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Abstract

Purpose: A simulation study was performed to evaluate the quantitative performance

of X-map images—derived from non-enhanced (NE) dual-energy computed tomography

(DECT)—in detecting acute ischemic stroke (AIS) compared with that of NE-DECT

mixed images.

Methods: A virtual phantom, 150 mm in diameter, filled with tissues comprising

various gray- and white-matter proportions was used to generate pairs of NE-head images

at 80 kV and Sn150 kV at three dose levels (20, 40, and 60 mGy). The phantom included

an inserted low-contrast object, 15 mm in diameter, with four densities (0%, 5%, 10%,

and 15%) mimicking ischemic edema. Mixed and X-map images were generated from

these sets of images and compared in terms of detectability of ischemic edema using a

channelized Hotelling observer (CHO). The area under the curve (AUC) of the receiver

operating characteristic that generated CHO for each condition was used as a figure of

merit.

Results: The AUCs of X-map images were always significantly higher than those of

mixed images (P < 0.001). The improvement in AUC for X-map images compared with

that for mixed images at edema densities was 9.2%-12.6% at 20 mGy, 10.1%-17.7% at

40 mGy, and 14.0%-19.4% at 60 mGy. At any edema density, X-map images at 20 mGy

resulted in higher AUCs than mixed images acquired at any other dose level (P < 0.001),

which corresponded to a 66% dose reduction on X-map images.

Conclusions: The simulation study confirmed that NE-DECT X-map images have

superior capability of detecting AIS than NE-DECT mixed images.
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Introduction

Acute ischemic stroke (AIS) is a critical brain disease that is prevalent in developed

countries [1]. Rapid and accurate diagnosis of AIS is highly desirable before

implementing thrombolytic therapy or mechanical thrombectomy, which helps improve

the prognosis of patients with ischemic stroke [2-4].

Magnetic resonance imaging (MRI) is a valuable modality to identify ischemic changes

in brain tissue even in their early stages [5]. However, because MRI takes a relatively

longer preparation and acquisition time compared with CT and has limited availability,

especially during the night shift in hospitals, it is unlikely to be the first method used to

evaluate patients with intracranial hemorrhage or suspected ischemic stroke [6]. In

contrast, non-enhanced (NE) X-ray CT is a suitable means of ruling out the possibility of

a cranial hemorrhage because of its sensitivity. NE-CT is a widely available in many

institutes and can be easily used to identify ischemic changes in brain tissue during the

early stages [4, 5, 7]. However, diagnosis of brain ischemia in the acute stage is a

challenge for physicians, the difference in the CT numbers of ischemic changes and those

of normal tissue may be in the range of only a few Hounsfield units (HU); additionally,

this range is smaller than that for differentiation between gray matter (GM) and white

matter (WM) [8, 9].

Dual-energy computed tomography (DECT) has been commercially available since 2010

and has been utilized in many clinical scenarios. In 2016, Noguchi et al. reported the

development of the DECT application X-map and its clinical benefits [10]. The X-map

can be used to visualize ischemic brain tissue changes without contrast administration. A

task-specific, three-material decomposition algorithm suppresses lipid content from

voxels of brain tissues and then generates a virtual GM map in which the differences

between the GM and the WM are eliminated. As a result, only ischemic edema with lower

density than that of normal tissues due to increased water content in the voxels of brain

tissue is specifically highlighted, because the background of ischemic edema could be a

homogeneous virtual GM.

Since 2016, several groups have reported the utility of DECT to visualize ischemic

edema; they employed the same theoretical concept of the X-map algorithms but named
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it the “brain edema map,” eliminating the difference between the GM and the WM [11,

12]. They concluded in their clinical studies that such DECT algorithms improved

visualization of the early stages of ischemic edema better than mixed images that

simulated single-energy (SE) CT images at 120 kV [13]. However, no report has validated

the objective detectability of ischemic edema at different edema densities and radiation

doses using the X-map and brain edema map.

