰 , … ,𝐰 ] 𝐛⋮𝐛 < 0, (A4) 

 
hold. Let us decompose 𝐰  as 𝐰 = [𝐰 , … ,𝐰 ,𝐝 ,𝐝 , �̌� , �̂� ] , where 𝐰 ∈ ℝ  and 𝐝 ,𝐝 , �̌� , �̂� ∈ ℝ . Let 𝐝 = 𝐝 − 𝐝  and 𝐜 = �̌� − �̂� . Thus, an entry-wise representation of 

(A3) is as follows: 

 
 𝐰 𝐲 + 𝑑 + 𝑐 ≥ 0  for 𝑖 ∈ 𝒩  and 𝑗 = 1, … ,𝑛 . (A5) 
 

Furthermore, when 𝑛 < 𝑛 , we have 
 
 𝐰 𝐳 + 𝑑 + 𝑐 ≥ 0  for 𝑖 = 𝑛 + 1, … ,𝑛  and  𝑗 = 1, … ,𝑛 .  (A6) 
 
Let 𝒱  be a set of (𝑚 + 1)-dimensional row vector defined as 𝒱 = {[𝐰 , 𝑐 ], … , [𝐰 , 𝑐 ]}. As 

in Example 1, consider the following function: 

 

 𝜑 (𝐳) = min[𝐰 , ]∈𝒱 [𝐰 , 𝑐 ] 𝒛1 , (A7) 

 

From (A6) and the definition of 𝜑 , we have 

 
 𝜑 (𝐲 ) + 𝑑 ≥ 0 ∀𝑖 ∈ 𝒩 .  (A8) 
 

It should be noted that 𝜑  is non-decreasing concave in 𝐳. Furthermore, if 𝑛 < 𝑛 , then 
 
 𝜑 (𝐳) + 𝑑 ≥ 0 ∀𝑖 = 𝑛 + 1, … ,𝑛 . (A9) 

 

Summing (A8) and (A9) over 𝑖 ∈ 𝒩  and ℎ ∈ ℋ, we have 
 

 𝜑 (𝐲 )∈𝒩∈ℋ + 𝑑 +∈ℋ 𝑛 − 𝑛 𝜑 (𝐳)∈ℋ ≥ 0 (A10) 

 

Next, the LHS of (A4) can be written as follows: 
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 𝐰 𝐛 =
⎩⎪⎨
⎪⎧ [𝐰 , 𝑐 ] 𝐱1∈𝒩 + 𝑑∈𝒩 , 𝑖𝑓 𝑛 = 𝑛 ,

[𝐰 , 𝑐 ] 𝐱1∈𝒩 + 𝑑 + [𝐰 , 𝑐 ] 𝒛1 , 𝑖𝑓 𝑛 < 𝑛 , (A11) 

 
for ℎ ∈ ℋ . Since 𝐰 𝐱 + 𝑐 ≥ 𝜑 (𝐱 )  ∀𝑖 ∈ 𝒩 , ∀𝑗 ∈ {1, … ,𝑛 } , and ∀ℎ ∈ ℋ  holds from the 

definition of 𝜑 , we can confirm  

 

 𝐰 𝐛 ≥ 𝜑 (𝐱 )∈𝒩 + 𝑑 + 𝑛 − 𝑛 𝜑 (𝐳), ∀ℎ ∈ ℋ. (A12) 

 

Thus, summing (A12) over ℎ ∈ ℋ, we obtain 

 

 𝐰 𝐛∈ℋ ≥ 𝜑 (𝐱 )∈𝒩∈ℋ + 𝑑 +∈ℋ 𝑛 − 𝑛 𝜑 (𝐳)∈ℋ . (A13) 

 

Because ∑ 𝐰 𝐛∈ℋ < 0, together with (A10) and (A13), we obtain 

 

 𝜑 (𝐲 )∈𝒩∈ℋ > 𝜑 (𝐱 )∈𝒩∈ℋ + 𝑛 − 𝑛 𝜑 (𝐳)∈ℋ . (A14) 

 

In (A14), for a given 𝛼 , let 𝛼  be given by 𝛼 = 𝛼 + 𝜑 (𝐳) for ℎ ∈ ℋ ∖ {𝐻}. Noting that 𝑛 = 𝑛 , we have 

 

 𝑛 − 𝑛 𝜑 (𝐳)∈ℋ = 𝑛 − 𝑛 𝜑 (𝐳)∈ℋ∖{ }  (A15) 

 

The above setting is equivalent to setting 𝜑 (𝐳) = 𝛼 − 𝛼  for ℎ ∈ ℋ ∖ {𝐻} . Thus, applying 

summation by parts to the RHS in (A15), we obtain, 

 

 

𝑛 − 𝑛 𝜑 (𝐳) = 𝑛 − 𝑛 (𝛼 − 𝛼 ) 
= −𝛼 (𝑛 − 𝑛 ) − 𝛼 𝑛 − 𝑛  
= 𝛼 𝑛 − 𝑛 . 