A human observer study is the usual approach for evaluating task-based diagnostic

performance under specific conditions. However, the human observer approach is time-

consuming, and it is necessary to carefully control the measurement to obtain accurate

results. The channelized Hotelling observer (CHO) has been used in several studies

instead of human observers [14-16]. CHO provides an objective method for assessing

image quality in lesion detection tasks, such as two-alternative forced choice (2-AFC),

by using images for which the signal is accurately known.

Thus, this simulation study aimed to clarify the theoretical validity of the X-map

algorithm and evaluated the effectiveness of the X-map algorithm with CHO in detecting

ischemic edema by comparing NE-DECT X-map images with NE-DECT mixed images.

This doctoral thesis is based on a paper published in the European Journal of Medical

Physics [17].

Materials and Methods

Data acquisition and image reconstruction

A virtual phantom representing the heterogeneity of brain tissues in an adult head was

computationally generated. The phantom had a cylindrical shape of 150 mm in diameter

and 200 mm in length, was filled with brain tissue, and was surrounded by a 10 mm thick

bone. A rod-shaped ischemic lesion 15 mm in diameter and 200 mm in length was placed

at the center of the phantom. The edema had four densities (0%, 5%, 10%, and 15%

reductions relative to the surrounding brain tissue), representing a progressive increase in

water content in the edematous tissue. Human brain tissue consists of the GM and WM,

which have complex 3D shapes and combine with each other to form heterogeneous
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complex structures. The phantom did not intend to model the entire head, but rather it

focused on modeling the local tissues of the brain that underlie ischemic edema. The local

tissue was modeled as randomly combined, cloud shapes of textures, which were

generated as small variances in the CT number from the mean value of the mixture of the

GM and WM (Figure 1). To investigate bias due to heterogeneity of the target brain tissue,

image voxels were composed of five GM/WM proportions (0%/100%, 25%/75%,

50%/50%, 75%/25%, and 100%/0%). For instance, GM/WM = 50%/50% indicates that

a voxel of tissue contains 50% GM and 50% WM.

An in-house simulation tool that modeled scanner-specific parameters of the third

generation dual-source DECT (SOMATOM Force; Siemens Healthineers, Forchheim,

Germany)—such as the focal spot size, detector aperture with oversampling, motion of

the focal spot on the anode plate of the X-ray tube, polychromatic X-ray spectrum

with/without tin-filtration, and scanner geometries—was used to generate projection data

of the phantom. The cross-scatter effect from two X-ray tubes is a challenge in dual-

source CT scanners and a known cause of inaccurate CT number reproducibility [18, 19].

However, small objects such as the head are relatively less affected by cross-scatter than

larger objects such as the body, and advanced correction algorithms can effectively

remove both the cross-scatter and the non-cross-scatter effects from images [18-20].

Therefore, no scatter effect was considered in this simulation. Definitions of materials,

GM, WM, cortical bone for the skull, and water used for the phantom were obtained from

published data [21].

The scan parameters used to create the projection data were in accordance with the

vendor's recommended standard NE-DECT protocol for the head (e.g.,

DE_Head_BrainHem), which uses a pair of tube voltages of 80 kV and 150 kV with tin

filtration (Sn150 kV), an X-ray beam width of 32 × 0.6 mm, and a pitch of 0.7. Radiation

dose levels of 20, 40, and 60 mGy in the CT volume dose index (CTDIvol) for combined

kV was used. These dose levels were determined based on the reference literature, which

stated that NE 120 kV head scan protocols use less than 40 mGy for routine scans and

50-60 mGy for stroke scans [22, 23]. Images were reconstructed using a weighted filtered

back-projection algorithm [24] with an image matrix of 512 × 512, a beam-hardening

correction adjusted for the phantom, a reconstruction field of view (FoV) of 240 mm, and
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a slice thickness of 5 mm (which is often used for diagnosis), with an increment of 2 mm

with at least 50% overlap between adjacent slices, and a standard convolution kernel for

the head. The phantom was scanned 50 times for each configuration of edema density and

GM/WM proportion to increase the total number of images with various local tissue

shapes and textures for CHO because the phantom is randomly generated per scan. For

each scan, 20 images located centrally in the longitudinal direction of the phantom were

reconstructed and then transferred to DE applications to generate mixed and X-map

images. Because the DE application internally performs 3D interpolation of the data

volume of 20 stacked images, 10 of the 20 slices, excluding the two ends of the volume

(five slices each), were used for the analysis in this study to avoid unstable variations in

image characteristics. Thus, a total of 500 images were obtained for each configuration.

Images with 0% edema density were considered signal-absent, and images with 5%, 10%,

and 15% edema densities were considered signal-present.

Mixed and X-map images

A set of 80 kV and Sn150 kV images was used to generate both mixed and X-map images

(Figure 2). An 80 kV image and its corresponding Sn150 kV image were averaged with

a weighting factor of 0.5, which is the value recommended by the manufacturer to

generate a mixed image that simulates a NE 120 kV SECT image [13, 25].

The X-map image was generated using task-specific, three-material decomposition into

water, GM, and WM [10]. As shown in Figure 3, all voxels of brain tissue were projected

onto a baseline connected between the water and the GM, along a slope passing through

the GM and WM in a spatial domain with Cartesian coordinates of Sn150 kV for the X-

axis and 80 kV for the Y-axis. Thus, a virtual GM map (X-map) was obtained. The

location of the projected voxel on the baseline reflects the amount of water in each voxel.

In clinical cases, voxels of brain tissue without ischemic edema are distributed on a slope

according to the GM/WM proportions in each voxel. A voxel located midway between

the GM and the WM suggests that the voxel is composed of 50% GM and 50% WM. If

the tissue containing the voxel becomes an ischemic edema, the location of the voxel in

the diagram will move closer to the water, depending on the percentage of the water in
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the voxel. For instance, if a voxel projected on the baseline was exactly halfway between

the water and the GM, then the tissue in that voxel contained 50% more water than the

normal GM. As a result, the degree of edema was quantified independently of brain tissue

heterogeneity. As previously explained, five GM/WM proportions were defined during

phantom generation to simulate local tissue properties that accurately reflect the location

of corresponding voxels along the slope.

The following settings were used for X-map generation; 2.0 for the slope, 33 HU (= Sn150

kV) and 42 HU (= 80 kV) for the GM, and 29 HU (= Sn150 kV) and 34 HU (= 80 kV)

for the WM [10].

All mixed and X-map images were cropped to a matrix of 256 × 256 pixels at their centers

for further analysis to maintain the spatial representations of the images (FoV length [mm]

/ matrix size [pixel]) between the model observer and the visual interpretation by the

human observer.

Edema density analysis

The ischemic edema density in the phantom was specified as a scale of the hypodense

contrast values from the background tissue. The accuracy of edema density was evaluated

using signal-present images of both the mixed and X-map images. A circular region of

interest (ROI) with a diameter of 10 mm was used to measure the mean CT numbers

under the ROI at the center (𝑀𝑁C) of the cropped images and 40 mm away from the

center to the north (𝑀𝑁N), east (𝑀𝑁E), south (𝑀𝑁S), and west (𝑀𝑁W). The measured

edema density (ED) was calculated as follows:

ED = 1 − 𝑀𝑁C
(𝑀𝑁N+𝑀𝑁E+𝑀𝑁S+𝑀𝑁W) 4⁄ (1)

Model observer assessment

Gabor or difference-of-Gaussian (DoG) functions are considered anthropomorphic and

are most commonly used as channels for CHO studies [15]. Anthropomorphic channels

mimic spatially selective behavior of the human primary visual cortex (V1). To reduce



7

the complexity of detection tasks against heterogeneous backgrounds, edema signals with

a circular cross-section were desgined, and the DoG function, which is suitable for

detecting a rotationally symmetric object, was used as a channel for CHO to evaluate the

detectability of ischemic edema. DoG channels 𝐶𝑗(𝜌)  are defined in the frequency

domain using the following equation:

𝐶𝑗(𝜌) = exp ൭−
1
2ቆ
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where 𝜌 is the spatial frequency variable, 𝜎𝑗 is the standard deviation of 𝑗th channel given

by 𝜎𝑗 = 𝜎0𝛼𝑗 , and 𝑄  is the channel bandwidth. Ten channels and the same channel

parameters proposed by Abbey et al. [16] were used: 𝜎0 = 0.005, 𝛼 = 1.4, and 𝑄 = 1.67.