(A16) 
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The result in (A15) can be written as follows: 

 

 𝑛 − 𝑛 𝜑 (𝐳)∈ℋ = 𝑛 − 𝑛 𝛼∈ℋ . (A17) 

 

Furthermore, we can rewrite the LHS of (A14) as follows: 

 
 𝜑 (𝒚 )∈𝒩∈ℋ = 𝜑 (𝒚 )∈𝒩 + 𝜑 (𝒚 )∈𝒩 +, … , + 𝜑 (𝒚 )∈𝒩= 𝜑 (𝒚 )∈𝒩 + 𝜑 (𝒚 )∈𝒩 +, … , + 𝜑 (𝒚 )∈𝒩= 𝜑 (𝒚 )∈𝒩 + 𝜑 (𝒚 )∈𝒩 +, … , + 𝜑 (𝒚 )∈𝒩= 𝜑 (𝒚 )∈𝒩∈ℋ . 

(A18) 

 
Similarly, we can confirm that ∑ ∑ 𝜑 (𝐱 )∈𝒩∈ℋ = ∑ ∑ ∑ 𝜑 (𝐱 )∈𝒩∈ℋ  holds. Substituting 

(A17) and (A18) into (A14), we obtain 

 

 𝛼 + 𝜑 (𝐲 )∈𝒩∈ℋ > 𝛼 + 𝜑 (𝐱 )∈𝒩∈ℋ . (A19) 

 

Now consider the following utility function: 

 𝑈(𝐳,ℎ) = 𝛼 + 𝜑 (𝐳) , ℎ ∈ ℋ, 𝐳 ∈ 𝒟. 
 

Then as shown in Example 1, 𝑈 ∈ 𝒰𝐳. Therefore, 𝐘(𝐳) ⊀ 𝐗(𝐳) implies that there exists 𝑈 ∈ 𝒰𝐳 
such that 𝑊 < 𝑊 .                                                          
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List of LDCs 

 

  

Table A1 List of LDCs      
 2000 2005 2010 2015 2020 
Afghanistan ● ● ● ● ● 
Angola ● ● ● ● ● 
Burundi ● ● ● ● ● 
Benin ● ● ● ● ● 
Burkina Faso ● ● ● ● ● 
Bangladesh ● ● ● ● ● 
Bhutan* ● ● ● ● ● 
Central African Republic ● ● ● ● ● 
Congo (Democratic Republic of the) ● ● ● ● ● 
Comoros ● ● ● ● ● 
Cabo Verde ● ●    
Djibouti ● ● ● ● ● 
Eritrea* ● ● ● ● ● 
Ethiopia ● ● ● ● ● 
Guinea ● ● ● ● ● 
Gambia ● ● ● ● ● 
Guinea-Bissau* ● ● ● ● ● 
Equatorial Guinea ● ● ● ●  
Haiti ● ● ● ● ● 
Cambodia ● ● ● ● ● 
Kiribati ● ● ● ● ● 
Lao People's Democratic Republic ● ● ● ● ● 
Liberia ● ● ● ● ● 
Lesotho ● ● ● ● ● 
Madagascar ● ● ● ● ● 
Maldives ● ● ●   
Mali ● ● ● ● ● 
Myanmar ● ● ● ● ● 
Mozambique ● ● ● ● ● 
Mauritania ● ● ● ● ● 
Malawi ● ● ● ● ● 
Niger ● ● ● ● ● 
Nepal ● ● ● ● ● 
Rwanda ● ● ● ● ● 
Sudan ● ● ● ● ● 
Senegal ● ● ● ● ● 
Solomon Islands ● ● ● ● ● 
Sierra Leone ● ● ● ● ● 
Somalia* ● ● ● ● ● 
South Sudan*    ● ● 
Sao Tome and Principe ● ● ● ● ● 
Chad ● ● ● ● ● 
Togo ● ● ● ● ● 
Timor-Leste*  ● ● ● ● 
Tuvalu ● ● ● ● ● 
Tanzania (United Republic of) ● ● ● ● ● 
Uganda ● ● ● ● ● 
Vanuatu* ● ● ● ●  
Samoa ● ● ●   
Yemen ● ● ● ● ● 
Zambia ● ● ● ● ● 
Note: * excluded from the analysis due to missing data. 
Source: Author's own compilation based on Committee for Development Policy and United Nations Department of 
Economic and Social Affairs (2021). 
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