An inverse Fourier transform was applied to the generated channels in the frequency

domain to obtain the channels in the spatial domain.

The CHO with DoG channels computed decision variable 𝜆 using the following equation.

𝜆𝑗 = 𝝎CHO
𝑇 ⋅ ൫𝑼𝑇 ⋅ 𝒈𝑗൯, (3)

where 𝑼𝑇  denotes the transposed channel matrix, 𝒈  is an image in vector format, 𝑗

indicates either signal-present (s) or signal-absent (b), and 𝝎CHO
𝑇  is the transposed CHO

template defined by the following equation:

𝝎CHO = ቆ
1
2 ൫𝑲𝑔𝑠 +𝑲𝑔𝑏൯ቇ

−1

൫𝑼𝑇𝒈𝑠തതതതതതത − 𝑼𝑇𝒈𝑏തതതതതതത൯, (4)

where 𝑲𝑔𝑠  and 𝑲𝑔𝑏 are the covariances of the channel output for the signals present and

absent, respectively. The 𝝎CHO is determined by estimating 𝑲𝑔𝑠, 𝑲𝑔𝑏 , 𝑼𝑇𝒈𝑠തതതതതതത, and 𝑼𝑇𝒈𝑏തതതതതതത

using the training data. Once the 𝝎CHO has been determined, the testing dataset is used to

estimate the 𝜆 representing the probability of a signal in the image.

In total, 90 2-AFC tasks (five GM/WM proportions, three edema signals, and three dose

levels) were generated and applied to the CHO. For each 2-AFC task, the order of “500

signal-present” and “500 signal-absent” images was randomized independently, and they

were then split into a set of “300 signal-present” and “300 signal-absent” images for
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training and a set of “200 signal-present” and “200 signal-absent” images for testing. A

receiver operating characteristic curve was generated and the corresponding area under

the curve (AUC) was calculated. Bootstrapping was used to estimate the median and 95%

confidence intervals (CI) of the AUC [26].

Data processing and statistical analyses

All image processing in this study, including projection data generation, image

reconstruction, mixed image generation, X-map image generation by material

decomposition, edema density measurement, and AUC calculation of CHO, was

performed using the in-house software developed using MATLAB R2022a (The

MathWorks, Natick, MA, USA).

The Mann-Whitney U test was performed to compare the measured edema signal

densities and detectability of edema signals in AUCs between the mixed and X-map

images. If necessary, Bonferroni correction was applied. Tukey-Kramer post-hoc

multiple comparison tests were performed to identify differences in AUCs among the

GM/WM proportions for mixed and X-map images independently. A 2-sided P value of

< 0.05 was considered statistically significant. Statistical analyses were performed using

R version 4.2.0 (The R Foundation for Statistical Computing, Vienna, Austria) on

RStudio 2022.02.3+492 (RStudio, Boston, MA, USA).

Results

Reproducibility of edema densities

Figure 4 shows measured edema densities calculated using Equation 1 for mixed and X-

map images, averaged for all GM/WM proportions. Under overall conditions,

measurement errors compared with edema densities when generating 80 kV and Sn150

kV images were approximately ±0.5% (range: -0.53% to 0.47%) for mixed images and

approximately ±0.2% (range: -0.23% to 0.1%) for X-map images. Decreasing the

radiation dose increased the range of 95% CIs in X-map images. In contrast, the dose did
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not affect the range of 95% CIs in mixed images. There was no significant difference in

the density of measured edema between the mixed and X-map images at any dose level

(P > 0.05). Thus, in both mixed and X-map images presented here, all edema densities

were accurately reproduced as given densities at all dose levels.

Comparison of detectability between mixed and X-map images

Figure 5 presents the AUCs of all averaged GM/WM proportions for 5%, 10%, and 15%

edema densities at 20, 40, and 60 mGy doses each. There were two observations from

this figure. First, the AUC tended to increase with increasing dose and increasing edema

density in both mixed and X-map images. The AUCs of the X-map images were always

significantly higher than those of mixed images in any combination of edema density and

dose level (P < 0.001). Improvements in the AUC for X-map images compared with that

for mixed images at edema densities of 5%, 10%, and 15% were 9.2%, 10.7%, and 12.6%,

respectively, at 20 mGy; 10.1%, 15.5%, and 17.7%, respectively, at 40 mGy; and 14.0%,

19.4%, and 19.0%, respectively, at 60 mGy (Table 1).

Second, for each edema density, the AUC of the X-map images at 20 mGy was always

significantly higher than that of the mixed images at any dose level (P < 0.001). Figure 6

shows the AUCs for all combinations of edema density, GM/WM proportion, and dose

levels. The AUCs of the X-map images were always significantly higher than those of

the mixed images (P < 0.001). In addition, the AUCs of the mixed images tended to

increase with increasing percentage of the GM. The AUC of each GM/WM proportion at

15% edema density at 60 mGy, a condition that is less affected by image noise, is

presented in detail in Figure 7. There was a clear tendency for AUCs of mixed images to

have a positive relationship with the percentage of the GM, and significant differences

were identified for AUCs of mixed images between GM/WM proportions 0%/100% and

50%/50% (P < 0.05), 0%/100% and 75%/25% (P < 0.001), 0%/100% and 100%/0% (P

< 0.001), and 25%/75% and 100%/0% (P < 0.05) (Table 2). However, no such tendency

was observed for the AUCs of the X-map images, and there was no significant difference

in the AUCs of the X-map images among any of the pairs of GM/WM proportions (P >

0.05).
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Discussion

I compared the ischemic edema detectability of X-map images with that of mixed images

with different edema densities and radiation doses. All edema densities in both the mixed

and X-map images were accurately reproduced at given densities at all dose levels in this

simulation (Figure 4). There was no statistical difference in edema density between the

mixed and X-map images (P > 0.05). Therefore, comparing edema detectability between

mixed and X-map images in this study was reliable.

Edema detectability assessed with the AUC of X-map images was consistently better than

that of mixed images (Figure 5). X-map images improved AUCs by approximately 14%

(range: 9.2%-19.4%) on average compared with that by mixed images. Improvements

were correlated with edema density and radiation dose because of a relatively higher

signal-to-noise ratio with higher edema density and higher dose levels. The major

difference between the mixed and X-map images was background heterogeneity due to

the GM and the WM. The X-map algorithm flattened that heterogeneity and contributed

significantly to improving detectability in X-map images. Assuming that the average CT

value of typical GM and WM is approximately 38 HU [9], edema densities of 5%, 10%,

and 15% roughly correspond to 2, 4, and 8 HU, respectively. Dzialowski et al. reported,

in their experiment using rats, that brain tissue with a decrease >4 HU consistently went

into infarction and that minor edema less than 4 HU was difficult to identify by the naked

eye [27]. Although it is not appropriate to refer to these results for human studies, it is in

agreement with the finding that edema with such small density changes is obscured by

the difference between the GM and the WM (~7-10 HU) [8, 9]. Thus, there is a need to

identify edema with a density of 10%-15% for reliable diagnosis of AIS in clinical

practice. As a rule of thumb, increasing the dose improves low-contrast detectability.

Therefore, the radiation dose for AIS scan protocols on NE-CT tends to be higher than

that for routine head scan protocols. X-map improved the AUC for an edema density of

10%-15% by approximately 16% at 40 mGy and by 19% at 60 mGy. These results suggest

that X-map images can satisfy the potential demand for AIS diagnosis.

In addition, I found that the AUCs of the X-map images at 20 mGy were significantly
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higher than those of mixed images at any dose and edema density (Figure 5). This

improvement in AUC corresponds to a dose reduction of 66% using X-map images, while

ensuring the same level of detectability as mixed images. This dose-reduction capability

is particularly beneficial for patients who require several scans for follow-up.

I also found that the trend of detectability of edema in mixed and X-map images differed

depending on the GM/WM proportions (Figure 7). In the mixed images, AUC increased

monotonically as the percentage of the GM increased. This finding indicates that

identifying an ischemic lesion located in the WM is harder than identifying it in the GM.

To the best of our knowledge, there are no reports that state that the difficulty of detecting

acute ischemia depends on whether the ischemia is in the GM or WM. This finding may

explain why interobserver agreements for acute ischemia vary among readers and even

among neuroradiologists with specific expertise in AIS diagnosis [28-30]; additionally,

the lower interobserver agreement in ASPECT scores for NE-CT also differ compared

with ASPECT scores for other modalities [29, 31, 32]. The use of a narrow display

window width has been proposed to increase the sensitivity of ischemia detection [5, 33];

however, this is only applicable for images with sufficient radiation doses. Although

experience is essential for readers to improve recognition of acute ischemic edema in

clinical practice, it is not easy, even for experienced readers, to identify low-density

edema [28-30, 33]. In contrast, the ischemic edema detectability of X-map images seems

to be independent of the GM/WM proportions, thereby overcoming the limitations of

standard CT images. Therefore, NE-DECT X-map can be an alternative to improve the

identification and quantification of ischemic edema in AIS, interobserver agreement for

NE-CT images, or ASPECT scores for NE-CT [11].

Finally, the aforementioned findings provide a strong incentive to use DECT imaging

protocols and the X-map algorithm rather than the traditional NE-CT imaging protocols

for the diagnosis of AIS. The same DECT image set acquired for the X-map

simultaneously can be utilized for bone-removal DECT application, which specifically

removes the skull to highlights small bleeds near the skull that are difficult to identify [34,

35]. This suggests that only single acquisition with the NE-DECT imaging protocols

instead of the current standard NE-SECT provide necessary information needed for a one-

stop-shop-diagnosis of patient with suspected AIS.
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In addition, our findings support the perspective that the X-map algorithm would benefit

photon-counting detector CT, which recently became commercially available, because

the photon-counting detector CT always acquires spectral data with multiple energy

thresholds [36]. Validation of the X-map algorithm with photon-counting detector CT

will be a future work.

This study has several limitations. First, although this study was a computer simulation

that considers the physical and geometric characteristics of the dual-source CT scanner,

the simulated images were not identical to the actual clinical images in terms of the

phantom design, which included the GM and WM but not cerebrospinal fluid. In addition,

the shape of the phantom was circular, and the skull was thicker, unlike the human head

[37]. Other physiological effects, such as brain motion caused by pulsation, were ignored.

Consequently, motion artifacts, beam-hardening effects, and noise levels, which are

observed on account of the skull, may be different from those in clinical practice.

However, the beam-hardening correction was adjusted for the phantom in the image

reconstruction to reduce the artifacts effectively. Although the noise level with the

phantom was worse than in the clinical practice, the noise distribution was unbiased

because of the circular shape of the phantom. Therefore, the results presented in this work

tend to underestimate the performance of the X-map algorithm, but it does not

overestimate it and is considered to be on the safe side. The phantom design, which

included only brain tissue composed of the GM and WM and mimicked the heterogeneity

of local tissue, was sufficient to discuss the capability of the X-map algorithm in detecting

ischemic edema and to demonstrate the advantages of the X-map algorithm in

transforming a heterogeneous background into a homogeneous background to enhance

the visibility of ischemic lesions. As aforementioned, a major reason for the difficulty in

detecting acute ischemic lesions is the smaller drop in CT number against the background

tissue, which is often smaller than the difference in CT number between the GM and the

WM. This condition was sufficiently simulated with the phantom so that our results can

be translated to clinical practice. As Mangesius et al. indicated, some researchers reported

large inter-/intra-patient variations [38]. Based on our result, this is mainly due to the

image quality of the acquired data set, not the capability of the X-map algorithm itself.
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However, I agree that the ability of the X-map algorithm needs to be evaluated

quantitatively in clinical practice as our future work.

Second, advanced reconstruction techniques, such as iterative reconstruction or deep-

learning-based reconstruction [39, 40], which are often utilized to reduce image noise or

improve the signal-to-noise ratio of objects in clinical practice, have not been used in this

study. The X-map algorithm is an image-based material decomposition process that uses

the same set of source images to generate mixed images. Neither iterative reconstruction

nor deep-learning-based reconstruction can increase the signal intensity of an object;

rather, they can only reduce image noise [40]. Therefore, further dose reduction would be

possible by applying advanced reconstruction techniques, but it would not affect the

evaluation of the X-map algorithm itself by increasing/decreasing detectability. I leave

this limitation for clarification in future comprehensive studies. Finally, our study used

80 kV and Sn150 kV as the tube voltage pair, because this is the best kV pair for X-map

[10]. However, other kV pairs, such as 90 kV for low kV or Sn140 kV for high kV, may

be desired in clinical practice. Similar to other DECT applications, the settings for X-map

image generation must be adjusted appropriately for the selected kV-pair. Owing to image

noise, detectability can be affected, by choosing the kV-pair in the X-map image.

According to Faby et al. [41], when the kV-pair was changed from 80 kV/Sn150 kV to

90 kV/Sn150 kV, to 80 kV/Sn140 kV, and to 80/140 kV, image noise increased by 4%,

10%, and 62%, respectively, which correspond to dose increases of 8%, 17%, and 262%,

respectively. The exposure doses used in this study were 20, 40, and 60 mGy, respectively.

A dose increases of 8% or 17% was found to be acceptable and had no major influence

on our results. However, a 2.6-times higher dose is beyond consideration as it breaks the

20 mGy step. By using tin filtration at high kV, I believe that the results in this paper

would be valid. However, this issue can be addressed in our future work.

Conclusions

A computer simulation study was conducted to investigate the performance of the X-map

algorithm in detecting acute ischemic edema by comparing NE-DECT X-map images

with NE-DECT mixed images, using CHO. X-map images consistently showed better
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detectability than mixed images at all edema densities and at all radiation doses. X-map

images also allow reduction of the radiation dose by more than 60%, while ensuring the

same level of detectability as that of mixed images.
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Figure Legends

Figure 1: Example of a cross-sectional view of a phantom without edema signal. The

brain tissue is formed by a combination of randomly generated cloud shapes, producing

a heterogeneous texture. The texture was defined by the mean CT number according to

the GM/WM proportion and its variance (one standard deviation in our phantom). (A)

Schematic of the cross section, with the contours representing the distribution of CT

numbers; the mean value of the GM/WM proportion (e.g., 32 HU) is shown as a thick

line and the variance as a thin line. (B) Image corresponding to the schema in the left.

The dashed rectangle is a region of interest (256 × 256 pixels) to be cropped out for

analysis.

Figure 2: Sample images with a 5% edema. (A) and (D), (B) and (E), (C) and (F) Sets

of mixed and X-map images, respectively, generated from the same 80 kV and Sn150 kV

data sets at 40 mGy, with a display window level/width setting of 34/40 HU. The

GM/WM proportions are 0%/100% for (A) and (D), 50%/50% for (B) and (E), and

100%/0% for (C) and (F).

Figure 3: Principle of the X-map algorithm described using dual-energy diagram. All

voxels of brain tissue were projected onto a baseline that connected between the water

and the GM, along a slope that passed through the GM and WM. A virtual GM map (X-

map) was thus obtained. The dots distributed around the slope are examples of voxels of

normal brain tissue in a clinical data. The actual clinical data are not polarized to the

nominal points of GM and WM.

Figure 4: Measured edema densities in mixed and X-map images with averaged

GM/WM proportions at different doses for (A) 5%, (B) 10%, and (C) 15% edema

densities. Error bars represent 95% confidence intervals of measurements.
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Figure 5: AUC values averaged for all GM/WM proportions in mixed and X-map

images. Error bars represent 95% confidence intervals of AUC values. Asterisks (*)

indicate statistically significant differences.

Figure 6: AUC values in mixed and X-map images with different GM/WM proportions

at different radiation doses. (A), (B), and (C) exhibit edema densities of 5%, 10%, and

15%, respectively. Error bars represent 95% confidence intervals of AUC values.

Asterisks (*) indicate statistically significant differences.

Figure 7: AUC values for GM/WM proportions with 15% edema density at 60 mGy

(rearranged data from Figure 6). Error bars represent 95% confidence intervals of AUC

values. Asterisks (*) indicate statistically significant differences.
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